
Simulation 
Platform Reported work

Number of 
search 

patterns

Number of 
qubits Precision type Frequency 

(MHz)

CPU Avila et al. [11], 2017 single 21 32-bit floating pt. 3400

GPU 
Avila et al. [11], 2017 single 21 - 1000

Gutiérrez et al. [12], 2010 single 26 32-bit floating pt. 1350
Khalid et al. [13], 2004 single 3 16-bit fixed pt. 82.1

FPGA Lee et al. [14], 2016 single 7 24-bit fixed pt. 85

Proposed Work single/ 32 32-bit floating pt. 233
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Introductionn andd Motivations

Proposed/modified multi-pattern Grover's search

Modified oracle for Grover's algorithm for 
multiple solutions/patterns

Modified oracle for Grover's algorithm for 
a single solution/pattern

Background Quantumm Haarr Transform Dimensionn Reductionn andd  
Patternn Recognitionn andd Matching

Quantum permutation circuit

2D quantum Haar transform circuit

Modifiedd Grover’ss Search

Comparativee Study

System Overview

High-resolution test images up to 64k × 64k pixels

Multi-level packet 2D-QHT → L-level decomposition to target resolution

32-qubit 2D-QHT and 16-qubit Grover’s search circuits implemented on a   
single FPGA

Original 512 × 512    
image

256 × 256 images after 
1-level 2D-QHT

Reported Work Algorithm Number of qubits Precision Operating fre-
quency (MHz)

Emulation 
time (sec)

Fujishima (2003) Shor’s factoring - - 80 10

Khalid et al (2004) QFT 3 16-bit fixed pt. 82.1 61E-9
Grover’s search 3 16-bit fixed pt. 84E-9

Aminian et al (2008) QFT 3 16-bit fixed pt. 131.3 46E-9

Lee et al (2016) QFT 5 24-bit fixed pt. 90 219E-9
Grover’s search 7 24-bit fixed pt. 85 96.8E-9

Silva and Zabaleta (2017) QFT 4 32-bit floating pt. - 4E-6
Pilch and Dlugopolski (2018) Deutsch 2 - - -

Proposed work

QFT 32

32-bit floating pt. 233

7.92E10
QHT 30 13.825

Grover’s search 32 7.92E10
QHT + Grover’s 32 7.92E10

The             
multi-pattern  
oracle is      
constructed of 
cascaded     
single-pattern 
oracle circuits

Each oracle 
also utilizes 
controlled 
Pauli-X (cX) 
gates instead 
of Pauli-X 
gates to allow 
dynamic 
search      
patterns

The permutation step is 
required to shift the target 
patterns to the output 
quantum register’s target 
indices

Classical-to-Quantum

Why Quantum?
Solving NP-hard problems

Speedup over classical

Critical Problems 
I/O intensive applications

Deep, complex circuits

High cost of access 

Noisy and Intermediate Scale

Verification and Benchmarking

Emulation using FPGAs
Greater speedup vs software

Dynamic (reconfigurable) vs. fixed architectures

Exploiting parallelism

Limitation → Scalability

Problems with existing Simulators/Emulators
Costly, resource-hungry, and power-hungry SW simulation platforms

Poor scalability, low precision, and low throughput HW emulators

Contributions
A cost-effective, High-Level Synthesis (HLS) and FPGA accelerated meth-
odology for complete emulation of quantum algorithms

Depth optimizations for classical-to-quantum (C2Q) data encoding and  
Quantum Haar Transform (QHT)

Extension of Quantum Grover’s search (QGS) for dynamic, multi-pattern 
search

Combining QHT and multi-pattern QGS to perform dimension reduction 
for dynamic pattern recognition on high-resolution, spatio-spectral data 

Number 
of qubits, 

n 

Number of 
pixels

On-chip* resource utilization (%) Emulation time
(sec) 

