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Abstract
We study the problem of agnostic learning under the Gaussian distribution in the Statistical Query
(SQ) model. We develop a method for finding hard families of examples for a wide range of concept
classes by using LP duality. For Boolean-valued concept classes, we show that the L1-polynomial
regression algorithm is essentially best possible among SQ algorithms, and therefore that the SQ
complexity of agnostic learning is closely related to the polynomial degree required to approximate
any function from the concept class in L1-norm. Using this characterization along with additional
analytic tools, we obtain explicit optimal SQ lower bounds for agnostically learning linear threshold
functions and the first non-trivial explicit SQ lower bounds for polynomial threshold functions
and intersections of halfspaces. We also develop an analogous theory for agnostically learning
real-valued functions, and as an application prove near-optimal SQ lower bounds for agnostically
learning ReLUs and sigmoids.
Keywords: agnostic PAC learning, SQ lower bounds, Gaussian distribution

1. Introduction

1.1. Background and Motivation

In Valiant’s Probably Approximately Correct (PAC) learning model Valiant (1984), a learner is
given access to random examples that are consistently labeled according to an unknown function
in the target concept class. Here we focus on the agnostic framework Haussler (1992); Kearns
et al. (1994), which models learning in the presence of worst-case noise. Roughly speaking, in the
agnostic PAC model, we are given i.i.d. samples from a joint distribution D on labeled examples
(x, y), where x ∈ Rn is the example and y ∈ R is the corresponding label, and the goal is to
compute a hypothesis that is competitive with the “best-fitting” function in the target class C. The
notion of agnostic learning is meaningful both for learning Boolean-valued functions (under the
0-1 loss) and for learning real-valued functions (typically, under the L2-loss). For concreteness, we
restrict the proceeding discussion to the Boolean-valued setting.

In the distribution-independent setting, agnostic learning is known to be computationally hard,
even for simple concept classes and weak learning Guruswami and Raghavendra (2006); Feldman
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et al. (2006); Daniely (2016). On the other hand, under distributional assumptions, efficient learn-
ing algorithms with worst-case noise are possible. A line of work Kalai et al. (2008); Klivans et al.
(2009); Awasthi et al. (2017); Daniely (2015); Diakonikolas et al. (2018, 2020d) has given efficient
learning algorithms in the agnostic model for natural concept classes and distributions with vari-
ous time-accuracy tradeoffs. In this paper, we will focus on agnostic learning under the Gaussian
distribution on examples. For Boolean-valued concept classes, we have the following definition.

Definition 1 (Agnostic Learning Boolean-valued Functions with Gaussian Marginals) Let C be
a class of Boolean-valued concepts on Rn. Given i.i.d. samples (x, y) from a distribution D on
Rn × {±1}, where the marginal Dx on Rn is the standard Gaussian Nn and no assumptions are
made on the labels y, the goal is to output a hypothesis h : Rn → {±1} such that with high proba-
bility we have Pr(x,y)∼D[h(x) 6= y] ≤ OPT + ε, where OPT = inff∈C Pr(x,y)∼D[f(x) 6= y].

The only known algorithmic technique for agnostic learning in the setting of Definition 1 is the
L1-polynomial regression algorithm Kalai et al. (2008). This algorithm uses linear programming
to compute a low-degree polynomial that minimizes the L1-distance to the target function. Its
performance hinges on how well the underlying concept class C can be approximated, in L1-norm,
by low-degree polynomials. In more detail, if d is the (minimum) degree such that any f ∈ C can be
ε-approximated (in L1-norm) by a degree-d polynomial, the algorithm has sample complexity and
running time nO(d)/poly(ε) and outputs a hypothesis with missclassification error OPT + ε.

For several natural concept classes and distributions on examples, the aforementioned degree
d is independent of the dimension n, and only depends on the error ε (and potentially other size
parameters). For these settings, the L1-regression algorithm can be viewed as a polynomial-time
approximation scheme (PTAS) for agnostic learning. Examples of such concept classes include Lin-
ear Threshold Functions (LTFs) Kalai et al. (2008); Diakonikolas et al. (2010a,c), Bounded Degree
Polynomial Threshold Functions (PTFs) Diakonikolas et al. (2010b); Kane (2010); Diakonikolas
et al. (2014); Harsha et al. (2014), Intersections of Halfspaces Kalai et al. (2008); Klivans et al.
(2008); Kane (2014), and other geometric concepts Klivans et al. (2008). Specifically, for the class
of LTFs under the Gaussian distribution, the L1-regression algorithm is known to have sample and
computational complexity of nO(1/ε2).

For each of the above concept classes, L1-polynomial regression is the fastest (and, essentially,
the only) known agnostic learner. It is natural to ask whether there exists an agnostic learner with
significantly improved sample/computational complexity.

Can we beat L1-polynomial regression for agnostic learning under Gaussian marginals?

As our first main contribution, we answer the above question in the negative for all concept classes
satisfying some mild properties (including all the geometric concept classes mentioned above).
Our lower bound applies for the class of Statistical Query (SQ) algorithms. Statistical Query (SQ)
algorithms are a class of algorithms that are allowed to query expectations of bounded functions
of the underlying distribution rather than directly access samples. Formally, an SQ algorithm has
access to the following oracle.

Definition 2 (STAT Oracle) Let D be a distribution on labeled examples supported on X ×
[−1, 1], for some domain X . A statistical query is a function q : X × [−1, 1] → [−1, 1]. We
define STAT(τ) to be the oracle that given any such query q(·, ·) outputs a value v such that
|v −E(x,y)∼D [q(x, y)] | ≤ τ , where τ > 0 is the tolerance parameter of the query.
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The SQ model was introduced by Kearns (1998) as a natural restriction of the PAC model Valiant
(1984) and has been extensively studied in learning theory; see, e.g., Feldman et al. (2013, 2015,
2017); Feldman (2017) for some recent references. The reader is referred to Feldman (2016) for a
survey. The class of SQ algorithms is fairly broad: a wide range of known algorithmic techniques in
machine learning are known to be implementable using SQs (see, e.g., Chu et al. (2006); Feldman
et al. (2013, 2017)).

Returning to our agnostic learning setting, roughly speaking, we show that a lower bound of d
on the degree of any L1 approximating polynomial can be translated to an SQ lower bound of nΩ(d)

for the agnostic learning problem. This lower bound is tight, since the L1-regression algorithm can
be implemented in the SQ model with complexity nO(d).

We note that a similar characterization had been previously shown, under somewhat different
assumptions, for agnostic learning under the uniform distribution on the hypercube Dachman-Soled
et al. (2015). We explain the technical differences and similarities with our results in Section 1.4.
It is worth pointing out that learning under the Gaussian distribution is generally believed to be
computationally easier than learning under the uniform distribution on the hypercube in a number
of settings. For example, prior work Awasthi et al. (2017); Diakonikolas et al. (2018, 2020d) has
given “constant factor” agnostic learners for LTFs on Rn under the Gaussian distribution — i.e., al-
gorithms with errorO(OPT)+ε— that run in poly(n/ε) time. No polynomial time algorithm with
such an error guarantee is known for any discrete distribution. At a high-level, known algorithms
for these problems make essential use of the anti-concentration of the Gaussian distribution, which
fails in the discrete setting. Similar algorithmic gaps exist for robustly learning low-degree PTFs
and intersections of halfspaces Diakonikolas et al. (2018).

Our generic lower bound result for the Boolean case (Theorem 4) reduces the problem of prov-
ing explicit SQ lower bounds for agnostic learning to the structural question of proving lower bounds
on the L1 polynomial approximation degree (under the Gaussian measure). As our second contribu-
tion, we provide a toolkit to prove explicit degree lower bounds. As a corollary, we prove optimal or
near-optimal SQ lower bounds for various natural classes, including LTFs, PTFs, and intersections
of halfspaces.

Moving away from the Boolean-valued setting, an interesting direction is to understand the
complexity of agnostic learning for real-valued function classes. In recent years, this broad question
has been intensely investigated in learning theory, in part due to its connections to deep learning.
Here we focus on agnostic learning under the L2-loss.

Definition 3 (Agnostic Learning Real-valued Functions with Gaussian Marginals) Let C be a
class of real-valued concepts on Rn. Given i.i.d. samples (x, y) from a distribution D on Rn × R,
where the marginal Dx on Rn is the standard Gaussian Nn and no assumptions are made on the
labels y, the goal is to output a hypothesis h : Rn → R such that with high probability we have
E(x,y)∼D[(h(x)− y)2]1/2 ≤ OPT + ε, where OPT = inff∈C E(x,y)∼D[(f(x)− y)2]1/2.

A prototypical concept class of significant recent interest are Rectified Linear Units (ReLUs).
A ReLU is any real-valued function f : Rn → R+ of the form f(x) = ReLU (〈w,x〉+ θ),
w ∈ Rn and θ ∈ R, where ReLU : R → R+ is defined as ReLU(u) = max{0, u}. ReLUs are
the most commonly used activation functions in modern deep neural networks. The corresponding
agnostic learning problem is a fundamental primitive in the theory of neural networks that has been
extensively studied in recent years Goel et al. (2017); Manurangsi and Reichman (2018); Goel et al.
(2019); Diakonikolas et al. (2020a); Goel et al. (2020b); Diakonikolas et al. (2020c).
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Our techniques extend to real-valued concepts leading to improved and nearly tight SQ lower
bounds for natural concept classes. We describe our contributions in the following subsection.

1.2. Our Contributions

Contributions for Boolean-valued Concepts Our main general result for Boolean-valued con-
cepts is the following:

Theorem 4 (Generic SQ Lower Bound, Boolean Case) Let n,m ∈ Z+ with m ≤ na for any
constant 0 < a < 1/2 and ε ≥ n−c for some sufficiently small constant c > 0. Fix a function
f : Rm → {±1}. Let d be the smallest integer such that there exists a degree at most d polynomial
p : Rm → R satisfying Ex∼Nm [|p(x)− f(x)|] < 2ε. Let C be a class of Boolean-valued functions
on Rn which includes all functions of the form F (x) = f(Px), for any P ∈ Rm×n such that
PPᵀ = Im. Any SQ algorithm that agnostically learns C under Nn to error OPT + ε either
requires queries with tolerance at most n−Ω(d) or makes at least 2n

Ω(1)
queries.

The L1-polynomial regression algorithm and Theorem 4 characterize the complexity of agnostic
learning under the Gaussian distribution – within the class of SQ algorithms – for a range of concept
classes. If d is the (minimum) degree for which any function in C can be ε-approximated by a
degree-d polynomial in L1-norm, the complexity of agnostically learning C is, roughly, nΘ(d).
Applications of Theorem 4. Note that the above result does not tell us what the optimal degree d
is for any given concept class C. Using analytic techniques, we establish explicit lower bounds on
the L1 polynomial approximation degree for three fundamental concept classes: Linear Threshold
Functions (LTFs), Polynomial Threshold Functions, and Intersections of Halfspaces. As a corollary,
we obtain explicit SQ lower bounds for these classes. Our applications are summarized in Table 1.

Concept Class Lower Bound Upper Bound

LTFs Ω
(
1/ε2

)
(Ganzburg, 2002)

O
(
1/ε2

)
(Ganzburg, 2002;

Diakonikolas et al., 2010c)

Degree-k PTFs Ω
(
k2/ε2

)
(Thm 20) O

(
k2/ε4

)
(Kane, 2010)

Intersections of k Halfspaces Ω̃
(√

log k/ε
)

(Thm 23) O
(
log k/ε4

)
(Klivans et al., 2008)

Table 1: Bounds on the degree d of ε-approximating polynomials in L1-error under the Gaussian
measure. For each concept class, we obtain an SQ lower bound of nΩ(d).

For the class of LTFs, using a known degree lower bound for the sign function Ganzburg (2002),
we immediately obtain an SQ lower bound of nΩ(1/ε2). This bound is optimal (within polynomial
factors), improving on the previous SQ lower bound of nΩ(1/ε) Goel et al. (2020b); Diakonikolas
et al. (2020c). Our approach is simpler and more general compared to these prior works, imme-
diately extending to other families. For the broader class of degree-k PTFs, we establish a degree
lower bound of Ω(k2/ε2) (Proposition 21), which yields an SQ lower bound of nΩ(k2/ε2) for the
agnostic learning problem.

