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1 INTRODUCTION AND MAIN RESULTS

Classically, Hardy spacesHp can be characterized as boundary values to the heat or Poisson equations whose associated maximal

operators are in Lp, and these kernels are fundamental solutions to the heat and Dirichlet equations, respectively. Even as

the work of Fefferman and Stein [12] led to the versatile employment of the grand maximal function, the study of Hardy

spaces associated with various differential operators continue unabated, with each setting introducing its challenges as well as

limitations in the various equivalent formulations of a classical Hardy space. To name just a few reference works, we have Hardy

spaces associated with an operator L satisfying a pointwise heat kernel bounds [11], satisfying an off-diagonal estimates [1],

associated to divergence form elliptic operators [14], the Davies-Gaffney estimates [15], and reinforced off-diagonal estimates

[5]. These are further generalized in the settings of weighted Hardy spaces [22, 23], Gaussian Hardy spaces [24], variable

exponent Hardy spaces [28, 29], variable anisotropic Hardy spaces [19, 21, 20, 30], and anisotropic mixed-norm Hardy spaces

[16, 17, 18] among many other contributions.

Amongst all this activity, the anisotropic Hardy space [2] appears to be an outlier. With its formulation grounded in maximal,

atomic, and molecular characterizations, and the fact that the scale of the dilation employed in these characterizations is discrete,

the anisotropic setting has no obvious characterization from a differential operator standpoint. Our objective is to answer this

question: Given an anisotropic Hardy space Hp
A associated with an anisotropic dilation matrix A, is there a partial differential

equation (PDE) whose fundamental solution can be used to define Hp
A? Alternatively, can we characterize it as Hp

L for some

differential operator L? As we will see, the answer to the first question is yes, but given the parabolic nature of this PDE, the

answer to the second question is no.

If a PDE does exist to characterize the anisotropic Hardy space, then we must first find a setting in which the dilation scale

is continuous. A natural setting turns out to be the parabolic Hardy space of Calderón and Torchinsky [6, 7], where the use

of a continuous group of dilations {At}t>0, satisfying AsAt = Ast, provides this needed structure, as well as a PDE we can

immediately use. Strictly speaking, the original form of this group is not flexible enough to accommodate the geometry of an

anisotropic dilation, where the natural geometric object are ellipsoids of changing eccentricities. Our first task, in light of this, is
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to consider a wider class of continuous groups that can capture the essential information from a dilation matrix in the anisotropic

setting. This is the content of Theorem 2.3. Next, we will show that every anisotropic dilation matrix A is associated with a

unique continuous group that represents the same geometric information. This is the content of Theorem 3.1. Lastly, we see that

the Hardy spaces associated with both types of dilations are precisely the same space. This is the content of Theorem 3.7.

Theorem 3.7 also answers the question we posed. Once the anisotropic Hardy spaceHp
A is identified with the parabolic Hardy

space Hp
{At}

, we have a PDE characterization of Hp
A. Let Dtf (x) = f (Atx) be the dilation operator induced by the continuous

group. Then we consider the initial value problem that seeks to find u ∶ ℝ
n+1
+

→ ℂ so that

⎧⎪⎨⎪⎩

)u
)t

=
1

t
(D−1

t ΔDt)u (x, t) ∈ ℝ
n+1
+

= ℝ
n ×ℝ+,

u(x, 0) = f (x) x ∈ ℝ
n.

(1.1)

A tempered distribution f is in Hp
A exactly when the solution u(x, t) = f ∗ Φ̃t(x) satisfies the regularity condition that

sup
�̃(x−y)<t

|(Φ̃t ∗ f )(x)| ∈ Lp.

where Φ̃t(x) = t−1Φ(A−1
t x) is the fundamental solution to the PDE (1.1), and �̃ is the quasi-norm associated with {At}, see

Proposition 5.1.

The rest of the paper is devoted to a classification of anisotropic Hardy with respect to different choices of expansive dilations.

This line of research was initiated by the first author in [2] and extended to anisotropic Hardy spaces with variable anisotropy by

Dekel, Petrushev, and Weissblat [10]. Recently, Cheshmavar and Führ [8] have given a classification of anisotropic Besov spaces

[3] associated with anisotropic dilation matrices by describing when two such matrices induce the same scale of Besov spaces.

At the same time they have found an incorrect statement in the corresponding classification theorem for anisotropic Hardy space

[2, Theorem 10.3], which we correct and expand. In particular, we obtain a refinement of classification of anisotropic Hardy

spaces, which are equivalent with respect to linear transformations.

The paper is organized as follows. In Section 2 we provide the anisotropic and parabolic settings. In Section 3 we prove our

main theorems, Theorem 3.1 and Theorem 3.7, linking anisotropic and parabolic Hardy spaces. In Section 4 we provide the

classification of anisotropic Hardy spaces by correcting and expanding the earlier results in [2]. Lastly, in Section 5 we make

further comments and observations about PDE (1.1), its related differential operator L, and where the anisotropic Hardy space

fits in the overall literature of Hardy spaces of various operators.

For the remainder of the paper, we will use c and C as general constants that may depend on the dimension n or underlying

geometry (anisotropic dilation matrixA or expansive group {At}), but do not depend on the function f in question. The Schwartz

class is denoted by , the tempered distributions denoted by ′, and a generic test function' ∈  will be chosen so that ∫ ' ≠ 0.

2 ANISOTROPIC AND PARABOLIC HARDY SPACES

2.1 Anisotropic Setting

We now introduce the anisotropic setting from [2], and the facts needed to state and prove our results. We say a real-valued

n × n matrix A, is an anisotropic dilation matrix if all of its eigenvalues �, real or complex, satisfy |�| > 1. We can construct a

(non-unique) homogeneous quasi-norm, that is, a measurable mapping �A ∶ ℝ
n
→ [0,∞) with a constant c satisfying:

�A(x) = 0 ⇐⇒ x = 0,

�A(Ax) = b�A(x) for all x ∈ ℝ
n, where b ∶= | det A|,

�A(x + y) ≤ c(�A(x) + �A(y)) for all x, y ∈ ℝ
n.

We denote (A, �A) to mean �A is a quasi-norm associated to A, and with dx denoting the Lebesgue measure, the triplet

(ℝn, dx, �A) is a space of homogeneous type.

To illustrate the difference between a quasi-norm and the Euclidean norm, recall that the Euclidean ball B(x, r), centered at

x ∈ ℝ
n with radius r, has the nice property that whenever r1 < r2, we have B(x, r1) ⊂ B(x, r2). But for a dilation matrix A,

we do not expect B(x, r) ⊂ A(B(x, r)). Instead, one can construct ‘canonical’ ellipsoids {Bk}k∈ℤ, associated with A, such that

for all k ∈ ℤ, if we define Bk+1 = A(Bk), then we have nested ellipsoids Bk ⊆ Bk+1, and |Bk| = bk. These nested ellipsoids

will serve as the basic geometric object in the anisotropic setting. Moreover, we can use these ellipsoids to define a ‘step’ norm
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associated with A as follows:

�A(x) =

{
bj if x ∈ Bj+1∖Bj
0 if x = 0.