OBM utilization 
(bytes)
SDRAM

ALMs BRAMs DSPs

8 16x16 14 9 2 6.73E-064K

10 32x32 14 9 2 1.66E-0516K

12 64x64 14 9 2 5.62E-0564K

14 128x128 14 9 2 0.0002256K

16 256x256 14 9 2 0.00081M

18 512x512 14 9 2 0.00334M

20 1024x1024 14 9 2 0.013516M

22 2048x2048 14 9 2 0.054064M

24 4096x4096 14 9 2 0.2160256M

26 8192x8192 14 9 2 0.86411G

28 16Kx16K 14 9 2 3.45634G
30 32Kx32K 14 9 2 13.82516G

IBMQ D-WAVE

Quantum bit (qubit)
Smallest unit of computation

Can exist in superimposed state: 

Quantum gates 
Unitary transformations on qubits

Quantum circuit depth 
Number of gates in longest circuit 
path

Classical-to-quantum (C2Q)

Synthesize arbitrary quantum state from ground 
state qubits

Uniformly-controlled operations (Uj) + Hadamard 
(H) gates

Parameters for Uj extracted using data coefficient 
pairs from input data set

Emulation Platform

16-core, 3 GHz AMD EPYC CPU with 251 GB 
system memory

Xilinx Alveo accelerator board with xcu250 FPGA

Vitis unified software platform

Pattern recogni-
tion and match-
ing using Multi-

pattern QGS

Input permutations

Haar kernel

Output permuta-
tions

Multi-node, multi-chassis system

FPGA-only (Intel Arria 10) compute node

4x8MB SRAM and 2x32GB SDRAM on-board 
memory 

HLL-based hardware development

Hardware kernel for 2D Haar operation

Models the Haar operation with simpli-
fied shift and addition operations

SSSystem SSSystem stemsstemstemtemSystememstesttemtetemSystemmemss eeeemmmmmsteeeemmemmmsteemmmmmt mmmeemSSy OvvvOvvvervvervievvievvieviewwww

Architecture of the quantum algorithm emulator Emulation time complexity of O(N2)

Directstream HW Platform

Emulation HW architectures

128 × 128 images after 
2-level 2D-QHT

64 × 64 images after     
3-level 2D-QHT

Input permutations 
modeled as a hard-
ware scheduler.

Output vector ele-
ments read from 
memory  

Conclusion
Efficient and cost-effective emulation/simulations methods required for 
quantum computing technology

An FPGA-accelerated methodology is proposed for complete emulation of 
quantum algorithms

Higher scalability, throughput and accuracy vs existing HW emulators
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Introductionn andd Motivations

NISQ Noisy-Intermediate-Scale-Quantum

3

• Why Quantum Computing?
• Solving specific problems (BQP)

• Large multi-dimensional data space

• Speedup over classical

• Challenges
• NISQ Decoherence noise

• Running deep circuits 

• Low fidelity

• Classical-to-quantum data encoding

(Arbitrary State Synthesis)

• Investigating I/O intensive applications

Bounded-error Quantum Polynomial 
(BQP): class of problems solvable by 
quantum computers in polynomial 
time.

Source:
Nielsen, Michael; Chuang, Isaac (2000). Quantum Computation 
and Quantum Information. Cambridge: Cambridge University Press

PSPACE: Polynomial 
Space
NP: Non-deterministic 
Polynomial



Introductionn andd Motivations

• Why Quantum Computing?
• Solving specific problems (BQP)

• Large multi-dimensional data space

• Speedup over classical

• Challenges
• NISQ Decoherence noise

• Running deep circuits 

• Low fidelity

• Classical-to-quantum data encoding

(Arbitrary State Synthesis)

• Investigating I/O intensive applications

Bounded-error Quantum Polynomial 
(BQP): class of problems solvable by 
quantum computers in polynomial 
time.

