
Proceedings of Machine Learning Research vol 134:1–30, 2021 34th Annual Conference on Learning Theory

Agnostic Proper Learning of Halfspaces under Gaussian Marginals
Ilias Diakonikolas ILIAS@CS.WISC.EDU
University of Wisconsin Madison
Daniel M. Kane DAKANE@CS.UCSD.EDU
University of California, San Diego
Vasilis Kontonis KONTONIS@WISC.EDU
University of Wisconsin Madison
Christos Tzamos TZAMOS@WISC.EDU
University of Wisconsin Madison
Nikos Zarifis ZARIFIS@WISC.EDU

University of Wisconsin Madison

Editors: Mikhail Belkin and Samory Kpotufe

Abstract
We study the problem of agnostically learning halfspaces under the Gaussian distribution. Our main
result is the first proper learning algorithm for this problem whose sample complexity and compu-
tational complexity qualitatively match those of the best known improper agnostic learner. Building
on this result, we also obtain the first proper polynomial-time approximation scheme (PTAS) for
agnostically learning homogeneous halfspaces. Our techniques naturally extend to agnostically
learning linear models with respect to other non-linear activations, yielding in particular the first
proper agnostic algorithm for ReLU regression.
Keywords: Agnostic Learning, Halfspaces, Proper Learning

1. Introduction

1.1. Background and Motivation

Halfspaces, or Linear Threshold Functions (LTFs), are Boolean functions f : Rd → {±1} of
the form f(x) = sign(〈w,x〉 − t), for some w ∈ Rd (known as the weight vector) and t ∈ R
(known as the threshold). The function sign : R → {±1} is defined as sign(u) = 1 for u ≥ 0
and sign(u) = −1 otherwise. Halfspaces have arguably been the most extensively studied concept
class in machine learning over the past six decades (Minsky and Papert, 1968; Shawe-Taylor and
Cristianini, 2000). The problem of learning halfspaces (in various models) is as old as the field of
machine learning, starting with the Perceptron algorithm (Rosenblatt, 1958; Novikoff, 1962), and
has been one of the most influential problems in the field with techniques such as SVMs (Vapnik,
1998) and AdaBoost (Freund and Schapire, 1997) coming out of this study.

Here we study the task of learning halfspaces in the agnostic framework (Haussler, 1992; Kearns
et al., 1994), which models the phenomenon of learning from adversarially labeled data. While
halfspaces are efficiently learnable in the presence of consistently labeled examples (see, e.g., Maass
and Turan (1994)) — i.e., in Valiant’s original PAC model (Valiant, 1984) — even weak agnostic
learning is computationally hard without distributional assumptions (Guruswami and Raghavendra,
2006; Feldman et al., 2006; Daniely, 2016). To circumvent this computational intractability, a line
of work has focused on the distribution-specific agnostic PAC model — where the learner has a
priori information about the distribution on examples. In this setting, computationally efficient
noise-tolerant learning algorithms are known (Kalai et al., 2008; Klivans et al., 2009; Awasthi et al.,
2017; Daniely, 2015; Diakonikolas et al., 2018, 2020d) with various time-accuracy tradeoffs.
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Definition 1 (Distribution-Specific Agnostic Learning) Let C be a class of Boolean-valued func-
tions on Rd. Given i.i.d. labeled examples (x, y) from a distribution D on Rd × {±1}, such that
the marginal distribution Dx is promised to lie in a known distribution family F and no assump-
tions are made on the labels, the goal of the learner is to output a hypothesis h : Rd → {±1}
with small misclassification error, errD0−1(h)

def
= Pr(x,y)∼D[h(x) 6= y], as compared to the optimal

misclassification error, OPT
def
= infg∈C errD0−1(g), by any function in the class.

Throughout this paper, we will focus on the natural and well-studied case that the underlying
distribution on examples is the standard multivariate Gaussian distribution N (0, I).

Some additional comments are in order on Definition 1. In improper learning, the only assump-
tion about the hypothesis h is that it is polynomially evaluable. In other words, we assume that
h ∈ H, where H is a (potentially complex) class of polynomially evaluable functions. In contrast,
in proper learning we have the additional requirement that the hypothesis h is proper, i.e., h ∈ C.
These notions of learning are essentially equivalent in terms of sample complexity, but not always
equivalent in terms of computational complexity. In particular, there exist concept classes that are
efficiently improperly learnable, while proper learning is computationally hard.

The classical L1-polynomial regression algorithm of Kalai et al. (2008) agnostically learns half-
spaces under the Gaussian distribution, within error OPT + ε, with sample complexity and runtime
of dpoly(1/ε). On the lower bound side, recent work has provided evidence that this complexity can-
not be improved. Specifically, Diakonikolas et al. (2020c); Goel et al. (2020); Diakonikolas et al.
(2021) obtained Statistical Query (SQ) lower bounds of dpoly(1/ε) for this problem. That is, the
complexity of this learning problem is well-understood.

The polynomial regression algorithm Kalai et al. (2008) is the only known agnostic learner for
halfspaces and is inherently improper: instead of a halfspace, its output hypothesis is a degree-k
polynomial threshold function (PTF), i.e., the sign of a degree-k polynomial, where k = poly(1/ε).
For the corresponding proper learning problem, prior to the present work, no non-trivial computa-
tional upper bound was known.

Importance of Proper Learning. While an improper hypothesis suffices for the purpose of pre-
diction, an improper learner comes with some disadvantages. In our context, having such a complex
output hypothesis requires spending dpoly(1/ε) time for even evaluating the hypothesis on a single
example. Moreover, storing the hypothesis function requires keeping track of the dpoly(1/ε) coeffi-
cients defining the corresponding polynomial. In contrast, a proper hypothesis is easy to interpret
and provides the most succinct representation. Specifically, a halfspace hypothesis would require
only O(d) time for evaluation and O(d) storage space. Even though it is known that dpoly(1/ε) time
is required for identifying a good hypothesis during training, prior to this work, it was not clear
whether one can learn a succinct hypothesis that is more efficient at test time.

The preceding discussion motivates the following natural question:

Is there an efficient proper agnostic learner for halfspaces under Gaussian marginals?

The main result of this paper (Theorem 2) is the first agnostic proper learner for this problem whose
complexity qualitatively matches that of the known improper learner (Kalai et al., 2008).

Faster Runtime via Approximate Learning. In view of the known SQ lower bounds for our
problem (Diakonikolas et al., 2020c; Goel et al., 2020; Diakonikolas et al., 2021), it is unlikely that
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the dpoly(1/ε) runtime for agnostically learning halfspaces can be improved, even under the Gaussian
distribution. A line of work (Klivans et al., 2009; Awasthi et al., 2017; Daniely, 2015; Diakonikolas
et al., 2018, 2020d) has focused on obtaining faster learning algorithms with relaxed error guaran-
tees. Specifically, Awasthi et al. (2017) gave the first poly(d/ε) time constant-factor approximation
algorithm – i.e., an algorithm with misclassification error ofC ·OPT+ε, for some universal constant
C > 1 – for homogeneous halfspaces under the Gaussian, and, more generally, under any isotropic
log-concave distribution. More recently, Daniely (2015) obtained a polynomial time approximation
scheme (PTAS), i.e., an algorithm with error (1 + γ) · OPT + ε and runtime dpoly(1/γ)/poly(ε),
under the uniform distribution on the sphere (and, effectively, under the Gaussian distribution).

Interestingly, the constant factor approximation algorithm of Awasthi et al. (2017) is proper.
On the other hand, the PTAS of Daniely (2015) is inherently improper, in part because it relies on
the combination of the localization method Awasthi et al. (2017) and the (improper) polynomial
regression algorithm Kalai et al. (2008). It is thus natural to ask the following question:

Is there a proper PTAS for agnostically learning halfspaces under Gaussian marginals?

As our second main contribution (Theorem 3), we give such a proper PTAS qualitatively matching
the complexity of the known improper PTAS (Daniely, 2015).

1.2. Our Contributions

In this paper, we initiate a systematic algorithmic investigation of proper learning in the agnostic
distribution-specific PAC model. Our main result is the first proper agnostic learner for the class
of halfspaces under the Gaussian distribution, whose sample complexity and runtime qualitatively
match the performance of the previously known improper algorithm.

Theorem 2 (Proper Agnostic Learning of Halfspaces) Let D be a distribution on labeled exam-
ples (x, y) ∈ Rd × {±1} whose x-marginal is N (0, I). There exists an algorithm that, given
ε, δ > 0, and N = dO(1/ε4)poly(1/ε) log(1/δ) i.i.d. samples from D, the algorithm runs in time
poly(N)+(1/ε)O(1/ε6) log(1/δ), and computes a halfspace hypothesis h such that, with probability
at least 1− δ, it holds errD0−1(h) ≤ OPT + ε.

Theorem 2 gives the first non-trivial agnostic proper learner for the class of halfspaces under natural
distributional assumptions. The runtime of our algorithm is dpoly(1/ε), which qualitatively matches
the complexity of the improper polynomial regression algorithm (Kalai et al., 2008) and is known
to be qualitatively best possible in the SQ model (Diakonikolas et al., 2020c; Goel et al., 2020;
Diakonikolas et al., 2021).

The analysis of Kalai et al. (2008) established an upper bound of dO(1/ε4) on the complexity
of polynomial regression for our setting. This bound was later improved to dO(1/ε2), using optimal
bounds on the underlying polynomial approximations (Diakonikolas et al., 2010b). Designing a
proper learner that quantitatively matches this upper bound is left as an interesting open question.

Our second main contribution is the first proper polynomial-time approximation scheme (PTAS)
for the agnostic learning problem. In our context, a PTAS is an algorithm that, for any γ, ε > 0, runs
in time dpoly(1/γ)/poly(ε) and outputs a hypothesis h satisfying errD0−1(h) ≤ (1+γ)OPT+ ε. The
parameter γ > 0 quantifies the approximation ratio of the algorithm. Prior work (Daniely, 2015)
gave an improper PTAS for agnostically learning homogeneous halfspaces, i.e., halfspaces whose
separating hyperplane goes through the origin. We give a proper algorithm for this problem.
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Theorem 3 (Proper PTAS for Agnostically Learning Halfspaces) LetD be a distribution on la-
beled examples (x, y) ∈ Rd × {±1} whose x-marginal is N (0, I). There exists an algorithm
that, given γ, ε, δ > 0 and N = dpoly(1/γ)poly(1/ε) log(1/δ) i.i.d. samples from D, runs in time
poly(N, d), and computes a halfspace h such that, with probability 1 − δ, it holds errD0−1(h) ≤
(1 + γ)OPT + ε, where OPT is the optimal misclassification error of any homogeneous halfspace.

Theorem 3 gives the first proper PTAS for agnostically learning homogeneous halfspaces under any
natural distributional assumptions and qualitatively matches the complexity of the improper PTAS
by Daniely (2015). We note that the homogeneity assumption is needed for technical reasons and is
also required in the known improper learning algorithm. Obtaining a PTAS for agnostically learning
arbitrary halfspaces remains an open problem (even for improper learners).

Remark 4 (Extension to Other Non-Linear Activations) While the focus of the current paper is
on the class of halfspaces, our algorithmic techniques are sufficiently robust and naturally generalize
to other activation functions, i.e., functions of the form f(x) = σ(〈w,x〉), where σ : R → R is a
well-behaved activation function. Specifically, in Appendix D, we use our methods to develop the
first proper agnostic learner for ReLU regression (Diakonikolas et al., 2020a).