By setting ! to be the smallest integer so that 2B0 ⊂ A!B0 = B!, �A is a quasi-norm with the triangle inequality constant

c = b!. While any two quasi-norms associated with A will give the same anisotropic structure [2, Lemma 2.4], the step norm

will be our ‘canonical’ norm, denoted by �A.

A general quasi-norm (without being associated to a dilation) is a mapping � ∶ ℝ
n
→ [0,∞) satisfying �(x) = 0 exactly when

x = 0 ∈ ℝ
n, and for some c > 0, satisfies the inequality �(x + y) ≤ c(�(x) + �(y)) for all x, y ∈ ℝ

n. Then if �1 and �2 be two

quasi-norms on ℝ
n, we say they are equivalent if there exists C > 0 such that for all x ∈ ℝ

n,

1

C
�1(x) ≤ �2(x) ≤ C�1(x).

Definition 2.1. We say two dilations (A1, �1) and (A2, �2) are equivalent if their associated quasi-norms �1 and �2 are equivalent.

We are now in a position to define Hardy spaces adapted to the geometry of dilations. We denote  as the Schwartz class,

and  ′ the space of tempered distributions. For a dilation A, ' ∈  , and k ∈ ℤ, we denote the anisotropic dilation by 'k(x) =
b−k'(A−kx). We have four maximal functions, corresponding to their classical counterparts, any one of which can be used to

define Hp
A. These are radial and non-tangential maximal functions and the corresponding grand maximal functions, defined for

f ∈  ′, respectively,

M0
'f (x) = sup

k∈ℤ
|f ∗ 'k(x)|,

M'f (x) = sup
k∈ℤ

sup
�(x−y)<b−k

|f ∗ 'k(y)|,
M0Nf (x) = sup

'∈N
M0

'f (x),

MNf (x) = sup
'∈N

M'f (x).

Here, N , N ∈ ℕ, denotes the set of all ' ∈  such that

‖'‖N = sup
x∈ℝn

sup
|�|≤N

|)�'(x)|�A(x)N ≤ 1.

Theorem 2.1. [2, Proposition 3.10 and Theorem 7.1] Let A be a dilation, p ∈ (0,∞), ' ∈  be such that ∫ ' ≠ 0, and N ∈ ℕ

be sufficiently large. If f ∈  ′, then the following are equivalent:

M0
'f ∈ Lp, M'f ∈ Lp, M0Nf ∈ Lp, MNf ∈ Lp.

In this case, we say f ∈ Hp
A.

We will also use the following fact.

Theorem 2.2. [2, Theorem 10.5] Let A1 and A2 be two dilations. Then, A1 and A2 are equivalent if and only the corresponding

anisotropic Hardy spaces coincide Hp
A1

= Hp
A2

for some 0 < p ≤ 1. In such case they coincide for all 0 < p ≤ 1.

The anisotropic setting was motivated by wavelet theory, thus the parameter associated with dilation A is the discrete k ∈ ℤ.

This causes an immediate issue when one seeks to find a differential operator L or a semigroup {Tt}t>0 that would characterize

Hp
A. That is, Ttf solves the Cauchy problem

)u

)t
= Lu and u(x, 0) = f (x), with Lu = limt→0+

Ttu−u

t
. To overcome this obstacle,

we will instead relate the anisotropic dilation matrix with continuous groups {At}t>0. While this setting has been studied by a

number of authors, our approach is informed by Calderón and Torchinsky [6, 7] and Stein and Wainger [26].

2.2 Parabolic Setting

A continuous group {At}t>0 is a collection of linear operators At ∶ ℝ
n
→ ℝ

n such that for all s, t > 0, it satisfies the algebraic

identity AtAs = Ast and the mapping t → Atx is continuous for all x ∈ ℝ
n. This guarantees the existence of a unique n × n

matrix P , which we call the generator of {At}, such that

At = exp(P ln t), t > 0.
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Conversely, given any real-valued n× nmatrix P , we can construct a continuous group given by the above exponential formula.

In [6], the continuous group considered carries the requirement that there are c1, c2 ≥ 1 such that for all t > 1 and x ∈ ℝ
n,

tc1 |x| ≤ |Atx| ≤ tc2 |x|, (2.1)

which forces the Euclidean ball to be invariant under At for all t > 1. However, this is not sufficient to capture the setting of an

anisotropic dilation, where such invariance might fail for t > 1 close to 1. Instead, the natural geometric objects are ellipsoids

of changing eccentricities whose major axes do not stay fixed. Because of this, we will work with a more general collection of

semigroups {At}, characterized by the following theorem.

Theorem 2.3. Given a continuous group {At}t>0 with generator P , the following are equivalent.

(a) For all x ∈ ℝ
n, lim

t→0
|Atx| = 0.

(b) All eigenvalues � of P satisfy Re(�) > 0.

(c) There exists t0 > 1 such that for all x ∈ ℝ
n ⧵ {0}, |At0x| > |x|.

Definition 2.2. A continuous group {At}t>0 that satisfies the conditions from Theorem 2.3 is called an expansive continuous

group.

Remark 2.3. This characterization has appeared numerous times in literature, under various names. In Stein and Wainger [26,

Part II], these groups were simply called dilations, and it was stated that condition (a) implied (b), while in [27, page 126], it was

stated that (b) implied (a). While the proof of either direction only requires elementary arguments in linear algebra, we provide

them here for reference. While we will not need condition (c) in the rest of the paper, we include it for completeness.

Proof of Theorem 2.3. We first establish the implication (a) ⇒ (b). Let � be an eigenvalue of P . We write � = �r + i�i, where

�r and �i ∈ ℝ are the real and complex parts of �, respectively. Let x� ∈ ℂ
n be the associated eigenvector, also potentially with

complex entries, so we write

x� = xr + ixi,

where xr and xi are both vectors in ℝ
n. Using the relationship At = exp(P ln t) for t > 0, we have

|Atx�| = | exp(P ln t)x�| = | exp(� ln t)x�| = |t�x�| = |t�r ti�ix�| = t�r |x�|.
We used the fact that for any t > 0, |ti�i | = 1. Since Atx� → 0 as t → 0, we have �r > 0.

Next, we establish (b) ⇒ (c). Suppose that all eigenvalues of P have positive real parts. Define the matrix B = A1∕2 =

exp(−P ln 2). If � is an eigenvalue of P , then 2−� is an eigenvalue of B. Hence, all eigenvalues � of B satisfy |�| < 1. By the

spectral radius formula limk→∞ ||Bk||1∕k < 1. Hence, there exists k ∈ ℕ such that ||Bk|| < 1. Let t0 = 2k. Since A1∕t0
= Bk,

we have

|x| ≤ ||A1∕t0
|||At0x| = ||Bk|||At0x| for x ∈ ℝ

n.

