

Towards Complete Emulation of Quantum Algorithms using High-Performance Reconfigurable Computing

Naveed Mahmud
Department of Electrical Engineering and Computer Science, University of Kansas
naveed_923@kku.edu

Ph.D. Advisor: Dr. Esam El-Araby

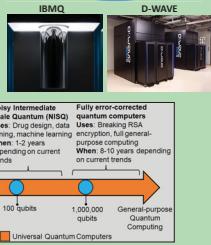
Introduction and Motivations

Why Quantum?

- Solving **NP-hard** problems
- Speedup over classical

Critical Problems

- I/O intensive applications
- Deep, complex circuits
- High cost of access
- Noisy and Intermediate Scale
- Verification and Benchmarking



Emulation using FPGAs

- Greater speedup vs software
- Dynamic (reconfigurable) vs. fixed architectures
- Exploiting parallelism
- Limitation → Scalability

Problems with existing Simulators/Emulators

- Costly, resource-hungry, and power-hungry SW simulation platforms
- Poor scalability, low precision, and low throughput HW emulators

Contributions

- A **cost-effective**, High-Level Synthesis (HLS) and FPGA accelerated methodology for **complete emulation** of quantum algorithms
- Depth optimizations for classical-to-quantum (C2Q) data encoding and Quantum Haar Transform (QHT)
- Extension of Quantum Grover's search (QGS) for dynamic, multi-pattern search
- Combining QHT and multi-pattern QGS to perform **dimension reduction** for **dynamic pattern recognition** on high-resolution, spatio-spectral data

Background

Quantum bit (qubit)

- Smallest unit of computation
- Can exist in superimposed state:

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$$

Quantum gates

- Unitary transformations on qubits

Quantum circuit depth

- Number of gates in longest circuit path

Quantum Haar Transform

Hadamard Gate

$$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$|0\rangle = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

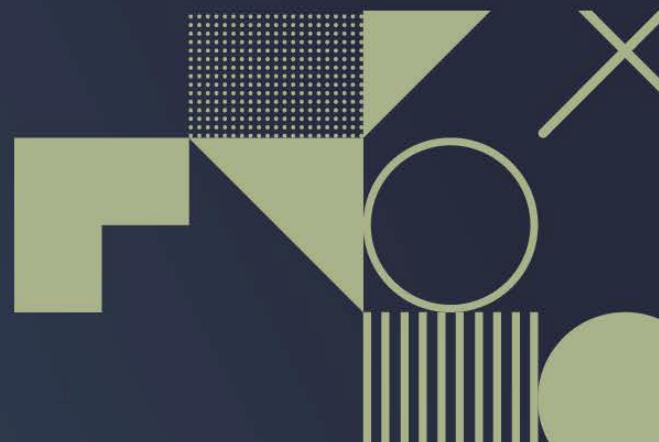
$$|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Towards Complete Emulation of Quantum Algorithms using High-Performance Reconfigurable Computing

Naveed Mahmud

Department of Electrical Engineering and Computer Science
University of Kansas

Ph.D. Advisor: Dr. Esam El-Araby



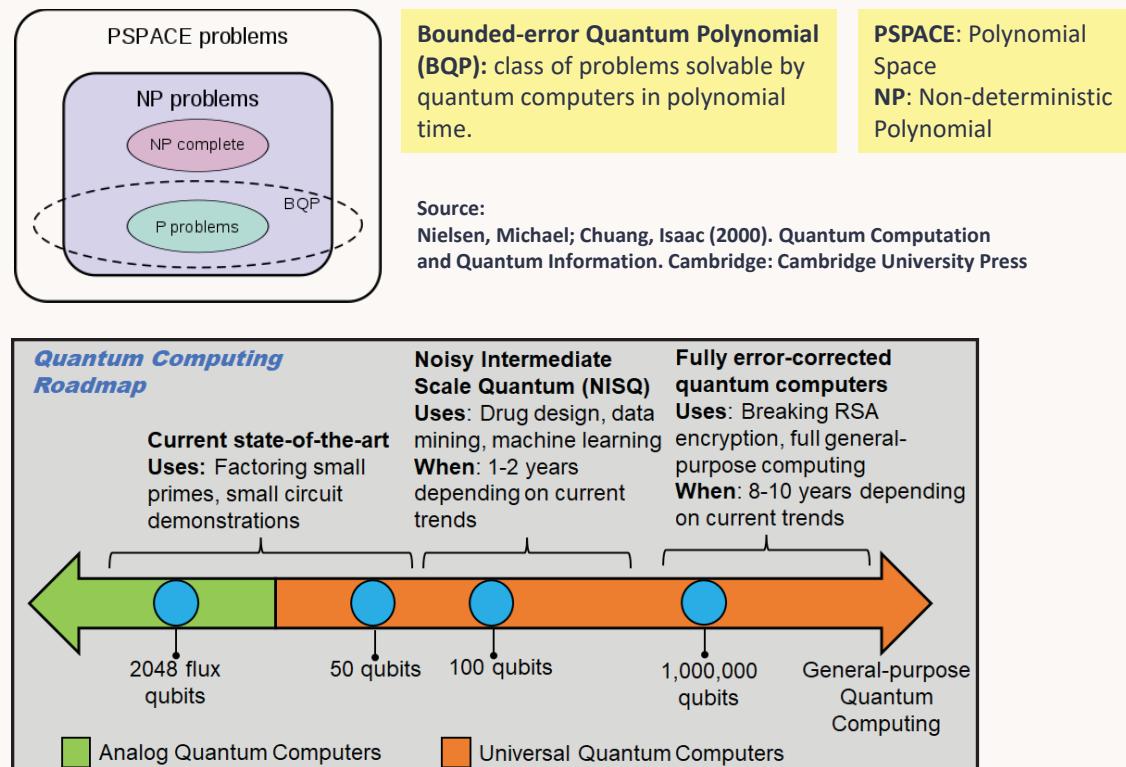
Outline

- Introduction and Motivations
- Background
- Proposed Work
- Experimental Results
- Conclusions

Introduction and Motivations

- Why Quantum Computing?
 - Solving **specific** problems (BQP)
 - Large **multi-dimensional** data space
 - Speedup over classical
- Challenges
 - NISQ → **Decoherence** noise
 - Running **deep** circuits
 - Low **fidelity**
 - Classical-to-quantum data **encoding**
(Arbitrary State Synthesis)
 - Investigating **I/O intensive** applications

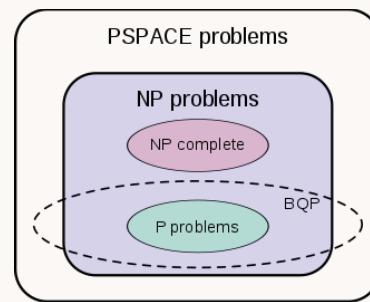
NISQ ≡ Noisy-Intermediate-Scale-Quantum



Introduction and Motivations

- Why Quantum Computing?
 - Solving **specific** problems (BQP)
 - Large **multi-dimensional** data space
 - Speedup over classical
- Challenges
 - NISQ → **Decoherence** noise
 - Running **deep** circuits
 - Low **fidelity**
 - Classical-to-quantum data **encoding**
(Arbitrary State Synthesis)
 - Investigating **I/O intensive** applications

NISQ ≡ Noisy-Intermediate-Scale-Quantum

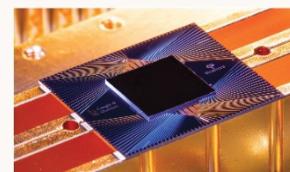


Bounded-error Quantum Polynomial (BQP): class of problems solvable by quantum computers in polynomial time.