Our third explicit degree lower bound is for intersections of k halfspaces. For this concept class,
we prove a degree lower bound of d = Ω̃(

√
log k/ε) which implies a corresponding SQ lower bound

of nΩ̃(
√

log k/ε). In the process, we establish a new structural result translating lower bounds on the
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Gaussian Noise Sensitivity (GNS) of any Boolean function to the L1-polynomial approximation
degree of the same function.

Recall that the Gaussian Noise Sensitivity (GNS) of a function f : Rn → {±1} is defined
as GNSρ(f) := Pr(x,y)∼N ρn [f(x) 6= f(y)], where N ρ

n is the distribution of a (1 − ρ)-correlated
Gaussian pair (i.e., x and y are standard Gaussians with correlation (1−ρ)). We show the following:

Theorem 5 (Structural Result) Let f : Rn → {±1} and p : Rn → R be a degree at most d poly-
nomial. Then, we have that Ex∼Nn [|f(x)−p(x)|] ≥ Ω(1/ log(d))GNS(log(d)/d)2(f). Furthermore,
for any ε > 0, we have that Ex∼Nn [|f(x)− p(x)|] ≥ GNSε(f)/4−O(d

√
ε).

Contributions for Real-valued Concepts For agnostically learning real-valued concepts, we pro-
vide two generic lower bound results, analogous to Theorem 4, for Correlational SQ (CSQ) algo-
rithms and general SQ algorithms respectively. A conceptual message of our results is that L2 re-
gression is essentially optimal against CSQ algorithms, but not necessarily optimal against general
SQ algorithms.

Recall that Correlational SQ (CSQ) algorithms are a subclass of SQ algorithms, where the algo-
rithm is allowed to choose any bounded query function on the examples and obtain estimates of its
correlation with the labels. (See Appendix A.1 for a detailed description.) This class of algorithms
is fairly broad, capturing many learning algorithms used in practice (including gradient-descent).
For CSQ algorithms, we prove.

Theorem 6 (Generic CSQ Lower Bound, Real-valued Case) Let n,m ∈ Z+ with m ≤ na for
any constant 0 < a < 1/2 and ε ≥ n−c for some sufficiently small constant c > 0. Let f : Rm → R
with Ex∼Nm [f2(x)] = 1 and d be the smallest integer such that there exists a degree at most d
polynomial p : Rm → R satisfying ‖f − p‖2 < ε. Let C be a class of real-valued functions on
Rn which includes all functions of the form F (x) = f(Px), for any matrix P ∈ Rm×n satisfying
PPᵀ = Im. Then, any CSQ algorithm that agnostically learns C over Nn to L2-error OPT + ε
either requires queries with tolerance at most n−Ω(d) or makes at least 2n

Ω(1)
queries.

Our lower bound for the general SQ model is presented below. The difference between the two
is that the latter uses the L1-norm to measure the approximation of f by polynomials.

Theorem 7 (Generic SQ Lower Bound, Real-valued Case) Let n,m ∈ Z+ withm ≤ na for any
constant 0 < a < 1/2 and ε ≥ n−c for some sufficiently small constant c > 0. Let f : Rm → R
with Ex∼Nm [f2(x)] = 1 and d be the smallest integer such that there exists a degree at most d
polynomial p : Rm → R satisfying ‖f − p‖1 < ε. Let C be a class of real-valued functions on
Rn which includes all functions of the form F (x) = f(Px), for any matrix P ∈ Rm×n satisfying
PPᵀ = Im. Then, any SQ algorithm that agnostically learns C overNn to L2-error OPT+ε either
requires queries with tolerance at most n−Ω(d) or makes at least 2n

Ω(1)
queries.

Applications of Theorems 6 and 7. As in the Boolean-valued setting, obtaining explicit (C)SQ
lower bounds for agnostically learning real-valued concepts requires analytic tools to establish lower
bounds on the degree of polynomial approximations. In this paper, we give such lower bounds for
two fundamental concept classes: ReLUs and sigmoids. Establishing degree lower bounds for other
non-linear activations is left as a question for future work. Our degree lower bounds applications
for both L1 and L2 polynomial approximations are summarized in Table 2. Combining these degree
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p = 1 p = 2
Concept Class Lower Bound Upper Bound Lower Bound Upper Bound
ReLUs Ω (1/ε) O (1/ε) Ω

(
1/ε4/3

)
O
(
1/ε4/3

)
Sigmoids Ω(log(1/ε)) O(log2(1/ε)) Ω

(
log2(1/ε)

)
O
(
log2(1/ε)

)
Table 2: Bounds on the degree d of ε-approximating polynomials in L1 and L2-error under the

Gaussian measure. For each concept class, we obtain a CSQ (resp. SQ) lower bound of
nΩ(d), where d is the L2 degree (resp. L1 degree).

lower bounds Theorems 6 and 7 implies explicit SQ lower bounds for ReLUs and sigmoids. Con-
cretely, for agnostically learning ReLUs, we establish a CSQ lower bound of nΩ(1/ε4/3) (matching
the nO(1/ε4/3) upper bound obtained via L2-regression); and an SQ lower bound of nΩ(1/ε), improv-
ing on the previous best bound of nΩ((1/ε)1/36) Goel et al. (2020b); Diakonikolas et al. (2020c).

1.3. Overview of Techniques

SQ Lower Bounds for Boolean-valued Functions The starting point for our lower bounds is
the work of Diakonikolas et al. (2017), which shows that if D is a univariate distribution whose
low-degree moments match those of a standard Gaussian (and which satisfies some other mild
niceness conditions), then it is SQ-hard to distinguish between a standard multivariate Gaussian and
a distribution that is a copy of D in a random direction and a standard Gaussian in the orthogonal
directions. (This is shown in Diakonikolas et al. (2017) for D a 1-dimensional distribution, but it is
not hard to generalize to higher dimensional distributions.)

Note that the above setting is unsupervised. To go from distributions to functions, we will try
to produce a Boolean function f of a few variables such that the distributions of X conditioned
on f(X) = 1 and on f(X) = −1 match moments with a Gaussian. We generalize the techniques
of Diakonikolas et al. (2020b) to show that such a function f embedded in a hidden low-dimensional
subspace is SQ hard to distinguish from a random function. Our goal then is to find such a function
f that is (1/2 − ε)-close to a function in our family. Given this construction, learning the function
to error OPT + ε/2 requires being able to distinguish f from a random function.

The aforementioned approach was recently used by Diakonikolas et al. (2020c). However, while
that work constructs the function f somewhat directly, here we take a more general approach. In
more detail, it is not hard to phrase the conditions that (1) f is bounded in [−1, 1], (2) it matches
moments with low-degree polynomials, and (3) is not too far from the function we are trying to
learn, as an infinite-dimensional linear program (LP). We can then non-constructively attempt to
find the optimal value of such an LP by duality. We note that “LP duality” in this setting is non-
trivial – we require some (basic) functional analysis tools to show that duality applies for the LPs
we are considering on function spaces. Given this, we find that the dual program is equivalent to
finding a low-degree polynomial that approximates the function we are trying to learn in L1-norm.
The degree of such a polynomial conveniently matches the parameter that determines the runtime of
the L1- polynomial regression algorithm. We can thus show that, for reasonable function families,
the L1-regression algorithm is in fact optimal, among SQ algorithms, up to polynomial factors.

The above characterization allows us to determine the complexity of agnostically learning LTFs,
by leverage tight degree lower bounds for the sign function. For the cases of degree-k PTFs and
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intersections of k halfspaces, we do not know what the correct answer is, but we are able to prove
non-trivial, and qualitatively close to optimal, lower bounds.

We note that the L1 approximation theory for these functions is more challenging than the L2

approximation theory (which is entirely determined by the Fourier decay). To that end, we develop
new techniques relatingL1 approximability to the Gaussian Noise sensitivity (Theorem 5), which al-
lows us to prove the first non-trivial lower bounds. The proof of Theorem 5 works via a symmetriza-
tion technique. In particular, let θ = arccos(1 − ε) and let X and Y be standard Gaussians. Let
FX,Y (φ) := f(sin(φ)X+cos(φ)Y ). Then we can write GNSε(f) = Pr[FX,Y (φ) 6= FX,Y (φ+θ)].
On the other hand, ‖f − p‖1 = E[|FX,Y (φ) − p(sin(φ)X + cos(φ)Y )|]. Thus, it suffices to show
that if F is any Boolean function on the circle that the L1 approximation error of F by low degree
polynomials can be bounded below by Pr[F (φ) 6= F (φ + θ)]. To show this, we use basic Fourier
analysis to show that any low-degree polynomial with small L1 norm cannot have any large higher
derivatives. This implies that if F transitions from being 0 to being 1 over some small interval, that
any low-degree polynomial will not be able to match it very well in this interval.

(C)SQ Lower Bounds for Real-valued Functions We now move to real-valued functions and
sketch our CSQ and SQ lower bounds. For CSQ lower bounds, we obtain a similar characterization.
The difference is that, in the real-valued setting, we need to find a real-valued function f whose low-
degree moments vanish, and which is close to the function we are trying to learn in L2 norm. This
can be phrased as a similar LP and, applying duality, we find that the complexity is determined by
the degree needed to approximate the function we are trying to learn in L2 norm. For this particular
setting, the LP can actually be solved explicitly and the best possible approximation function is
obtained by taking the high-degree Hermite component of f . This lower bound matches (up to
polynomial factors in the final error) the upper bound coming from the L2 polynomial regression
algorithm. This means that we can qualitatively characterize the complexity of agnostic learning
using CSQ algorithms. In particular, we use this characterization to obtain new CSQ lower bounds
on agnostically learning ReLUs and sigmoids.

Our SQ lower bounds against learning real-valued functions are somewhat more challenging,
since the approximating function f must have more than just vanishing moments. It must have
all its level-sets match low-degree moments with a standard Gaussian (which is equivalent only
for Boolean-valued functions). Because of this additional requirement, we restrict our “imitating
functions” to Boolean-valued functions. We can still find an LP defining f , however the dual gives
us the relevant parameter of the degree needed to approximate the function we are trying to learn
in L1-norm (rather than L2-norm) for which a matching upper bound is not known. So, in this
case, while we can still obtain significantly improved SQ lower bounds for agnostically learning a
number of concept classes, we do not obtain optimal results.

1.4. Comparison to Prior Work

At the level of results, the most relevant prior works are the two independent works Diakonikolas
et al. (2020c); Goel et al. (2020b), which established the previously best SQ lower bounds for LTFs,
ReLUs, and sigmoids under the Gaussian distribution. We have already provided a technical com-
parison to Diakonikolas et al. (2020c) in the previous subsection. The work Goel et al. (2020b)
relies on a boosting procedure that translates recent SQ lower bounds for (non-agnostic) learning
one-hidden-layer neural networks Diakonikolas et al. (2020b) to agnostically learning simple con-
cept classes.
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A useful point of technical comparison is the work Dachman-Soled et al. (2015), which gave
an analogue of our results on agnostically learning Boolean functions on the Boolean hypercube.
The basic statement is the same — that the complexity of agnostic learning Boolean functions
under a discrete product distribution is characterized by the L1-approximation degree — and the
duality-based proof techniques are similar. In particular, Dachman-Soled et al. (2015) sets up a
finite LP to find a function f that has vanishing Fourier coefficients but is close in L1-norm to the
target function. Due to the discrete nature of the setting they consider, Dachman-Soled et al. (2015)
avoids the functional analysis based arguments required to establish duality in our setting.