Hence, (c) follows.

Finally, we establish (c) ⇐⇒ (a). Suppose that (c) holds for some t0. We will first show that there exists c0 > 1 so that for all

x ∈ ℝ
n,

|At0x| ≥ c0|x|. (2.2)

Indeed, the function x → |At0x| defined on the unit sphere Sn−1 ⊂ ℝ
n achieves a minimum value c0. By (c) we deduce that

c0 > 1. Hence, by the homogeneity we have (2.2). Applying (2.2) recursively we have for any k ∈ ℕ,

|A(t0)−k
x| ≤ (c0)

−1|A(t0)−k+1
x| ≤ … ≤ (c0)

−k|x|.
Letting k → ∞ yields (a).

2.3 Homogeneous quasi-norms

In analogy to the discrete anisotropic setting we adapt the following definition of a homogeneous quasi-norm.

Definition 2.4. Let {At}t>0 be an expansive continuous group. We say �̃ ∶ ℝ
n
→ [0,∞) is a homogeneous quasi-norm with

respect to {At} if there exists c > 0 such that
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�̃(x) = 0 ⇐⇒ x = 0,

�̃(Atx) = t�̃(x) for all x ∈ ℝ
n, t > 0,

�̃(x + y) ≤ c(�̃(x) + �̃(y)) for all x, y ∈ ℝ
n.

The following construction yields a particularly useful example of a homogeneous quasi-norm. Let P be a generator of an

expansive group {At}t>0. Then, there exists a positive definite symmetric matrix B that can be defined algebraically [6, Lemma

1.2] by

BP + P ∗B = I, (2.3)

or by the integral [26, Proposition 1-7]

B =

∞

∫
0

exp(−tP ∗) exp(−tP )dt.

The matrix B satisfies the identity

d
dt

⟨BAtx,Atx⟩ = 1

t
⟨(BP + P ∗B)Atx,Atx⟩ = 1

t
⟨Atx,Atx⟩ > 0.

Hence, for any x ∈ ℝ
n, the quantity ⟨BAtx,Atx⟩ is strictly increasing with respect to t. This allows the following construction

of a homogeneous norm [26, Definition 1-8]. Because of this property, we call B the norm-inducing matrix.

Proposition 2.4 ([26, Proposition 1-9]). Let {At}t>0 be an expansive continuous group with generator P . Let B be a positive

definite symmetric matrix satisfying (2.3). For x ≠ 0 we define �̃(x) = t to be the unique t > 0 such that ⟨BAt−1x,At−1x⟩ = 1.

For x = 0 we set �̃(x) = 0. Then, �̃ is a homogeneous quasi-norm with respect to {At}, which is C∞ on ℝ
n ⧵ {0}.

Let {A∗
t }t>0 be the adjoint of the continuous group, which is itself another continuous group with P ∗ as its generator and with

B∗ as its norm-inducing matrix. We denote �̃∗ to be the associated quasi-norm. If At are diagonal matrices, then �̃∗ = �̃.

With this class of continuous groups, we extend the definition of a parabolic Hardy space from [6, 7] verbatim, and denote

such a Hardy space Hp
{At}

, emphasizing we are using the whole group {At} to define the Hardy space. Fix such a group, and

with it, generator P , trace 
 = tr(P ), and quasi-norm �̃. Then the parabolic non-tangential maximal function, associated with

' ∈  , is given by

M̃'f (x) = sup
t>0

sup
�̃(x−y)<t

|f ∗ '̃t(y)|
with the parabolic dilation '̃t(y) = t−
'(A−1

t y). The presence of tilde in M̃' and '̃t is meant to distinguish between discrete

anisotropic setting and continuous parabolic setting.

We extend the parabolic Hardy space to our setting of expansive continuous groups with no change. This definition is originally

stated using non-tangential maximal operators of all apertures a > 0, but for brevity we will only use the aperture a = 1.

Definition 2.5. [7, Definition 1.1] Let {At}t>0 be an expansive continuous group. If f ∈  ′ and ' ∈  with ∫ ' ≠ 0, then we

say f ∈ Hp
{At}

if the non-tangential maximal operator M̃'f ∈ Lp. In this case, we set the norm ‖f‖Hp
{At}

= ‖M̃'f‖Lp .
The following theorem was shown in [7, Theorem 1.2] under the assumption that a continuous group of dilations {At}t>0

satisfies (2.1). However, as we will see later it also holds for all expansive groups.

Theorem 2.5. Every choice of ' ∈  , with ∫ ' ≠ 0 will result in the same space Hp
{At}

.

3 CONNECTION BETWEEN ANISOTROPIC AND PARABOLIC SETTING

Having established the anisotropic and parabolic settings, the following result establishes their close relationship. Theorem 3.1

is inspired by the work of Cheshmavar and Führ [8] on classification of anisotropic Besov spaces.

Theorem 3.1. Suppose A is an anisotropic dilation matrix. That is, all eigenvalues � of A satisfy |�| > 1. Then there exists a

unique continuous group of dilations {At = exp(P ln t)}t>0, such that:

(i) Its generator P has all positive eigenvalues and tr(P ) = 1, and

(ii) A is equivalent to At for all t > 1.
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More precisely, if {A′
t = exp(P ′ ln t)}t>0 is another one-parameter group of dilations with a generator P ′ satisfying (i) and A is

equivalent toA′
t for some t > 1, then P = P ′. In this case, we say {At}t>0 is the continuous group associated with the anisotropic

dilation A.

Remark 3.1. Due to our choice of the generator P , we have tr(P ) = 1, so det At = t, and the dilation of a function f , with

respect to the continuous group, takes the form f̃t(x) = t−1f (A−1
t x). For the rest of the paper, we will always take our generator

P to have trace 1.

In the proof of Theorem 3.1 we need to use the following three lemmas from [2] and [8] about equivalence of expansive

dilations, see Definition 2.1.

Lemma 3.2 ([2, Lemma 10.2]). Let A and B be two expansive dilations. Then, A and B are equivalent if and only if

sup
k∈ℤ

||AkB−⌊�k⌋|| <∞, where � =
ln | det A|
ln | det B| .

Lemma 3.3 ([8, Lemma 7.6]). Let A and B be expansive matrices of the form A = exp(tX) and B = exp(sX) for some matrix

X and s, t > 0. Then, A and B are equivalent.

Lemma 3.4 ([8, Theorem 7.9(a)]). Let A and B be expansive matrices having only positive eigenvalues and satisfying det A =

det B. Then, A and B are equivalent if and only if A = B.

In addition, we will need the following strengthening of a lemma due to Cheshmavar and Führ [8, Lemma 7.7].