PSPACE: Polynomial Space
NP: Non-deterministic Polynomial

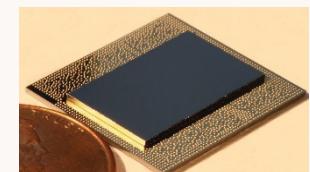
Source:

Nielsen, Michael; Chuang, Isaac (2000). *Quantum Computation and Quantum Information*. Cambridge: Cambridge University Press



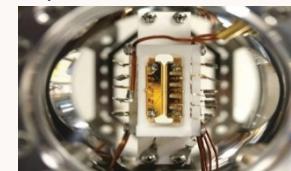
Google "Sycamore": 54 qubits,
quantum volume: 32

Honeywell: 10 qubits,
quantum volume: 64



IBM-Q "Falcon": 27 qubits,
quantum volume: 128

Rigetti "Aspen-9": 32 qubits,
quantum volume: N/A

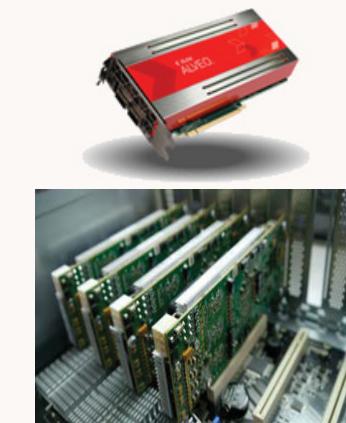
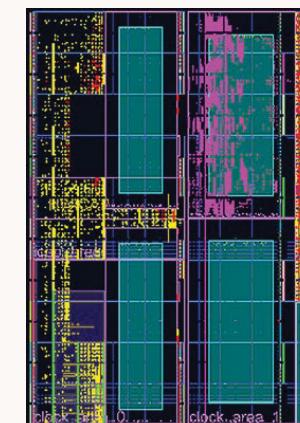


IonQ: 32 qubits,
quantum volume: > 4E6

D-Wave "Advantage": > 5000
qubits, 15-way connectivity

Introduction and Motivations

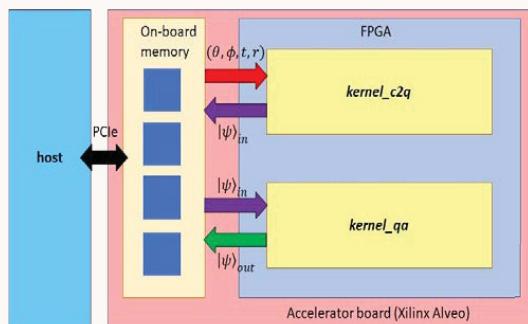
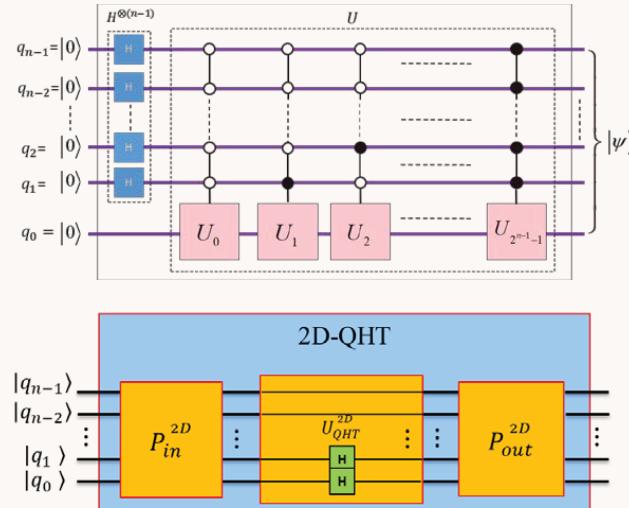
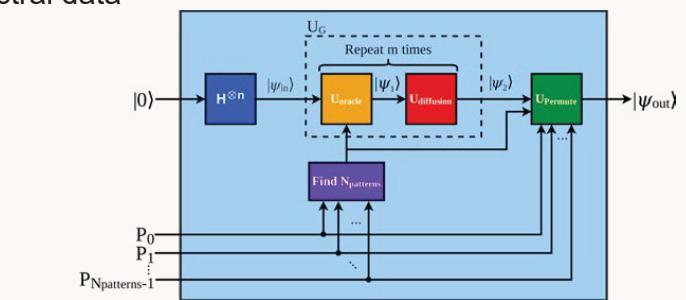
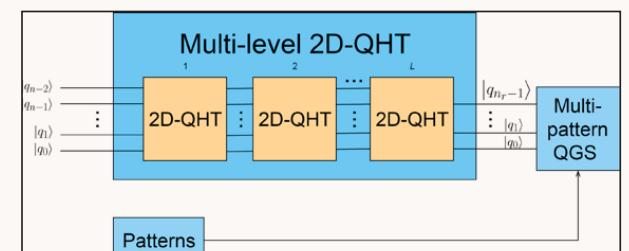
- Need for Simulation / Emulation
 - Difficulty of **reliable** operation
 - High **cost** of access
 - E.g., academic hourly rate of \$1,250 up to 499 annual hours
 - Verification and **benchmarking**
- Emulation using FPGAs
 - Cost-effective
 - Greater speedup vs. SW
 - Exploiting parallelism
 - Dynamic (reconfigurable) vs. fixed architectures
 - Limitations → Scalability, Accuracy



Introduction and Motivations

- Contributions

- A cost-effective, High-Level Synthesis (HLS) and FPGA accelerated methodology for **complete** emulation of quantum algorithms
- Emulating circuits for classical-to-quantum (C2Q) data encoding (**arbitrary state synthesis**) and various quantum **algorithms**
- **Dimension reduction** for dynamic pattern recognition on high-resolution, spatio-spectral data

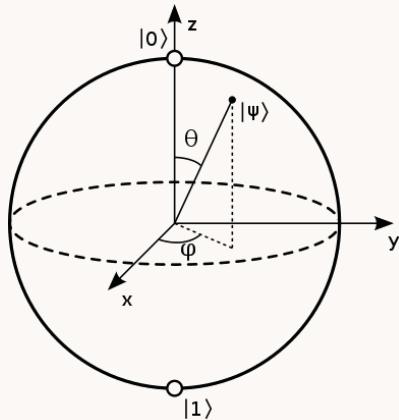


Outline

- Introduction and Motivations
- Background
- Proposed Work
- Experimental Results
- Conclusions

Background – Quantum Computing

- **Qubits**
 - **Physical** implementations
 - Electron (spin)
 - Nucleus (spin through NMR)
 - Josephson junction (superconducting qubits)
 - Trapped ions
 - **Bloch sphere** representation
 - Basis states $\rightarrow |0\rangle, |1\rangle$
 - Pure states $\rightarrow |\psi\rangle$
 - Local phase (azimuth) angle ϕ and local rotation (elevation) angle θ
 - Vector of complex coefficients
- **Superposition**
 - **Linear sum** of distinct basis states
 - Applies to state with n -qubits
- **Entanglement**
 - Entangled state cannot be **factored** into a tensor product
 - **Measuring** a qubit gives information about other qubits



Single-Qubit Superposition: $|\psi_1\rangle = \alpha|0\rangle + \beta|1\rangle \equiv \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$

Born Rule: $p(|\psi_1\rangle \rightarrow |0\rangle) = |\alpha|^2, p(|\psi_1\rangle \rightarrow |1\rangle) = |\beta|^2$

Multi-Qubit Superposition:

$$|\psi_2\rangle = |q_2 q_1 q_0\rangle = |q_2\rangle \otimes |q_1\rangle \otimes |q_0\rangle = \begin{bmatrix} \alpha_2 \\ \beta_2 \end{bmatrix} \otimes \begin{bmatrix} \alpha_1 \\ \beta_1 \end{bmatrix} \otimes \begin{bmatrix} \alpha_0 \\ \beta_0 \end{bmatrix}$$

$$|\psi_3\rangle = \alpha_2 \alpha_1 \alpha_0 |000\rangle + \alpha_2 \alpha_1 \beta_0 |001\rangle + \dots + \beta_2 \beta_1 \beta_0 |111\rangle$$

$$|\psi_3\rangle = c_0|0\rangle + c_1|1\rangle + \dots + c_7|7\rangle \Rightarrow |\psi_n\rangle = \sum_{q=0}^{2^n-1} c_q |q\rangle$$

$$\text{Born Rule: } p(|\psi_n\rangle \rightarrow |q\rangle) = |c_q|^2 \Rightarrow \|\psi_n\|^2 = \sum_{q=0}^{2^n-1} |c_q|^2 = 1$$

Multi-Qubit Entanglement:

$$(|\psi_n\rangle_{\text{entangled}} = |q_{n-1} \dots q_1 q_0\rangle_{\text{entangled}}) \neq (|\psi_n\rangle_{\text{un-entangled}} = |q_{n-1}\rangle \otimes \dots \otimes |q_1\rangle \otimes |q_0\rangle)$$