A more significant difference with our framework is that the hard family of Dachman-Soled
et al. (2015) embeds a copy of f as a junta on a random subset of coordinates, while ours embeds
it in a random low-dimensional subspace. This is a critical distinction and is necessary in the
Gaussian setting to obtain our tight characterization and the associated applications to LTFs/PTFs
and intersections of halfspaces. Finally, we remark that the appendix of Dachman-Soled et al. (2015)
sketches a generalization of their results to arbitrary product distributions (including the Gaussian
distribution). We emphasize, however, that the lower bound obtained from their construction does
not match the guarantee of the L1-regression algorithm Kalai et al. (2008) for the following reason:
The exponent for their lower bounds for the continuous setting have to do with the degree necessary
to ε-approximate the hard function as a linear combination of d-juntas. On the other hand, the
upper bound of Kalai et al. (2008) is related to the approximation by degree-d polynomials. Note
that degree-d polynomials are always linear combinations of d-juntas, and thus the approximation
degree by linear combinations of juntas is lower than the approximation degree by polynomials.
In summary, while the lower bound of Dachman-Soled et al. (2015) is tight for discrete product
distributions, this is not true in general.

1.5. Preliminaries

Notation For n ∈ Z+, we denote [n] := {1, . . . , n}. We typically use small letters to denote
random variables when the underlying distribution is clear from the context. We use E[x] for the
expectation of the random variable x and Pr[E ] for the probability of event E . We will use U(S) for
the uniform distribution on the set S. Let N denote the standard univariate Gaussian distribution
and Nn denote the standard n-dimensional Gaussian distribution. We use φn to denote the pdf of
Nn. Sometimes we may use the same symbol for a distribution and its pdf, i.e., denote by D(x) the
density that the distribution D gives to the point x.

Small boldface letters are used for vectors and capital boldface letters are used for matrices. Let
‖x‖2 denote the L2-norm of the vector x ∈ Rn. We use 〈u,v〉 for the inner product of vectors
u,v ∈ Rn. For a matrix P ∈ Rm×n, let ‖P‖2 denote its spectral norm and ‖P‖F denote its
Frobenius norm. We use In to denote the n × n identity matrix. We denote by Pnd the class of all
polynomials from Rn to R with degree at most d. We sometimes use the notation Õ(·) (resp. Ω̃(·)),
this is the same with O(·) (resp. Ω(·)), ignoring logarithmic factors, i.e., O(d logk d) = Õ(d).

Statistical Query Dimension To bound the complexity of SQ learning a concept class C, we use
the SQ framework for problems over distributions Feldman et al. (2013).

Definition 8 (Decision Problem over Distributions) Let D be a fixed distribution and D be a
distribution family. We denote by B(D, D) the decision (or hypothesis testing) problem in which the
input distribution D′ is promised to satisfy either (a) D′ = D or (b) D′ ∈ D, and the goal is to
distinguish between the two cases.
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Definition 9 (Pairwise Correlation) The pairwise correlation of two distributions with probability
density functions D1, D2 : Rn → R+ with respect to a distribution with density D : Rn →
R+, where the support of D contains the supports of D1 and D2, is defined as χD(D1, D2) :=∫
Rn D1(x)D2(x)/D(x) dx− 1.

Definition 10 We say that a set of s distributions D = {D1, . . . , Ds} over Rn is (γ, β)-correlated
relative to a distribution D if |χD(Di, Dj)| ≤ γ for all i 6= j, and |χD(Di, Dj)| ≤ β for i = j.

Definition 11 (Statistical Query Dimension) For β, γ > 0, a decision problem B(D, D), where
D is a fixed distribution and D is a family of distributions, let s be the maximum integer such that
there exists a finite set of distributions DD ⊆ D such that DD is (γ, β)-correlated relative to D and
|DD| ≥ s. The Statistical Query dimension with pairwise correlations (γ, β) of B is defined to be
s, and denoted by SD(B, γ, β).

Lemma 12 Let B(D, D) be a decision problem, where D is the reference distribution and D is a
class of distributions. For γ, β > 0, let s = SD(B, γ, β). For any γ′ > 0, any SQ algorithm for B
requires queries of tolerance at most

√
γ + γ′ or makes at least sγ′/(β − γ) queries.

2. SQ Lower Bound for Boolean-Valued Concepts: Proof of Theorem 4

The idea of our construction is to find a function g : Rm → [−1, 1] whose low-degree moments
vanish and is non-trivially close to f . Our hard distribution will then embed g in a random m-
dimensional subspace. Given this construction, we can apply Lemma 12 to prove Theorem 4. The
following result establishes the existence of such a function g.

Proposition 13 Let f : Rm → {±1} be such that for any polynomial p : Rm → R of degree at
most d−1, it holds Ex∼Nm [|p(x)−f(x)|] ≥ 2ε. There exists a function g: Rm → [−1, 1] such that:

1. For any degree at most d−1 polynomial P : Rm → R, we have that Ex∼Nm [P (x)g(x)] = 0,
i.e., g has zero low-degree moments, and,

2. Ex∼Nm [|g(x)− f(x)|] ≤ 1− 2ε, i.e., g is non-trivially close to f .

Proof Such a function g would be a solution to the infinite linear program (∗) below, which we
claim that is equivalent to the linear program (∗∗):

(∗)


E

x∼Nm
[|g(x)− f(x)|] ≤ 1− 2ε

E
x∼Nm

[P (x)g(x)] = 0 ∀P ∈ Pmd−1

|g(x)| ≤ 1 ∀x ∈ Rm

(∗∗)


− E

x∼Nm
[g(x)f(x)] + 2ε ≤ 0

E
x∼Nm

[P (x)g(x)] = 0 ∀P ∈ Pmd−1

E
x∼Nm

[g(x)h(x)]− ‖h‖1 ≤ 0 ∀h ∈ L1(Rm)

We now show the equivalence between the two formulations. We claim that the third constraint
of (∗) is equivalent with the third constraint of (∗∗). This follows by introducing the “dual variable”
h : Rm → R. The forward direction follows from Hölder’s inequality and the inverse follows
from the definition of dual norms as suprema. Finally, for the first constraints, note that since f is
Boolean-valued and ‖g‖∞ ≤ 1, we have that Ex∼Nm [|g(x)− f(x)|] = 1−Ex∼Nm [g(x)f(x)].

9
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At this point, we would like to use “LP duality” to argue that (∗∗) is feasible if and only if its
“dual LP” is infeasible. While such a statement turns out to be true, it requires some care to prove
since we are dealing with infinite LPs (both in number of variables and constraints). The proof
requires a version of the geometric Hahn-Banach theorem from functional analysis.

Lemma 14 (Informal) The LP defined by (∗∗) is feasible if only if there is no conical combination
of the inequalities of (∗∗) that yields the contradictory inequality Ex∼Nm [g(x) · 0] + 1 ≤ 0.

A proof of this lemma can be found on Appendix F. Using Lemma 14, the LP defined by (∗∗) is
feasible if and only if the following “dual” LP is infeasible:

(∗∗′)


‖h‖1 − 2λ ε < 0

h(x) + P (x)− λ f(x) = 0 ∀x ∈ Rm

λ ≥ 0, h ∈ L1(Rm), P ∈ Pmd−1

Suppose that such a solution (λ, h, P ) exists. We can assume that λ > 0, since otherwise the first
inequality is violated. Moreover, by scaling the solution, we can further assume λ = 1. Then, the
second constraint becomes h = f − P and the first becomes ‖f − P‖1 < 2ε. However, this cannot
happen by the definition of the degree d (since, by assumption, there is no polynomial of degree less
than d such that ‖f − P‖1 < 2ε). Therefore, the LP (∗∗) is feasible, which completes our proof.

Our construction will use rotated versions of the function g from Proposition 13 to create a fam-
ily of distributions that is hard to distinguish from a fixed reference distribution. To bound the SQ
dimension of this hypothesis testing problem, we will need a generalization of Lemma 16 in Di-
akonikolas et al. (2020b), which bounds the correlation of two rotated versions of g. To formally
state our lemma, we will need one additional piece of terminology. If g(x) =

∑
J∈Nm ĝ(J)HJ(x)

is the Hermite expansion of g, the degree-t Hermite part of g is the sum of the terms corresponding
to the Hermite polynomials of degree exactly t. (For background in multilinear algebra and Hermite
analysis, see Appendices A.2 and A.3.) Our main correlation lemma is the following.

Lemma 15 (Correlation Lemma) Let g : Rm → R and U,V ∈ Rm×n be linear maps such that
UUᵀ = VVᵀ = Im. Then, we have that Ex∼Nn [g(Ux)g(Vx)] ≤

∑∞
t=0 ‖UVᵀ‖t2 Ex∼Nm [(g[t](x))2],

where g[t] denotes the degree-t Hermite part of g.

We consider high-dimensional distributions that encode a function in a subspace and are Gaussian
in the orthogonal complement. Using Lemma 15, we can bound their pairwise correlations.

Corollary 16 Let d ≥ 2 and D be a distribution over Rm such that the first (d−1) moments of
D match the corresponding moments of Nm. Let G(x) = D(x)/φm(x) be the ratio of the corre-
sponding probability density functions. For matrices U,V ∈ Rm×n such that UUᵀ = VVᵀ = Im,
define DU and DV to have probability density functions G(Ux)φn(x) and G(Vx)φn(x), respec-
tively. Then, we have that |χNn(DU, DV)| ≤ ‖UVᵀ‖d2χ2(D,Nm).

See Appendix B.2 for the proof. Note that DU and DV are copies of D in the subspaces
defined by U and V respectively, and independent Gaussians in the orthogonal component. In
order to create our hard family of distributions, we will need the following lemma which states that
there exist exponentially many linear operators from Rn to Rm that are nearly orthogonal. Its proof
is deferred to Appendix B.3.

10
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Lemma 17 Let 0 < a, c < 1/2 and m,n ∈ Z+ such that m ≤ na. There exists a set S of 2Ω(nc)

matrices in Rm×n such that every U ∈ S satisfies UUᵀ = Im and every pair U,V ∈ S with
U 6= V satisfies ‖UVᵀ‖F ≤ O(n2c−1+2a).

We now formally define the family of distributions that we use to prove our hardness result.

Definition 18 Given a function g : Rm → [−1, 1], we define Dg to be the class of distributions
over Rn ×{±1} of the form (x, y) such that x ∼ Nn and E[y|x = z] = g(Uz), where U ∈ Rm×n
with UUᵀ = Im.

In the following, we show that if g has low-degree moments equal to zero, then distinguishing Dg
from the distribution (x, y) with x ∼ Nn, y ∼ U({±1}) is hard in the SQ model.

Proposition 19 Let g : Rm → [−1, 1] be such that Ex∼Nm [g(x)p(x)] = 0, for every polynomial
p : Rm → R of degree less than d, and Dg be the class of distributions from Definition 18. Then, if
m ≤ na, for some constant a < 1/2, any SQ algorithm that solves the decision problemB(Dg,Nn×
U({±1})) must either use queries of tolerance n−Ω(d) or make at least 2n

Ω(1)
queries.

Proof Consider the set of matrices S of Lemma 17, for an appropriately small value of c > 0. Each
matrix U ∈ S is associated with a unique element of Dg. For every pair of distinct U,V ∈ S, we
have that ‖UVᵀ‖2 ≤ ‖UVᵀ‖F ≤ O(n2c−1+2a) ≤ n−Ω(1), where for the last inequality we chose
c to be a sufficiently small constant, e.g., c = (1− 2a)/4.

Note that the distribution inDg associated to a matrix U has probability density (1+g(Ux))φn(x)
when conditioned on y = 1, and density (1 − g(Ux))φn(x) when conditioned on y = −1. Let
DU be the distribution associated to U and DV the distribution associated to V. Denote by AU

the distribution DU conditioned on the event y = 1 and BU the same distribution conditioned
on y = −1. Similarly, let AV and BV denote the conditional distributions associated with V.
Using the definition of pairwise correlation and the fact that y gets each label with equal prob-
ability, it follows directly that χNn×U({±1})(DU, DV) = 1

2 (χNn(AU, AV) + χNn(BU, BV)).
By Corollary 16 applied to AU, AV and BU, BV, we obtain χNn(AU, AV) + χNn(BU, BV) ≤
‖UVᵀ‖d2

(
χ2(A,Nm) + χ2(B,Nm)

)
, where A is the distribution of the random variable Ux for

x ∼ AU (and similarly for B). For the χ2-divergence terms, we have that χ2(A,Nm) = 1 (see
Appendix B.4). Combining the above, we get that |χNn×U({±1})(DU, DV)| ≤ n−Ω(d). This in-
equality implies that SD(B, γ, β) = 2Ω(nc), for γ = n−Ω(d) and β = O(1). Using Lemma 12, with
γ′ = γ, completes the proof.