Lemma 3.5. Let A be an expansive matrix. Then, there exists an expansive matrix B such that

(i) A is equivalent to B,

(ii) B has all positive eigenvalues,

(iii) det B = | det A|, and

(iv) for all r > 1 and m = 1, 2,… we have ∑
|�|=r

dim ker(A − �I)m = dimker(B − rI)m. (3.1)

More precisely, there is a one-to-one correspondence between blocks in a complex Jordan normal form of A and blocks in a

Jordan normal form of B such that each Jordan block of A for an eigenvalue � ∈ ℂ corresponds to a Jordan block of B of the

same size for an eigenvalue |�|.
Proof. There exists an invertible matrix S ∈ GL(n,ℝ) such that S−1AS has real Jordan normal form. That is, S−1AS is a block

diagonal matrix consisting of Jordan blocks corresponding to either real or complex conjugate eigenvalues ofA. We shall define

the matrix B such that S−1BS is a block diagonal matrix where each Jordan block of S−1AS is replaced by a certain matrix as

follows.

If � ∈ ℂ ⧵ℝ is a complex eigenvalue of A, then the corresponding real Jordan block is 2k × 2k matrix of the form

J =

⎡
⎢⎢⎢⎢⎣

M� I2

M� I2

⋱ ⋱

M�

⎤
⎥⎥⎥⎥⎦

where M� =

[
Re � Im �
− Im � Re �

]
, I2 =M1 =

[
1 0

0 1

]
. (3.2)

That is, J is obtained from two complex Jordan blocks of size k for conjugate eigenvalues � and �. Write � = |�|!, |!| = 1.

Then, J can be written as a product of two commuting factors

J =

⎡⎢⎢⎢⎢⎣

M!

M!

⋱

M!

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

M|�| M!

M|�| M!

⋱ ⋱

M|�|

⎤⎥⎥⎥⎥⎦
.

Let D1, D2 denote these factors. Then, D1 is an isometry, whereas D2 has only one eigenvalue |�|. We claim that real Jordan

normal form of D2 consists of two blocks each of size k.
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Indeed, let T = D2 − |�|I2k. Then, an easy calculation shows that T is a product of two commuting factors

T =

⎡⎢⎢⎢⎢⎣

M!

M!

⋱

M!

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

02 I2

02 I2

⋱ ⋱

02

⎤⎥⎥⎥⎥⎦
where 02 =

[
0 0

0 0

]
.

Hence, T is nilpotent, T k−1 has all zero entries except 2 × 2 upper right block M!k−1 . Thus, T k−1 has rank 2 and T k = 0. This

shows the claim. Moreover, the fact that D1 and D2 commute implies that for any m ∈ ℤ,

||J−m(D2)
m|| = ||(D1)

−m|| = 1. (3.3)

By Lemma 3.2, expansive matrices J and D2 are equivalent.

Define the matrixB such that S−1BS is a block diagonal matrix where each Jordan block J of S−1AS is replaced by a matrix

D2. This procedure is done for complex eigenvalues � with corresponding Jordan blocks of the form (3.2). If � ∈ ℝ is a real

negative eigenvalue, then we replace k× k Jordan block J by −J . Finally, if � is a positive eigenvalue, then we do nothing to J .

By the construction we have defined a block diagonal matrix S−1BS for which two complex Jordan blocks of size k for a

conjugate pair � and � of complex eigenvalues of A correspond to two Jordan blocks of size k for the eigenvalue |�| of B. In

the case of a negative eigenvalue � of A, a Jordan block of size k corresponds to a Jordan block of B of the same size, but for

positive eigenvalue |�|. This shows that (ii)-(iv) hold.

Finally, to prove (i) observe that (3.3) implies that for any m ∈ ℤ,

||S−1A−mBmS|| = ||(S−1AS)−m(S−1BS)m|| = 1

Hence,

sup
m∈ℤ

||A−mBm|| ≤ ||S||||S−1|| <∞.

By Lemma 3.2, A and B are equivalent.

We are now ready to give the proof of Theorem 3.1.

Proof of Theorem 3.1. Let A be an expansive matrix. Let B be the equivalent matrix with all positive eigenvalues which exists

by Lemma 3.5. By [9, Theorem 1] there exists a real matrix X such that B = exp(X). Since all eigenvalues of B are > 1, all

eigenvalues of X are positive. For t ∈ ℝ define a one-parameter group of dilations At = exp(P ln t), t > 0, where P =
1

c
X and

c = tr(X). By Lemma 3.3 the dilations At, t > 1, are all equivalent with B = Aec , which in turn is equivalent with A.

Finally, the uniqueness of P follows from Lemma 3.4. Indeed, suppose that {A′
t = exp(P ′ ln t)}t>0 is another one-parameter

group of dilations with a generator P ′ satisfying (i) and such that B is equivalent to A′
t for some t > 1. By Lemma 3.3, B is

equivalent with A′
t for all t > 1. Choose t0 > 1 such that

| det(A)| = det(B) = det(A′
t0
) = exp(ln t0 tr(P

′)) = t0.

Since At0 and A′
t0

are equivalent, have all positive eigenvalues, and det(At0) = det(A′
t0
), by Lemma 3.4 we have At0 = A′

t0
.

Likewise, by Lemma 3.3, At and A′
t are equivalent, have all positive eigenvalues, and det(At) = det(A′

t) for all t > 1. Thus,

At = A′
t for all t > 0, which shows the uniqueness.

As an immediate corollary of Theorem 3.1 we have the following result. A similar result to Corollary 3.6 was observed by

Cheshmavar and Führ in [8, Remark 7.11].

Corollary 3.6. Let �1 and �2 be the quasi-norms associated to dilationsA1 andA2, respectively. Let P1 and P2 be the generators

of one-parameter groups of dilations as in Theorem 3.1 corresponding toA1 andA2, respectively. Then, �1 and �2 are equivalent

if and only if P1 = P2.

We can now state the main result of our paper.

Theorem 3.7. LetA be an anisotropic dilation. Then, there exists an expansive continuous group {At}t>0 such that its generator

has all positive eigenvalues and discrete and continuous anisotropic Hardy spaces coincide Hp
A = Hp

{At}
. That is, for f ∈  ′,

we have

‖f‖Hp
A
≃ ‖f‖Hp

{At}
.
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With this theorem, we are able to associate an anisotropic Hardy spaceHp
A with the parabolic PDE (1.1), in the sense that the

fundamental solution to (1.1) can be used as a kernel in the radial maximal characterization of Hp
{At}

. In light of Theorem 2.2

it is tempting to conclude that Theorem 3.1 already accomplishes this. However, Theorem 3.1 implies only that for each t > 1,

Hp
A and Hp

At
, both as anisotropic Hardy spaces (with respect to dilations A and At), are equivalent. What we need is slightly

stronger: the anisotropic Hardy space Hp
A, defined via discrete maximal functions, is the same as the parabolic Hardy space

Hp
{At}

, defined via a continuous maximal function as shown below.

Lemma 3.8. Let {At}t>0 be an expansive continuous group and let A = At0 , where t0 > 1. Then for any f ∈  ′, we have

‖f‖Hp
A
≃ ‖f‖Hp

{At}
.