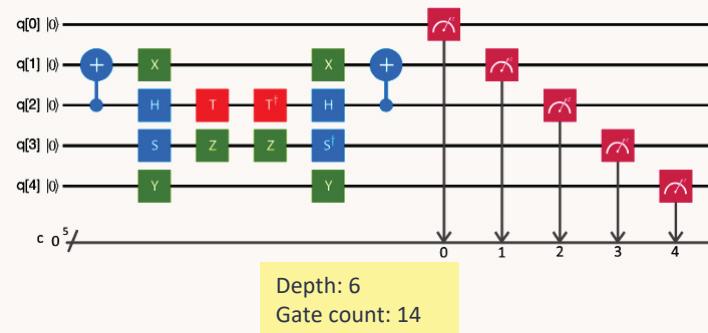
$$\text{For Example: } (|\psi_2\rangle_{\text{entangled}} = |q_1 q_0\rangle_{\text{entangled}}) \neq (|q_1\rangle \otimes |q_0\rangle = \begin{bmatrix} \alpha_1 \\ \beta_1 \end{bmatrix} \otimes \begin{bmatrix} \alpha_0 \\ \beta_0 \end{bmatrix})$$

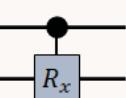
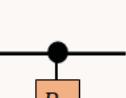
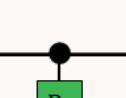
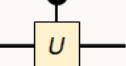
$$|\psi_2\rangle_{\text{entangled}} = c_0|00\rangle + c_1|11\rangle \neq \alpha_1 \alpha_0 |00\rangle + \alpha_1 \beta_0 |01\rangle + \beta_1 \alpha_0 |10\rangle + \beta_1 \beta_0 |11\rangle$$

NMR \equiv Nuclear Magnetic Resonance

Background – Circuit Model

- Quantum Gates
 - Hadamard Gate
 - Swap Gate
 - Controlled-NOT gate
 - Controlled Rotation Gates
- Quantum Circuit Depth
 - Total number of **gates (levels)** in the longest path, i.e., total number of **time-steps**
- Gate count
 - Total number of gates in circuit



Gate	Symbol	Matrix	Gate	Symbol	Matrix
Hadamard		$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$	Controlled Rotation x		$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \cos\left(\frac{\alpha}{2}\right) & -i\sin\left(\frac{\alpha}{2}\right) \\ 0 & 0 & -i\sin\left(\frac{\alpha}{2}\right) & \cos\left(\frac{\alpha}{2}\right) \end{bmatrix}$
Pauli X		$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$	Controlled Rotation y		$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \cos\left(\frac{\theta}{2}\right) & -\sin\left(\frac{\theta}{2}\right) \\ 0 & 0 & \sin\left(\frac{\theta}{2}\right) & \cos\left(\frac{\theta}{2}\right) \end{bmatrix}$
Swap		$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$	Controlled Rotation z		$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & e^{-\frac{\phi}{2}} & 0 \\ 0 & 0 & 0 & e^{\frac{\phi}{2}} \end{bmatrix}$
Controlled phase shift		$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & e^{\phi} \end{bmatrix}$	Controlled U		$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & U_{00} & U_{01} \\ 0 & 0 & U_{10} & U_{11} \end{bmatrix}$
Controlled NOT		$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$			
Controlled Pauli Z		$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$			

Outline

- Introduction and Motivations
- Background
- Proposed Work
- Experimental Results
- Conclusions

Arbitrary State Synthesis

- Formal Model
 - Classical data is normalized as ***N* coefficients** of a quantum state $|\psi\rangle$, $N = 2^n$, where ***n*** is the number of qubits

$$\begin{aligned}
 |\psi\rangle &= |q_{n-1}\rangle \otimes |q_{n-2}\rangle \otimes \dots \otimes \dots \otimes |q_1\rangle \otimes |q_0\rangle \\
 &= |q_{n-1}q_{n-2} \dots q_1q_0\rangle = \sum_{i=0}^{N-1} \alpha_i |i\rangle
 \end{aligned}$$

- **Pauli** decomposition of single qubit

$$|\psi\rangle = R_z(\phi) \cdot R_y(\theta) \cdot r e^{i\frac{t}{2}} \cdot |0\rangle$$

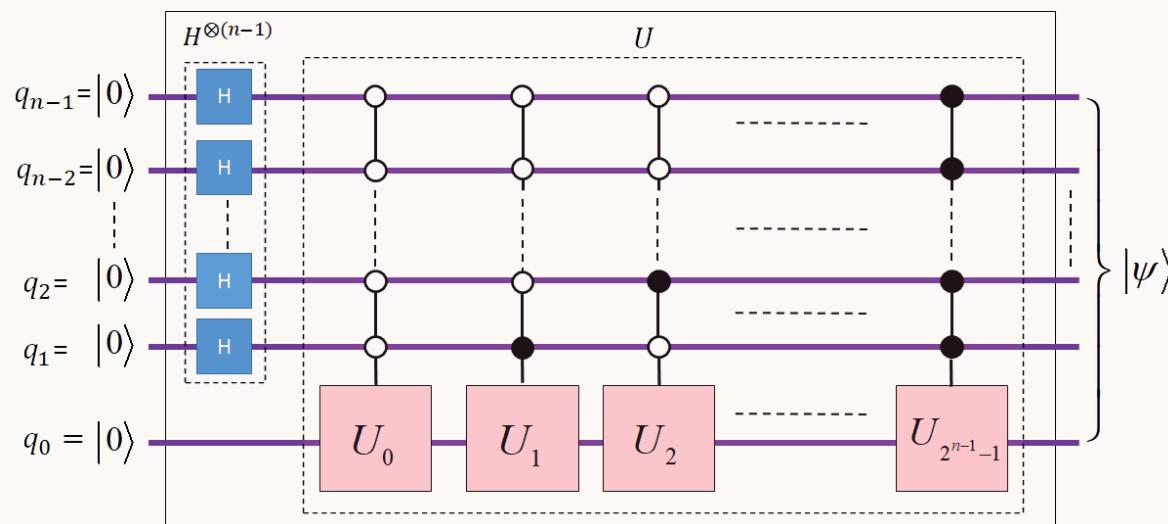
- $(r_j, t_j, \theta_j, \phi_j)$ **parameters** extracted from j^{th} coefficient pair (α, β) , $j = 0, 1, 2, \dots, \frac{N}{2} - 1$

$$\begin{aligned}
 |\alpha| &= \sqrt{\operatorname{Re}^2(\alpha) + \operatorname{Im}^2(\alpha)}, & \angle\alpha &= \tan^{-1}\left(\frac{\operatorname{Im}(\alpha)}{\operatorname{Re}(\alpha)}\right) \\
 |\beta| &= \sqrt{\operatorname{Re}^2(\beta) + \operatorname{Im}^2(\beta)}, & \angle\beta &= \tan^{-1}\left(\frac{\operatorname{Im}(\beta)}{\operatorname{Re}(\beta)}\right)
 \end{aligned}$$

$$\begin{aligned}
 r &= \sqrt{|\alpha|^2 + |\beta|^2}, & t &= \angle\beta + \angle\alpha \\
 \theta &= 2 \tan^{-1}\left(\frac{|\beta|}{|\alpha|}\right), & \phi &= \angle\beta - \angle\alpha
 \end{aligned}$$

