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Abstract

Robust statistics has traditionally focused on designing estimators tolerant to a
minority of contaminated data. List-decodable learning [CSV17] studies the more
challenging regime where only a minority % fraction of the dataset, & > 2, is
drawn from the distribution of interest, and no assumptions are made on the
remaining data. We study the fundamental task of list-decodable mean estimation
in high dimensions. Our main result is a new algorithm for bounded covariance
distributions with optimal sample complexity and near-optimal error guarantee,
running in nearly-PCA time. Assuming the ground truth distribution on R has
identity-bounded covariance, our algorithm outputs O(k) candidate means, one of
which is within distance O(v/k log k) from the truth.

Our algorithm runs in time O(ndk)?, where n is the dataset size. This run-
time nearly matches the cost of performing k-PCA on the data, a natural bot-
tleneck of known algorithms for (very) special cases of our problem, such as
clustering well-separated mixtures. Prior to our work, the fastest runtimes were

O(n2dk?) [DKK20], and O(ndk®) [CMY20] for an unspecified constant C' > 6.
Our approach builds on a novel soft downweighting method we term SIFT, ar-
guably the simplest known polynomial-time mean estimator in the list-decodable
setting. To develop our fast algorithms, we boost the computational cost of SIFT via
a careful “win-win-win” analysis of an approximate Ky Fan matrix multiplicative
weights procedure we develop, which may be of independent interest.

*Part of this work was done as an intern at Microsoft Research.
*Throughout this work, the O notation hides logarithmic factors in 7 and the failure probability.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).



1 Introduction

Mean estimation has emerged as one of the cornerstone tasks in robust statistics, as the most basic in a
hierarchy of increasingly complex estimation problems. The problem is straightforward to state: given
samples from a “nice” ground-truth distribution D, where an adversary has (arbitrarily) corrupted a
fraction of the data, recover the mean of D as accurately as possible. Due to its fundamental nature,
robust mean estimation has received extensive study in the statistics, theoretical computer science,
and machine learning communities, starting from the 1960s [Ans60, Tuk60, Hub64, Tuk75].

Despite the apparent simplicity of the problem, efficient algorithms achieving near-optimal error rates
were not known in high-dimensional settings until recently [LRV16, DKK*19]. These works studied
mean recovery in the traditional setting where a majority of the data is “trusted,” i.e. the fraction
of corruptions is strictly less than % For the standard formulation of robust mean estimation, this

assumption is necessary. Indeed, if only an o < % fraction of points can be trusted, the dataset could

consist of O(é) well-separated clusters of “good” points. The mean of each individual cluster is an
equally valid solution to the estimation problem, so asking for a single solution is ill-posed.

In many settings of theoretical and practical interest, having a majority of inlier points is too strong of
an assumption. To circumvent the issue of well-posedness in the o < % regime, [CSV17] proposed a
relaxed learning notion termed list-decodable learning. Rather than restricting to a single hypothesis,
the algorithm may output a list of O(é) hypotheses, guaranteeing at least one of them is close to the
truth. In the context of robust mean estimation, this amounts to outputting O(é) candidate means.

A natural problem in its own right, list-decodable mean estimation also generalizes a number of other
problems. A prototypical example is learning well-separated mixture models, which has received
extensive treatment in the literature [Das99, VW04, AMO05, DS07, AK05, RV17, HL18, DKS18,
KSS18]. In this problem, data is drawn from a uniform mixture® of k “nice” distributions Dy, . . ., Dy,
with far apart means, and the goal is to recover clusters coming from each component. By running a
list-decodable estimation procedure with o = %, each cluster is an equally valid “ground truth,” so the
output must contain candidate means close to each true mean. If the candidates are sufficiently close,
standard techniques recover the true clustering. List-decodable mean estimation robustly extends this

problem to tolerate adversarial noise or non-uniformity, up to constants in the output size.

Moreover, list-decodable mean estimation can be used to model important data science applications
such as crowdsourcing (where a majority of respondents could be unreliable or malicious) [SVC16,
MV 18], or semi-random community detection in stochastic block models [CSV17]. This primitive
is particularly useful in the context of semi-verified learning [CSV17, MV 18], where a learner can
audit a small amount of trusted data. Even if the trusted dataset is too small to directly learn from, in
conjunction with a list-decodable learning procedure it can pinpoint a candidate hypothesis consistent
with the verified data (indeed, only roughly log é vetted points are required).

The first tractable algorithm for high-dimensional list-decodable mean estimation was given
by [CSV17]. Their work considered the setting where D has (unknown) covariance 3 = 021
for some known ¢ (i.e. a second moment bound). In this setting, [CSV17] gave a sample-optimal,
polynomial-time algorithm outputting O(é) candidate means, so some candidate is within /2 distance
O(oy/a~1loga—") from the mean of D. As later demonstrated in [DKS18], this error is optimal
up to logarithmic factors. However, the [CSV17] algorithm heavily relies on black-box semidefinite
programming solvers, and thus the runtime is prohibitively large in high-dimensional instances.