Proof. Without loss of generality, by rescaling we can assume that the generator P of {At}t>0 satisfies tr(P ) = 1. The inclusion

Hp
A ⊇ Hp

{At}
is a consequence of Theorem 2.1 and the fact that the (discrete) radial maximal operator is majorized by a non-

tangential (continuous) maximal operator. That is, for f ∈ Hp
{At}

we have

M0
'f (x) ≤ M̃'f (x). (3.4)

Indeed, we convert the continuous dilation (on the right) to the discrete dilation (on the left) by setting t = (t0)
k, where k ∈ ℤ.

Since b = | det A| = t0 we have

b−k'(A−ky) = '̃(t0)k
(y).

Taking the supremum over k ∈ ℤ on the left-hand side and over t > 0 and �̃(x − y) < t, yields (3.4).

For the reverse inclusion, let N ∈ ℕ be large enough so that if f ∈ Hp
A, then M0f ∈ Lp, where

 = N = {' ∈  ∶ ‖'‖�,N ∶= sup
x∈ℝn

|)�'(x)|(1 + |x|)N ≤ 1, |�| ≤ N}.

This is a consequence of the fact that we can replace the family N in the grand maximal function definition of anisotropic

Hardy spaces by the family N . Indeed, for any N ′ > 0 there exist c > 0 and N > 0 such that N ⊆ cN ′ by [2, Lemma 3.2].

Consider a continuous variant of the radial grand maximal function given by

M̃0f (x) = sup
'∈

sup
t>0

|f ∗ '̃t(x)|.
In light of Theorem 2.1, it suffices to show that for any' ∈  , there exist positive constants c1 and c2, independent of f , such that

M̃'f (x) ≤ c1M̃
0f (x) ≤ c2M

0 (x). (3.5)

To establish the first inequality in (3.5) note that for any x ∈ ℝ
n we have

M̃'f (x) = sup
t>0

sup
�̃(x−y)<t

|f ∗ '̃t(y)| = sup{|f ∗ '̃t(x + Atz)| ∶ t > 0, �̃(z) < 1}

= sup{|f ∗ �̃t(x)| ∶ t > 0, �(⋅) = '(⋅ + z) for some �̃(z) < 1}.

The semi-norms of � can be crudely estimated as

||�||�,N = sup
x∈ℝn

|)�'(x)|(1 + |x − z|)N ≤ 2N (1 + |z|)N sup
x∈ℝn

|)�'(x)|(1 + |x|)N ≤ 2N (1 + |z|)N .
Taking supremum over z ∈ ℝ

n such that �̃(z) < 1 shows that � ∈ c1 for some constant c1, which yields the first inequality.

To establish the second inequality in (3.5), we first show that it holds if t ∈ [1, t0] and then we extend it to all possible values

of t > 0. Fix ' ∈  . For x ∈ ℝ
n and t ∈ [1, t0], we write

|(f ∗ '̃t)(x)| =
||||∫
ℝn

f (x − z)t−1'(A−1
t z)dz

|||| = |f ∗  (x)|,

where  (z) = t−1'(A−1
t z). Observe that by chain rule, the partial derivatives )� , are controlled by )�', where |�| ≤ |�| as

well as norms of matrices A−1
t , where t ∈ [1, t0]. Indeed, by the chain rule, see [4, Lemma 5.5], there exists a constant C > 0

such that
|| ||�,N ≤ Ct−1||(At)−1|||�| sup

|�|≤|�|
sup
x∈ℝn

|)�'((At)−1x)|(1 + |x|)N

= Ct−1||(At)−1|||�| sup
|�|≤|�|

sup
x∈ℝn

|)�'(x)|(1 + |Atx|)N ≤ Ct−1||(At)−1|||�|||At||N .
Since t ∈ [1, t0] we deduce that  ∈ c with c depending on t0.
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Now let t > 0 be arbitrary. Let k ∈ ℤ be such that t ∈ [(t0)
k, (t0)

k+1]. If we define t̃ = t∕(t0)
k, then t̃ ∈ [1, t0] and we have the

identities At = At̃(t0)k = At̃A(t0)k
. Then,

f ∗ '̃t(x) = ∫
ℝn

f (x − z)t−1'((At)
−1z)dz =

1

t̃ ∫
ℝn

f (x − z)(t0)
−k'((At̃(t0)k)

−1z)dz

=
1

t̃ ∫
ℝn

f (x − z) k(z)dz =
1

t̃
(f ∗  k)(x),

where  (z) = '((At̃)
−1z) ∈ c and  k(z) = b−k (A−kz). Therefore, taking the supremum of the continuous dilation over

t > 0, with respect to a test function ' ∈  , is equivalent to taking the supremum of the discrete dilation over k ∈ ℤ, with

respect to another test function  ∈ c . Hence, we obtain the second inequality of (3.5). This completes our proof.

Proof of Theorem 3.7. Let A be an expansive dilation. By Theorem 3.1 we can find an associated continuous expansive group

{At}t>0 such that its generator has all positive eigenvalues and A is equivalent to the dilation At0 for some/all t0 > 1. By

Theorem 2.2, discrete anisotropic Hardy spaces Hp
A and Hp

At0
coincide with equivalent quasi-norms. Hence, we obtain the

required conclusion by Lemma 3.8.

4 EQUIVALENCE OF DILATIONS UP TO LINEAR TRANSFORMATIONS

In this section, we provide the classification of anisotropic Hardy spaces by correcting and expanding the results shown in [2].

The following result was shown by the first author [2, Theorem 10.3].

Theorem 4.1. Let �1 and �2 be the quasi-norms associated to dilations A1 and A2, respectively. If �1 and �2 are equivalent, then

for all r > 1 and all m = 1, 2,…

span
⋃
|�|=r�

ker(A1 − �I)
m = span

⋃
|�|=r

ker(A2 − �I)
m, (4.1)

where

" = "(A1, A2) = ln | det A1|∕ ln | det A2|. (4.2)

In (4.1), we treat A1 and A2 as linear maps on ℂ
n and � varies over their complex eigenvalues.

In [2] it was incorrectly claimed the converse to Theorem 4.1 also holds. Cheshmavar and Führ [8, Remark 7.4] have given

an example showing that the converse is actually false. To illustrate this, we can use Corollary 3.6: two dilations are equivalent

exactly when their corresponding generators (of trace 1) are exactly the same. Consider the following example.

Example 4.1. For any c ∈ ℝ, consider the 2 × 2 dilation

Ac =

[
2 c
0 2

]
.

One can easily compute that

Ac = exp

([
ln 2 c∕2
0 ln 2

])
.

Hence, the generator Pc of a one-parameter group of dilations from Theorem 3.1 corresponding to Ac is given by

Pc =

[
1∕2 c∕(2 ln 2)
0 1∕2

]
.