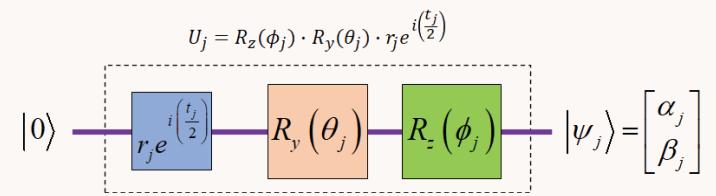
Arbitrary State Synthesis

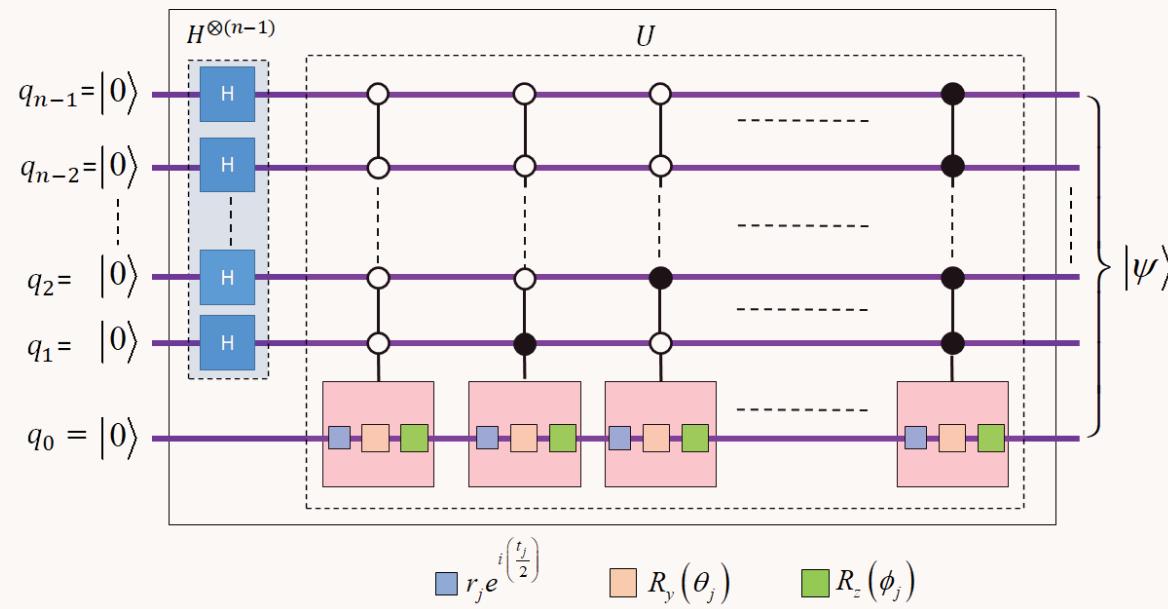
- Quantum Circuits for Classical-to-quantum
 - Parameters are used in a conditional logic circuit
 - Hadamard gates for equal **superposition**
 - Uniformly-controlled unitary operations $U_0, U_1, \dots, U_j, \dots U_{2^{n-1}-1}$



Arbitrary State Synthesis

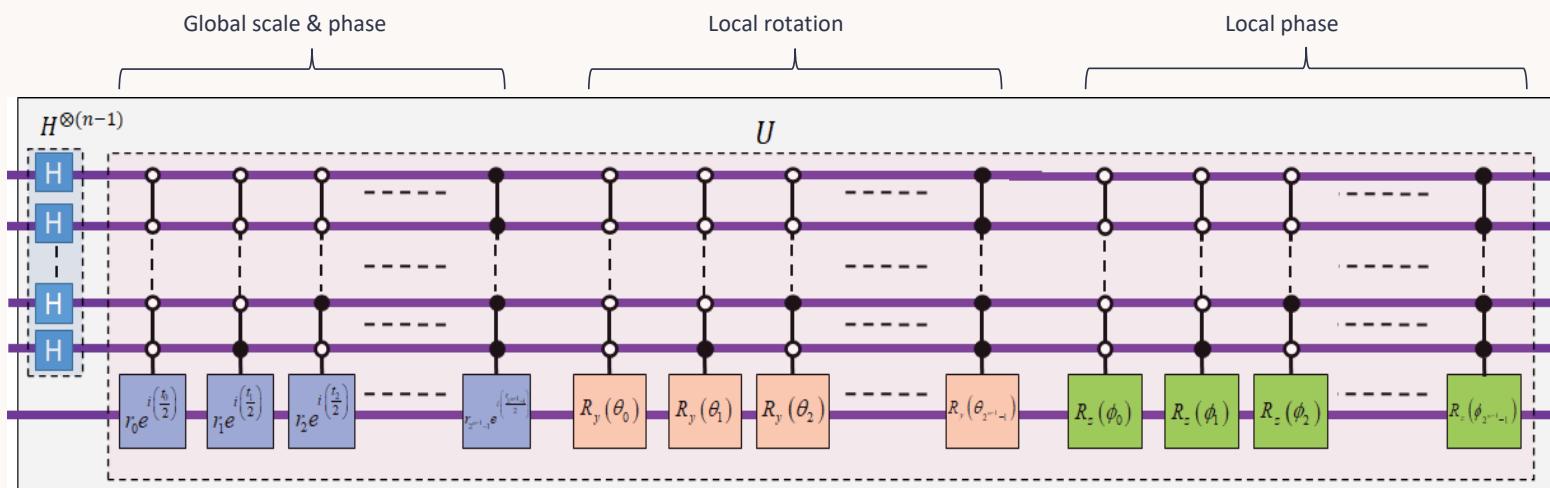
- Quantum Circuits for Classical-to-quantum
 - Parameters are used in a conditional logic circuit
 - Each U_j transformation can be factored by **Pauli** decomposition
 - Every j^{th} decomposition requires $(r_j, t_j, \theta_j, \phi_j)$

$$U_j = R_z(\phi_j) \cdot R_y(\theta_j) \cdot r_j e^{i\left(\frac{t_j}{2}\right)}$$




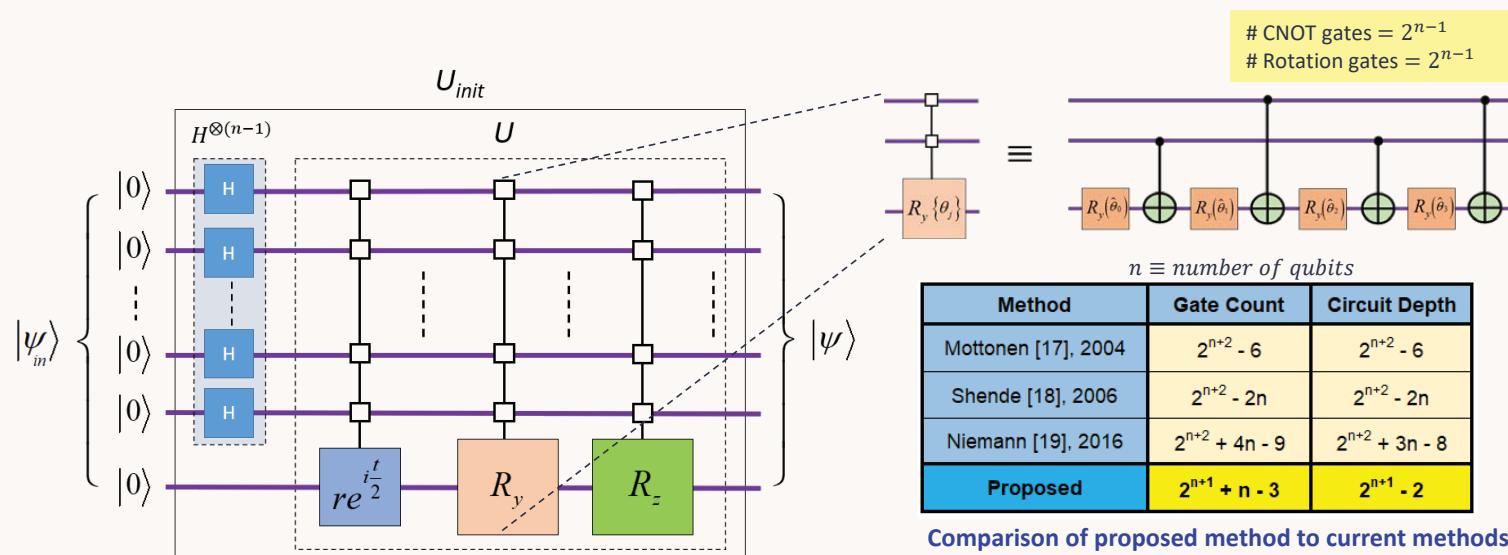
Arbitrary State Synthesis

- Quantum Circuits for Classical-to-quantum
 - Each set of operations are mutually exclusive
 - Expansion into groups of uniformly-controlled *global scale & phase*, *local rotation*, and *local phase*



Arbitrary State Synthesis

- Quantum Circuits for Classical-to-quantum
 - Uniformly controlled operations expressed as **single-gate** operations (with **square-box** notation)
 - Final decomposition into primitive **CNOT** and single-qubit **rotation** gates