The goal of our work is to develop much faster, truly scalable algorithms for list-decodable mean
estimation which achieve optimal statistical guarantees. This goal fits broadly into a larger line
of work focused on understanding the computational cost of robustness for basic statistical tasks.
In some settings, this line has demonstrated strong evidence that robustness comes at an inherent
computational cost [DKS17, HL19]. In contrast, recent algorithms have been developed that achieve
robustness essentially “for free” in many other settings [CDG19, DHL19, CDGW 19, LY?20, JLT20].

While list-decodable mean estimation has received a fair amount of attention, there have only been
a few results achieving improved runtimes. One line of work proposed an algorithm framework
termed multi-filtering [DKS18, DKK20], based on learning multiple candidate “weight functions.” In
particular, [DKK20] uses this approach to design an algorithm achieving near-optimal error in time

O(n?da=2), where n is the overall dataset size. While this dramatically improves over the runtime

*Some algorithms extend beyond the uniform setting; we present it this way for simplicity of exposition.



in [CSV17], the quadratic dependence on n is not ideal in high-dimensional settings. Concurrently,
the work [CMY20] proposes a different, descent-based algorithm based on (approximate) positive
semidefinite programming, achieving optimal error (up to constant factors) in time O(nda~¢) for
some constant C' > 6. When o = ©(1), the [CMY20] runtime is nearly-linear in the problem input
size. However, if a~! scales polynomially with d, e.g. a mixture model with many components in
moderate dimension, then this large dependence on o~ ! may also be prohibitively slow.

In contrast to this somewhat murky runtime landscape, the state of affairs for clustering separated
mixture models is relatively clear. The fastest known algorithm for clustering a mixture of k well-
separated components is almost twenty years old [VW04], and runs in time O(ndk), as a relatively
simple and elegant application of (approximate) k-principal components analysis (k-PCA). Since
list-decodable mean estimation can be thought of as the natural robust analog to clustering mixture
models, it is natural to ask:

Can we perform list-decodable mean estimation as efficiently as learning mixture models?

Concretely, since clustering mixture models is an instance of list-decodable learning with o = k1,

the question becomes: can we solve list-decodable mean estimation in time 6(%)‘7 This presents
itself as a natural barrier, since further improvement would imply faster learning of mixture models.

2  Our results

Our main contribution is to answer this question affirmatively with near-optimal statistical guarantees.
We start by formally defining the problem we study, which we call “list-decodable mean estimation.”

Definition 1. Given T C R% and 0 < o < % such that an a-fraction of T' are independent draws

from a distribution D with unknown target mean p* and unknown covariance ¥ < o1, output a
small list of vectors {[i;}jer, such that minjey, ||f1; — p*||2 is minimized.

We emphasize that no assumptions are made on the remaining 1 — « fraction of 7', i.e. they may be
arbitrary and chosen by a computationally unbounded adversary allowed to inspect the inliers. In the
setting of Definition 1, our main result states that we can solve list-decodable mean estimation nearly-
optimally in the time it takes to perform k-PCA poly-logarithmically many times, for k = @(i)

d
«

Theorem 1 (See Corollary 3 of the supplementary material). Given |T| = n = Q(<) samples, there

is an algorithm with runtime 0 (%‘i) that with high probability outputs a list of m vectors {11} jc(m),
form = O(L), such that min e ||* — 5|2 = O(ca— 2 /loga—1).

A few remarks are in order. First, a list size of (1), sample complexity of (<), and error

of Q(oa’%) are information-theoretically necessary for this problem [DKS18]. We also provide
an algorithm in the supplementary material returning m = O(X) hypotheses {/1;} ;e[ attaining
optimal error min,e(y, [|u* — pjllz = O(ca~7), with an additive runtime overhead of O(a ).
Without loss of generality a~! = o(d), as otherwise there is a trivial algorithm (cf. Appendix A of the
supplementary material), so the o~ % additive term is only dominant in the range o' € [w(v/d), o(d)]

assuming n = @(%). Even with this overhead, our runtime is the best-known in all parameter regimes.

Our approach is inspired by the way in which fast algorithms for robust mean estimation in the v — 1
regime were built. First, a “simple” polynomial (but not nearly-linear) time algorithm — namely,
the filter — was developed [DKK ™19, DKK ™17, Ste18]. Then, building on the framework of this
simple algorithm, near-linear time algorithms were developed [CDG19, DHL19] using tools from
the continuous optimization community — specifically, matrix multiplicative weights regret analyses.
In this paper, we accomplish both these steps for the o < % regime. First, we design a simple “basic”
algorithm for the list-decodable mean estimation problem, and then speed it up using matrix regret
minimization tools. As explained below, both steps require substantially new ideas.