Broader Context This work is the starting point of the broader research direction of designing
proper agnostic learners in the distribution-specific setting for various expressive classes of Boolean
functions. Here we make a first step in this direction for the class of halfspaces under the Gaussian
distribution. The polynomial regression algorithm Kalai et al. (2008) is an improper agnostic learner
that has been showed to succeed for broader classes of geometric functions, including degree-d
PTFs (Diakonikolas et al., 2010a; Kane, 2011; Diakonikolas et al., 2014; Harsha et al., 2014), inter-
sections of halfspaces (Kalai et al., 2008; Klivans et al., 2008; Kane, 2014), and broader families of
convex sets (Klivans et al., 2008). An ambitious research goal is to develop a general methodology
that yields proper agnostic learners for these concept classes under natural and broad distributional
assumptions, matching the performance of polynomial regression.

1.3. Overview of Techniques

In this section, we provide a detailed overview of our algorithmic and structural ideas that lead to
our proper learners.

Proper Agnostic Learning Algorithm The main idea behind our proper learning algorithm is
to start with a good improper hypothesis and compress it down to a halfspace, while maintaining
the same error guarantees. Our algorithm starts by computing the low-degree polynomial P that
best approximates the labels in L2-norm (Lemma 7). We then take a two-step approach to identify
a near-optimal halfspace. First, by identifying the high-influence directions of P , we construct
a low-dimensional subspace of Rd and show that it contains the normal vector to a near-optimal
halfspace (Proposition 5). Then, we exhaustively search over vectors in this subspace (through an
appropriately fine cover) and output the one with minimum error.

The main technical challenge comes in identifying such a subspace that is large enough to con-
tain a good proper hypothesis, but also small enough so that exhaustive searching is efficient. To
identify this subspace, we consider an appropriate matrix (defined by the high-influence directions
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of the polynomial P ) and take the subspace defined by its large eigenvectors (Proposition 5). Ex-
ploiting the concentration guarantees of polynomials under the Gaussian distribution, we show that
the resulting subspace is small enough to enumerate over (Lemma 6).

In more detail, we first find the polynomial P (x) of degree k = O(1/ε4) that approximates
the labels y in the L2 sense, that is, minimizes E(x,y)∼D[(y − P (x))2]. We then consider the
influence of the polynomial P along a direction u, Infu(P ) = uTMu, for the matrix M =
Ex∼Dx [∇P (x)∇P (x)>], as a measure for how much the polynomial P changes along the direction
u. The key observation is that, along low-influence directions, the polynomial remains essentially
constant and, as we show, the optimal halfspace must also be essentially constant as well. This
allows us to prune down these directions and focus on a subspace of lower-dimension. Our main
structural result (Proposition 5) formalizes this intuition showing that the subspace V of eigenvec-
tors whose eigenvalues are larger than Θ(ε2) contains a normal vector wV that (together with an
appropriate threshold) achieves error OPT + ε.

Finally, while Proposition 5 establishes that we can remove directions of low-influence, we need
to argue that the number of relevant eigenvectors is sufficiently small to simplify the problem. As
we show in Lemma 6, the dimension of the resulting subspace V is O(1/ε6), and thus finding a
good hypothesis in this subspace takes time independent of the original dimension d. The key in-
gredient in bounding the dimension of V is to use concentration of polynomials under the Gaussian
distribution to argue that the Frobenius norm of M is bounded, and thus the number of eigenvectors
with large eigenvalues is bounded.

Proper PTAS for Agnostic Learning Our algorithm for obtaining a proper PTAS works in the
same framework as Daniely (2015), who gave a non-proper PTAS for homogeneous halfspaces
by combining the algorithm of Awasthi et al. (2017) with the L1-polynomial regression algorithm
of Kalai et al. (2008).

Similarly to the algorithm of Daniely (2015), we start by learning a halfspace (with normal
vector) w0 with error O(OPT), using any of the known constant factor approximations as a black-
box (Awasthi et al., 2017; Diakonikolas et al., 2018, 2020d), and then partition the space according
to the distance to the halfspace w0. Daniely’s algorithm (Daniely, 2015) is based on the observation
that points far from the true halfspace are accurately classified by the halfspace w0. Thus, one can
use the improper learner of Kalai et al. (2008) to classify nearby points.

A simple adaptation of this idea would be to replace the improper algorithm of Kalai et al.
(2008) with our new proper algorithm for agnostically learning halfspaces. There are two main
complications however. First, the guarantees of our proper algorithm crucially rely on having
Gaussian marginals, and therefore we cannot readily apply it once we restrict our attention only
to points around w0. We deal with this issue by using a “soft” localization technique introduced
in Diakonikolas et al. (2018) to randomly partition points in two groups. In particular, we perform
rejection sampling according to a judiciously chosen weight function such that the distribution con-
ditional on acceptance is still a Gaussian, albeit with very small variance along the direction of w0,
see Lemma 14. By running our proper algorithm, we can obtain a halfspace w1 that is near-optimal
under the conditional distribution.

The second obstacle is that while we can obtain two halfspaces (w0 and w1) that each are near-
optimal for their corresponding groups, combining them into a single halfspace that works well
for the entire distribution is not immediate. We remark that this is not an issue for the improper
approximation scheme of Daniely (2015), since an improper learner is allowed to output a different
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classifier for different subsets of Rd. To handle this issue, we additionally show that the halfspace
w1 we obtain after localization will in fact perform well overall. In more detail, we show that the
halfspace w1 cannot have very large angle with w0 and also its bias is small, see Proposition 15.
Given these closeness properties, we can then show that the halfspace w1 achieves the desired error
guarantees over the entire distribution, see Lemma 16.

2. Preliminaries

We will use small boldface characters for vectors and capital bold characters for matrices. For
x ∈ Rd and i ∈ [d], xi denotes the i-th coordinate of x, and ‖x‖2

def
= (

∑d
i=1 x2

i )
1/2 denotes the

`2-norm of x. We will use x ·y for the inner product of x,y ∈ Rd and θ(x,y) for the angle between
x,y. We will use 1A to denote the characteristic function of the set A, i.e., 1A(x) = 1 if x ∈ A
and 1A(x) = 0 if x /∈ A.

Let ei be the i-th standard basis vector in Rd. For x ∈ Rd and V ⊆ Rd, xV denotes the
projection of x onto the subspace V . Note that in the special case where V is spanned from one
unit vector v, then we simply write xv to denote v (x · v), i.e., the projection of x onto v. For a
subspace U ⊂ Rd, let U⊥ be the orthogonal complement of U . For a vector w ∈ Rd, we use w⊥ to
denote the subspace spanned by vectors orthogonal to w, i.e., w⊥ = {u ∈ Rd : w · u = 0}. For a
matrix A ∈ Rd×d, tr(A) denotes the trace of the matrix A.

We use Ex∼D[x] for the expectation of the random variable x according to the distribution D
and Pr[E ] for the probability of event E . For simplicity of notation, we may omit the distribution
when it is clear from the context. LetN (µ,Σ) denote the d-dimensional Gaussian distribution with
mean µ ∈ Rd and covariance Σ ∈ Rd×d. For (x, y) distributed according to D, we denote Dx to
be the distribution of x. For unit vector v ∈ Rd, we denote Dv the distribution of x on the direction
v, i.e., the distribution of xv.

We use CV for the set of Linear Threshold Functions (LTFs) with normal vector contained in
V ⊆ Rd, i.e., CV = {sign(v · x + t) : v ∈ V, ‖v‖2 = 1, t ∈ R}; when V = Rd, we simply write C.
Moreover, we define C0 to be the set of unbiased LTFs, i.e., C0 = {sign(v ·x) : v ∈ Rd, ‖v‖2 = 1}.
We denote by Pk the space of polynomials on Rd of degree at most k.

3. Proper Agnostic Learning Algorithm

In this section, we present our proper agnostic learning algorithm for halfspaces, establishing The-
orem 2. The pseudocode of our algorithm is given in Algorithm 1.

3.1. Analysis of Algorithm 1: Proof of Theorem 2

The main structural result that allows us to prove Theorem 2 is the following proposition, estab-
lishing the following: Given a multivariate polynomial P of degree Θ(1/ε4) that correlates well
with the labels, we can use its high-influence directions to construct a subspace that contains a
near-optimal halfspace. Specifically, we show:

Proposition 5 Let C > 0 be a sufficiently large universal constant. Fix any ε ∈ (0, 1] and
set k = C/ε4. Let P (x) ∈ Pk be a degree-k polynomial such that E(x,y)∼D[(y − P (x))2] ≤
minP ′∈Pk E(x,y)∼D[(y−P ′(x))2]+O(ε3). Moreover, let M = Ex∼Dx [∇P (x)∇P (x)>] and V be
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Algorithm 1 Agnostic Proper Learning Halfspaces
1: procedure AGNOSTIC-PROPER-LEARNER(ε, δ,D)
2: Input: ε > 0, δ > 0 and sample access to distribution D
3: Output: A hypothesis h ∈ C such as errD0−1(h) ≤ minf∈C errD0−1(f)+εwith probability 1−δ.
4: k ← C/ε4, η ← ε2/C. . C is a sufficiently large constant
5: Find P (x) such E(x,y)∼D[(y − P (x))2] ≤ minP ′∈Pk E(x,y)∼D[(y − P ′(x))2] +O(ε3).
6: Let M = Ex∼Dx [∇P (x)∇P (x)>].
7: Let V be the subspace spanned by the eigenvectors of M whose eigenvalues are at least η.
8: Construct an ε-coverH of LTF hypotheses with normal vectors in V . see Fact 21.
9: Draw Θ( 1

ε2
log(|H|/δ)) i.i.d. samples from D and construct the empirical distribution D̂.

10: h← argminh′∈H errD̂0−1(h′)
11: return h.

the subspace spanned by the eigenvectors of M with eigenvalues larger than η, where η = ε2/C.
Then, for any f ∈ C, it holds minv∈V,t∈R E(x,y)∼D[(f(x)− sign(v · x + t))y] ≤ ε.

The proof of Proposition 5 is the bulk of the technical work of this section and is deferred
to Section 3.2. In the body of this subsection, we show how to use Proposition 5 to establish
Theorem 2.

The next lemma bounds from above the dimension of the subspace spanned by the high-influence
directions of a degree-k polynomial that minimizes the L2-error with the labels y.

Lemma 6 Fix ε > 0 and let P (x) be a degree-k polynomial, with k = O(1/ε4), such that
E(x,y)∼D[(y−P (x))2] ≤ minP ′∈Pk E(x,y)∼D[(y−P ′(x))2]+O(ε3). Let M = Ex∼Dx [∇P (x)∇P (x)>]
and V be the subspace spanned by the eigenvectors of M with eigenvalues larger than η. Then the
dimension of the subspace V is dim(V ) = O(k/η).

Proof Let P be a polynomial such that E(x,y)∼D[(y − P (x))2] ≤ minP ′∈Pk E(x,y)∼D[(y −
P ′(x))2]+O(ε3) and letP ∗ = argminP ′∈Pk E(x,y)∼D[(y−P ′(x))2]. First, we note that E(x,y)∼D[(y−
P ∗(x))2] ≤ E(x,y)∼D[(y − 0)2] = 1. Using the inequality (a + b)2 ≤ 2a2 + 2b2, we have
E(x,y)∼D[P (x)2] ≤ 5.