Quantum Haar Transform

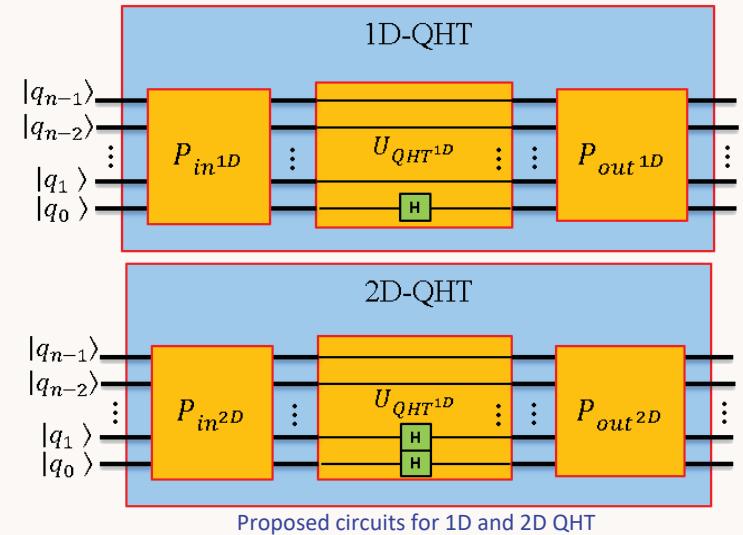
- QHT operations
 - Haar **wavelet** function, U_{QHT}
 - Perfect shuffle **permutations** (PSP), P_{in}, P_{out}
- Haar wavelet function generalized
 - n qubits
 - d -dimensional kernel

$$P_{in}^{2D} = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_{(n_{rows})} \\ x_{(n_{rows}+1)} \\ x_{(n_{rows}+2)} \\ x_{(n_{rows}+3)} \\ \vdots \\ x_{(N-1)} \end{bmatrix} \rightarrow \begin{bmatrix} x_0 \\ x_1 \\ x_{(n_{rows})} \\ x_{(n_{rows}+1)} \\ x_2 \\ x_3 \\ x_{(n_{rows}+2)} \\ x_{(n_{rows}+3)} \\ \vdots \\ x_{(N-1)} \end{bmatrix}$$

General QHT:
 $U_{QHT} = I^{\otimes(n-d)} \otimes H^{\otimes d}$

For 1D-QHT, $d = 1$:
 $U_{QHT}^{1D} = I^{\otimes(n-1)} \otimes H^{\otimes 1}$

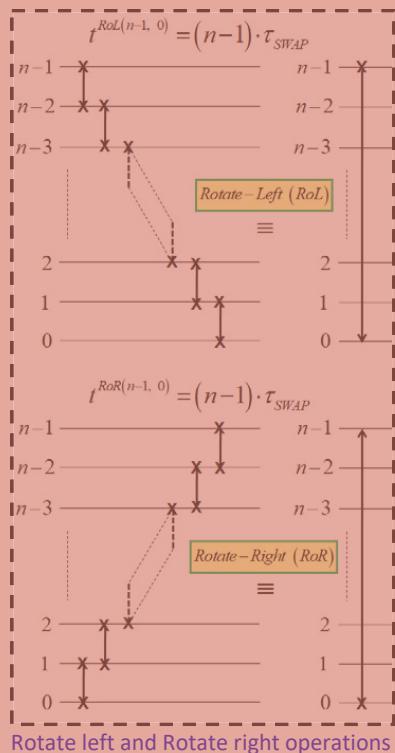
For 2D-QHT, $d = 2$:
 $U_{QHT}^{2D} = I^{\otimes(n-2)} \otimes H^{\otimes 2}$



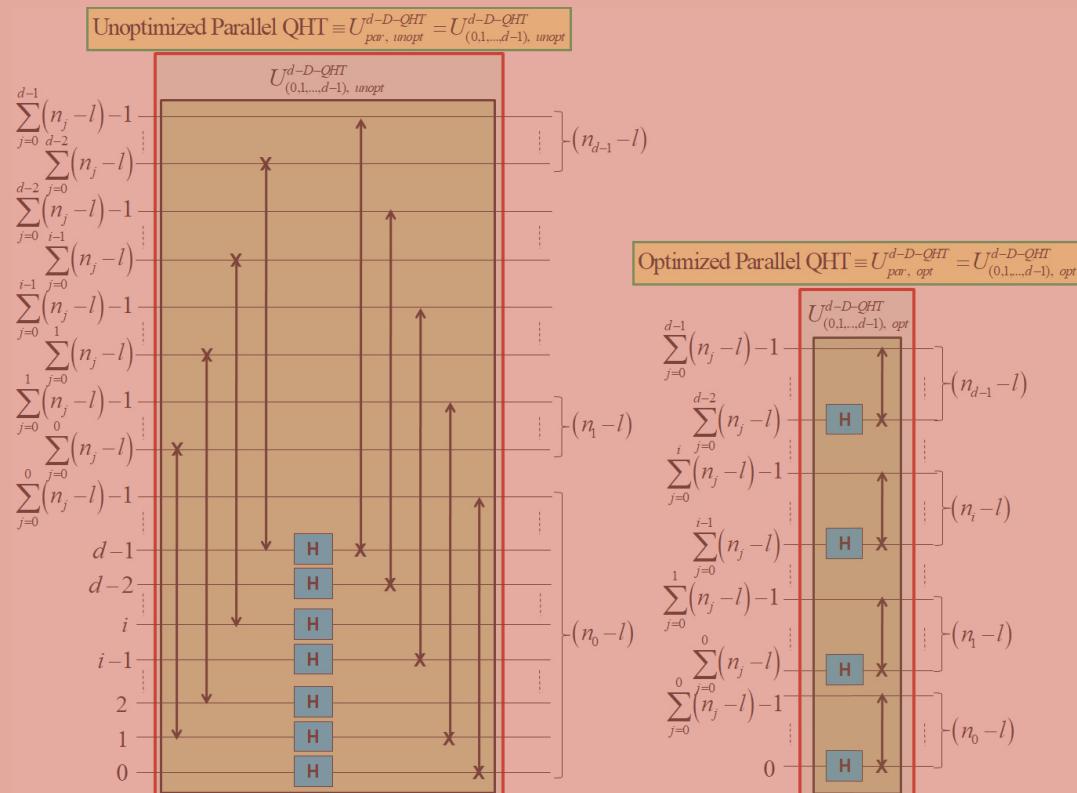
$$P_{out}^{2D} = \begin{bmatrix} y_0 \\ y_{\left(\frac{n_{rows}}{2}\right)} \\ y_{\left(\frac{N}{2}\right)} \\ y_{\left(\left(\frac{n_{rows}}{2}\right)+\left(\frac{N}{2}\right)\right)} \\ \vdots \\ y_{(N-1)} \end{bmatrix} \rightarrow \begin{bmatrix} y_0 \\ y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_{(N-1)} \end{bmatrix}$$