D-Wave “Advantage”: > 5000 
qubits, 15-way connectivity

Google “Sycamore”: 54 qubits, 
quantum volume: 32

Honeywell: 10 qubits, 
quantum volume: 64

IBM-Q “Falcon”: 27 qubits, 
quantum volume: 128

IonQ: 32 qubits,       
quantum volume: > 4E6

Rigetti “Aspen-9”: 32 qubits,
quantum volume: N/A 

Source:
Nielsen, Michael; Chuang, Isaac (2000). Quantum Computation 
and Quantum Information. Cambridge: Cambridge University Press

NISQ Noisy-Intermediate-Scale-Quantum
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PSPACE: Polynomial 
Space
NP: Non-deterministic 
Polynomial



• Need for Simulation / Emulation
• Difficulty of reliable operation

• High cost of access

• E.g., academic hourly rate of $1,250 up to 
499 annual hours

• Verification and benchmarking

• Emulation using FPGAs
• Cost-effective

• Greater speedup vs. SW

• Exploiting parallelism

• Dynamic (reconfigurable) vs. fixed architectures

• Limitations Scalability, Accuracy

Introductionn andd Motivations
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•Contributions
•A cost-effective, High-Level Synthesis (HLS) and FPGA accelerated methodology for complete emulation of quantum algorithms

•Emulating circuits for classical-to-quantum (C2Q) data encoding (arbitrary state synthesis) and various quantum algorithms

•Dimension reduction for dynamic pattern recognition on high-resolution, spatio-spectral data 

Introductionn andd Motivations
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• Qubits
• Physical implementations

• Electron (spin)
• Nucleus (spin through NMR)
• Josephson junction (superconducting qubits)
• Trapped ions

• Bloch sphere representation
• Basis states |0 , |1
• Pure states |
• Local phase (azimuth) angle and 

local rotation (elevation) angle 
• Vector of complex coefficients

• Superposition
• Linear sum of distinct basis states
• Applies to state with n-qubits

• Entanglement
• Entangled state cannot be factored into a tensor product
• Measuring a qubit gives information about other qubits

Backgroundd – Quantumm Computing

NMR Nuclear Magnetic Resonance
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• Quantum Gates
• Hadamard Gate 
• Swap Gate
• Controlled-NOT gate 
• Controlled Rotation Gates 

• Quantum Circuit Depth
• Total number of gates (levels) in the longest path, i.e., total 

number of time-steps

• Gate count
• Total number of gates in circuit

Backgroundd – Circuitt Model

Depth: 6
Gate count: 14
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• Formal Model 
• Classical data is normalized as coefficients of a quantum state | , = , where is the number of qubits

• Pauli decomposition of single qubit

• ( , , , ) parameters extracted from coefficient pair , , = , , , … , 1

Arbitraryy Statee Synthesis

| = | | … | |= | … = |
| = |0

= Re + Im , = tan ImRe= Re + Im , = tan ImRe
= + , = +
= 2 tan , =
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• Quantum Circuits for Classical-to-quantum
• Parameters are used in a conditional logic circuit

• Hadamard gates for equal superposition
• Uniformly-controlled unitary operations , , … , , …

Arbitraryy Statee Synthesis
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• Quantum Circuits for Classical-to-quantum
• Parameters are used in a conditional logic circuit

• Each transformation can be factored by Pauli decomposition 
• Every decomposition requires ( , , , )

Arbitraryy Statee Synthesis

13



• Quantum Circuits for Classical-to-quantum
• Each set of operations are mutually exclusive
• Expansion into groups of uniformly-controlled global scale & phase, local rotation, and local phase

Arbitraryy Statee Synthesis

14

Global scale & phase Local rotation Local phase



• Quantum Circuits for Classical-to-quantum
• Uniformly controlled operations expressed as single-gate operations (with square-box notation)
• Final decomposition into primitive CNOT and single-qubit rotation gates

Arbitraryy Statee Synthesis

15

Comparison of proposed method to current methods

# CNOT gates= 2
# Rotation gates = 2



• QHT operations 
• Haar wavelet function, 
• Perfect shuffle permutations (PSP), ,