Let V denote the subspace spanned by the eigenvectors of M = Ex∼Dx [∇P (x)∇P (x)>] with
eigenvalues at least η. We will show that m = dim(V ) = O(k/η). We can write

mη ≤ tr

(
E

x∼Dx

[∇P (x)∇P (x)>]

)
= E

x∼Dx

[
tr(∇P (x)∇P (x)>)

]
= E

x∼Dx

[
‖∇P (x)‖22

]
. (1)

It is sufficient to show that Ex∼Dx [‖∇P (x)‖22] = O(k). By writing P (x) in the Hermite basis,
from Fact 19, it holds

E
x∼Dx

[
‖∇P (x)‖22

]
=

∑
α∈Nd,|α|≤k

|α|c2
α ≤ k E

x∼Dx

[P (x)2] ≤ 5k . (2)

Combining Equations (1) and (2), we obtain that m = O(k/η), and the proof is complete.

For the proof of Theorem 2, we require a standard result on L2-polynomial regression required
to compute the polynomial of Proposition 5. The proof can be found on Appendix B.3.
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Lemma 7 (L2-Polynomial Regression) Let D be a distribution on Rd×{±1} whose x-marginal
is N (0, I). Let k ∈ Z+ and ε, δ > 0. There is an algorithm that draws N = (dk)O(k) log(1/δ)/ε2

samples from D, runs in time poly(N, d), and outputs a polynomial P (x) of degree at most k such
that Ex∼D[(f(x)− P (x))2] ≤ minP ′∈Pk Ex∼D[(f(x)− P ′(x))2] + ε, with probability 1− δ.

By running the L2-regression algorithm of the above lemma, we obtain a polynomial P match-
ing the requirements of our dimension-reduction result (Proposition 5). To complete the proof of
Theorem 2, we perform SVD on the influence matrix M (see Proposition 5), and then create a suf-
ficiently fine cover of the low-dimensional subspace V . The details and the full proof of Theorem 2
can be found in Appendix B.2.

3.2. Proof of Proposition 5

Suppose for the sake of contradiction that there exists a halfspace f ∈ C such that for every halfspace
f ′ ∈ CV , it holds

E
(x,y)∼D

[(f(x)− f ′(x))y] ≥ ε . (3)

Our plan is to use the above fact in order to contradict the (approximate) optimality of the polyno-
mial P (x). To achieve this, we need to construct a polynomial P ′′(x) with error strictly less than
minP ′∈Pk E(x,y)∼D[(y−P ′(x))2]. In the following simple claim, we show that in order to construct
such a polynomial P ′′(x), one needs to find a polynomial Q(x) of degree at most k that correlates
well with the difference y − P (x), its proof can be found on Appendix B.1.

Claim 8 It suffices to show that there exists a polynomialQ(x) of degree at most k with Ex∼Dx [Q2(x)] ≤
9 that (ε/4)-correlates with (y − P (x)), i.e., E(x,y)∼D[Q(x)(y − P (x))] ≥ ε/4.

We now construct such a polynomial Q(x). We can write that f(x) = sign(w · x + t) =
sign(wV · x + wV ⊥ · x + t). Note that wV ⊥ 6= 0, since otherwise we would have f ∈ CV . For
simplicity, we denote ξ = wV ⊥/‖wV ⊥‖2. Notice that the direction ξ has low influence, since
ξ ∈ V ⊥. Recall that by Dξ we denote the projection of D onto the (one-dimensional) subspace
spanned by ξ. We define fV (x) = Ez∼Dξ [f(z + xV )] to be a convex combination of halfspaces
in CV . In particular, fV (x) is a smoothed version of the halfspace sign(wV · x + t) whose normal
vector belongs in V . Our argument consists of two main claims. In Lemma 9, we show that
the function f(x) − fV (x) correlates non-trivially with y − P (x). Then we show that we can
approximate f(x)−fV (x) with a low-degree polynomialQ(x) that maintains non-trivial correlation
with y − P (x); see Lemma 11. We start with the first lemma.

Lemma 9 It holds Ex∼Dx [(f(x)− fV (x))(y − P (x))] ≥ ε− 2
√
η.

Proof We have that fV (x) = Ez∼Dξ [f(z + xξ⊥)] = Ez∼Dξ [sign(wV · xV + w · z + t)] and, since
fV is a convex combination of halfspaces in CV , from Equation (3), we see that E(x,y)∼D[(f(x) −
fV (x))y] ≥ ε. Thus, we have

E
(x,y)∼D

[(f(x)− fV (x))(y − P (x))] = E
(x,y)∼D

[(f(x)− fV (x))y]− E
x∼Dx

[(f(x)− fV (x))P (x)]

≥ ε− E
x∼Dx

[(f(x)− fV (x))P (x)] . (4)
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To deal with Ex∼Dx [(f(x) − fV (x))P (x)], we first observe that for any function g(x) depending
only on the projection of x onto the subspace ξ⊥, i.e., such that g(x) = g(xξ⊥), we have

E
x∼Dx

[(f(x)− fV (x))g(x)] = E
v∼D

ξ⊥

[
E

z∼Dξ
[f(v + z)− fV (v)] g(v)

]
= 0 ,

since for every x ∈ Rd it holds fV (x) = Ez∼Dξ [f(xξ⊥ + z)] = Ez∼Dξ [f(xV + z)]. Unfortunately,
we cannot directly do the above trick because P (x) does not depend only on xξ⊥ . However, since
V contains the high-influence eigenvectors, it holds that P is almost a function of xξ⊥ . In fact, we
show that we can replace the polynomial P by a different polynomial of degree at most k that only
depends on the projection of x on ξ⊥. Similarly to the definition of the “smoothed” halfspace fV ,
we define R(x) = Ez∼Dξ [P (xξ⊥ + z)]. We first prove that R(x) is close to P (x) in the L2-sense.

Claim 10 LetR(x) = Ez∼Dξ [P (xξ⊥+z)]. It holds Ex∼Dx [(P (x)−R(x))2] ≤ Ex∼Dx [(∇P (x) ·
ξ)2].

Proof We start by showing that without loss of generality we may assume that ξ = e1. Let
U be an orthogonal matrix such that Uξ = e1. Since P (x) is a polynomial, we can apply the
orthogonal transformation U to x and then use the Hermite basis to represent it, that is P (x) =∑

α∈Nd cαHα(U>x). Our objective is equivalent to Ex∼Dx [(∇P (x) · ξ)2− (P (x)−R(x))2] ≥ 0.
By the change of variables x 7→ Ux, we have that E(Ux)∼Dx

[(∇UxP (Ux) · (Uξ))2 − (P (Ux)−
R(Ux))2] ≥ 0, where we used the chain rule for the gradient. Observe that R(x) = Ez∼Dξ [P ((I−
ξξ>)x + z)] = Ez∼Dξ

[∑
α∈Nd cαHα(U>(I− ξξ>)x + U>z)

]
, therefore it holds that R(Ux) =

Ez∼Dξ [
∑

α∈Nd cαHα(U>(I − ξξ>)Ux + U>z)]. Moreover, P (Ux) =
∑

α∈Nd cαHα(U>Ux).
Using the fact that U>U = I and U>ξξ>U = e1e

>
1 , it follows that without loss of generality, we

may assume that ξ = e1.
To keep notation simple, we write P (x) =

∑
α∈Nd cαHα(x). Note that

P (x)− E
x1∼De1

[P (xξ⊥ + x1)] =
∑
α∈Nd

cαHα(x)−
∑
α∈Nd

cα E
x1∼Dx1

[Hα(x)] =
∑
α∈S

cαHα(x) , (5)

where S contains all the tuples for which the first index is non-zero, this follows from the fact that
Ex∼D[Hα(x)] = 0. Applying Parseval’s identity yields

E
x∼Dx

[(P (x)− E
x1∼De1

[P (xξ⊥ + x1)])2] =
∑
α∈S

c2
α . (6)

From Fact 19, we have

E
x∼Dx

[(∇P (x) · e1)2] =
∑
α∈Nd

α1c
2
α ≥

∑
α∈S

c2
α , (7)

where we used that α1 ≥ 1 on the set S . Combining (6) and (7) completes the proof.

Adding and subtracting R(x) = Ez∼Dξ [P (xξ⊥ + z)], we get

E
x∼Dx

[(f(x)− fV (x))P (x)] = E
x∼Dx

[(f(x)− fV (x))(P (x)−R(xξ⊥))] + E
x∼Dx

[(f(x)− fV (x))R(xξ⊥)] .

9
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The second term is equal to zero, from the fact that Ez∼Dξ [f(z + xξ⊥)− fV (xξ⊥)] = 0. From the
Cauchy-Schwartz inequality, we get

E
x∼Dx

[(f(x)− fV (x))(P (x)−R(xξ⊥))] ≤
√

E
x∼Dx

[(f(x)− fV (x))2] E
x∼Dx

[(P (x)−R(xξ⊥))2]

≤ 2
√

E
x∼Dx

[(P (x)−R(xξ⊥))2] ≤ 2
√
η , (8)

where we used Claim 10. Using Equation (4), we get that E(x,y)∼D[(f(x)− fV (x))(y−P (x))] ≥
ε− 2

√
η. which completes the proof of Lemma 9.

Our final claim replaces f − fV by its polynomial approximation. By Hermite concentration
arguments, we can show that we can use a polynomial Q(x) of degree O(1/ε4). We show:

Lemma 11 There exists a polynomialQ(x) of degreeO(1/ε4) such that Ex∼Dx [Q(x)(y−P (x))] ≥
ε/2− 2

√
η and Ex∼Dx [Q2(x)] ≤ 9.

Proof We will require the following result from Klivans et al. (2008) which bounds the Hermite
concentration of LTFs.

Fact 12 (Theorem 15 of Klivans et al. (2008)) Let f ∈ C, and let S be the Hermite expansion up
to degree k of f , i.e., S(x) =

∑
|α|≤k f̂(α)Hα(x). Then Ex∼N (0,I)[(S(x)− f(x))2] = O(1/

√
k).

For any polynomial Q(x), we have

E
x∼Dx

[Q(x)(y − P (x))] = E
x∼Dx

[(Q(x) + (f(x)− fV (x))− (f(x)− fV (x)))(y − P (x))]

≥ ε− 2
√
η + E

x∼Dx

[(Q(x)− (f(x)− fV (x)))(y − P (x))] , (9)

where we used Lemma 9. By choosing Q(x) = S(x) − Ez∼Dξ [S(xξ⊥ + z)], where we denote
by S(x) the Hermite expansion of f truncated up to degree k, S(x) =

∑
|α|≤k f̂(α)Hα(x), we

will show that Ex∼Dx [(f(x) − fV (x) − Q(x))2] = O(1/
√
k) . Using the elementary inequality

(a+ b)2 ≤ 2a2 + 2b2, we get that

E
x∼Dx

[(f(x)− fV (x)−Q(x))2] ≤ 2 E
x∼Dx

[(f(x)− S(x))2] + 2 E
x∼Dx

[(fV (x)− E
z∼Dξ

[S(xξ⊥)])2] .