Quantum Haar Transform

- QHT Circuit Optimization



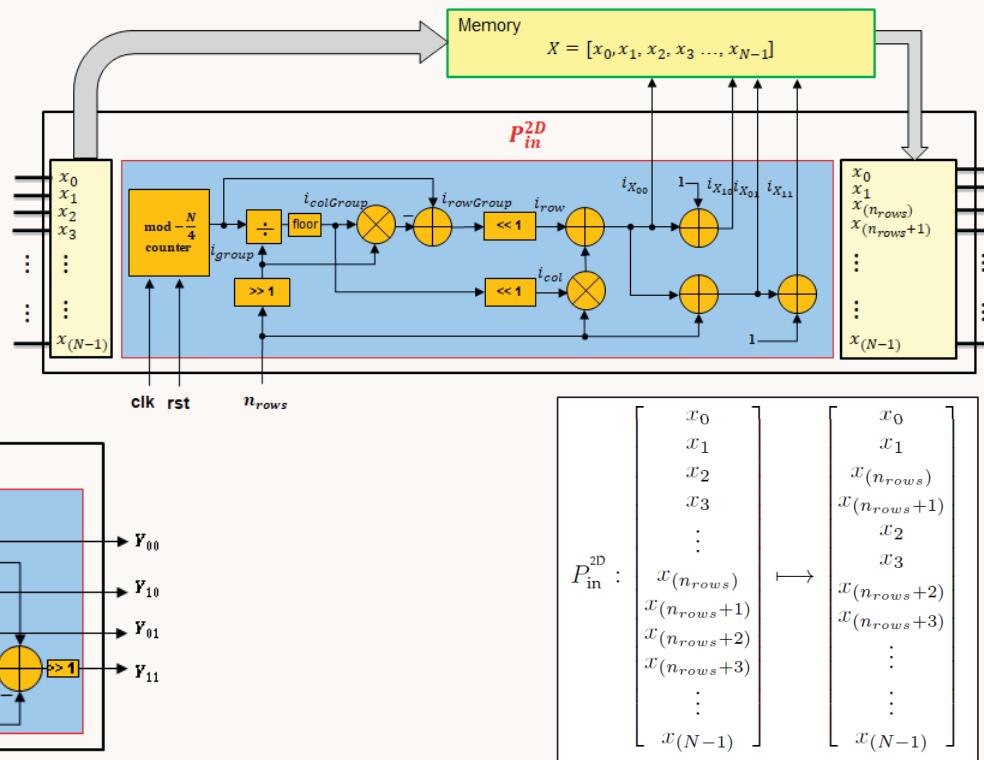
Unpublished work



Quantum Haar Transform

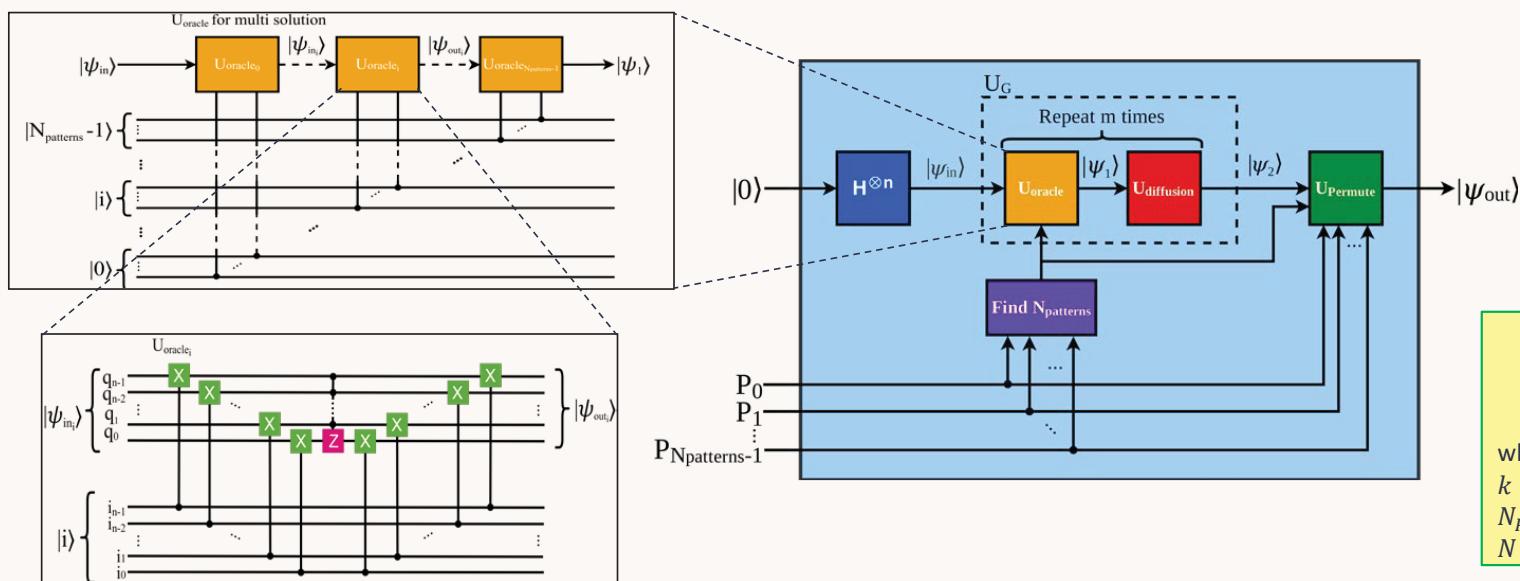
- HW Architectures for QHT Emulation
 - Input **permutations** scheduler for P_{in}^{2D}
 - Haar operation **kernel**
 - For 2D-QHT, the kernel window size is 4

```
// 2D-QHT kernel
Y00 = (X00 + X01 + X10 + X11)/2
Y01 = (X00 - X01 + X10 - X11)/2
Y10 = (X00 + X01 - X10 - X11)/2
Y11 = (X00 - X01 - X10 + X11)/2
```



Quantum Grover's Search

- Quantum Circuits for Dynamic Multi-pattern Quantum Grover's search (QGS)
 - The **multi-pattern** oracle is constructed of cascaded single-pattern oracle circuits
 - Each single-pattern oracle utilizes **controlled Pauli-X (cX)** gates instead of Pauli-X gates to allow **dynamic** search patterns

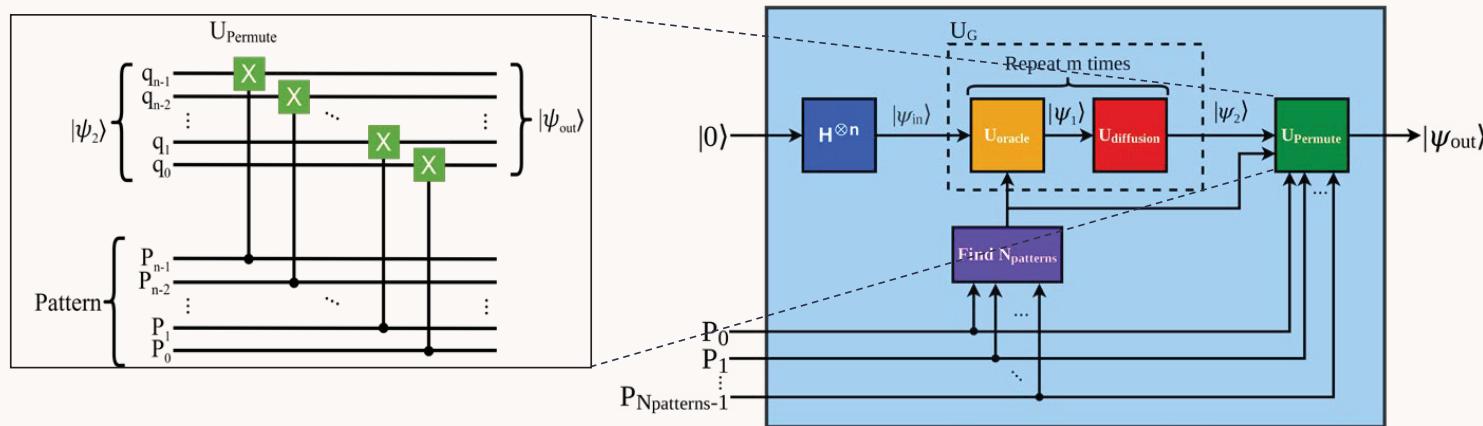


$$m = \left\lceil \frac{\pi \cdot k}{4 \sin^{-1} \left(\sqrt{\frac{N_p}{N}} \right)} \right\rceil$$

where,
 $k = 1, 3, 5, 7, \dots$
 $N_p = \text{no. of patterns}$
 $N = \text{no. of basis states}$

Quantum Grover's Search

- Quantum circuits for Dynamic Multi-pattern Quantum Grover's search (QGS)
 - The **permutation** step is required to shift the target patterns to the output quantum register's target indices

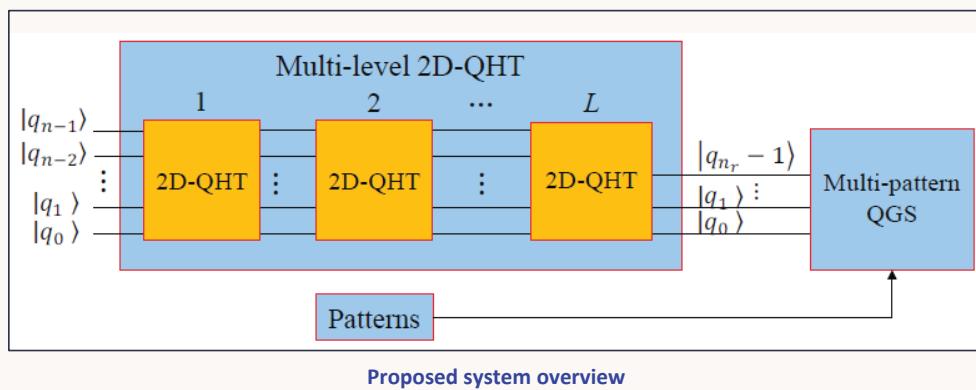


$$m = \left\lceil \frac{\pi \cdot k}{4 \sin^{-1} \left(\sqrt{\frac{N_p}{N}} \right)} \right\rceil$$

where,
 $k = 1, 3, 5, 7, \dots$
 $N_p = \text{no. of patterns}$
 $N = \text{no. of basis states}$

Dimension Reduction and Pattern Matching

- Proposed Methodology
 - Dimension reduction using L levels of 2D quantum Haar transform (2D-QHT)
 - Single/multi-pattern searching using Quantum Grover's search (QGS)



$$L = \left\lceil \frac{1}{2} \log_2 \frac{N}{N_r} \right\rceil$$

where,

N = no. of basis states (input image)