By Corollary 3.6, dilations Ac are not equivalent to each other for different choices of c ∈ ℝ. Obviously, the choice of c = 0

corresponds to the classical isotropic setting. In general, by Lemma 3.4, matrices of the form

⎡⎢⎢⎢⎢⎣

2 ∗ ∗ ∗

2 ∗ ∗

⋱ ∗

2

⎤⎥⎥⎥⎥⎦
(4.3)

are equivalent if and only if all entries above the diagonal are identical.
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Example 4.1 suggests that it is rare when two dilations are equivalent. The situation changes drastically when we identify

dilations up to a similarity. In this scenario dilations A and S−1AS, where S ∈ GL(n,ℝ) are not distinguished. Hence, we are

interested in equivalence of quasi-norms up to a linear transformation, see [2, Definition 10.9]. As a consequence of Corollary

4.3 we will see that the number of non-equivalent quasi-norms corresponding to n×nmatrices of the form (4.3) is actually finite

and equal to the partition function p(n).
This is a consequence of the following result, see [2, Theorem 10.10]. Since the original proof of this fact relied on incorrect

formulation of [2, Theorem 10.5(ii)] due to the above mentioned problem with the converse of Theorem 4.1, we need to give a

corrected proof.

Theorem 4.2. Suppose we have two dilations A1 and A2 on ℝ
n. The following are equivalent:

(i) the quasi-norms �1 and �2 associated to A1 and A2, respectively, are equivalent up to a linear transformation, i.e., there is

a constant c > 0 and an invertible n × n matrix S such that

1∕c�1(x) ≤ �2(Sx) ≤ c�1(x) for all x ∈ ℝ
n.

(ii) for all r > 1 and m = 1, 2,… we have

∑
|�|=r"

dim ker(A1 − �I)
m =

∑
|�|=r

dim ker(A2 − �I)
m, where " =

ln | det A1|
ln | det A2| . (4.4)

Proof of Theorem 4.2. Suppose that two quasi-norms �1 and �2 are equivalent up to a linear transformation. Note that �2(S⋅) is

a quasi-norm associated with the dilation S−1A2S since

�2(S(S
−1A2Sx)) = | det A2|�2(Sx) = | det(S−1A2S)|�2(Sx).

Hence, the quasi-norms �1 and �2 are equivalent up to a linear transformation if and only ifA1 is equivalent to S−1A2S for some

S ∈ GL(n,ℝ).
Since the quasi-norms �1 and �2(S⋅) are equivalent, Theorem 4.1 implies that for any r > 1, m = 1, 2,…

span
⋃
|�|=r�

ker(A1 − �I)
m = span

⋃
|�|=r

ker(S−1A2S − �I)m

= span
⋃
|�|=r

ker(S−1(A2 − �I)
mS) = S−1

(
span

⋃
|�|=r

(ker(A2 − rId)
m)

)
.

Hence, (4.4) holds.

It remains to show the converse implication (ii) ⇐⇒ (i). By Lemma 3.5 there exist expansive dilationsB1 andB2 with positive

eigenvalues which are equivalent to A1 and A2, respectively. Since the original dilations A1 and A2 satisfy (4.4), by Lemma

3.5(iv) their positive eigenvalue counterparts B1 and B2 satisfy

dim ker(B1 − r
"
I)m = dimker(B2 − rI)

m, for all r > 1, m = 1, 2,…

Let �′
1

and �′
2

be quasi-norms associated to B1 and B2, respectively. Since �i and �′i are equivalent for i = 1, 2, it suffices to show

that �′
1

and �′
2

are equivalent up to a linear transformation.

Using Theorem 3.1 we can rescale one of the dilations, say B1, to an equivalent dilation B′
1

so that det B′
1
= det B2, without

affecting the conclusion (i). More precisely, we consider the unique one-parameter group of dilations {exp(P ln t)}t>0 such that

B1 = exp(P ln t1) for t1 = det B1 > 1, where P is the generator as in Theorem 3.1. Define B′
1
= exp(P ln t2), where t2 = det B2.

Then, B′
1

is equivalent to B1 and det B′
1
= det B2.

Moreover, we claim that

dim ker(B′
1
− rI)m = dimker(B2 − rI)

m for all r > 1, m = 1, 2,… (4.5)

Indeed, if the Jordan normal form of P has a Jordan block of size k corresponding to an eigenvalue � > 0, then exp(tP ) has in

its Jordan normal form a block of the same size corresponding to an eigenvalue e�t for any t ∈ ℝ. In other words,

dim ker(P − �I)m = dimker(exp(P ln t) − t�I)m for all t, � > 0, m = 1, 2,…

Take any r > 1 and write it as r = (t2)
� for some � > 0. Since " = ln t1∕ ln t2 we have r" = (t1)

�. Hence,

dim ker(exp(P ln t2) − rI)
m = dimker(P − �I)m = dimker(exp(P ln t1) − r

"
I)m.
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This shows (4.5).

Finally, observe that for any matrix B, the number of Jordan blocks of size ≥ m corresponding to an eigenvalue r is equal to

dim ker(B − rI)m − dim ker(B − rI)m−1.

Hence, (4.5) implies that the number of Jordan blocks of size m corresponding to an eigenvalue r is the same for both B′
1

and

B2. Therefore, the matrices B′
1

and B2 have the same Jordan normal form. In other words, there is an invertible n × n matrix S
such that B′

1
= S−1B2S. This implies that the quasi-norm associated to B′

1
, which is equivalent to �′

1
, is �′

2
(S⋅). This proves that

quasi-norms �′
1

and �′
2

are equivalent up to linear transformations and so are �1 and �2.

Theorem 4.2 implies the following classification of expansive dilations according to their Jordan normal form.

Corollary 4.3. For any k ≤ n, take any sequences

n1,… , nk ∈ ℕ n1 +…+ nk = n, (4.6)

1 < �1 <… < �k < 2 �n1
1
⋯ �

nk
k = 2. (4.7)

and partitions �i, i = 1,… , k of ni, i.e.,

�
i = (�i

1
≥ … ≥ �imi) ∈ ℕ

mi �i
1
+…+ �imi = ni. (4.8)

For specified parameters (4.6), (4.7), and (4.8), define the corresponding block diagonal matrix

A(�1,… , �k;�
1,… ,�k) (4.9)

consisting of Jordan blocks for eigenvalues �i, i = 1,… , k, and sizes �ij , j = 1,… , mi. Then, any expansive dilation A in ℝ
n

is equivalent up to a linear transformation to some dilation A(�1,… , �k;�
1,… ,�k). Moreover, this correspondence is 1-to-1.

That is, dilations of the form (4.9) for distinct choices of eigenvalues �1,… , �k and partitions �1,… ,�k are not equivalent up

to linear transformations.

Proof. By Theorem 3.1, we can replace A by an equivalent dilation B with all positive eigenvalues. In addition, by rescaling we

can assume that det B = 2. Then, B has a Jordan normal form (4.9) for some eigenvalues (4.7) and the corresponding Jordan

blocks of sizes given by partitions (4.8). Now, if we modify any of the partitions �i, i = 1,… , k, or any of the eigenvalues �i,
then we necessarily change the value of

dim ker(A(�1,… , �k;�
1,… ,�k) − �I)m

for some � > 1 and m = 1, 2,… Theorem 4.2 guarantees that two different dilations of the form A(�1,… , �k;�
1,… ,�k) are

not mutually equivalent up to linear transformation.