Proof [Proof of Theorem 4] Let A be an agnostic learner for C. We use A to solve the decision
problem B(Dg,Nn × U({±1})), where g : Rm → [−1, 1] is the function from Proposition 13
and Dg the family of Definition 18. Let D′ be the target distribution, i.e., D′ = Nn × U({±1})
if the null hypothesis is true or D′ ∈ Dg otherwise. We feed A examples drawn from D′ and it
outputs a hypothesis h : Rn → {±1} such that Pr(x,y)∼D′ [h(x) 6= y] ≤ OPT + ε

2 . If D′ ∈ Dg,
then for a matrix U ∈ Rm×n with UUᵀ = Im, we have that OPT ≤ Pr(x,y)∼D′ [f(Ux) 6=
y] = 1

2 ‖f − g‖1 ≤
1
2(1 − 2ε), where in the equality we used the fact that the expectation of y

conditioned on x is g(x) and the last inequality is due to Proposition 13. Combining the above,
we get that Pr(x,y)∼D′ [h(x) 6= y] ≤ (1 − ε)/2, or equivalently that E(x,y)∼D′ [h(x)y] ≥ ε. On
the other hand, if the labels were drawn uniformly at random, this correlation would be exactly 0.
Therefore, we can distinguish between the two cases by performing a final query of tolerance ε/2
for the correlation of h with y.

11
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3. Explicit SQ Lower Bounds for Boolean Concept Classes

3.1. LTFs and Degree-k PTFs

Linear threshold functions (LTFs) are Boolean functions of the form F (x) = sign(〈w,x〉 + θ),
where w ∈ Rn and θ ∈ R. A degree-k PTF is any Boolean function of the form F (x) = sign(q(x)),
where q : Rn → R is a real degree-k polynomial. In this section, we show:

Theorem 20 (Degree Lower Bound for PTFs) There exists a degree-k PTF f : R→ {±1} such
that any degree-d polynomial p : R→ R with ‖f − p‖1 < ε must have d = Ω(k2/ε2).

Theorems 4 and 20 imply that any SQ algorithm that agnostically learns the class of degree-k
PTFs on Rn under the Gaussian distribution must have complexity at least nΩ(k2/ε2).

Lower Bound for LTFs The L1-regression algorithm Kalai et al. (2008) is known to be an agnos-
tic learner for LTFs under Gaussian marginals with complexity nO(1/ε2). This upper bound uses the
known fact that the L1 polynomial ε-approximate degree of LTFs under the Gaussian distribution is
d = O(1/ε2) (see, e.g., Diakonikolas et al. (2010c)). This upper bound is tight. Specifically, known
results in approximation theory (see Appendix C.1) imply that, any polynomial that ε-approximates
the function sign(t) in L1-norm, under the standard Gaussian distribution, requires degree Ω(1/ε2).
Given this structural result, an application of Theorem 4, for m = 1 and f(t) = sign(t) gives the
tight SQ lower bound of nΩ(1/ε2). This bound improves on the best previous bound of nΩ(1/ε) Goel
et al. (2020b); Diakonikolas et al. (2020c). Importantly, our approach is much simpler and general-
izes to any concept class satisfying the mild assumptions of Theorem 4.

Lower Bound for Degree-k PTFs TheL1-regression algorithm is known to be an agnostic learner
for degree-k PTFs under Gaussian marginals with complexity nO(k2/ε4). This bound uses the known
upper bound of O(k

√
ε) on the Gaussian noise sensitivity of degree-k PTFs Kane (2010), which

implies an upper bound of O(k2/ε2) on the L2 polynomial ε-approximate degree, and therefore an
upper bound of O(k2/ε4) on the L1 polynomial ε-approximate degree. This upper bound is not
known to be optimal (it is sub-optimal for k=1) and it is a plausible conjecture that the right answer
is Θ(k2/ε2). We prove a lower bound of Ω(k2/ε2), which applies even for the univariate case.

Proposition 21 There exists a (k + 1)-piecewise-constant function f : R → {0, 1} such that any
degree-d polynomial p : R→ R that satisfies ‖f − p‖1 < ε must have d = Ω(k2/ε2).

An application of Theorem 4, for m = 1 and f(t) being the piecewise constant function of
Proposition 21, implies an SQ lower bound of nΩ(k2/ε2). Before we provide the formal proof, we
sketch the proof of Proposition 21. The hard function f consists of k/2 intervals with the same
carefully chosen length; we split each interval in half and we let f = 0 in the first half, and f = 1 in
the second half. We construct a distributionD that puts almost all of its mass in the first half of each
interval, matches the first d moments with the standard Gaussian, and D(x) ≤ 2φ(x) for all x ∈ R.
Then, by construction Ex∼N [f(x)] is much larger than the same expectation under D. We show
that, in fact, this difference bounds from below the error of any degree-d polynomial approximation
to the function f . The main technical lemma we establish in this context is given below. The proofs
of Proposition 21 and Lemma 22 can be found in Appendices C.2 and C.3.

Lemma 22 There exists a distribution D that (i) matches its first d moments with N , (ii) the pdf
of D is at most 2 times the pdf of N pointwise in R, and (iii) for some α = Θ(1/

√
d) it holds that

Pr[(X mod a) ∈ (a/2, a)] = 2−Ω(d).

12
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3.2. Intersections of Halfspaces: Degree Lower Bound via Gaussian Noise Sensitivity

An intersection of k halfspaces on Rn is any function f : Rn → {±1} such that there exist k LTFs
hi : Rn → {±1}, i ∈ [k], such that f(x) = 1 if and only if hi(x) = 1 for all i ∈ [k].

The L1-regression algorithm Kalai et al. (2008) is known to be an agnostic learner for inter-
section of k halfspaces on Rn under Gaussian marginals with complexity nO((log k)/ε4). This upper
bound uses the known tight upper bound of O(

√
ε log k) on the Gaussian noise sensitivity of this

concept class Klivans et al. (2008), which implies an upper bound ofO(log k/ε4) on the L1 polyno-
mial ε-degree. This degree upper bound is not known to be optimal (in fact, it is provably suboptimal
for k = 1) and it is a plausible conjecture that the right answer is Θ(

√
log k/ε2). Here we prove a

lower bound of Ω̃(
√

log k/ε), which applies even for k-dimensional functions.

Theorem 23 (Degree Lower Bound for Intersections of Halfspaces) There exists an intersection
of k halfspaces f on Rk such that the following holds: Any degree-d polynomial p : Rk → R that
satisfies ‖f − p‖1 < ε must have d = Ω̃(

√
log k/ε).

Theorem 23 combined with Theorem 4, applied for m = k and f being the function from Theo-
rem 23, implies that any SQ algorithm that agnostically learns intersections of k halfspaces on Rn

under the Gaussian distribution must have complexity at least nΩ̃(
√

log k/ε). To prove Theorem 23,
we make essential use of our structural result, Theorem 5, combined with the following tight lower
bound on the Gaussian noise sensitivity of a well-chosen family of intersection of halfspaces (see
Appendix C.4 for the proof).

Lemma 24 There exists an intersection of k halfspaces on Rk, f : Rk → {±1}, such that
GNSε(f) = Ω(

√
ε log k).

3.3. Proof of Theorem 5

Proposition 25 Let p(θ) be a degree-d polynomial on the circle, i.e., a degree at most d poly-
nomial in sin θ and cos θ, and let B(θ) be a Boolean-valued function that is periodic modulo
2π. Then, for t being a sufficiently small multiple of log d/d, it holds 1

2π

∫ 2π
0 |p(θ) − B(θ)|dθ =

Ω̃(1/ log d)Prφ∼U([0,2π])[B(φ− t) 6= B(φ+ t)].

Proof We can assume that 1
2π

∫ 2π
0 |p(θ)|dθ is at most 2, since otherwise the 1

2π

∫ 2π
0 |p(θ)−B(θ)|dθ

is at least 1. Let k be an odd integer proportional to log d. We start with the following technical
claim (see Appendix C.5 for the proof).

Claim 26 For any θ ∈ [0, 2π], it holds |p(k)(θ)| = O(d)k.

We next pick t a small multiple of log d/d and φ ∈ [0, 2π]. Let zm = t cos(πm/k) + φ,
for m = 0, 1, . . . , k, and let q(z) =

∑k
j=0 cjz

j be the unique degree-k polynomial such that
q(zm) = p(zm), for m = 0, 1, . . . , k. Observe that q − p has k + 1 zeroes. Therefore, iterating
Rolle’s theorem we obtain that there is a point φ− t ≤ z ≤ φ+ t such that p(k)(z) = q(k)(z), and
thus |q(k)(z)| = O(d)k, or equivalently ck = 2kO(d/k)k.

Let R(θ) = q(t cos θ + φ). For some constants bn (which depend on t and φ), we have that
R(θ) =

∑k
n=−k bne

niθ. Since R(θ) is an even function, its Fourier coefficients are real numbers.
The following claim provides an upper bound on the coefficient bk (proof in Appendix C.5).

13
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Claim 27 It holds that |bk| ≤ 1/(4k).

On the other hand, by doing a filtering using the (2k)-th roots of unity, we get that
∑2k−1

m=0 R(2πm/(2k)) =

2kbk, and this is equivalent to
∑k

m=−k+1 q(t cos(πm/k) + φ)(−1)m = 2kbk. Therefore,

bk =
1

2k

k∑
m=−k+1

q(t cos(πm/k) + φ)(−1)m =
1

2k

k∑
m=−k+1

p(z|m|)(−1)m

=
1

2k

( k∑
m=−k+1

(p(z|m|)−B(z|m|))(−1)m +
k∑

m=−k+1

B(z|m|)(−1)m + (B(φ+ t)−B(φ− t))
)
.

Since k − 1 is even and B is Boolean, 2
∑k−1

m=1B(zm)(−1)m is a multiple of 4. If B(φ + t) 6=
B(φ− t), the reverse triangle inequality gives

∣∣∣B(φ+ t)−B(φ− t) + 2
∑k−1

m=1B(zm)(−1)m
∣∣∣ ≥

2. Therefore, in this case, we have that 1
4k > |bk| ≥

1
2k

(
2−

∑k
m=−k+1 |p(z|m|)−B(z|m|)|

)
, or

in other words,
∑k

m=−k+1 |p(z|m|) − B(z|m|)| ≥ 1{B(φ + t) 6= B(φ − t)}. Integrating this over
φ from 0 to 2π gives

∫ 2π
0 |p(θ) − B(θ)|dθ ≥ π

k Prφ∼U([0,2π])[B(φ − t) 6= B(φ + t)]. The result
follows from our assumption that k is proportional to log d.

Proof [Proof of Theorem 5] The latter bound follows from the fact that Ex∼Nn [|f(x) − p(x)|] ≥
Ex∼Nn [|f(x) − sign(p(x))|/2]. On the other hand, we can write GNSε(f) − GNSε(sign(p)) =
Pr(x,y)∼N εd [f(x) 6= f(y)]−Pr(x,y)∼N εd [sign(p(x)) 6= sign(p(y))] ≤ Prx∼Nn [f(x) 6= sign(p(x))]+
Pry∼Nn [f(y) 6= sign(p(y))] = 2Ex∼Nn [|f(x) − sign(p(x))|. Combining these, we get that
Ex∼Nn [|f(x)−p(x)|] ≥ (GNSε(f)−GNSε(sign(p)))/4. Note that sign(p) is a degree-d PTF, and
therefore by Kane (2010) it holds that GNSε(sign(p)) = O(d

√
ε).