N_r = no. of basis states (reduced image)

and,

$N = 2^n, n$ = no. of qubits (input image)

$N_r = 2^{n_r}, n_r$ = no. of qubits (reduced image)

$$m = \left\lceil \frac{\pi \cdot k}{4 \sin^{-1} \left(\sqrt{\frac{N_p}{N}} \right)} \right\rceil$$

where

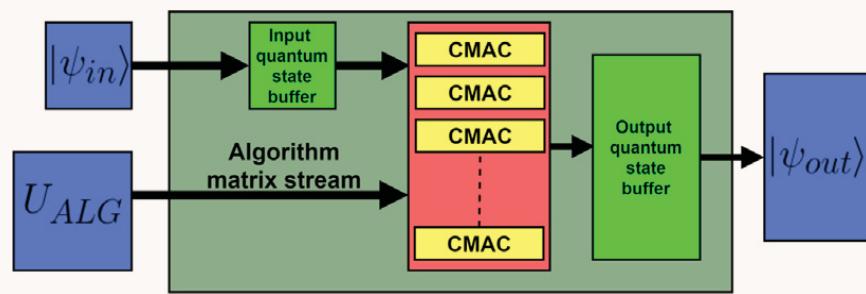
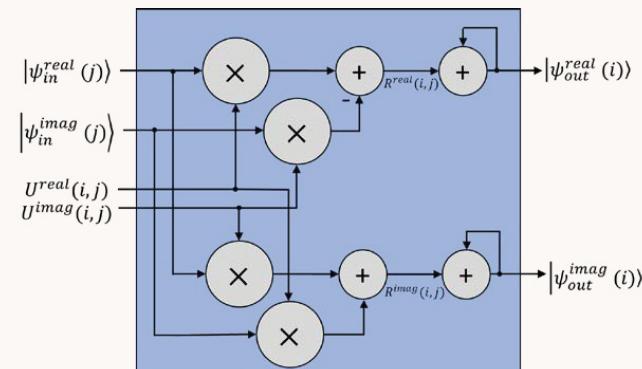
$k = 1, 3, 5, 7, \dots$

N_p = no. of patterns

N = no. of basis states

Dimension Reduction and Pattern Matching

- HW Architecture for Emulation
 - Vector-matrix multiplication
 - Complex multiply-and-accumulate (**CMAC**)
 - Input quantum state vector, $|\psi_{in}\rangle$
 - Algorithm reduced to a unitary matrix, U_{ALG}
 - lookup / dynamic generation / stream
 - Output quantum state vector, $|\psi_{out}\rangle$
- Advantages
 - **Generalized** approach for any quantum algorithm
 - Independent of circuit **depth**
 - Low **resource** utilization and **latency**
 - High **scalability**
 - **Parallelizable** hardware architectures



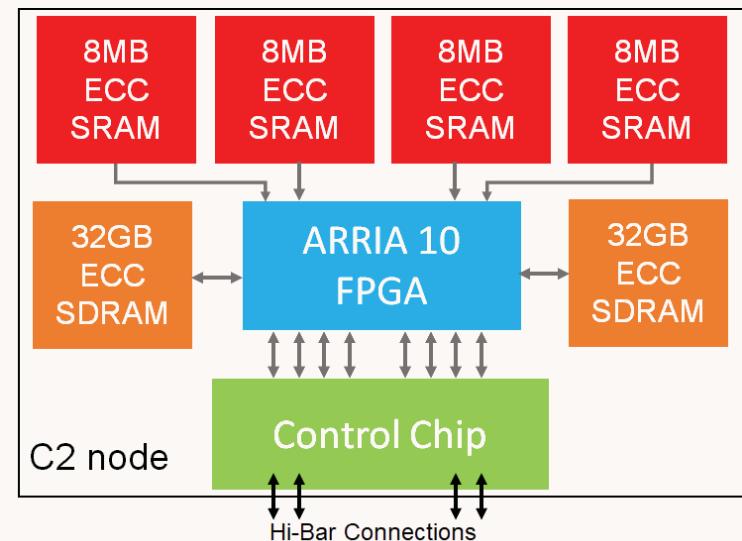
CMAC Architecture

Outline

- Introduction and Motivations
- Background
- Proposed Work
- Experimental Results
- Conclusions

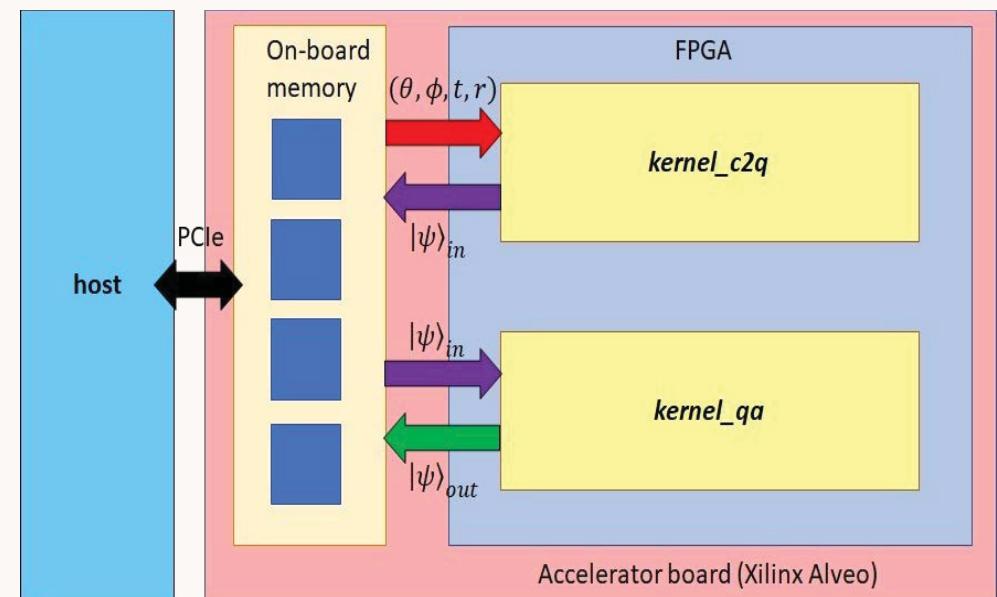
Experimental Setup

- Testbed Platform 1
 - High-performance reconfigurable computing (HPRC) system from **DirectStream**
 - OS-less, **FPGA-only** (Arria 10) architecture
 - Single node on-chip resources (OCR)
 - 427,200 Adaptive Logic Modules (ALMs)
 - 1,518 Digital signal Processors (DSPs)
 - 2,713 Block RAMs (BRAMs)
 - Single node on-board memory (OBM)
 - 2×32 GB SDRAM modules
 - 4×8 MB SRAM modules
 - Highly **productive** development environment
 - Parallel High-Level Language
 - C++-to-HW (previously Carte-C) compiler
 - Quartus Prime 17.0.2



Experimental Setup

- Testbed Platform 2
 - 16-core, 3 GHz AMD EPYC **CPU** with 251 GB system memory
 - Xilinx Alveo accelerator board with xcu250 **FPGA**, 4x16 GB on-board memory
 - **Vitis** unified software platform
 - OpenCL
 - C/C++ high-level synthesis
 - Register-transfer level (RTL)
 - Kernel **partitions** for classical-to-quantum (*kernel_c2q*) and quantum algorithm (*kernel_qa*)



Results – Arbitrary State Synthesis

- Simulation and implementation of proposed synthesis circuits

- MATLAB
 - **Noise-free** qubit simulation
 - Up to 14-qubit circuits

- IBM-Q
 - **qasm simulator**
 - **ibmq_16_melbourne quantum processor**
 - HW **limitations**