Recall that two anisotropic Hardy spaces Hp
A1
(ℝn) and Hp

A2
(ℝn) are equivalent up to linear transformations if there exists an

invertible n×nmatrixS such that the dilation operator f → f (S−1⋅) defines an isomorphism betweenHp
A1
(ℝn) andHp

A2
(ℝn), see

[2, Definition 10.9]. This happens precisely ifA1 and S−1A2S are equivalent dilations, see the proof of [2, Theorem 10.10]. As a

consequence of Corollary 4.3 dilations of the form (4.9) classify anisotropic Hardy spacesHp
A(ℝ

n) up to linear transformations.

Theorem 4.4. Suppose we have two dilations A1 and A2 on ℝ
n. The following are equivalent:

(i) A1 and S−1A2S are equivalent for some n × n invertible matrix S,

(ii) (4.4) holds for all r > 1 and m = 1, 2,…,

(iii) Hp
A1
(ℝn) and Hp

A2
(ℝn) are equivalent up to linear transformations for all 0 < p ≤ 1,

(iv) Hp
A1
(ℝn) and Hp

A2
(ℝn) are equivalent up to linear transformations for some 0 < p ≤ 1.

Remark 4.1. A similar classification result holds for homogeneous Besov spaces which were originally introduced in [3].

According to [8, Corollary 6.5] two anisotropic Besov spaces associated to dilations A1 and A2 are the same if and only if the

quasi-norms corresponding to the transposes (A1)
T and (A2)

T are equivalent. Consequently, one can show that (unweighted)

anisotropic Besov spaces are classified up to linear transformations by dilations of the form (4.9).
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Remark 4.2. Cheshmavar and Führ have introduced the concept of coarse equivalence of dilations in terms of their quasi-norms

[8]. In light of Theorem 4.2, it might be tempting to introduce a coarse equivalence of quasi-norms up to linear transformations.

However, it is not difficult to show that this notion coincides with the above concept of equivalence up to linear transformation.

Indeed, as a corollary of [8, Theorem 7.9(b)], any two coarsely equivalent dilations are equivalent up to linear transformation.

Remark 4.3. As another consequence of Corollary 4.3 we can deduce that for any choice of

1 < �1 <… < �k < ∞, k ≤ n,

there exist only finitely many equivalence classes (up to linear transformations) of n×n dilation matricesAwith above magnitudes

of eigenvalues. Indeed, there exist only a finite choice of multiplicities (4.6) with corresponding finite number of choices of

partitions (4.8) that produce the required representatives

A(�1∕c,… , �k∕c;�
1,… ,�k), where c = (�n1

1
⋯ �

nk
k )

1∕n∕21∕n.

As a consequence, we obtain the following corollary.

Corollary 4.5. The number of equivalence classes of anisotropic Hardy spacesHp
A(ℝ

n), 0 < p ≤ 1, up to linear transformations

for dilations A, which have only one eigenvalue, equals the partition function p(n).

5 FURTHER CONNECTIONS BETWEEN HARDY SPACES AND PDES

In this section, we discuss open questions on the Hardy spaces associated with differential operators. The relationship between

the anisotropic Hardy space and many variants of the Hardy spaces associated to operators [5], [11], [15], [14] is not clear, given

the time-component in the associated differential equation (1.1). Related to this issue, we can formulate a new Hardy space

adapted to the quasi-norm of a continuous group, which does have a natural formulation related to a pseudo-differential operator

L. Denoting this second Hardy space by Hp
L, we ask if such a space is well-defined with respect to the norm used, and whether

the semigroup {e−tL}t>0 satisfies Davies-Gaffney estimates.

5.1 Parabolic Setting

To set the context for these questions, we fix an expansive continuous group {At}, which defines the associated parabolic

differential equation (1.1):

)u
)t

=
1

t
⋅ (D−1

t ΔDt)u = Ltu.

In the frequency domain, the fundamental solution Φ is given in a simple form.

Proposition 5.1 ([6, Section 1.3]). Let Φ ∈  be defined by

Φ̂(�) = exp[−4�2⟨B�, �⟩], (5.1)

where B is a norm-inducing matrix B for {A∗
t }. Then Φ̃t(x) = t−1Φ(A−1

t x) satisfies the differential equation (1.1). Moreover, if

f ∈  ′, then u(x, t) = f ∗ Φ̃t(x) also satisfies the same equation.

Proposition 5.1 is an elementary result, but we include the proof for completeness. Its proof does not require the assumption

(2.1) made in [6]. However, it does require the following property of a norm-inducing matrix B for {A∗
t }, which we state again:

d
dt

⟨BA∗
t x,A

∗
t x⟩ = 1

t
⟨(BP ∗ + PB)A∗

t x,A
∗
t x⟩ = 1

t
⟨A∗

t x,A
∗
t x⟩. (5.2)

Proof. If Φ̃t is a solution for the PDE (1.1), then by taking the Fourier transform we obtain

)
)t
[Φ̂(A∗

t �)] =
−4�2⟨A∗

t �, A
∗
t �⟩

t
Φ̂(A∗

t �). (5.3)

If Φ is given by (5.1), then a simple calculation using (5.2) shows that it satisfies (5.3). Conversely, observe that for fixed � ∈ ℝ
n,

(5.3) can be seen as an ordinary differential equation of the form

d
dt
ℎ(t) =

−4�2⟨A∗
t �, A

∗
t �⟩

t
ℎ(t).
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Hence, its solution must be of the form ℎ(t) = c0e
s(t), where s′(t) = −4�2⟨A∗

t �, A
∗
t �⟩∕t. By the property (5.2), we have s(t) =

(−4�2)⟨BA∗
t �, A

∗
t �⟩. Since ℎ(t) = Φ̂(A∗

t �), the fundamental solution Φ satisfies Φ̂(�) = exp[−4�2⟨B�, �⟩]. Consequently, if

f ∈  ′, then F ∶ ℝ
n × (0,∞) → ℂ, defined by F (x, t) = f ∗ Φ̃t(x), is also a solution to (1.1).

Now observe that the parabolic PDE, associated with the operator Lt = (D−1
t ΔDt)∕t, depends on t, for which there is no

viable semigroup theory. Indeed, if we naively set Ttf = Φ̃t ∗ f , a computation with the Fourier transform gives

(TtTrf )
∧(�) = exp(−4�2⟨(A t

t+r
BA∗

t + A r
t+r
BA∗

r
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

J

)�, A∗
t+r�⟩).

We will have the semigroup property exactly if the J -term satisfies the identityA t
t+r
BA∗

t +A r
t+r
BA∗

r = BA∗
t+r, which is not likely.