Moreover, by Jensen’s inequality, it holds that

E
x∼Dx

[(fV (x)− E
z∼Dξ

[S(xξ⊥ + z)])2] ≤ E
x∼Dx

[(f(x)− S(x))2] = O(1/
√
k) ,

where in the last equality we used Fact 12. Note that from the reverse triangle inequality, it holds
that √

E
x∼D

[Q2(x)] ≤
√

E
x∼Dx

[(f(x)− fV (x))2] +O(1/k1/4) ≤ 2 +O(1/k1/4) . (10)

Choosing k = O(1/ε4) and applying Cauchy-Schwartz to the Equation (9), we get

E
(x,y)∼D

[Q(x)(y − P (x))] ≥ ε− 2
√
η −

√
E

x∼Dx

[(Q(x)− (f(x)− fV (x)))2] E
(x,y)∼D

[(y − P (x))2]

≥ ε/2− 2
√
η ,

10
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where we used the fact that E(x,y)∼D[(y−P (x))2] ≤ E(x,y)∼D[(y−0)2] ≤ 1; the polynomial P (x)
is closer to y than the trivial polynomial 0. For this choice of k, Equation (10) gives Ex∼D[Q2(x)] ≤
9. This completes the proof of Lemma 11.

By choosing η = ε2/64, Lemma 11 contradicts our assumption that P (x) is O(ε3)-close to the
polynomial P ′(x) that minimizes the E(x,y)∼D[(y − P ′(x))2], see Claim 8. This completes the
proof of Proposition 5.

4. Agnostic Proper PTAS for Homogeneous Halfspaces

In this section, we provide a proper PTAS for agnostically learning homogeneous halfspaces, thereby
establishing Theorem 3. Concretely, let f(x) = sign(w∗ · x) be an optimal halfspace, i.e., OPT =
minh∈C0 errD0−1(h) = errD0−1(f). For any γ, ε ∈ (0, 1) our algorithm computes a halfspace h(x)
such that errD0−1(h) ≤ (1 + γ)OPT + ε. The pseudocode of our algorithm is given in Algorithm 2.

Algorithm 2 Agnostic Proper PTAS for Homogeneous Halfspaces
1: procedure AGNOSTIC-PROPER-PTAS(γ, ε, δ,D) . C, C ′ are absolute constants
2: Input: γ > 0, ε, δ > 0, and distribution D
3: Output: A hypothesis h ∈ C such that errD0−1(h) ≤ (1 + γ)OPT + ε with probability 1− δ
4: σ ← C ′OPT/γ
5: Let w0 be the normal vector of the homogeneous halfspace computed using Lemma 13
6: If ε > C OPT:
7: return h0(x) = sign(w0 · x)
8: Let DA be the distribution D after applying rejection sampling with w0 and σ (Lemma 14)
9: Run Algorithm 1 on DA with accuracy Θ(γ2) and confidence δ to get (w, t)

10: return h(x) = sign(w · x + t)

4.1. Analysis of Algorithm 2: Proof of Theorem 3

The following lemma provides us with an efficient algorithm that learns a halfspace within error
O(OPT) in polynomial time. This halfspace serves as the initialization of Algorithm 2: we will use
it to perform localization around it.

Lemma 13 (Awasthi et al. (2017); Diakonikolas et al. (2020d)) Let D be a distribution on Rd ×
{±1} whose x-marginal is N (0, I). There is an algorithm that draws N = O((d/ε4) log(1/δ))
samples fromD, runs in time poly(N, d), and outputs a hypothesis h ∈ C such that, with probability
at least 1− δ, we have errD0−1(h) ≤ O(OPT) + ε.

The following lemma provides a “soft” localization procedure. Instead of performing rejection
sampling inside a band around w0, i.e., |x · w0| < σ, we perform rejection sampling with weight
e−w0·x(σ−2−1): samples that are far from the halfspace w0 are accepted with very small probability.
Using this rejection sampling process, we get that the distribution conditional on acceptance is a
normal distribution. This allows us to use our proper learning algorithm of Section 3.

Lemma 14 (Lemma 4.7 of Diakonikolas et al. (2018)) Let w0 ∈ Rd be a unit vector and letD be
a distribution on Rd×{±1} whose x-marginal isN (0, I). Fix σ ∈ (0, 1) and define the distribution

11
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DA as follows: draw a sample (x, y) from D and accept it with probability e−(w0·x)2(σ−2−1)/2. DA
is the distribution of (x, y) conditional on acceptance. The x-marginal of DA is N (0,Σ), where
Σ = I− (1− σ2)w0w

>
0 , and the probability that some point will be accepted is σ.

The main technical tool of this section is the following proposition. It shows that, if a halfspace
performs reasonably well with respect to the “localized” distribution N (0,Σ) of Lemma 14, then
it cannot be very biased or have very large angle with the initial guess w0. This allows us to prove
that the halfspace that we find using the “localized” distribution will perform well over the initial
Gaussian, N (0, I).

Proposition 15 Let w0 ∈ Rd be a unit vector and let α, γ ∈ (0, 1/4]. Let DA be defined as
in Lemma 14, i.e., its x-marginal is N (0,Σ), where Σ = I − (1 − σ2)w0w

T
0 for some σ ∈

(0, cos(πα)). Moreover, assume that Pr(x,y)∼D[sign(w0·x) 6= y] ≤ α/3. There exists an algorithm
that runs in time dpoly(1/(γα)) log(1/δ) and with probability at least 1 − δ returns a halfspace
h(x) = sign(w · x + t) such that |t| = O(σα), θ(w,w0) = O(σα). Moreover, it holds

Pr
(x,y)∼DA

[h(x) 6= y] ≤ min
h̄∈C

Pr
(x,y)∼DA

[h̄(x) 6= y] + αγ .

The proof of Proposition is quite technical and is deferred to Section 4.2. The following lemma is
similar to the localization lemma (Lemma 2.1) given in Daniely (2015). We need to adapt it to work
in our setting, where we use a soft localization procedure (see Lemma 14), as opposed to a hard
one. Its proof can be found on Appendix C.1.

Lemma 16 (Gaussian Localization) Let R(x) be the event that the sample x is rejected from
the rejection sampling procedure of Lemma 14 with vector w0 and σ = Θ

(
OPT
α

)
. Let h(x) =

sign(w0 · x), h′(x) = sign(w · x + t) be halfspaces with t = O(σα) and θ(w0,w) = O(σα).
Then, Prx∼Dx [h(x) 6= h′(x), R(x)] = O(αOPT).

We are now ready to prove Theorem 3.
Proof [Proof of Theorem 3] Our analysis follows the cases of Algorithm 2. Initially, Algorithm 2
computes h0 = sign(w0 · x), using the algorithm of Lemma 13. From Lemma 13, we have that
for this halfspace it holds, with probability at least 1 − δ/2, that errD0−1(h0) = C OPT + ε for
some absolute constant C > 1. The runtime of this step is poly(d, 1/ε) log(1/δ). Therefore, when
ε > 2C OPT, we directly get that errD0−1(h0) ≤ OPT + ε.

For the case when ε ≤ 2C OPT, Algorithm 2 returns a halfspace h(x) = sign(w ·x+ t), where
w ∈ Rd and t ∈ R. We show that for this hypothesis h it holds errD0−1(h) ≤ (1 + γ)OPT + ε. Let
DA be the distribution conditional on acceptance (see Lemma 14) with parameters w0 (the normal
vector of the halfspace h0) and σ = Θ(OPT/α), for some parameter α = Θ(γ) and R(x) (resp.
A(x)) be the event that the sample x is rejected (resp. accepted). The error of the hypothesis h is

Pr
(x,y)∼D

[h(x) 6= y] = Pr
(x,y)∼D

[h(x) 6= y,A(x)] + Pr
(x,y)∼D

[h(x) 6= y,R(x)] . (11)

Let us first bound the Pr(x,y)∼D[h(x) 6= y,A(x)] = Pr(x,y)∼DA [h(x) 6= y] Prx∼Dx [A(x)]. From
Proposition 15, we have that with sample complexity and runtime dpoly(1/γ) log(1/δ) we get that,
with probability at least 1− δ/2, it holds

Pr
(x,y)∼DA

[h(x) 6= y] ≤ min
h̄∈C

Pr
(x,y)∼DA

[h̄(x) 6= y] + αγ ≤ Pr
(x,y)∼DA

[f(x) 6= y] + αγ ,

12
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and |t| = O(σα), θ(w,w0) = O(σα). From Lemma 14, it holds Prx∼Dx [A(x)] = σ, thus

Pr
(x,y)∼D

[h(x) 6= y,A(x)] ≤ Pr
(x,y)∼DA

[f(x) 6= y,A(x)] + αγσ . (12)

To bound Pr(x,y)∼D[h(x) 6= y,R(x)], observe that θ(w0,w
∗) = O(OPT), because Pr(x,y)∼D[h0(x) 6=

f(x)] = θ(w0,w
∗)/π = O(OPT). Thus, with two applications of Lemma 16, we get Pr(x,y)∼D[f(x) 6=

h0(x), R(x)] = O(αOPT) and Pr(x,y)∼D[h(x) 6= h0(x), R(x)] = O(αOPT). Using the triangle
inequality, we get

Pr
(x,y)∼D

[h(x) 6= y,R(x)] ≤ Pr
(x,y)∼D

[f(x) 6= y,R(x)] + Pr
(x,y)∼D

[h(x) 6= h0(x), R(x)]

+ Pr
(x,y)∼D

[f(x) 6= h0(x), R(x)] = Pr
(x,y)∼D

[f(x) 6= y,R(x)] +O(αOPT) . (13)

Substituting Equations (12) and (13) into Equation (11), we get

Pr
(x,y)∼D

[h(x) 6= y] = Pr
(x,y)∼DA

[f(x) 6= y,A(x)] + Pr
(x,y)∼D

[f(x) 6= y,R(x)] +O(αOPT + αγσ)

= OPT +O((α+ γ))OPT = (1 +O(γ))OPT ,

where we used the fact thatα = Θ(γ). Combining the above cases, we obtain that Pr(x,y)∼D[h(x) 6=
y] ≤ (1 + O(γ))OPT + ε. Combining the runtime of the above two steps, we obtain that the total
runtime of our algorithm is dpoly(1/γ)poly(1/ε) log(1/δ).

4.2. Proof of Proposition 15

We first make the x-marginal isotropic by multiplying samples with Σ−1/2 and then use the proper
learning algorithm of Theorem 2 with target accuracy ε = αγ. The sample complexity and
runtime are thus dpoly(1/(αγ)). From the guarantee of Theorem 2, we immediately obtain that
Pr(x,y)∼DA [h(x) 6= y] ≤ minh̄∈C Pr(x,y)∼DA [h̄(x) 6= y]+αγ/3. It now remains to bound the bias
t and the angle θ(w,w0) of the returned halfspace h(x) = sign(w·x+t). Using our assumption for
the misclassification error of w0 with respect to DA, we obtain that minh̄∈C Pr(x,y)∼DA [sign(w0 ·
x) 6= y] ≤ Pr(x,y)∼DA [sign(w0 · x) 6= y] ≤ α. From the triangle inequality, we obtain that
Pr(x,y)∼DA [h(x) 6= sign(w0 ·x)] ≤ Pr(x,y)∼DA [h(x) 6= y]+Pr(x,y)∼DA [sign(w0 ·x) 6= y] ≤ α .
Therefore, we have

Pr
(x,y)∼DA

[h(x) 6= sign(w0 · x)] = Pr
x∼N (0,I)

[h(Σ1/2x) 6= sign((Σ1/2w0) · x)] .

If the halfspace h(x) = sign(w · x + t) has zero bias, i.e., t = 0, we have that by the spherical
symmetry of the Gaussian distribution it holds Prx∼N (0,I)[h(Σ1/2x) 6= sign((Σ1/2w0) · x)] =

θ(Σ1/2w,Σ1/2w0)/π. Unfortunately, the same is not true when one of the halfspaces has non-zero
bias. However, we can prove that the angle θ(Σ1/2w,Σ1/2w0)/π is still a lower bound on the
probability of disagreement, i.e., Prx∼N (0,I)[h(Σ1/2x) 6= sign((Σ1/2w0) · x)].