- Input data
 - **Complex** randomized data
 - **Real** grayscale images

- Measurements
 - Gate count
 - Circuit depth

	Number of data items (N)	Number of qubits (n)	Simulation (MATLAB / ibm_qasm)		Implementation (ibmq_16_melbourne)	
			Gate Count	Circuit Depth	Gate Count	Circuit Depth
Complex randomized data	4.00E+00	2	7.00E+00	6.00E+00	1.70E+01	1.50E+01
	1.60E+01	4	3.30E+01	3.00E+01	9.20E+01	7.20E+01
	6.40E+01	6	1.31E+02	1.26E+02	3.38E+02	2.76E+02
	2.56E+02	8	5.17E+02	5.10E+02	NA due to hardware limitations of IBM-Q	
	1.02E+03	10	2.06E+03	2.05E+03		
	4.10E+03	12	8.20E+03	8.19E+03		
	1.64E+04	14	3.28E+04	3.28E+04		
Image data	2 x 2 pixels	2	3.00E+00	2.00E+00	1.30E+01	1.10E+01
	4 x 4 pixels	4	1.70E+01	1.40E+01	5.80E+01	4.70E+01
	8 x 8 pixels	6	6.70E+01	6.20E+01	2.38E+02	1.97E+02
	16 x 16 pixels	8	2.61E+02	2.54E+02	8.71E+02	7.46E+02
	32 x 32 pixels	10	1.03E+03	1.02E+03	NA due to hardware limitations of IBM-Q	
	64 x 64 pixels	12	4.11E+03	4.09E+03		
	128 x 128 pixels	14	1.64E+04	1.64E+04		

Results – Arbitrary State Synthesis

- Image reconstruction from synthesized quantum states
 - **Fidelity** (F) used as metric for similarity between expected state ($\psi_{expected}$) and measured state ($\psi_{measured}$)

$$F = |\langle \psi_{expected} | \psi_{measured} \rangle|^2$$

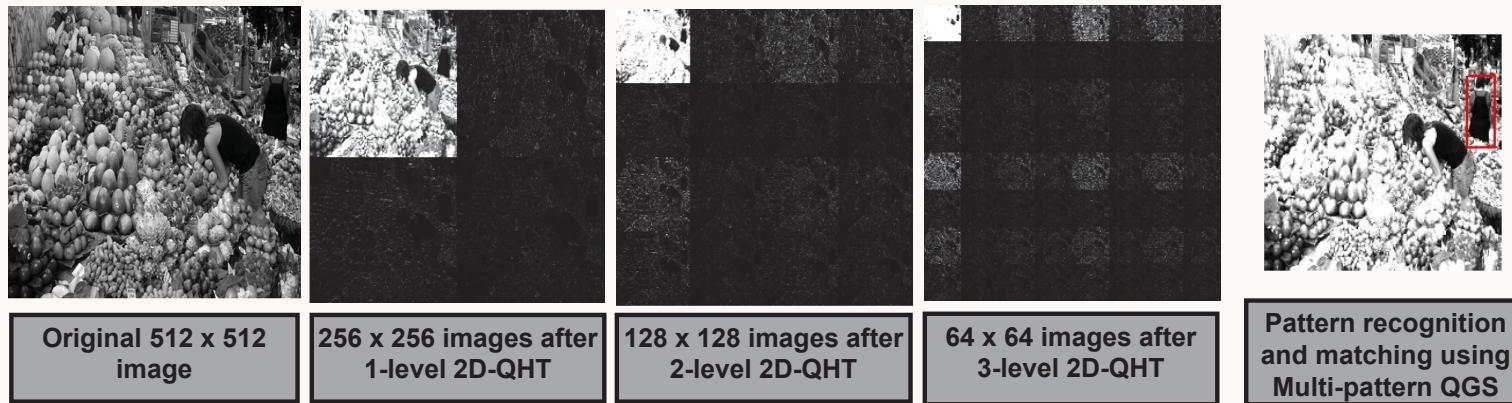
- 16x16, 32x32, and 64x64 **images** encoded using 8-qubit, 10-qubit, and 12-qubit circuits
- Partial corruption due to statistical **noise** in the NISQ device

Original image	Reconstructed image from simulations	
	MATLAB (noise-free)	IBM-QASM (NISQ† devices)
16 x 16 pixels (8 qubits)		
	Fidelity = 100 %	Fidelity = 99.1644 %
32 x 32 pixels (10 qubits)		
	Fidelity = 100 %	Fidelity = 96.5429 %
64 x 64 pixels (12 qubits)		
	Fidelity = 100 %	Fidelity = 94.0894 %

†NISQ ≡ Noisy Intermediate-Scale Quantum

Results – Dimension Reduction and Pattern Matching

- Test Methodology
 - High-resolution test images up to $64k \times 64k$ pixels
 - Multi-level packet **2D-QHT** → L-level decomposition to target resolution
 - QGS returns indices of target pixels



Results – Dimension Reduction and Pattern Matching

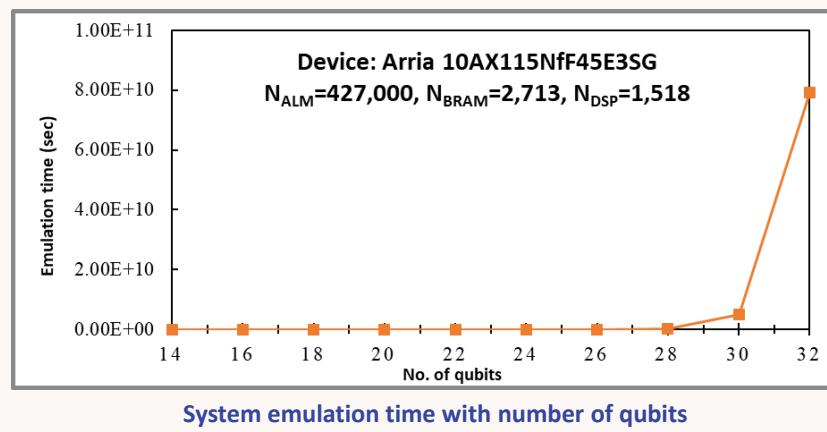
- Combined QHT and QGS pattern recognition system implementation
 - Up to 32-qubit QHT and 10-qubit QGS circuits
 - 2 × 32GB SDRAM OBM banks used to store input/output state vectors

No. of pixels	No. of qubits	No. of levels	OCR* utilization (%)			OBM** (bytes)	Emulation time (sec)***
			ALMs	BRAMs	DSPs		
128x128	14	3	22	16	2	128K	1.15E0
256x256	16	4	22	16	2	512K	1.84E01
512x512	18	5	22	16	2	2M	2.95E02
1024x1024	20	6	22	16	2	8M	4.72E03
2048x2048	22	7	22	16	2	32M	7.5E04
4096x4096	24	8	22	16	2	128M	1.2E06
8192x8192	26	9	22	16	2	512M	1.93E07
16Kx16K	28	10	22	16	2	2G	3.09E08
32Kx32K	30	11	22	16	2	8G	4.95E09
64Kx64K	32	12	22	16	2	32G	7.92E10

*Total on-chip resources: $N_{ALM} = 427,000$, $N_{BRAM} = 2,713$, $N_{DSP} = 1,518$

**Total on-board memory: 2x32 GB SDRAM banks

***Operating frequency: 233 MHz



ALM ≡ Adaptive Logic Modules
 BRAM ≡ Block Random Access Memory
 DSP ≡ Digital Signal Processing block

Comparative Study

- Comparison with related work (FPGA-based emulation)

Reported Work	Algorithm	Number of qubits	Precision	Operating frequency (MHz)	Emulation time (sec)
Fujishima (2003)	Shor's factoring	-	-	80	10
Khalid et al (2004)	QFT	3	16-bit fixed pt.	82.1	61E-9
	Grover's search	3	16-bit fixed pt.		84E-9
Aminian et al (2008)	QFT	3	16-bit fixed pt.	131.3	46E-9
Lee et al (2016)	QFT	5	24-bit fixed pt.	90	219E-9
	Grover's search	7	24-bit fixed pt.	85	96.8E-9
Silva and Zabaleta (2017)	QFT	4	32-bit floating pt.	-	4E-6
Pilch and Dlugopolski (2018)	Deutsch	2	-	-	-
Proposed work	QFT	32	32-bit floating pt.	233	7.92E10
	QHT	30			13.825
	Grover's search	32			7.92E10
	QHT + Grover's	32			7.92E10

Conclusions

- Near-future advantage of Quantum Computing
- Need for Quantum Emulation
 - **FPGA-accelerated, cost-effective** methodologies for complete emulation
- Proposed Methods
 - Depth **optimized** methods for arbitrary state synthesis
 - **HLS-based** emulation methodology
- Case studies
 - Multi-dimensional, multi-level quantum Haar Transform (QHT)
 - Single-pattern / multi-pattern quantum Grover's search (QGS)
 - Combining QHT + QGS for **Dimension Reduction** and **pattern matching**
- Experimental work
 - State-of-the-art test **platforms** from DirectStream, Xilinx, and IBMQ
 - Higher **scalability, throughput**, and **accuracy** compared to existing emulators
 - High **fidelity** of proposed quantum circuits

Thank you for listening!