So we cannot make sense of the operation e−tLtf , nor use Hp
Lt

to denote Hp
{At}

. This leads to the following problem. Given a

dilation matrix A and its associated expansive group {At}, and having established the equivalence between the anisotropic and

parabolic Hardy spaces Hp
A ≃ Hp

{At}
, investigate the connection with the theory of Hardy associated with operators.

5.2 Alternative Parabolic Approach

By seeking a semigroup structure associated with the expansive group {At}, we formulate an alternative definition of Hardy

space. To do this, we fix a continuous group {At}t>0. Let �̃∗ be the quasi-norm associated with {A∗
t }, and define the alternative

fundamental solution

Φ̂(�) = exp(−4�2�2
∗
(�)). (5.4)

Then we have a semigroup Ttf = Φ̃√
t ∗ f (x), as made apparent by the Fourier transform and the homogeneity property

�̃∗(A
∗
t �) = t�̃∗(�),

T̂tTsf (�) = exp(−4�2�̃2
∗
(A∗√

t
�)) exp(−4�2�̃2

∗
(A∗√

s
�))f̂ (�) = exp(−4�2�̃2

∗
(�
√
s + t))f̂ (�)

= T̂s+tf (�).

Furthermore, Φ given by (5.4) is the fundamental solution of )tu = Lu, defined in frequency by

)tû(�) = L̂u(�) = −4�2�̃∗(�)
2û(�). (5.5)

The operator L is the infinitesimal generator of the semigroup {Tt}, which is defined formally for f in the domain of L, by

Lf = limt→0+
Ttf−f

t
. Then we are now in a position to define the space Hp

L as all tempered distributions f ∈  ′ such that

0
Φ
f = sup

t>0
|e−tLf | = sup

t>0
|Φ̃√

t ∗ f | ∈ Lp.

We can now attempt to place the pseudo-differential operator L from (5.5) among existing literature. We start with a basic

question concerning the nature of these Hp
L spaces. Given {At} and its dual {A∗

t }, we can have more than one homogeneous

norm �∗ to use in defining the fundamental solution Φ̂. For example, even in the diagonal case, fix � > 0, and define

At =

(
t� 0

0 t�

)
with P =

(
� 0

0 �

)
.

Since At = A∗
t , we do not need to make a distinction between the homogeneous norms � or �∗. Associated with this group are

two natural choices of quasi-norms. The first is the canonical quasi-norm, from solving the identity |A−1
t x| = 1, which gives the

norm �̃1(x) = |x|1∕� . The second is given by �̃2(x) =
√|x1|2∕� + |x2|2∕� , so that it satisfies the homogeneity �̃(Atx) = t�̃(x).

Their geometries do differ: �̃1(x) = 1 exactly when x is on the boundary of the Euclidean unit ball, while �̃2(x) = 1 for x on the

boundary of the l2∕� unit ball given by ‖x‖2∕�
l2∕� =

∑2

j=1 |xj|2∕� = 1.

A fundamental question is to consider whether the resulting Hardy spaces, from the two norms, agree. Consider the example

when � = 2, with the homogeneous norms �̃1(�) = |�|1∕2 and �̃2(�) =
√|�1| + |�2|. Their respective fundamental solutions are

Φ̂(1)(�) = exp(−4�2|�|) and Φ̂(2)(�) = exp(−4�2|�1|) exp(−4�2|�2|), which under the inverse Fourier transform, are given by the

Poisson kernelΦ(1)(x) = P2(x) and the product of two Poisson kernels inℝ, which we denote byQ(x) = Φ(2)(x) = P1(x1)P1(x2),
where Pn(x) = cn(1 + |x|2)−(n+1)∕2. We proceed along the classical arguments, see [25, Chapter III.1] or [13, Chapter 2.1].

Observe that the first norm leads to the classical Hardy space. Denote the Hardy space associated with the kernelQ to beHp
Q,

with the norm ‖f‖Hp
Q
= ‖0

Qf‖p for f ∈  ′, defined formally for f ∈  ′(ℝ2) for which f ∗ Qs(x) is defined for s > 0. We
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can readily establish the inclusion Hp ⊆ Hp
Q by decomposing Q along each variable, and obtain

Q(x) = Q1(x1)Q2(x2) =
∞∑

j,k=0

2−(k+j)2−k'(j,k)

(
x1
2j
,
x2
2k

)
,

where '(j,k)(x1, x2) = Φ(k)(x1)Φ
(j)(x2), and Φ(k) are smooth cutoff functions in ℝ and bounded in (ℝ2). Then we can majorize

the radial maximal function of Q with respect to a grand maximal function, and obtain the inclusion that Hp ⊆ Hp
Q.

However, the reverse inclusion is unknown. Classically, one defines a test function by Ψ(x) = ∫ ∞

1
�(s)Ps(x)dx, where � is

smooth on [1,∞), and satisfies
∞

∫
1

�(s)ds = 1,

∞

∫
1

sk�(s)ds = 0 for k ∈ ℕ.

The Ψ is shown to be in  , and majorizes the maximal function associated with the Poisson kernel. However, when we useQ in

this construction, Ψ cannot be shown to be smooth, given the lack of differentiability of Q̂ along the �1 and �2 axes. This leaves

open the question of whether we do have Hp
Q ⊆ Hp, or, more generally, if two homogeneous norms to the same continuous

group leads to the same Hardy space. It is worth adding that if p > 1, then the Hardy spaceHp andHp
Q actually coincide withLp

by [25, Chapter II.4]. In general, the fact the Hardy spaces Hp
L coincide with Lp spaces for p > 1 is related to the boundedness

of maximal functions along curves due to Stein and Wainger [26]. However, the following problem remains open.

Question 1. Given an essentially continuous expansive group {A∗
t }, with two homogeneous quasi-norms �̃∗

1
and �̃∗

2
, consider

the resulting fundamental solution and PDE, given by the differential operators L1 and L2, respectively. Do they result in the

same Hardy space, that is, Hp
L1

= Hp
L2

, 0 < p ≤ 1?

Lastly, givenHp
L, fixed by a specific choice of �̃ associated with {A∗

t }, we naturally inquire where in the present literature this

Hardy space is placed. Given the vast literature, we can narrow this question to verifying the Davies-Gaffney estimate as follows.

Let {At} be an expansive continuous group, and consider (ℝn, �̃, dx) as a space of homogeneous type. We seek to determine if

the fundamental solution Φ of L satisfies the off-diagonal Davies-Gaffney estimate [15, Assumption 2.2].

Question 2. For open subsets U1, U2 ⊂ ℝ
n and f1, f2 supported on U1, U2, will we have, for all t > 0,

|⟨e−tLf1, f2⟩| ≤ C exp

(
−
dist(U1, U2)

2

ct

)
‖f1‖2‖f2‖2,

where e−tLf1 = Φ̃√
t ∗ f and dist(U1, U2) = inf{�̃(x − y) ∶ x1 ∈ U1, x2 ∈ U2}?
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