Formally, we prove the following claim showing that when one of the halfspaces is homoge-
neous, the probability mass of the disagreement region is at least a constant multiple of the angle
between the normal vectors. The proof follows from the observation that we can always minimize
the disagreement probability between a homogeneous and an arbitrary halfspace by centering the
Gaussian exactly at their intersection point. We provide the detailed proof in Appendix C.

13
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Claim 17 For v,u ∈ Rd, t ∈ R define the halfspaces h0(x) = sign(u ·x), h1(x) = sign(v ·x+t).
It holds Prx∼N (0,I)[h1(x) 6= h0(x)] ≥ θ(u,v)/π.

Using Claim 17 and the fact that Pr(x,y)∼DA [h(x) 6= sign(w0 · x)] ≤ α that we showed above,
we have that θ(Σ1/2w,Σ1/2w0) ≤ πα. We have

cos(θ(Σ1/2w,Σ1/2w0)) =
w · (Σw0)√

w · (Σw)
√

w0 · (Σw0)
=

σ w ·w0√
1− (1− σ2)(w ·w0)2

.

Since θ(Σ1/2w,Σ1/2w0) ≤ πα and cosine is a decreasing function in [0, π], we obtain that σ w ·
w0 ≥ cos(πα)

√
1− (1− σ2)(w ·w0)2 . Solving this quadratic inequality with respect to w ·w0,

we obtain

w ·w0 ≥
√

1

1 + σ2( 1
cos2(πα)

− 1)
=

√
1

1 + σ2 tan2(πα)
. (14)

Using the inequality cos−1(
√

1/(1 + x)) ≤
√
x that holds for every x ≥ 0, we obtain that the

angle θ(w,w0) ≤ σ tan(πα). Using the elementary inequality tan(πx) ≤ 4x that holds for all
x ∈ [0, 1/4], we can further simplify the bound for the angle to θ(w,w0) ≤ 4σα = O(σα).

We next bound the bias of the returned halfspace h. Now that we know that the angle between
the vectors w0,w is small, we can use the following lower bound on the disagreement between two
halfspaces to get that the bias cannot be too large. We provide the proof of the following claim in
Appendix C.

Claim 18 Let h1(x) = sign(u · x + t1), h2(x) = sign(v · x + t2) be two halfspaces. Let r1 =
t1/
∥∥uΣ1/2

∥∥
2
, r2 = t2/

∥∥vΣ1/2
∥∥

2
. It holds Prx∼N (0,Σ)[h1(x) 6= h2(x)] ≥ Prr∼N (0,1)[min(r1, r2) ≤

r ≤ max(r1, r2)] .

From Claim 18 and the fact that Pr(x,y)∼DA [h(x) 6= sign(w0·x)] ≤ α, we obtain that Prr∼N (0,1)[0 ≤
r ≤ |t1|/

∥∥wΣ1/2
∥∥

2
] ≤ α. Using the anti-anti-concentration property of the univariate Gaussian

distribution, i.e., that Prr∼N (0,1)[0 ≤ r ≤ t] ≥ min(t/2, 2/3) and the fact that α ≤ 1/4, we obtain
that |t1|/

∥∥wΣ1/2
∥∥

2
≤ α. From Equation (14), we obtain that

∥∥∥wΣ1/2
∥∥∥

2
=
√

1− (1− σ2)(w ·w0)2 ≤

√
σ2

1 + tan2(πa)

1 + σ2 tan2(πα)
≤ 2σ ,

using the fact that σ < 1 and α < 1/4. Therefore, we conclude that |t1| ≤ 2σα = O(σα). This
concludes the proof of Proposition 15.
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Appendix A. Hermite Polynomials

We are also going to use the Hermite polynomials that form an orthonormal system with respect
to the Gaussian measure. We denote by L2(Rd,N (0, I)) the vector space of all functions f :
Rd → R such that Ex∼N (0,I)[f

2(x)] < ∞. The standard inner product for this space is f · g :=
Ex∼N (0,I)[f(x)g(x)]. While usually one considers the probabilists’ or physicists’ Hermite poly-
nomials, in this work we define the normalized Hermite polynomial of degree i to be H0(x) =

1, H1(x) = x,H2(x) = x2−1√
2
, . . . ,Hi(x) = Hei(x)√

i!
, . . . where by Hei(x) we denote the proba-

bilists’ Hermite polynomial of degree i. These normalized Hermite polynomials form a complete
orthonormal basis for the single-dimensional version of the inner product space defined above.
To get an orthonormal basis for L2(Rd,N (0, I)), we use a multi-index α ∈ Nd to define the d-
variate normalized Hermite polynomial as Hα(x) =

∏d
i=1Hαi(xi). The total degree of Hα is

|α| :=
∑

i αi. Given a function f ∈ L2(Rd,N (0, I)), we compute its Hermite coefficients as
f̂(α) = Ex∼N (0,I)[f(x)Hα(x)] and express it uniquely as

∑
α∈Nd f̂(α)Hα(x). For more details

on the Gaussian space and Hermite analysis, we refer the reader to O’Donnell (2014). Most of
the facts about Hermite polynomials that we use in this work are well-known properties and can
be found, for example, in Szegö (1967). We are going to use the following simple fact about the
gradient of Hermite polynomials; for a proof see, for example, Lemma 6 of Kontonis et al. (2019).

Fact 19 LetP (x) =
∑

α∈Nd
|α|≤k

cαHα(x) be a k-degree Hermite polynomial. It holds Ex∼N (0,I)[(∇P (x)·

ei)
2] =

∑
α∈Nd
|α|≤k

αic
2
α .

Appendix B. Omitted Proofs from Section 3

B.1. Details of proof of Proposition 5

We restate and prove the following claim:

Claim 20 It suffices to show that there exists a polynomialQ(x) of degree at most k with Ex∼Dx [Q2(x)] ≤
9 that (ε/4)-correlates with (y − P (x)), i.e., E(x,y)∼D[Q(x)(y − P (x))] ≥ ε/4.
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Proof Given such a polynomial Q(x), we consider the polynomial P ′′(x) = P (x) + ζQ(x), for
ζ = c ε and c a sufficiently small constant. Observe that P ′′(x) has degree at most k and decreases
the value of E(x,y)∼D[(y−P (x))2] by at least Ω(ε2), which contradicts the optimality of P (x), i.e.,
that P (x) is O(ε3)-close to the polynomial that minimizes the L2-error with y.

B.2. Proof of Theorem 2

We require the following standard fact showing the existence of a small ε-cover Ṽ of the set V , i.e.,
a set Ṽ such that for any v ∈ V there exists ṽ ∈ Ṽ such that ‖v − ṽ‖2 ≤ ε.

Fact 21 (see, e.g., Corollary 4.2.13 of Vershynin (2018)) For any ε > 0, there exists an explicit
ε-cover of the unit ball in Rk, with respect to the `2-norm, of size O(1/ε)k.

In order to create an effective discretization of the hypotheses, we need the following fact.

Fact 22 Let D be a distribution on Rd × {±1} whose x-marginal is N (0, I). Let u,v ∈ Rd be
unit vectors and t1, t2 ∈ R. Then the following holds:

1. Ex∼Dx [|sign(u · x + t1)− sign(v · x + t1)|] = O(‖u− v‖2),

2. Ex∼Dx [|sign(u · x + t1)− sign(u · x + t2)|] = O(|t1 − t2|) and,

3. if |t| > log(1/ε) then, for any unit vector v ∈ Rd, Ex∼Dx [|sign(v ·x+ t)− sign(t)|] = O(ε).

Proof The first statement is proved in Diakonikolas et al. (2018) (Lemma 4.2). For the second
statement, assuming without loss of generality that t2 ≥ t1 > 0, we note that

E
x∼Dx

[|sign(u · x + t1)− sign(u · x + t2)|] =
2√
2π

∫ t2

t1

e−t
2/2dt = Pr

t∼N (0,1)
[t1 ≤ t ≤ t2] .

Using the anti-concentration property of the one-dimensional Gaussian distribution, we have that
Prt∼N (0,1)[t1 ≤ t ≤ t2] ≤ O(t2 − t1), proving the claim.

For the third statement, note that if t > Ω(
√

log(1/ε)), then by the concentration properties of
the Gaussian, we have that:

E
x∼Dx

[|sign(v · x + t)− sign(t)|] ≤ Pr
x∼Dx

[|v · x| ≥ |t|] = O(ε) .

This completes the proof of Fact 22.

Proof [Proof of Theorem 2] We first show that there is a set H of size (1/ε)O(1/ε6) which contains
tuples (u, t) with u ∈ Rd and t ∈ R, such that

Pr
(x,y)∼D

[sign(u · x + t) 6= y] ≤ inf
f∈C

Pr
(x,y)∼D

[f(x) 6= y] + ε .

First note we can assume that 1/ε6 ≤ d, since otherwise one can directly do a brute-force search
over an ε-cover of the d-dimensional unit ball: we do not need to perform our dimension-reduction
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process. The runtime to perform this brute-force search will be (1/ε)O(d) log(1/δ) which, by the
assumption that 1/ε6 > d, is smaller than (1/ε)O(1/ε6) log(1/δ).

Let f ∈ C be such that the E(x,y)∼D[f(x)y] is maximized and let k = O(1/ε4). By an ap-
plication of Lemma 7 for N = (d/ε)O(1/ε4)poly(1/ε) log(1/δ) = dO(1/ε4)poly(1/ε) log(1/δ), it
follows that there exists a degree O(1/ε4) polynomial P (x) such that

E
x∼D

[(y − P (x))2] ≤ min
P ′∈Pk

E
x∼D

[(y − P ′(x))2] +O(ε3) ,

with probability 1− δ/2. Applying Proposition 5 to the polynomial P (x), we get that the subspace
V spanned by the eigenvectors of the matrix M = Ex∼Dx [∇P (x)∇P (x)>] with eigenvalues larger
than η = Θ(1/ε2) contains a vector v ∈ V , such that

min
t∈R

E
(x,y)∼D

[(f(x)− sign(v · x + t))y] ≤ ε . (15)

Moreover, by Lemma 6, the dimension of V is O(1/ε6). Applying Fact 21, we get that there
exists an ε-cover Ṽ of the set V with respect the `2-norm of size (1/ε)O(1/ε6). We show that
there is an effective way to discretize the set of biases. From Fact 22, it is clear that the set T =
{±ε,±2ε, . . . ,±O(

√
log(1/ε))} is an effective cover of the parameter t.

It remains to show that the set H is an effective cover, where H = Ṽ × T . We show that there
exists a set of parameters (ṽ, t̃) ∈ H which define a halfspace that correlates with the labels as well
as the function f . Fix the parameters (v, t) which minimize the Equation (15). Indeed, we have

E
(x,y)∼D

[(f(x)− sign(ṽ · x + t̃))y]

= E
(x,y)∼D

[(f(x)− sign(v · x + t))y] + E
(x,y)∼D

[(sign(v · x + t)− sign(ṽ · x + t̃))y] .

(16)

We claim that there exists (ṽ, t̃) ∈ H such that

E
(x,y)∼D

[(sign(v · x + t)− sign(ṽ · x + t̃))y] = O(ε) .