For the first bound, let y and z be independent Gaussians and let x(φ) = cosφy + sinφ z.
Let a be a sufficiently small multiple of log d/d. For any φ ∈ [0, 2π], x(φ − a) and x(φ + a) are
(1−δ)-correlated Gaussian random variables, where δ = Θ(log d/d)2. We have that

E
x∼Nn

[|f(x)− p(x)|] = E
φ∈U([0,2π])

[
E

y,z∼Nn
[|f(x(φ))− p(x(φ))|]

]
= E

y,z∼Nn

[
E

φ∈U([0,2π])
[|f(x(φ))− p(x(φ))|]

]
≥ Ω(1/ log(d)) E

y,z∼Nn
[ Pr
φ∈U([0,2π])

[f(x(φ− a)) 6= f(x(φ+ a))]] ,

where in the inequality we used Proposition 25. Moreover, using Fubini’s theorem, we have

E
x∼Nn

[|f(x)− p(x)|] ≥ Ω(1/ log(d)) E
φ∈U([0,2π])

[
Pr

y,z∼Nn
[f(x(φ− a)) 6= f(x(φ+ a))]

]
= Ω(1/ log(d)) E

φ∈U([0,2π])
[GNSδ(f)] = Ω(1/ log(d))GNSδ(f) = Ω(1/ log(d))GNS(log(d)/d)2(f) .
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Appendix A. Omitted Background

A.1. Correlational Statistical Query (CSQ) Model

For some of our lower bounds in the real-valued setting, we consider correlational or inner product
queries. The CSQ model is a restriction of the SQ model, where the algorithm is allowed to choose
any bounded query function, and obtain estimates for its correlation with the labels. Specifically,
for f, h : X → R and a distribution D over the domain X , we denote by 〈f, h〉D the quantity
Ex∼D[f(x)h(x)] and refer to it as the correlation of f and h under D. While it is commonly
assumed that the query function h is pointwise bounded, it is in fact sufficient to assume that it has
bounded L2-norm. If D is the joint distribution on points and labels, a correlational query takes h
and a parameter t > 0, and outputs a value v ∈ [E(x,y)∼D[h(x)y]− τ,E(x,y)∼D[h(x)y] + τ ].
Similarly to the general SQ model, we consider the following notions of statistical dimension.

Definition 28 (Correlational Statistical Query Dimension) For β, γ > 0, a probability distribu-
tion D over domain X and a family C of functions f : X → R, let s be the maximum integer
for which there exists a finite set of functions {f1, . . . , fs} ⊆ C such that |Ex∼D[f2

i (x)]| ≤ β for
all i ∈ [s] and |Ex∼D[fi(x)fj(x)]| ≤ γ for all i, j ∈ [s] with i 6= j. We define the Correla-
tional Statistical Query Dimension with pairwise correlations (γ, β) of C to be s and denote it by
CSDD(C, γ, β).

Definition 29 (Average Correlational Statistical Query Dimension) Let ρ > 0, let D be a prob-
ability distribution over some domain X , and let C be a family of functions f : X → R. We define
the average pairwise correlation of functions in C to be ρ(C) = 1

|C|2
∑

g,r∈C |Ex∼D[g(x)r(x)]|.
The Average Correlational Statistical Query Dimension of C relative to D with parameter γ, de-
noted by CSDAD(C, γ), is defined to be the largest integer s such that every subset C′ ⊆ C of size
|C′| ≥ |C|/s, satisfies ρ(C′) ≥ ρ.

In most of the cases, it suffices to bound the correlational statistical query dimension, since by
simple calculations this implies a bound on the average statistical query dimension.

Lemma 30 Let C be a class of functions andD be a distribution and suppose that CSDD(C, γ, β) =
d for some γ, β > 0. Then, for all γ′ > 0, CSDD(C, γ + γ′) ≥ dγ′/(β − γ).
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The following result Szörényi (2009); Goel et al. (2020a) relates the Average Correlational SQ
dimension of a concept class with the complexity of any CSQ algorithm for the class.

Lemma 31 (Theorem B.1 from Goel et al. (2020a)) LetD be a distribution over a domainX and
let C be a real-valued concept class over X such that 0 ∈ C, and ‖f‖2 ≥ η for all f ∈ C, f 6= 0.
Suppose that for some γ > 0 we have s = CSDAD(C, γ). Any CSQ algorithm that outputs a
hypothesis h such that ‖h− f‖2 < η needs at least s/2 queries or queries of tolerance

√
γ.

A.2. Preliminaries: Multilinear Algebra

Here we introduce some multilinear algebra notation. An order k tensor A is an element of the
k-fold tensor product of subspaces A ∈ V1 ⊗ . . . ⊗ Vk. We will be exclusively working with
subspaces of Rd so a tensor A can be represented by a sequence of coordinates, that is Ai1,...,ik .
The tensor product of a order k tensor A and an order m tensor B is an order k +m tensor defined
as (A ⊗ B)i1,...,ik,j1,...,jm = Ai1,...,ikBj1,...,jm . We are also going to use capital letters for multi-
indices, that is tuples of indices I = (i1, . . . , ik). We denote by Ei the multi-index that has 1 on
its i-th co-ordinate and 0 elsewhere. For example the previous tensor product can be denoted as
AIBJ . To simplify notation we are also going to use Einstein’s summation where we assume that
we sum over repeated indices in a product of tensors. For example if A ∈ Rd ⊗ Rd, v ∈ Rd,
u ∈ Rd we have

∑d
i,j=1 viujAij = viujAij . We define the dot product of two tensors (of the

same order) to be 〈A,B〉 = Ai1,...,ikBi1,...,ik = AIBI . We also denote the `2-norm of a tensor by
‖A‖2 =

√
〈A,A〉. We denote by A(X) a function that maps the tensor X to a tensor A(X). Let

V be a vector space and let A(x) : Rd → V⊗k be a tensor valued function. We denote by ∂iA(x)
the tensor of partial derivatives of A(x), ∂iA(x) = ∂iAJ(x) is a tensor of order k+1 in V⊗k⊗Rd.
We also denote this tensor ∇A(x) = ∂iAJ(x). Similarly we define higher-order derivatives, and
we denote

∇mA(x) = ∂i1 . . . ∂imAJ(x) ∈ V⊗k ⊗ (Rd)⊗m .

A.3. Basics of Hermite Polynomials

We are also going to use the Hermite polynomials that form an orthonormal system with respect
to the Gaussian measure. While, usually one considers the probabilists’s or physicists’ Hermite
polynomials, in this work we define the normalized Hermite polynomial of degree i to be H0(x) =

1, H1(x) = x,H2(x) = x2−1√
2
, . . . ,Hi(x) = Hei(x)√

i!
, . . . where by Hei(x) we denote the proba-

bilists’ Hermite polynomial of degree i. These normalized Hermite polynomials form a complete
orthonormal basis for the single dimensional version of the inner product space L2. To get an or-
thonormal basis for L2, we use a multi-index J ∈ Nd to define the d-variate normalized Hermite
polynomial as HJ(x) =

∏d
i=1Hvi(xi). The total degree of HJ is |J | =

∑
vi∈J vi. Given a func-

tion f ∈ L2(R) we compute its Hermite coefficients as f̂(J) = Ex∼Nn [f(x)HJ(x)] and express
it uniquely as

∑
J∈Nn f̂(J)HJ(x). For more details on the Gaussian space and Hermite Analysis

(especially from the theoretical computer science perspective), we refer the reader to O’Donnell
(2014). Most of the facts about Hermite polynomials that we use in this work are well known
properties and can be found, for example, in Szegö (1967).

We denote by f [k](x) the degree k part of the Hermite expansion of f , f [k](x) =
∑
|J |=k f̂(J) ·

HJ(x). We say that a polynomial q is harmonic of degree k if it is a linear combination of degree k
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Hermite polynomials, that is q can be written as

q(x) = q[k](x) =
∑

J :|J |=k

cJHJ(x)

For a single dimensional Hermite polynomial it holds H ′m(x) =
√
mH ′m−1(x). Using this we

obtain that for a multivariate Hermite polynomial HM (x), where M = (m1, . . . ,mn) it holds

∇HM (x) =
√
miHM−Ei(x) ∈ Rn, (1)

where Ei = ei is the multi-index that has 1 position i and 0 elsewhere. From this fact and the
orthogonality of Hermite polynomials we obtain

E
x∼Nn

[〈∇HM (x),∇HL(x)〉] = |M |δM,L. (2)

The following fact gives us a formula for the inner product of

Fact 32 Let p, q : Rn → R be harmonic polynomials of degree k. Then

E
x∼Nn

[
〈∇`p(x),∇`q(x)〉

]
= k(k − 1) . . . (k − `+ 1) E

x∼Nn
[p(x)q(x)].

In particular,
〈∇kp(x),∇kq(x)〉 = k! E

x∼Nn
[p(x)q(x)].

Proof Write p(x) =
∑

M :|M |=k bMHM (x) and q(x) =
∑

M :|M |=k cMHM (x). Since the Her-
mite polynomials are orthonormal we obtain Ex∼Nn [p(x)q(x)] =

∑
M :|M |=k cMbM . Now, using

Equation (1) iteratively we obtain

E
x∼N

[
〈∇`HM (x),∇`HL(x)〉

]
= k(k − 1) . . . (k − `+ 1)δM,L.

Using this equality we obtain

E
x∼N

[
〈∇`p(x),∇`q(x)〉

]
= E

x∼N

[
〈
∑
M

bM∇`HM (x),
∑
L

cL∇`HL(x)〉

]
=
∑
M,L

bMcL E
x∼N

[
〈∇`HM (x),∇`HL(x)〉

]
=
∑
M,L

bMcLk(k − 1) . . . (k − `+ 1)δM,L.

= k(k − 1) . . . (k − `+ 1) E
x∼N

[p(x)q(x)].

Observe that for every harmonic polynomial p(x) of degree k we have that ∇kp(x) is a symmetric
tensor of order k. Since the degree of the polynomial is k and we differentiate k times this tensor
no longer depends on x. Using Fact 32, we observe that this operation (modulo a division by

√
k!)

preserves the L2-norm of the harmonic polynomial p, that is Ex∼Nn [p2(x)] =
∥∥∇kp(x)

∥∥2

2
/k!.
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Appendix B. Omitted Proofs from Section 2

B.1. Proof of Lemma 15

We restate the lemma here for convenience.

Lemma 33 Let f : Rm → R and U,V ∈ Rm×n be linear maps such that UUᵀ = VVᵀ = Im.
Then,

E
x∼Nn

[f(Ux)f(Vx)] ≤
∞∑
t=0

‖UVᵀ‖t2 E
x∼Nm

[(f [t](x))2] ,

where f [t] denotes the degree-t Hermite part of f .

Proof To simplify notation, write g1(x) = g(Ux) and g2(x) = g(Vx). Moreover, we will write
g1(x) ∼

∑∞
k=0 g

[k]
1 (x) and g2(x) ∼

∑∞
k=0 g

[k]
2 (x). Using Fact 32, we obtain

E
x∼Nn

[g1(x)g2(x)] =
∞∑
k=0

E
x∼Nn

[g
[k]
1 (x)g

[k]
2 (x)] =

∞∑
k=0

1

k!
〈∇kg[k]

1 (x),∇kg[k]
2 (x)〉

=

∞∑
k=0

1

k!
〈∇kg[k](Ux),∇kg[k](Vx)〉 . (3)

Denote by U ⊆ Rn the image of the linear map Uᵀ. Now observe that, using the chain rule, for
any function h(Ux) : Rn → R it holds ∇h(Ux) = ∂ih(Ux)Uij ∈ U , where we used Einstein’s
summation notation for repeated indices. Applying the above rule k times, we have that

∇kh(Ux) = ∂ik . . . ∂i1h(Ux)Ui1j1 . . .Uikjk ∈ U
⊗k .

We denote R = ∇kg[k](x) and observe that this tensor does not depend on x. Moreover, denote
M = UVᵀ, S = ∇kg[k](Ux) = (Uᵀ)⊗kR ∈ U⊗k, and T = ∇kg[k](Vx) = (Vᵀ)⊗kR ∈ V⊗k.
We have that

〈S,T〉 = 〈(Uᵀ)⊗kR, (Vᵀ)⊗kR〉 = 〈R,M⊗kR〉 ≤
∥∥∥M⊗k∥∥∥

2
‖R‖22 = k! ‖M‖k2 E

x∼Nn
[(g[k](x))2] ,

where to get the last equality we used again Fact 32. To finish the proof, we combine this inequality
with Equation (3).