• Haar wavelet function generalized 
• qubits
• -dimensional kernel

Quantumm Haarr Transform

16

General QHT:= ( )
For 1D-QHT, = := ( )
For 2D-QHT, = := ( )

= ( )( )( )( )
( )

( )

=
Proposed circuits for 1D and 2D QHT



• QHT Circuit Optimization

Quantum Haar Transform

17
Rotate left and Rotate right operations

• QHT Circuit Optimization

Quantum Haar Transform

17
Rotate left and Rotate right operations

Unpublished work



• HW Architectures for QHT Emulation 
• Input permutations scheduler for 
• Haar operation kernel
• For 2D-QHT, the kernel window size is 4

Quantumm Haarr Transform

18



• Quantum Circuits for Dynamic Multi-pattern Quantum Grover’s search (QGS)
• The multi-pattern oracle is constructed of cascaded single-pattern oracle circuits
• Each single-pattern oracle utilizes controlled Pauli-X (cX) gates instead of Pauli-X gates to allow dynamic search patterns

Quantumm Grover’ss Search

19

= .4
where,= 1, 3, 5, 7, …= no. of patterns= no. of basis states



• Quantum circuits for Dynamic Multi-pattern Quantum Grover’s search (QGS)
• The permutation step is required to shift the target patterns to the output quantum register’s target indices

Quantumm Grover’ss Search

20

= .4
where,= 1, 3, 5, 7, …= no. of patterns= no. of basis states



• Proposed Methodology
• Dimension reduction using levels of 2D quantum Haar transform (2D-QHT)
• Single/multi-pattern searching using Quantum Grover’s search (QGS)

Dimensionn Reductionn andd Patternn Matching

21

= 12
where,= no. of basis states (input image)= no. of basis states (reduced image)
and,= 2 , = no. of qubits (input image)= 2 , = no. of qubits (reduced image)

Proposed system overview

= .4
where= 1, 3, 5, 7, …= no. of patterns= no. of basis states



• HW Architecture for Emulation
• Vector-matrix multiplication

• Complex multiply-and-accumulate (CMAC)
• Input quantum state vector, |
• Algorithm reduced to a unitary matrix, 

• lookup / dynamic generation / stream
• Output quantum state vector, |

• Advantages
• Generalized approach for any quantum algorithm
• Independent of circuit depth
• Low resource utilization and latency
• High scalability
• Parallelizable hardware architectures

Dimensionn Reductionn andd Patternn Matching

22

CMAC Architecture
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• Testbed Platform 1
• High-performance reconfigurable computing (HPRC) 

system from DirectStream
• OS-less, FPGA-only (Arria 10) architecture
• Single node on-chip resources (OCR)

• 427,200 Adaptive Logic Modules (ALMs)
• 1,518 Digital signal Processors (DSPs)
• 2,713 Block RAMs (BRAMs)

• Single node on-board memory (OBM)
• × GB SDRAM modules
• × MB SRAM modules

• Highly productive development environment
• Parallel High-Level Language
• C++-to-HW (previously Carte-C) compiler
• Quartus Prime 17.0.2

Experimentall Setup
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• Testbed Platform 2
• 16-core, 3 GHz AMD EPYC CPU with 251 

GB system memory

• Xilinx Alveo accelerator board with xcu250 

FPGA, 4x16 GB on-board memory

• Vitis unified software platform

• OpenCL

• C/C++ high-level synthesis

• Register-transfer level (RTL)

• Kernel partitions for classical-to-quantum 

(kernel_c2q) and quantum algorithm 

(kernel_qa)

Experimentall Setup
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•Simulation and implementation of proposed synthesis circuits
•MATLAB

•Noise-free qubit simulation
•Up to 14-qubit circuits

•IBM-Q
•qasm simulator
•ibmq_16_melbourne quantum processor
•HW limitations

•Input data
•Complex randomized data
•Real grayscale images

•Measurements
•Gate count
•Circuit depth

Resultss – Arbitraryy Statee Synthesis
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•Image reconstruction from synthesized quantum states
•Fidelity (F) used as metric for similarity between expected 

state ( ) and measured state ( )
•16x16, 32x32, and 64x64 images encoded using 8-qubit, 