If |t| >
√

log(1/ε), then from Fact 22, the constant hypothesis gets O(ε) error, so we need to check
the case |t| ≤

√
log(1/ε). Applying Fact 22, we get that

min
(ṽ,t̃)∈H

E
(x,y)∼D

[|sign(v ·x + t)− sign(ṽ ·x + t̃)|] = min
(ṽ,t̃)∈H

O(‖v− ṽ‖2 + |t− t̃|) = O(ε) . (17)

Thus, substituting Equation (17) to Equation (16), we get

min
(ṽ,t̃)∈H

E
(x,y)∼D

[(f(x)− sign(ṽ · x + t̃))y] ≤ E
(x,y)∼D

[(f(x)− sign(v · x + t))y] +O(ε) = O(ε) ,

(18)

where in the last equality we used Equation (15). Using the fact that for a boolean function g(x) it
holds E(x,y)∼D[g(x)y] = 1− 2 Pr(x,y)∼D[g(x) 6= y], we get

min
(ṽ,t̃)∈H

Pr
(x,y)∼D

[sign(ũ · x + t̃) 6= y] ≤ inf
f∈C

Pr
(x,y)∼D

[f(x) 6= y] +O(ε) .
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To complete the proof, we show that Step 10 of Algorithm 1 outputs a hypothesis close to the
minimizer inside H. From Hoeffding’s inequality, it follows that O( 1

ε2
log(H/δ)) samples are suf-

ficient to guarantee that the excess error of the chosen hypothesis is at most ε with probability at
least 1 − δ/2. To bound the runtime of the algorithm, we note that L2-regression has runtime
dO(1/ε4)poly(1/ε) log(1/δ) and exhaustive search over an ε-cover takes time (1/ε)O(1/ε6) log(1/δ).
Thus, the total runtime of our algorithm in the case where 1/ε6 ≤ d is(

dO(1/ε4) + (1/ε)O(1/ε6)
)

log(1/δ) .

This completes the proof of Theorem 2.

B.3. Proof of Lemma 7

We restate and prove the following lemma:

Lemma 23 (`2-Polynomial Regression) Let D be a distribution on Rd ×{±1} whose x-marginal
is N (0, I). Let k ∈ Z+ and ε, δ > 0. There is an algorithm that draws N = (dk)O(k) log(1/δ)/ε2

samples from D, runs in time poly(N, d), and outputs a polynomial P (x) of degree at most k such
that Ex∼D[(f(x)− P (x))2] ≤ minP ′∈Pk Ex∼D[(f(x)− P ′(x))2] + ε, with probability 1− δ.

Proof Let S denote the empirical distribution of D with N = (d/ε)O(k) samples. Recall that for
any such P (x), it holds that Ex∼D[P 2(x)] ≤ 5 (see Lemma 6). Writing P (x) in the Hermite
basis, P (x) =

∑
α∈Nd cαHα(x), it holds that

∑
α∈Nd c

2
α = Ex∼D[P 2(x)]. The one-dimensional

Hermite polynomials of k-degree are Hk(z) =
∑bk/2c

m=0
(−1)mzk−2m

m!(n−2m)!2m . Thus, each monomial has
coefficient absolute bounded by 2k. Therefore, the maximum coefficient of a multidimensional
Hermite polynomial Ha(x) is 2|a|, thus the maximum coefficient of the polynomial P (x) is O(2k).
Let us now prove that for any degree-k polynomial P (x) with coefficients bounded by C = 2O(k),
we have ∣∣∣∣ E

(x,y)∼S
[P (x)y]− E

(x,y)∼D
[P (x)y]

∣∣∣∣ ≤ ε ,
with high constant probability. Write P (x) =

∑
aimi(x), where the summation ranges over all

monomials mi with degree less than k along with their coefficients ai. We have∣∣∣∣ E
(x,y)∼S

[P (x)y]− E
(x,y)∼D

[P (x)y]

∣∣∣∣ ≤∑ |ai|
∣∣∣∣ E
(x,y)∼S

[mi(x)y]− E
(x,y)∼D

[mi(x)y]

∣∣∣∣ . (19)

Using Markov’s inequality, we have

Pr

[∣∣∣∣ E
(x,y)∼S

[mi(x)y]− E
(x,y)∼D

[mi(x)y]

∣∣∣∣ ≥ ε/(dkC)

]
≤ C2d2k

Nε2
Var[mi(x)y]

≤ C2d2k

Nε2
E

(x,y)∼D
[m2

i (x)y2]

≤ C2d2k

Nε2
E

(x,y)∼D
[‖x‖2i2 ] = O

(
C2iid2k

Nε2

)
.
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By using the fact that N = (d k)O(k)/ε2 and applying above to the Equation (19), we have∣∣∣∣ E
(x,y)∼S

[P (x)y]− E
(x,y)∼D

[P (x)y]

∣∣∣∣ ≤ C∑∣∣∣∣ E
(x,y)∼S

[mi(x)y]− E
(x,y)∼D

[mi(x)y]

∣∣∣∣ ≤ ε ,
with high probability. Next, we need to bound the difference

∣∣E(x,y)∼S [P 2(x)]−E(x,y)∼D[P 2(x)]
∣∣.

This can be done by applying the same procedure as before and noting that the highest coefficient
is at most C2 and the degree is 2k. Thus, for any k-degree polynomial P with high probability, we
have ∣∣∣∣ E

(x,y)∼S
[(P (x)− y)2]− E

(x,y)∼D
[(P (x)− y)2]

∣∣∣∣ ≤ ε , (20)

where we used the fact that E(x,y)∼S [y2] = E(x,y)∼D[y2]. By solving a convex program, we can
find a polynomial P such that

E
(x,y)∼S

[(y − P (x))2] ≤ min
P ′∈Pk

E
(x,y)∼S

[(y − P ′(x))2] + ε ,

Note that if P ′′(x) = argminP ′∈Pk E(x,y)∼D[(y − P ′(x))2], then

min
P ′∈Pk

E
(x,y)∼S

[(y − P ′(x))2] ≤ E
(x,y)∼S

[(y − P ′′(x))2] ≤ E
(x,y)∼D

[(y − P ′′(x))2] ,

where we used Equation (20). Thus, we have proved that

E
(x,y)∼D

[(y − P (x))2] ≤ min
P ′∈Pk

E
(x,y)∼D

[(y − P ′(x))2] + ε ,

with high constant probability. Using basic boosting procedures (see, e.g., exercise 1, chapter 13
of Shalev-Shwartz and Ben-David (2014)), we can boost the probability of success to 1 − δ, with
N ′ = N log(1/δ) = (dk)O(k) log(1/δ)/ε2.

Appendix C. Omitted Proofs from Section 4

We restate and prove the following claims.

Claim 24 For vectors v,u ∈ Rd, t ∈ R define the halfspaces h0(x) = sign(u · x), h1(x) =
sign(v · x + t). It holds Prx∼N (0,I)[h1(x) 6= h0(x)] ≥ θ(u,v)/π.

Proof Denote θ = θ(u,v) and first assume that θ ∈ [0, π/2). Since the Gaussian distribution is
invariant under rotations, for simplicity we may assume that u,v span R2. Morover, assume that
two halfspaces intersect at the origin (0, 0) (if they do not intersect then the claimed lower bound
on the disagreement Prx∼N (0,I)[h1(x) 6= h0(x)] is trivially true as their angle is 0). Moreover,
assume that u = e1 and that the Gaussian is centered at some point (z, 0), i.e., a point that lies on
the x1-axis. This follows from the fact that h0(x) = sign(u · x) is homogeneous. After we change
coordinates, the halfspace h1 is also homogeneous, with normal vector v = (− sin θ, cos θ). We
will show that the disagreement between the two halfspaces is minimized where z = 0, i.e., when
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the Gaussian is centered on the intersection point of the two halfspaces. Using the above, we obtain
that

Pr
x∼N (0,I)

[h1(x) 6= h0(x)]

=

∫ 0

−∞

∫ 0

x1 tan θ
e−((x1−z)2/2−x2

2/2dx2dx1 +

∫ ∞
0

∫ x1 tan θ

0
e−((x1−z)2/2−x2

2/2dx2dx1 := q(z)

We will show that the function q is minimized for z = 0. Taking the derivative with respect to z,
we obtain

q′(z) =

∫ 0

−∞

∫ 0

x1 tan θ
(x1−z)e−((x1−z)2/2−x2

2/2dx2dx1+

∫ ∞
0

∫ x1 tan θ

0
(x1−z)e−((x1−z)2/2−x2

2/2dx2dx1 .

Observe that q′(−z) = −q′(z), i.e, q′(z) is an odd function with q′(0) = 0. Thus, it can only be
minimized at 0. We have that q′′(0) > 0 and therefore z = 0 is the global minimizer of q(z). The
case θ ∈ [π/2, π] can be shown similarly.

Claim 25 Let h1(x) = sign(u · x + t1), h2(x) = sign(v · x + t2) be two halfspaces. Let r1 =
t1/
∥∥uΣ1/2

∥∥
2
, r2 = t2/

∥∥vΣ1/2
∥∥

2
. It holds

Pr
x∼N (0,Σ)

[h1(x) 6= h2(x)] ≥ Pr
r∼N (0,1)

[min(r1, r2) ≤ r ≤ max(r1, r2)] .

Proof We first observe that

Pr
x∼N (0,Σ)

[h1(x) 6= h2(x)] = Pr
x∼N (0,I)

[h1(Σx) 6= h2(Σx)]

≥
∣∣∣∣ Pr
x∼N (0,I)

[h1(Σx) 6= 0]− Pr
x∼N (0,I)

[h2(Σx) 6= 0]

∣∣∣∣ ,
where in the last step we used triangle inequality. Moreover, using that Prx∼N (0,I)[h1(Σx) 6= 0] =
Ex∼N (0,I)[h1(Σx)], we have

Pr
x∼N (0,Σ)

[h1(x) 6= h2(x)] ≥
∣∣∣∣ E
x∼N (0,I)

[h1(Σx)]− E
x∼N (0,I)

[h2(Σx)]

∣∣∣∣ .
Note that h1(Σx) = sign(u ·Σx/

∥∥uΣ1/2
∥∥

2
+ r1) and h2(Σx) = sign(v ·Σx/

∥∥vΣ1/2
∥∥

2
+ r2),

thus

Pr
x∼N (0,Σ)

[h1(x) 6= h2(x)] ≥
∣∣∣∣ E
x∼N (0,I)

[h1(Σx)]− E
x∼N (0,I)

[h2(Σx)]

∣∣∣∣
=

∣∣∣∣ Pr
r∼N (0,1)

[r ≤ r1]− Pr
r∼N (0,1)

[r ≤ r2]

∣∣∣∣ ,
which completes the proof.
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w w0

B θ

Figure 1: Localization technique, Lemma 16

C.1. Proof of Lemma 16

We restate and prove the following lemma.

Lemma 26 (Gaussian Localization) Let R(x) be the event that the sample x is rejected from the
rejection sampling procedure of Lemma 14 with vector w0 and σ = Θ

(
OPT
α

)
. Let h(x) = sign(w0·

x), h′(x) = sign(w · x + t) be halfspaces with t = O(σα) and θ(w0,w) = O(σα). Then,
Prx∼Dx [h(x) 6= h′(x), R(x)] = O(αOPT).