B.2. Proof of Corollary 16

Corollary 34 Let d ≥ 2 and D be a distribution over Rm such that the first (d−1) moments of
D match the corresponding moments of Nm. Let G(x) = D(x)/φm(x) be the ratio of the corre-
sponding probability density functions. For matrices U,V ∈ Rm×n such that UUᵀ = VVᵀ = Im,
define DU and DV to have probability density functions G(Ux)φn(x) and G(Vx)φn(x), respec-
tively. Then, we have that |χNn(DU, DV)| ≤ ‖UVᵀ‖d2χ2(D,Nm).
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Proof We compute

χNn(DU, DV) = E
x∼Nn

[
(DU(x)− φn(x))(DV(x)− φn(x))

φ2
n(x)

]
= E

x∼Nn
[(G(Ux)− 1)(G(Vx)− 1)] .

We then apply Lemma 15 to the function g(x) = G(x) − 1. Note that the assumption that D
matches the first d − 1 moments with Nm is equivalent to saying that g[t] = 0 for t < d. Thus,
Lemma 15 implies that

|χNn(DU, DV)| ≤ ‖UVᵀ‖d2
∞∑
t=0

E
x∼Nm

[(g[t](x))2] = ‖UVᵀ‖d2 E
x∼Nm

[g2(x)]

≤ ‖UVᵀ‖d2χ2(D,Nm) ,

where the equality is Parseval’s identity and in the last inequality we used the definition of G.

B.3. Proof of Lemma 17

We restate the lemma below.

Lemma 35 Let 0 < a, c < 1/2 and m,n ∈ Z+ such that m ≤ na. There exists a set S of 2Ω(nc)

matrices in Rm×n such that every U ∈ S satisfies UUᵀ = Im and every pair U,V ∈ S with
U 6= V satisfies ‖UVᵀ‖F ≤ O(n2c−1+2a).

Proof Our proof relies on the following fact that there exist exponentially many nearly orthogonal
unit vectors.

Fact 36 (see, e.g., Lemma 3.7 of Diakonikolas et al. (2017)) For any 0 < c < 1/2 there exists a
set S′ of 2Ω(nc) unit vectors in Rn such that any pair u,v ∈ S′, with u 6= v, satisfies |〈u,v〉| <
O(nc−1/2).

Let S′ be the set of unit vectors that Fact 36 constructs. We group them into sets of size m and
use the vectors of each group as rows for each matrix that we make. Thus, we create at least
|S′|/na = 2Ω(nc) many matrices. Next, we ortho-normalize each matrix V ∈ S′ using the Gram-
Schmidt process, in order to get VVᵀ = Im. In every row of V, the Gram-Schmidt algorithm adds
at most m orthogonal vectors, each having norm O(nc−1/2). Thus, the total correction term for
each row has norm at most

√
mO(nc−1/2). Putting everything together, we have that for all U,V

obtained that way,

‖UVᵀ‖F ≤
(
m2m2O(n4(c−1/2))

)1/2
= O

(
n2c−1+2a

)
.
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B.4. Omitted Proof from Proposition 19

Claim 37 It holds that χ2(A,Nm) = 1.

Proof

χ2(A,Nm) =

∫
Rm

A2(z)

φm(z)
dz− 1 =

∫
Rm

φ2
m(z)Pr2[y = 1|x = z]

φm(z)Pr2[y = 1]
dz− 1

≤ 4

∫
Rm

φm(z)Pr[y = 1|x = z]dz− 1 = 4Pr[y = 1]− 1 = 1 ,

where we used the definition of A, Bayes’ rule and the fact that Pr[y = 1] = 1/2.

Appendix C. Omitted Proofs from Section 3

C.1. Low-Degree Polynomial Approximation to the Sign Function

In this subsection, we record a known powerful theorem from the approximation theory literature
by Ganburg Ganzburg (2002); Ganzburg and Rognes (2008). This result can be used to derive tight
polynomial degree lower bounds for the sign function and the ReLU function, used in a subsequent
section. Let Aσ(f)p = infg∈Bσ ‖f − g‖p, where Bσ, σ > 0 is the class of all entire functions of
exponential type σ, i.e., the class consisting of every entire function g such that for every ε > 0
there exists a C for which |g(z)| ≤ Ceσ(1+ε)|z|.

Fact 38 For any function f : R→ R of polynomial growth

lim
n→∞

(
bn
σ

)1/p

inf
p∈Pn

∥∥∥∥f (bnσ x
)
− p(x)

∥∥∥∥
p

= Aσ(f)p ,

where bn = 2
√
n, p ∈ [1, 2] and Aσ(f)p is the error of best approximation of f by entire functions

of exponential type σ in Lp(R).

By selecting f(t) = sign(t) and p = 1, we get that any polynomial that achieves error at most
ε with respect to the L1-norm must have degree at least Ω(1/ε2).

Corollary 39 Let f : R → {±1} with f(t) = sign(t). Any polynomial p : R → R satisfying
‖f − p‖1 ≤ ε must have degree d = Ω(1/ε2).

C.2. Proof of Lemma 22

We restate the lemma below.

Lemma 40 There exists a distribution D that (i) matches d moments with N , (ii) the pdf of D is at
most 2 times the pdf of N on every point in R and (iii) for some α = Θ(1/

√
d)

Pr[(X mod a) ∈ (a/2, a)] = 2−Ω(d) .

First, we need the following lemma.
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Lemma 41 There is a d-wise independent family of t = O(d) standard Gaussians X1, X2, . . . , Xt

such that
(∑t

i=1Xi

)
mod 1 ∈ [0, 1/2] with probability 1 − 2−Ω(d). Furthermore, such a dis-

tribution can be obtained by rejection sampling a set of independent standard Gaussians, where a
sample is rejected with probability 1/2.

Proof The standard Gaussian distribution can be decomposed into a uniform component and a
remaining term. That is,N = cU([0, 1]) + (1− c)E, where U([0, 1]) is the uniform distribution in
[0, 1], E is another distribution, and c > 0 is a constant. Let t ∈ N such that t > d/c. We generate
this d-wise independent family X1, . . . , Xt as follows.

First, we sample Y1, . . . , Yt independent standard Gaussians, writing each Yi either as a sample
from U([0, 1]) or a sample from E. Then, two complementary cases are considered.

Case 1. The number of Yi’s that came from U([0, 1]) is at most d. In this case, the sample is
rejected with probability 1/2.

Case 2. Otherwise, the sample is rejected if and only if (
∑t

i=1 Yi) mod 1 ∈ (1/2, 1].

Let X1, . . . , Xt be the output of this rejection sampling procedure. The probability that the sample
is generated by the first case of the algorithm is exponentially small. To see this, define Zi ∈ {0, 1}
to be one if and only Yi is drawn from U([0, 1]). If C1 denotes the event of being in Case 1, then by
standard Chernoff bounds we have that

Pr[C1] = Pr

[
t∑
i=1

Zi ≤ d

]
= Pr

[
t∑
i=1

Zi ≤ E

[
t∑
i=1

Zi

](
1−

(
1− d

tc

))]

≤ exp

(
−(1− d/(tc))2tc

2

)
= 2−Ω(d) ,

where we used that t > d/c. Therefore, the probability that (
∑t

i=1Xi) mod 1 ∈ [0, 1/2] is
1− 2−Ω(d).

Moreover, the probability of accepting the sample is exactly 1/2 independently of the Yi’s. To
see this, let C1, C2 = C1 be the events of Case 1 and Case 2 being true respectively, and A be the
event of accepting the sample. For Case 1, we have Pr[A|C1] = 1/2. In Case 2, we know that at
least one element is drawn from U([0, 1]), which means that the (

∑t
i=1Xi) mod 1 is going to be

uniform in [0, 1]. Thus, Pr[A|C2] = 1/2. Therefore, Pr[C1|A] = Pr[A|C1]Pr[C1]/Pr[A] =
Pr[C1] and Pr[C2|A] = Pr[A|C2]Pr[C2]/Pr[A] = Pr[C2], i.e., accepting is independent of
C1, C2, and thus independent of the sample itself. This means that the output X1, . . . , Xt remains
Gaussian.

For the d-wise independence of the variables X1, . . . , Xt, let I be an arbitrary set of at most d
indices from {1, . . . , t}. We claim that {Xi}i∈I are independent. Case 1 is trivial, since we accept
independently of the values of the Yi’s. For Case 2, note that in that case there are more than d Yi’s
drawn from U([0, 1]). This means that there exists one j 6∈ I such that Yj is uniform and forces the
(
∑t

i=1Xi) to be uniform in [0, 1]. Thus, the event (
∑t

i=1Xi) ∈ [0, 1/2] is independent of {Yi}i∈I ,
and therefore {Xi}i∈I is a set of independent random variables.

Proof [Proof of Lemma 22] Consider the random variable X =
∑t

i=1Xi/
√
t for the Xi’s of

Lemma 41. For (i), note that the d-th moment involves the expectation of at most d of the Xi’s,
which are independent. Note that (ii) holds because the distribution of X puts almost all of its mass
on half of the real line, and (iii) follows from our scaling of 1/

√
t.
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C.3. Proof of Proposition 21

Proof We can assume that k is even. Let f be 1 on the k/2 intervals (ia + a/2, (i + 1)a), for
i = 0, . . . , k/2− 1, and zero elsewhere. Denote by D the distribution of Lemma 22. From property
(iii), we have that Ex∼D[f(x)] = 2−Ω(d)k. On the other hand, assuming that k = O(

√
d), we

have that Ex∼N [f(x)] = Ω(k/
√
d). This is because the regions where f is 1 are contained in the

interval [0,Θ(k/
√
d)] ⊆ [0, O(1)], where the pdf of the standard Gaussian is bounded below by

some constant.
Let D(x) and φ(x) denote the density on point x of the distribution D and N respectively. For

every polynomial p : R→ R of degree at most d, it holds

E
x∼N

[f(x)]− E
x∼D

[f(x)] = E
x∼N

[
f(x)

(
1− D(x)

φ(x)

)]
= E

x∼N

[
(f(x)− p(x))

(
1− D(x)

φ(x)

)]
≤ E

x∼N
[|f(x)− p(x)|] ,

where the second equality follows from the fact that D matches its first d moments with N , and
in the last inequality we used that 0 ≤ D(x) ≤ 2φ(x) for all x ∈ R. Thus, if f could be L1-
approximated to error ε by a degree-d polynomial, then Ex∼N [f(x)] − Ex∼D[f(x)] would be at
most ε. But we already showed that this is Ω(k/

√
d), which implies that d = Ω(k2/ε2).

C.4. Proof of Lemma 24

We restate the lemma below.

Lemma 42 There exists an intersection of k halfspaces on Rk, f : Rk → {±1} such that GNSε(f) =
Ω(
√
ε log k).

Proof We will exhibit a family of k halfspaces whose intersection has the claimed Gaussian noise
sensitivity. In particular, these halfspaces will be orthogonal. For i ∈ [k], let fi : Rn → {±1} with
fi(x) = sign(−〈ei,x〉+ θ), where ei is the vector having 1 in the i-th coordinate and 0 elsewhere,
and θ > 0 is the bias. That is, fi is 1 if and only if the i-th coordinate is less than θ.

Fix an index i ∈ [k]. The Gaussian noise sensitivity of a single halfspace is GNSε(fi) =

Ω(e
− θ2

2(1−ε/2)
√
ε) (see, e.g., (Diakonikolas et al., 2015, Lemma 3.4) for a proof). Let x,y be two

(1−ε)-correlated n-dimensional standard Gaussian random variables. Then, the inner products
〈ei,x〉 and 〈ei,y〉 are (1−ε)-correlated univariate Gaussians. Since the Gaussian noise sensitiv-
ity of fi is proportional to the probability that 〈ei,x〉 < θ < 〈ei,y〉, we have that

Pr
(x,y)∼N 1−ε

n

[〈ei,x〉 < θ < 〈ei,y〉] = Ω(e
− θ2

2(1−ε/2)
√
ε) .

Let θ be the threshold for which Prx∼Nn [〈ei,x〉 > θ] = 1/k. The standard bound for the Gaus-
sian tail is Prx∼Nn [〈ei,x〉 > θ] = Θ(e−θ

2/2/θ). Therefore, for the θ that we selected it holds
Pr(x,y)∼N 1−ε

n
[〈ei,x〉 < θ < 〈ei,y〉] = Ω(θ

√
ε/k) = Ω(

√
ε log k/k).