10-qubit, and 12-qubit circuits

•Partial corruption due to statistical noise in the NISQ 

device

Resultss – Arbitraryy Statee Synthesis

27
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• Test Methodology
• High-resolution test images up to 64k × 64k pixels
• Multi-level packet 2D-QHT -level decomposition to target resolution
• QGS returns indices of target pixels

Resultss – Dimensionn Reductionn andd Patternn Matching

28

Original 512 x 512
image

256 x 256 images after 
1-level 2D-QHT

128 x 128 images after 
2-level 2D-QHT

64 x 64 images after     
3-level 2D-QHT

Pattern recognition 
and matching using 
Multi-pattern QGS



• Combined QHT and QGS pattern recognition system implementation
• Up to 32-qubit QHT and 10-qubit QGS circuits
• × SDRAM OBM banks used to store input/output state vectors 

Resultss – Dimensionn Reductionn andd Patternn Matching
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No. of 
pixels

No. of 
qubits

No. of 
levels

OCR* utilization (%) OBM** 
(bytes)

Emulation time 
(sec)***ALMs BRAMs DSPs

128x128 14 3 22 16 2 128K 1.15E0

256x256 16 4 22 16 2 512K 1.84E01

512x512 18 5 22 16 2 2M 2.95E02

1024x1024 20 6 22 16 2 8M 4.72E03

2048x2048 22 7 22 16 2 32M 7.5E04

4096x4096 24 8 22 16 2 128M 1.2E06

8192x8192 26 9 22 16 2 512M 1.93E07

16Kx16K 28 10 22 16 2 2G 3.09E08

32Kx32K 30 11 22 16 2 8G 4.95E09

64Kx64K 32 12 22 16 2 32G 7.92E10

*Total on-chip resources: NALM = 427,000, NBRAM = 2,713, NDSP = 1,518
**Total on-board memory: 2x32 GB SDRAM banks
***Operating frequency: 233 MHz

ALM Adaptive Logic Modules
BRAM Block Random Access 
Memory
DSP Digital Signal Processing block

System emulation time with number of qubits



• Comparison with related work (FPGA-based emulation)

Comparativee Study

30

Reported Work Algorithm Number of qubits Precision Operating 
frequency (MHz)

Emulation time 
(sec)

Fujishima (2003) Shor’s factoring - - 80 10

Khalid et al (2004)
QFT 3 16-bit fixed pt.

82.1
61E-9

Grover’s search 3 16-bit fixed pt. 84E-9

Aminian et al (2008) QFT 3 16-bit fixed pt. 131.3 46E-9

Lee et al (2016)
QFT 5 24-bit fixed pt. 90 219E-9

Grover’s search 7 24-bit fixed pt. 85 96.8E-9
Silva and Zabaleta

(2017) QFT 4 32-bit floating pt. - 4E-6

Pilch and 
Dlugopolski (2018) Deutsch 2 - - -

Proposed work

QFT 32

32-bit floating pt. 233

7.92E10

QHT 30 13.825

Grover’s search 32 7.92E10

QHT + Grover’s 32 7.92E10



• Near-future advantage of Quantum Computing
• Need for Quantum Emulation

• FPGA-accelerated, cost-effective methodologies for complete emulation
• Proposed Methods

• Depth optimized methods for arbitrary state synthesis
• HLS-based emulation methodology

• Case studies
• Multi-dimensional, multi-level quantum Haar Transform (QHT)
• Single-pattern / multi-pattern quantum Grover’s search (QGS)
• Combining QHT + QGS for Dimension Reduction and pattern matching

• Experimental work
• State-of-the-art test platforms from DirectStream, Xilinx, and IBMQ
• Higher scalability, throughput, and accuracy compared to existing emulators
• High fidelity of proposed quantum circuits

Conclusions
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