Proof Let θ = θ(w0,w) and fix r = Θ(1/α1/3) max(1, t/ sin θ). We defineB = r sin θ(
√

1− t2/r2−
t/r cos θ

sin θ ). Observe that in order for B > 0 we need r ≥ t/ sin θ, which is true by our assumptions.
Also note that B = Θ(r sin θ). We have that

Pr
x∼Dx

[h(x) 6= h′(x), R(x)] =

Pr
x∼Dx

[h(x) 6= h′(x), |w0 · x| ≥ B,R(x)] + Pr
x∼Dx

[h(x) 6= h′(x), |w0 · x| < B,R(x)] .

We first bound from above the term Prx∼Dx [h(x) 6= h′(x), |w0 · x| < B,R(x)]. It holds that

Pr
x∼Dx

[h(x) 6= h′(x), |w0 · x| < B,R(x)] ≤ Pr
x∼Dx

[|w0 · x| < B,R(x)]

= erf(B/
√

2)− σ erf(B/(σ
√

2))

= O(B3/σ2) = O(αOPT) , (21)

where erf is the error function and in the last equality we used the error of the Taylor expansion of
degree-2. In order to bound the second term, we define V to be the subspace spanned by the vectors
w0,w. Let x′, x′′ be the solutions of the system of equations {w ·x+ t = 0, ‖xV ‖2 = r2}; observe
that min(|x′ ·w0|, |x′′ ·w0|) = B, thus, if ‖xV ‖2 ≤ r and |w0 · x| ≥ B, then h(x) = h′(x) (see
Figure 1), thus

Pr
x∼Dx

[h(x) 6= h′(x), |w0 · x| ≥ B,R(x)] ≤ Pr
x∼Dx

[h(x) 6= h′(x), |w0 · x| ≥ B,R(x)]

≤ Cθe−r = O(αOPT) . (22)

Combining Equations (21), (22), we get Prx∼Dx [h(x) 6= h′(x), R(x)] = O(αOPT).
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Appendix D. Agnostic Proper Learning of ReLus

In this section, we use our techniques to develop a proper agnostic learning algorithm that handles
ReLU activations. We work in the standard L2-regression setting, i.e., we want to find a weight
vector w such that

E
(x,y)∼D

[(y −max(0,w · x))2] ≤ min
f∈Cρ

E
(x,y)∼D

[(y − f(x))2] + ε ,

where by Cρ we denote the class of ReLU activations, i.e., Cρ = {x 7→ max(0,w ·x + t) : ‖w‖2 ≤
1,w ∈ Rd, t ∈ Rd}. Moreover, we are going to use Cρ0 = {x 7→ max(0,w · x) : ‖w‖2 ≤
1,w ∈ Rd} and ρ(x) to denote the ReLU activation function. Finally, observe that for w ∈ Rd
with ‖w‖2 ≤ 1 it holds max(0,w · x) = ‖w‖2 max(0,w · x/ ‖w‖2). To keep the presentation
simple we are going to assume, similarly to Diakonikolas et al. (2020a) that the observed labels y
are bounded in [−1, 1]. For the rest of the section, we assume that for the labels y, it holds |y| < 1.

The pseudocode of our algorithm is given in Algorithm 3.

Algorithm 3 Agnostic Proper Algorithm for ReLU Regression
1: procedure AGNOSTIC-LEARNER(ε, δ,D)
2: Input: ε > 0, δ > 0 and distribution D
3: Output: A hypothesis h ∈ C such as E(x,y)∼D[(h(x) − y)2] ≤ minf∈Cρ E(x,y)∼D[(f(x) −
y)2] + ε with probability 1− δ.

4:

5: k ← C/ε4/3, η ← ε2/C.
6: Find P (x) such E(x,y)∼D[(y − P (x))2] ≤ minP ′∈Pk E(x,y)∼D[(y − P ′(x))2] +O(ε3).
7: Let M = Ex∼Dx [∇P (x)∇P (x)>].
8: Let V be the subspace spanned by the eigenvectors of M whose eigenvalues are at least η.
9: Construct an ε-coverH of hypotheses with normal vectors in V . see Fact 21.

10: Draw Θ( 1
ε2

log(|H|/δ)) i.i.d. samples from D and construct the empirical distribution D̂.
11: h← argminh′∈HE

(x,y)∼D̂[(h′(x)− y)2]

12: return h.

Theorem 27 Let D be a distribution on Rd × R whose x-marginal is N (0, I). Algorithm 3 draws
N = dO(1/ε4/3)poly(1/ε) log(1/δ) samples fromD, runs in time (dO(1/ε4/3)+(1/ε)O(1/ε10/3)) log(1/δ),
and computes a hypothesis h ∈ Cρ such that, with probability at least 1− δ, we have that

E
(x,y)∼D

[(y − h(x))2] ≤ min
f∈Cρ0

E
(x,y)∼D

[(y − f(x))2] + ε .

The main structural result of this section is the following proposition showing that we can per-
form dimension reduction by looking at high-influence directions of a low-degree polynomial.

Proposition 28 Let C be a sufficiently large constant, fix ε > 0, k = C/ε4/3. Let P (x) ∈ Pk be a
polynomial such that

E
(x,y)∼D

[(y − P (x))2] ≤ min
P ′∈Pk

E
(x,y)∼D

[(y − P ′(x))2] +O(ε3) .
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Moreover, let M = Ex∼Dx [∇P (x)∇P (x)>] and V be the subspace spanned by the eigenvectors
of M with eigenvalues larger than η, where η = ε2/C. Then, for any function f ∈ Cρ0 , it holds

min
v∈V,‖v‖2≤1,t∈R

E
(x,y)∼D

[(ρ(v · x + t)− y)2] ≤ E
(x,y)∼D

[(f(x)− y)2] + ε .

The proof of Proposition 28 is similar to the proof of Proposition 5. We provide the details below
for completeness.
Proof Suppose for the sake of contradiction that there exists a hypothesis f ∈ Cρ0 such that for
every hypothesis f ′ ∈ CρV , it holds

min
v∈V,‖v‖2≤1,t∈R

E
(x,y)∼D

[(ρ(v · x + t)− y)2] > E
(x,y)∼D

[(f(x)− y)2] + ε . (23)

Equivalently, from the above equation, we have that for every v ∈ V with ‖v‖2 ≤ 1 and t ∈ R:

2 E
(x,y)∼D

[(f(x)− ρ(v · x + t))y] > ε+ E
x∼Dx

[f2(x)]− E
x∼Dx

[ρ2(v · x + t)] . (24)

Claim 29 It suffices to show that there exists some polynomial Q(x) of degree at most k, with
Ex∼Dx [Q2(x)] ≤ 4, that (ε/4)-correlates with (y − P (x)), i.e.,

E
(x,y)∼D

[Q(x)(y − P (x))] ≥ ε/4 .

Proof We have that the polynomial P (x)+ζQ(x), for ζ = Θ(ε), has degree at most k and decreases
the value of E(x,y)∼D[(y−P (x))2] by at least Ω(ε2), which contradicts the optimality of P (x), i.e.,
that P (x), O(ε3)-close to the polynomial that minimizes the L2 error with y.

We now construct such a polynomial Q(x). We have f(x) = ρ(w ·x) = ρ(wV ·x + wV ⊥ ·x),
for some 0 < a ≤ 1. It holds that wV ⊥ 6= 0 since otherwise we would have that f ∈ CρV . For
simplicity, we denote ξ = wV ⊥/ ‖wV ⊥‖2. Notice that the direction ξ is of low influence since
ξ ∈ V ⊥. Recall, that by Dξ we denote the projection of D onto the (one-dimensional) subspace
spanned by ξ. We define fV (x) = Ez∼Dξ [f(z + xV )]: a convex combination of hypotheses in CρV .
In particular, fV (x) is a smoothed version of the hypothesis ρ(wV · x + t), whose normal vector
belongs in V . We first observe that by (24) fV (x) cannot correlate too well with y:

2 E
(x,y)∼D

[(f(x)− fV (x))y] = 2 E
z∼Dξ

[ E
(x,y)∼D

[(f(x)− ρ(w · xV + w · z))y]]

≥ ε+ E
x∼Dx

[f2(x)]− E
z∼Dξ

[ E
x∼Dx

[ρ2(w · xV + w · z)]] = ε , (25)

where the last equality follows by the fact that

E
x∼Dx

[f2(x)] = E
u∼D

ξ⊥

[
E

z∼Dξ
[f2(u+z)]

]
= E

z∼Dξ

[
E

u∼D
ξ⊥

[ρ2(u·wV +w·z)]
]

= E
z∼Dξ

[
E

u∼Dx

[ρ2(uV ·w+w·z)]
]
.

Our argument consists two main claims. We first show that the function f(x) − fV (x) correlates
non-trivially with y−P (x). Then we show that we can approximate f(x)− fV (x) by a low degree
polynomial Q(x) that maintains non-trivial correlation with y − P (x), see Claim 31. We start by
proving the first claim.
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Claim 30 It holds

E
x∼Dx

[(f(x)− fV (x))(y − P (x))] ≥ ε/2−
√

2η .

Proof We have fV (x) = Ez∼Dξ [f(z+xξ⊥)] = Ez∼Dξ [ρ(wV ·xV +w·z)] and, since fV is a convex
combination of hypothesis in CρV , from Equation (23), we see that E(x,y)∼D[(f(x)− fV (x))y] ≥ ε.
Thus, we have

E
(x,y)∼D

[(f(x)− fV (x))(y − P (x))] = E
(x,y)∼D

[(f(x)− fV (x))y]− E
x∼Dx

[(f(x)− fV (x))P (x)]

≥ ε/2− E
x∼Dx

[(f(x)− fV (x))P (x)] . (26)

To deal with Ex∼Dx [(f(x) − fV (x))P (x)], we first observe that for any function g(x) depending
only on the projection of x onto the subspace ξ⊥, i.e., it holds g(x) = g(xξ⊥), we have

E
x∼Dx

[(f(x)− fV (x))g(x)] = E
v∼D

ξ⊥

[
E

z∼Dξ
[f(v + z)− fV (v)] g(v)

]
= 0 ,

since for every x ∈ Rd, it holds fV (x) = Ez∼Dξ [f(xξ⊥+z)] = Ez∼Dξ [f(xV +z)]. Unfortunately,
this is not true since P (x) is not only a function of xξ⊥ . However, since V contains the high
influence eigenvectors it holds that P is almost a function of xξ⊥ . In fact, we show that we can
replace the polynomial P by a different polynomial of degree at most k that only depends on the
projection of x on ξ⊥. Similarly to the definition of the “smoothed” hypothesis fV , we define
R(x) = Ez∼Dξ [P (xξ⊥ + z)]. We first prove that R(x) is close to P (x) in the L2 sense.

Now, adding and subtracting R(x) = Ez∼Dξ [P (xξ⊥ + z)], we get

E
x∼Dx

[(f(x)− fV (x))P (x)] = E
x∼Dx

[(f(x)− fV (x))(P (x)−R(xξ⊥))] + E
x∼Dx

[(f(x)− fV (x))R(xξ⊥)] .

The second term equals to zero, from the fact that Ez∼Dξ [f(z + xξ⊥) − fV (xξ⊥)] = 0. Using
Cauchy-Schwarz inequality, we get

E
x∼Dx

[(f(x)− fV (x))(P (x)−R(xξ⊥))] ≤
√

E
x∼Dx

[(f(x)− fV (x))2] E
x∼Dx

[(P (x)−R(xξ⊥))2]

≤
√

2
√

E
x∼Dx

[(P (x)−R(xξ⊥))2] ≤
√

2η , (27)

where we used Claim 10. Using Equation (26), we get that

E
(x,y)∼D

[(f(x)− fV (x))(y − P (x))] ≥ ε/2−
√

2η ,

which completes the proof of Claim 30.