Let f : Rn → {±1} be 1 if and only if fi is 1 for all i ∈ [k]. Then, we have that

GNSε(f) = 2 Pr
(x,y)∼N 1−ε

n

[f(x) = 1, f(y) = −1] = Pr
x∼Nn

[f(x) = 1]− Pr
(x,y)∼N 1−ε

n

[f(x) = f(y) = 1]

=

(
1− 1

k

)k
−
(

1− 1

k
− Ω

(√
ε log k

k

))k
,
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where the k-th powers are due to the fact that 〈ei,x〉 and 〈ej ,x〉 are independent for i 6= j. We
can use the Taylor expansion to show that the above difference is Ω(

√
ε log k). Let the function

h(t) = (1−1/k+t)k. By Taylor’s theorem, h(0)−h(t) = −h′(0)t−h′′(ξ)t2/2, for some ξ between
t and 0. By calculating the derivatives, setting t = −Ω(

√
ε log k/k) and noting that the second term

of the approximation is less than the first one, we get that h(0)−h(t) = Ω
(√

ε log k
k

)
k
(
1− 1

k

)k−1.

C.5. Proof of Claims 26 and 27

Claim 43 For any θ ∈ [0, 2π], it holds |p(k)(θ)| = O(d)k.

Proof Using cos θ =
(
eiθ + e−iθ

)
/2 and sin θ =

(
eiθ − e−iθ

)
/2, we write p(θ) =

∑∞
n=−∞ ane

niθ,
for some coefficients an, where an = 1

2π

∫ 2π
0 p(φ)e−niθdφ. Since p has degree at most d, it holds

that an = 0, for all n > d and n < −d. Therefore, we have that p(θ) =
∑d

n=−d
1

2π

∫ 2π
0 p(φ)eni(θ−φ)dφ.

Taking the k-th derivative (using Leibniz’s rule) gives

p(k)(θ) =
d∑

n=−d

1

2π

∫ 2π

0
p(φ)(ni)keni(θ−φ)dφ .

This implies that

|p(k)(θ)| ≤
d∑

n=−d

1

2π

∫ 2π

0
|p(φ)|nkdφ ≤ 2

d∑
n=−d

nk = O(dk+1) .

Moreover, k is proportional to log d, thus |p(k)(θ)| = O(d)k, for all θ ∈ [0, 2π].

Claim 44 It holds that |bk| ≤ 1/(4k).

Proof Note that bk = (1/2π)
∫ 2π

0 R(θ)e−kiθdθ. Using the orthogonality of the trigonometric
polynomials, only terms containing cos(kθ) are non-zero. Moreover, cosk θ =

∑k
j=0 uj cos(jθ)

with uk = 2−k+1, which can be verified using the identity cos θ = (eiθ + e−iθ)/2. Therefore, we
have that

bk =
1

2π

∫ 2π

0
R(θ)e−kiθdθ =

1

2π

∫ 2π

0
ckukt

k cos(kθ)e−kiθdθ = ckuk
tk

2π
π =

(
t

2

)k
ck ,

where we used that R(θ) =
∑k

j=0 cj(t cos θ + φ)j . Since ck = 2kO(d/k)k, we have that bk =

O(td/k)k; this is at most 1/(4k), if t is a small enough multiple of log d/d.

Appendix D. Lower Bound for Real-Valued Functions

In this section, we extend our lower bounds to the case of real-valued functions. We first show that
a lower bound on the degree of any polynomial that approximates the functions of the class up to
L2-error ε translates to a lower bound on the complexity of any CSQ learner. While the L2-norm
is the most natural norm to use for approximating real-valued functions, we show that using the
L1-norm instead yields lower bounds in the general SQ model.
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D.1. CSQ Lower Bound

We start with the result involving the L2-norm. We restate Theorem 6 below.

Theorem 45 Let n,m ∈ Z+ with m ≤ na for any constant 0 < a < 1/2 and ε ≥ n−c for
some sufficiently small constant c > 0. Let f : Rm → R with Ex∼Nm [f2(x)] = 1 and d be
the smallest integer such that there exists a degree at most d polynomial p : Rm → R satisfying
‖f − p‖2 < ε. Let C be a class of real-valued functions on Rn which includes all functions of the
form F (x) = f(Px), for any matrix P ∈ Rm×n satisfying PPᵀ = Im. Then, any CSQ algorithm
that agnostically learns C over Nn to L2-error OPT + ε either requires queries with tolerance at
most n−Ω(d) or makes at least 2n

Ω(1)
queries.

To prove our CSQ lower bound, we need to find a hard function g : Rm → R that is uncorrelated
with low-degree polynomials and, at the same time, is close to f in the L2-sense. Instead of using
duality to establish the existence of such a function g, we let g be the orthogonal component of the
truncated Hermite expansion of f .
Proof [Proof of Theorem 6] Let an algorithm A that agnostically learns C up to L2-error ε. Let
g(x) = f(x)−

∑d−1
i=0 f

[i](x), i.e., g is the same as the function f without the low-degree moments
up to d − 1. Note that ‖g‖2 ≥ ε. Let C = 2/(ε ‖g‖2) and let S be the set of nearly orthogonal
matrices of Lemma 17. Consider the class Cg that consists of all functions from Rn to R of the form
GV(x) = Cg(Vx), for any matrix V ∈ S. Every GV ∈ Cg is orthogonal to all polynomials of
degree less than d, and also ‖GV‖2 = 2/ε. We feed A with samples (x, GV(x)), where x ∼ Nn,
V ∈ S. Let ε′ > 0 be the accuracy parameter used with A. Then, A returns a hypothesis h
satisfying √

E
x∼Nn

[(h(x)−GV(x))2] ≤ OPT + ε′ . (4)

For our choice of C, the optimal error becomes

OPT ≤
√

E
x∼Nn

[(f(Vx)−GV(x))2] =

√
1 + C2 ‖g‖22 − 2C E

x∼Nm
[f(x)g(x)]

≤
√

1 +
4

ε2
−

2 ‖g‖2
ε
≤
√

4

ε2
− 1 ≤ 2

ε

√
1− ε2

4
≤ 2

ε
− ε

4
,

where in the second inequality we used that Ex∼Nm [f(x)g(x)] = ‖g‖22. By choosing ε′ = ε/8,
Equation (4) becomes ‖h−GV‖2 ≤ 2/ε− ε/8.

It remains to bound from above the pairwise correlation of the class Cg. For any two different
U,V ∈ S, we have that

E
x∼Nn

[GU(x)GV(x)] ≤ C2
∞∑
t=0

‖UVᵀ‖t2 E
x∼Nm

[(g[t](x))2] ≤ C2 ‖UVᵀ‖d2
∞∑
t=d

E
x∼Nm

[(g[t](x))2]

≤ 4ε−2 ‖UVᵀ‖dF ≤ ε
−2n−Ω(d) ≤ n−Ω(d) ,

where in the first inequality we used Lemma 15, in the second inequality we used the fact that g is
uncorrelated with all polynomials of degree less than d, the third inequality follows from Parseval’s

27



DIAKONIKOLAS KANE PITTAS ZARIFIS

identity and the fact that ‖g‖2C = 2/ε, the next one follows from Lemma 17, and the last one from
our assumption ε > n−c for an appropriate constant c. As a note, we extend our class Cg to include
the identically zero function, which does not increase the pairwise correlations. Using Lemma 30
with γ′ = γ, we have that CSDANn(Cg, 2γ) = 2n

Ω(1)
for γ = n−Ω(d). An application of Lemma 31

with η = 2/ε concludes the proof.

D.2. SQ Lower Bound

In this section we prove lower bounds for the general SQ model. On this end, we require our hard
function g to be pointwise bounded. This allows us to define a learning problem with Boolean
labels, for which we have SQ lower bounds ready to be used. Because of our L∞ constraint on g,
the resulting lower bound is expressed in terms of the degrees of polynomials that approximate f in
L1 rather than L2 sense. We restate Theorem 7 below.

Theorem 46 Let n,m ∈ Z+ with m ≤ na for any constant 0 < a < 1/2 and ε ≥ n−c for
some sufficiently small constant c > 0. Let f : Rm → R with Ex∼Nm [f2(x)] = 1 and d be
the smallest integer such that there exists a degree at most d polynomial p : Rm → R satisfying
‖f − p‖1 < ε. Let C be a class of real-valued functions on Rn which includes all functions of the
form F (x) = f(Px), for any matrix P ∈ Rm×n satisfying PPᵀ = Im. Then, any SQ algorithm
that agnostically learns C over Nn to L2-error OPT + ε either requires queries with tolerance at
most n−Ω(d) or makes at least 2n

Ω(1)
queries.

Our duality argument will now use the pair of dual norms L1, L∞.

Proposition 47 Let f ∈ L2(Rm) be such that for any degree at most d−1 polynomial p : Rm → R,
it holds ‖f − p‖1 ≥ ε. Then, there exists a function g : Rm → [−1, 1] such that:

1. Ex∼Nm [f(x)g(x)] ≥ ε, and,

2. Ex∼Nm [P (x)g(x)] = 0, for any polynomial P : Rm → R with degree less than d.

Proof The function g is a solution to the infinite system:

(∗)


E

x∼Nm
[f(x)g(x)] ≥ ε

E
x∼Nm

[P (x)g(x)] = 0 ∀P ∈ Pmd−1

‖g‖∞ ≤ 1

This is equivalent to the following LP:

(∗∗)


− E
x∼Nm

[f(x)g(x)] + ε ≤ 0

E
x∼Nm

[P (x)g(x)] = 0 ∀P ∈ Pmd−1

E
x∼Nm

[g(x)h(x)] ≤ ‖h‖1 ∀h ∈ L1(Rm)
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From Corollary 55, the above LP is feasible unless the following is infeasible:

(∗∗′)


‖h‖1 − λε < 0

h(x) + P (x)− λf(x) = 0, ∀x ∈ Rm

λ ≥ 0, h ∈ L1(Rm), P ∈ Pmd−1

Let (h, P, λ) be a solution to (∗∗′). Note that we can assume that λ = 1 since all constraints are
homogeneous. Then, the constraints become h = f − P and

‖f − P‖1 < ε ,

which is a contradiction. Therefore, the original system (∗) is feasible.

We conclude with the proof of the main theorem for this section.
Proof [Proof of Theorem 7] Suppose that we have such an agnostic learnerA. Let g : Rm → [−1, 1]
be the function of Proposition 47, for a parameter ε′ > 0 to be specified. Let Dg be the family of
distributions over Rn × {±1} from Definition 18. We use A to solve the problem of distinguishing
between a distribution fromDg and the distribution where the labels are drawn uniformly at random.
That is, we convert A into an algorithm for B(Dg,Nn × U({±1})), and the hardness result will
follow from the hardness of that decision problem, as established by Proposition 19.

Let D′ be a distribution that is either D′ = Nn × U({±1})) or D′ ∈ Dg. We feed A a set of
i.i.d. samples of the form (x, Cy), where (x, y) ∼ D′ and C = 1/Ex∼Nm [f(x)g(x)]. Let ε′ > 0
be the accuracy parameter used when running A and h be the returned hypothesis. We have that√

E
(x,y)∼D′

[(h(x)− Cy)2] ≤ OPT + ε′ . (5)

If D′ ∈ Dg, for the optimal error we have that

OPT ≤
√

1 + C2 − 2C E
x∼Nm

[f(x)g(x)] ≤
√
C2 − 1 = C

√
1− 1/C2 ≤ C − 1/(2C) .

If we choose ε′ = 1/(4C), Equation (5) becomes
√

E(x,y)∼D′ [(h(x)− Cy)2] ≤ C − 1/(4C). On

the other hand, we can write
√

E(x,y)∼D′ [(h(x)− Cy)2] ≥
√
C2 − 2C Ex∼Nm [h(x)y]. Combin-

ing these two, we obtain

2C E
x∼Nm

[h(x)y] ≥ C2 − (C − 1/(4C))2 ≥ 1/3 ,

which gives that Ex∼Nm [h(x)y] ≥ 1/(6C) = Ex∼Nm [f(x)g(x)]/6 ≥ ε/6 from Proposition 47.
Note that if D′ = Nn × U({±1}), then E(x,y)∼D′ [h(x)y] = 0. Therefore, by performing a

query of tolerance Ω(ε) for the correlation of h with the labels, we can distinguish between the two
cases of our hypothesis testing problem. By Proposition 19, this requires either 2n

Ω(1)
queries or

queries of tolerance n−Ω(d).
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Appendix E. Applications for Classes of Real-Valued Functions

Our applications for real-valued classes include ReLUs and sigmoids. The lower bounds established
in this section are based on the degrees of theL1 andL2-approximating polynomials, as summarized
in Table 2.

E.1. ReLU Activation

The class of Rectified Linear Unit (ReLU) functions consists of all functions of the form ReLU(〈w,x〉),
where w ∈ Rn is any vector with ‖w‖2 = 1 and ReLU : R → R is defined as ReLU(t) =
max{0, t}.

Upper and lower bounds for agnostically learning ReLUs were given in Goel et al. (2020b);
Diakonikolas et al. (2020c). Diakonikolas et al. (2020c) established an SQ lower bound of nΩ(1/εc),
for some constant c > 0. This constant c was not explicitly calculated in Diakonikolas et al.
(2020c), but can be shown to be approximately 1/40. Goel et al. (2020b) gave an SQ lower bound
of nΩ(1/ε1/36) for this problem. We note that Goel et al. (2020b) considered a correlational type
of guarantee, i.e., finding a hypothesis whose correlation with the labels is within ε of the optimal,
as opposed to L2-error. For this correlational guarantee, the upper bound of Goel et al. (2020b)
is an L2-regression algorithm with complexity nO(ε−4/3), and the lower bound states that any SQ
algorithm needs to perform queries with tolerance τ < n−Ω(ε−1/12) or at least 2n

Ω(1)
ε queries.

Furthermore, Goel et al. (2020b) showed that any agnostic learner with the square loss guarantee
can be run with increased accuracy to satisfy the correlational guarantee. This reduction costs a
“third root” in the exponent, yielding an nΩ(ε−1/36) SQ lower bound for the square loss guarantee.
As a note, Goel et al. (2020b) assumes bounded labels. In this setting, agnostically learning within
L2-error OPT+ε is equivalent to agnostically learning in squaredL2-error OPT+ε′, for ε′ = Θ(ε).

To apply our theorems, we bound from below the degree of any polynomial that ε-approximates
the univariate ReLU function. This can be done directly by appealing to Fact 38.

Corollary 48 Let f : R → R be the ReLU function ReLU(t) = max{0, t} and p ∈ [1, 2].
The minimum integer d for which there exists a degree-d polynomial P : R → R such that
‖ReLU− P‖p ≤ ε is d = Θ

(
ε
− 2

1+1/p

)
.

Therefore, Theorems 6 and 7 imply a complexity of at least nΩ(ε−4/3) for any agnostic CSQ
learner; and nΩ(ε−1) for any agnostic SQ learner respectively.

E.2. Sigmoid Activation

E.2.1. CSQ LOWER BOUND

We now let f be the standard sigmoid function, defined as f(t) = 1/(1 + e−t), t ∈ R. We
first focus on bounding the degree of polynomials that approximate f in L2-norm. This can be
done via Hermite analysis, in particular, based on the fact that the polynomial of degree d being
closest to f in L2-norm is the truncated Hermite expansion pd(t) =

∑d
i=0 f̂(i)Hi(t). The error

of this approximation is ‖pd − f‖22 =
∑∞

i=d+1 f̂
2(i). For the asymptotic behavior of the Hermite

coefficients, we use the following fact (see Goel et al. (2020a) and the references therein).
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Fact 49 (Lemma A.9 from Goel et al. (2020a)) Let f : R→ R be the standard sigmoid function
f(t) = 1/(1 + e−t) and f̂(i) be its Hermite coefficients for i ∈ Z+. Then, f̂(0) = 0.5, f̂(2i) = 0

and f̂(2i− 1) = e−Θ(
√
i), for i ≥ 1.

From this fact, we get the bound on the L2-error of the best polynomials of degree d.

Corollary 50 (L2-Degree Lower Bound for Sigmoid) Let f : R → R be the standard sigmoid
function f(t) = 1/(1 + e−t) and d be the smallest integer for which there exists a degree-d polyno-
mial p : R→ R such that ‖f − p‖2 < ε. Then d = Θ(log2(1/ε)).

Proof Fix a degree k. From Fact 49, the best k-degree polynomial pk achieves error

‖f − pk‖22 =
∞∑

i=k+1

f̂2(i) =
∑

i>k,i odd

e−Θ(
√
i) =
√
ke−Θ(

√
k) .

This becomes ε2 when k becomes Θ(log2(1/ε)).

By Theorem 6, we get that any CSQ agnostic learner for sigmoids has complexity nΩ(log2(1/ε)).

E.2.2. SQ LOWER BOUND

The approach to derive lower bounds for the degrees of L1-approximating polynomials will be to
relate the L1-norm to the L2-norm and use the lower bounds for the latter. In particular, we will use
the following fact about polynomials under the Gaussian measure.

Theorem 51 (Hypercontractivity Bogachev (1998); Nelson (1973)) If p is a d-degree polyno-
mial and t > 2, then

‖p‖t ≤ (t− 1)d/2 ‖p‖2 .

Claim 52 Let r ∈ L4(R). Then, ‖r‖2 ≤ ‖r‖
1/3
1 ‖r‖2/34 .

Proof The proof follows from two applications of the Cauchy-Schwartz inequality.

E
t∼N

[r2(t)] ≤ E
t∼N

[|r(t)|]1/2 E
t∼N

[
|r(t)|3

]1/2 ≤ E
t∼N

[|r(t)|]1/2 E
t∼N

[
|r(t)|2

]1/4
E
t∼N

[
|r(t)|4

]1/4
.

Rearranging the above, yields the claimed inequality.

We can now show our L1 polynomial degree lower bound.

Theorem 53 (L1-Degree Lower Bound for Sigmoid) Let f : R → R be the standard sigmoid
function f(t) = 1/(1 + e−t) and 0 < ε < 1. Any degree-d polynomial p : R → R that satisfies
‖f − p‖1 < ε must have d = Ω(log(1/ε)).

Proof Let p : R → R be a degree-d polynomial such that ‖f − p‖1 < ε. Using Theorem 51 with
t = 4 and then Claim 52 with r(t) = p(t), we get that

‖p‖4 ≤ 3d/2 ‖p‖2 ≤ 3d/2 ‖p‖1/31 ‖p‖2/34 .
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After dividing both sides by ‖p‖2/34 , we have that ‖p‖4 ≤ 33d/2 ‖p‖1. Furthermore, using the
triangle inequality, ‖p‖1 ≤ ε+ ‖f‖1 = O(1). Therefore, ‖p‖4 ≤ 2O(d). Furthermore, Claim 52 for
r(t) = f(t)− p(t) gives

‖f − p‖2 ≤ ‖f − p‖
1/3
1 ‖f − p‖2/34 ≤ ε1/32O(d) .

On the other hand, for the L2-error we have that ‖f − p‖2 ≥
√
de−Θ(

√
d) (Corollary 50). Combin-

ing the two bounds, it follows that d = Ω(log(1/ε)).

We note that Goel et al. (2020b) showed an nΩ(log2(1/ε)) SQ lower bound for the correlational
guarantee.

Appendix F. Duality in Infinite-Dimensional LP

We start with some basic definitions.

Lp space Let (X,A, µ) be a measure space and 1 ≤ p < ∞. We will typically take X = Rn,
n ∈ Z+, and µ be the Gaussian measure, unless otherwise specified. For a function f : X → R, the
Lp-norm of f under Nn is defined as ‖f‖p :=

(∫
X |f |

pdµ
)1/p. For the special case where p =∞,

the L∞-norm of f is defined as the essential supremum of f on X , i.e., ‖f‖∞ := inf{a ∈ R :
µ{x ∈ X : f(x) > a} = 0}. The vector space Lp(X,µ) consists of all functions f : X → R with
‖f‖p <∞. We will typically use the shortened notation Lp(Rn) for Lp(Rn,Nn).

Dual Norms Consider a vector space V with inner product 〈·, ·〉 and a norm ‖·‖ on V . The dual
norm ‖f‖∗, f ∈ V , is defined as ‖f‖∗ = sup{〈f, h〉 : ‖h‖ ≤ 1}. Hölder’s inequality states that for
any f, h ∈ V it holds 〈f, h〉 ≤ ‖f‖ ‖h‖∗.

ments, we need to prove that there exists a function g : Rm → R, such that for any function
h ∈ Lp(Rm) and at most (d− 1)-degree polynomial P : Rm → R, it holds

(∗)


− E

x∼Nm
[g(x)f(x)] + c ≤ 0 0 <c < ‖f‖

E
x∼Nm

[P (x)g(x)] = 0 ∀P ∈ Pmd−1

E
x∼Nm

[g(x)h(x)]− ‖h‖p ≤ 0 ∀h ∈ Lp(Rm)

This is in fact an infinite dimensional linear system with respect to the unknown function g ∈
(L1(Rm))∗ = L∞(Rm), for p = 1 and g ∈ Lp/(p−1)(Rm) for 1 ≤ p <∞. We are going to denote
X the metric space Lp(Rm).

Basics on Duality of Infinite-Dimensional LPs In our arguFor succinctness, we will use the
following notation. We use (h̃, t) for the inequality Ex∼Nm [g(x)h̃(x)] + t ≤ 0, where h̃ ∈ X and
t ∈ R. Moreover, let S be the set that contains all such tuples that describe the target system. For
the set S , the closed convex cone over X × R is the smallest closed set S+ satisfying, if A ∈ S+

and B ∈ S+ then A + B ∈ S+ and, if A ∈ S+ then λA ∈ S+ for all λ ≥ 0. Note that the S+

contains the same feasible solutions as S . The set S = {(h,−‖h‖p) : h ∈ Lp} ∪ {(P, 0) : P ∈
Pmd−1} ∪ {(−f, c)}.
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In the finite-dimensional case, we can always prove the feasibility of an LP by applying the
standard Farkas’ lemma (aka theorem of the alternative). However, when the system is infinite-
dimensional, Farkas’ lemma does not hold in general. We are going to use the following result from
Fan (1968).

Lemma 54 (Theorem 1 of Fan (1968)) If X is a locally convex, real separated vector space then,
a linear system described by S for which S+ is feasible (i.e., there exists a g ∈ X ∗) if and only if
(0, 1) 6∈ S+.

One direction is trivial, but the other one needs an application of Hahn-Banach theorem which is
where the assumption on X to be a separated space is used.

Corollary 55 If X = Lp for 1 ≤ p < ∞ then, the LP described by S is feasible if only if
(0, 1) 6∈ S+.

Proof It is not hard to see that the positive cone is defined by

S+ = {(P + h− yf,−‖h‖p + yc− t) : P ∈ Pmd−1, h ∈ Lp(Rm), y, t ∈ R, y, t ≥ 0}.

Now if S+ were closed, we could simply apply Lemma 54. However, it is not immediately clear if
this is the case. Instead, we note that Lemma 54 can be applied to the closure of S+. In particular,
this means that the LP is solvable unless for any ε > 0 we have P, h, y and t so that ‖P + h −
yf‖p, | − ‖h‖p + yc − t − 1| < ε. Letting h′ = yf − P = h − (P + h − yf), we find that S+

contains
(P + h′ − yf,−‖h′‖p + yc− t) = (0,−‖h′‖p + yc− t).

We note that ‖h′‖p ≤ ‖h‖p + ‖P + h − yf‖p = ‖h‖p + ε. This means that −‖h′‖p + yc − t ≥
−‖h‖m + yc− y− ε ≥ 1− 2ε ≥ 1/2 if ε < 1/4. Noting that S+ is scale invariant, this implies that
(0, 1) ∈ S+.

Thus, the LP is solvable unless (0, 1) ∈ S+.
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