Claim 31 There exists a polynomialQ(x) of degreeO(1/ε4/3) such that Ex∼Dx [Q(x)(y−P (x))] ≥
ε/4−

√
2η and Ex∼Dx [Q2(x)] ≤ 4.
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Proof For any polynomial Q(x), we have

E
x∼Dx

[Q(x)(y − P (x))] = E
x∼Dx

[(Q(x) + (f(x)− fV (x))− (f(x)− fV (x)))(y − P (x))]

≥ ε/2− 2
√
η + E

x∼Dx

[(Q(x)− (f(x)− fV (x)))(y − P (x))] , (28)

where we used Claim 30. By choosing Q(x) = S(x) − Ez∼Dξ [S(xξ⊥ + ξ)], where we denote by
S(x) the Hermite expansion of f truncated up to degree k, S(x) =

∑
|α|≤k f̂(α)Hα(x), we show

that
E

x∼Dx

[(f(x)− fV (x)−Q(x))2] ≤ ε2 .

We need the following fact:

Fact 32 (Goel et al. (2020)) Let f ∈ Cρ0 , and let S be the Hermite expansion up to k-degree of f ,
i.e., S(x) =

∑
|α|≤k f̂(α)Hα(x). Then Ex∼N (0,I)[(S(x)− f(x))2] = O(k−3/2).

Using the inequality (a+ b)2 ≤ 2a2 + 2b2, we get that

E
x∼Dx

[(f(x)− fV (x)−Q(x))2] ≤ 2 E
x∼Dx

[(f(x)− S(x))2] + 2 E
x∼Dx

[(fV (x)− E
z∼Dξ

[S(xξ⊥)])2] .

Moreover, from Jensen’s inequality, it holds that

E
x∼Dx

[(fV (x)− E
z∼Dξ

[S(xξ⊥ + ξ)])2] ≤ E
x∼Dx

[(f(x)− S(x))2] = O
(
k−3/2

)
,

where in the last equality we used the Fact 32. Choose k = Θ(1/ε4/3). Applying Cauchy-Schwartz
to the Equation (28), we get

E
(x,y)∼D

[Q(x)(y − P (x))] ≥ ε/2−
√

2η −
√

E
x∼Dx

[(Q(x)− (f(x)− fV (x)))2] E
(x,y)∼D

[(y − P (x))2]

≥ ε/4−
√

2η ,

where we used the fact that E(x,y)∼D[(y − P (x))2] ≤ 2. Note that from the reverse triangle
inequality it holds that√

E
x∼D

[Q2(x)] ≤
√

E
x∼Dx

[(f(x)− fV (x))2] + ε ≤
√

2 + ε . (29)

Equation (29) gives Ex∼D[Q2(x)] ≤ 4. This completes the proof of Claim 31, which completes the
proof of Claim 31.

By choosing η = Θ(ε2), Claim 31 contradicts our assumption that P (x) is O(ε3)-close to the
polynomial P ′(x) that minimizes the E(x,y)∼D[(y − P ′(x))2]. This completes the proof.

The next lemma bounds the dimension of the subspace spanned by the high-influence directions
of a polynomial that minimizes the L2 error with the labels y.

Before we proceed to the proof of Theorem 27, we need an algorithm that calculates an approx-
imate minimal polynomial for the Proposition 28.
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Lemma 33 (L2-Polynomial Regression) Let D be a distribution on Rd × R whose x-marginal
is the standard normal and whose labels are bounded by 1. Moreover, let k ∈ Z+, and ε, δ > 0.
There is an algorithm that draws N = (dk)O(k) log(1/δ)/ε2 samples, runs in time poly(N, d),
and outputs a polynomial P (x) of degree at most k such that with probability 1 − δ it holds that
E(x,y)∼D[(y − P (x))2] ≤ minP ′∈Pk E(x,y)∼D[(y − P ′(x))2] + ε.

The proof of this lemma is nearly identical to the proof of Lemma 7.
We need the following simple fact for ReLUs. An essentially identical fact was shown in Di-

akonikolas et al. (2020b) Equation (2) for the zero threshold case. We provide the proof here for
completeness.

Fact 34 Let f1(x) = ρ(v · x + T ) and f2(x) = ρ(u · x + T ), for T ∈ R and v,u unit vectors in
Rd. Then E(x,y)∼D[(f1(x)− f2(x))2] = O(‖v − u‖22).

Proof The proof relies on the following fact.

Fact 35 (Correlated Differences, Lemma 6 of Kontonis et al. (2019)) Let r(x) ∈ L2(Rd,N d)
be differentiable almost everywhere and let

Dρ = N
(

0,

(
I ρI
ρI I

))
.

We call ρ-correlated a pair of random variables (x,y) ∼ Dρ. It holds

1

2
E

(x,z)∼Dρ
[(r(x)− r(z))2] ≤ (1− ρ) E

x∼Dx

[
‖∇r(x)‖22

]
.

Using this fact for ρ = v ·u, and using the approximation (1−v ·u) = ‖u− v‖22 the result follows.

We also need the following fact about the biases of ReLUs.

Fact 36 Let f1(x) = ρ(v ·x−T ) and f2(x) = ρ(v ·x−T ′) with T ′ ≥ T . Then E(x,y)∼D[(f1(x)−
f2(x))2] = O((T − T ′)2 + 2T ′(T ′ − T )e−T

2/2).

Proof Without loss of generality, we can assume that v = e1. The result follows by noting that
E(x,y)∼D[(f1(x)− f2(x))2] ≤

∫
x1≥T (f1(x)− f2(x))2φ(x)dx +

∫ T
T ′ f2(x)φ(x)dx.

We can now prove the main theorem of this section.
Proof [Proof of Theorem 27] Let f ∈ Cρ0 such that the E(x,y)∼D[f(x)y] is maximized. Using

Lemma 33 on the labels y, with N = dO(1/ε4/3)poly(1/ε) log(1/δ) samples, we get an k =
O(1/ε4/3)-degree polynomial P (x) and it holds that

E
x∼D

[(y − P (x))2] ≤ min
P ′∈Pk

E
x∼D

[(y − P ′(x))2] + ε3 ,

with probability 1− δ/2. Applying Proposition 28 to the polynomial P (x), we get that subspace V
spanned by the eigenvectors of the matrix M = Ex∼Dx [∇P (x)∇P (x)>] with eigenvalues larger
than η = Ω(1/ε2) contains a vector v ∈ V , so that

min
v∈V,‖v‖2≤1,t∈R

E
(x,y)∼D

[(ρ(v · x + t)− y)2] ≤ E
(x,y)∼D

[(f(x)− y)2] + ε . (30)
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Moreover, from Lemma 6, the dimension of V is O(1/ε)10/3. Thus, applying Fact 21, we
get that there exists a set Ṽ which is an ε-cover of the set V with respect the `2-norm of size
(1/ε)O(1/ε10/3). We will use the set T = {ε/A, 2ε/A, . . . , 1}, where A is a large enough constant,
and show that it is a good cover of the parameter a which is used as the guess of the norm of the
vector v. Finally, we need an effective cover for the biases t. Observe that from Fact 36, we need
step-size s = ε2/

√
log(1/ε) and the maximum negative value is−Θ(

√
log(1/ε)). (If the value was

larger, then the zero function would correlate as well.) We also need to bound the maximum positive
value. We claim that the maximum positive value is some universal constant C ′. This is because
the error scales with the norm of the function that is returned by the algorithm and because we are
trying to be competitive against the unbiased ReLU, the norm of the ReLU that is returned cannot
be more than 2(Ex∼Dx [ρ2(w · x)] + 4 E(x,y)∼D[y2]) ≤ C ′, for some large enough constant C ′.
Thus, the set of biases is T ′ = {−C

√
log(1/ε)A/ε, . . . , 0, s, 2s, . . . , CA/ε′}, where we multiply

with the minimal value of the guess of the norm. This is because if ‖v‖2 = α, then we have that
ρ(v · x + t) = αρ(v · x/ ‖v‖2 + t/α).

We show that the setH is an effective cover, whereH = Ṽ ×T ×T ′. We show that there exist
a set of parameters (ṽ, ã, t̃) ∈ H which define a ReLU that correlates with the labels as well as the
function f . Fix the parameters v, α, t which minimize the Equation (30). Indeed, we have

E
(x,y)∼D

[aρ(v · x + t)− ãρ(ṽ · x + t̃))2]1/2 ≤ a E
(x,y)∼D

[(ρ(v · x + t)− ρ(ṽ · x + t))2]1/2

+ a E
(x,y)∼D

[(ρ(ṽ · x + t̃)− ρ(ṽ · x + t))2]1/2 + E
(x,y)∼D

[ρ(ṽ · x + t̃)2]1/2|(a− ã)| .

(31)

Applying Facts 34 and 36, we get that

E
(x,y)∼D

[aρ(v · x + t)− ãρ(ṽ · x + t̃))2] ≤ O(ε) .

Thus, from the triangle inequality, we get that

E
(x,y)∼D

[(ãρ(ṽ·x+t̃)−y)2] ≤ E
(x,y)∼D

[(ρ(v·x+t)−y)2]+ E
(x,y)∼D

[aρ(v·x+t)−ãρ(ṽ·x+t̃))2] ≤ E
(x,y)∼D

[(f(x)−y)2]+O(ε) .

To complete the proof, it remains to show that Step 11 outputs a hypothesis close to the minimizer
insideH. We need the following claim:

Claim 37 Let h ∈ Cρ and let D̂ be the empirical distribution with N = O((1/ε2) log(1/δ))
samples. Then, with probability 1− δ, it holds

| E
(x,y)∼D̂

[(y − h(x))2]− E
(x,y)∼D

[(y − h(x))2]| ≤ ε .

Proof We need first to prove that with probability 1− δ it holds:

| E
(x,y)∼D̂

[yh(x)]− E
(x,y)∼D

[yh(x)]| ≤ ε .
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Using Markov’s inequality, we have

Pr[| E
(x,y)∼D̂

[h(x)y]− E
(x,y)∼D

[h(x)y]| ≥ ε] ≤ 1

Nε2
Var[h(x)y]

≤ 1

Nε2
E

(x,y)∼D
[h2(x)y2]

≤ O
(

1

Nε2

)
,

where we used the fact that our functions are bounded in L2-norm. With the same procedure we
bound the difference |E

(x,y)∼D̂[h2(x)] − E(x,y)∼D[h2(x)]| ≤ ε. By using the fact that N =

O(1/ε2), we get our result for constant probability. By applying a standard probability amplifi-
cation technique, we can boost the confidence to 1− δ with N ′ = O(N log(1/δ)) samples.

Therefore, from Claim 37, it follows that O( 1
ε2

log(H/δ)) samples are sufficient to guarantee
that the excess error of the chosen hypothesis is at most ε with probability at least 1− δ/2.

To bound the runtime of the algorithm, we note thatL2-regression has runtime dO(1/ε4/3)poly(1/ε) log(1/δ)

and the exhaustive search over an ε-cover takes time (1/ε)O(1/ε10/3) log(1/δ) time. The total run-
time of our algorithm in the case where 1/ε10/3 ≤ d is(

dO(1/ε4/3) + (1/ε)O(1/ε10/3)
)

log(1/δ) .

In the case where 1/ε10/3 > d, one can directly do a brute-force search over an ε-cover of the d-
dimensional unit ball: we do not need to perform our dimension-reduction process and the runtime
is bounded above by the previous case.
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