SIFT: a new, simple algorithm for list-decodable learning. Our first main contribution is a novel
algorithm for list-decodable mean estimation, which we call SIFT (Subspace Isotropic FilTering),

achieving optimal statistical guarantees in time O(%). While by itself, SIFT does not achieve a
nearly-linear runtime, its framework is vital in designing our more sophisticated algorithms. Crucially,
SIFT is conceptually different from all prior approaches for our problem, with a complete decoupling
of a “filtering” step and a “clustering” step; it is these differences that allow for our later speedups.



Reference Runtime Error guarantee
[CSV17] poly(n,d,a™) | O(ca~2+/loga~1)
[DKK20] O(n2da~2) O(ca2loga™?)
[CMY20] | O(nd(a=')=°) O(oa2)

Our work O(nda1) O(ca—2+/loga~T)

Our work | O(nda~! + a~F) O(oa2)

Table 1: List-decodable mean estimation algorithm runtimes. All algorithms listed return lists of size
O(}) and use sample complexity n = O(g), which are information-theoretically optimal [DKS18].

The O notation hides polylogarithmic factors in failure probability and dimension.

The main advantage of SIFT is its simplicity. All prior algorithms for list-decodable mean estimation
were quite complicated, with involved and lengthy analyses, whereas an analysis of SIFT fits in just
over two pages. We believe SIFT is of independent interest (both theoretically and practically), and
its framework may find applications in other list-decodable learning settings.

FastSIFT: speeding up SIFT via Ky Fan regret minimization. While each SIFT iteration can be
performed in time O(ndk), the algorithm requires ©(n) iterations in the worst case, as there are
instances where each iteration removes only one data point. The main challenge is to combine the
SIFT analysis with a downweighting procedure guaranteeing termination in polylogarithmically many
iterations. To achieve this, we use tools from semidefinite programming (SDP) to design iterative
schemes with stronger termination guarantees. This mirrors, and is inspired by, the o — 1 regime,
where tools such as packing SDP solvers [CDG19] and matrix multiplicative weights [DHL19] were
used to speed up the basic filter. We note that [CMY20] also uses SDP tools to obtain their runtime,
but in a substantially different way: they design a black-box Ky Fan norm packing SDP subroutine,
whereas we directly use a (stronger) regret guarantee to guide weight removal.

3 Preliminaries

General notation. We let (11, 3) denote the multivariate Gaussian distribution with specified mean
and covariance, and [d] denote the naturals 1 < j < d. When applied to a vector argument, [|-|, is the

¢, norm. We denote the (solid) probability simplex in n dimensions by A™ = {w € RZ, | [|[w]; <
1}. The all-ones vector in appropriate dimension is 1. The identity matrix in appropriate dimension
is I. We use the standard Loewner order < on the set of symmetric matrices S* = R?*? with positive
semidefinite subset S ;. For k € [d], the operation Ay (-) on S? returns the k™ largest eigenvalue.
When applied to a matrix in S<,, ||-||,, for k € [d] is the Ky Fan norm (sum of the top k eigenvalues),
and ||-[|,, in particular is the Ky Fan 1 norm. The inner product on S% x S?is (A, B) = Tr (AB).

Distributions. Let T be a set of points in R? with |T| = n, and let w € A™. Forany T’ C T,
wr, € A™ is the vector which equals w on coordinates in 77, and is zero elsewhere. We refer to the
empirical mean and covariance, parameterized by wei ghts w and subset 7/ C T, by

poo(T') = T e Covu(T) =) e (X — (1)) (X — ()
= || 2 lwr
We denote uniform samples 4 from a set S by the notation ¢ ~ S.

Deterministic assumption. In the list-decodable mean estimation problem, we are given a set T' of
n points {X; };er in R4, under Definition 1.* Without loss, we assume ¢ = 1, which generalizes
appropriately by scaling the dataset by o ~!. Regarding the sample size n, we recall the following
(note that the matrix in Assumption 1 is not the covariance, as it is centered at the true mean).
Proposition 1 (Proposition B.1, [CSV17]). For any constant € € (0, 1), there are constants ¢,C > 0
such that with probability at least 1 — exp(—(n)), for n = %, if an (1 + €)« fraction of points in
{X:}ier € R% is drawn from D with covariance bounded by cl, then Assumption 1 holds.

4 Abusing notation, we let T" denote both the point set and indices, interchangeably using X; € T and ¢ € T..



Assumption 1. 35 C {X;};er € RY of size an = O(d) with Eiws[(X; — p*) (X; — p*) '] = L

In the remainder of the paper, we operate under Assumption 1, i.e. that there is a subset S of the
dataset whose centered covariance around p* is identity-bounded. Proposition 1 implies that this
assumption holds for any failure probability larger than exp(—$2(d)) (up to constants in parameter
definitions); for any smaller failure probability, Proposition 1 implies that the assumption still holds
by adjusting the sample size by a logarithmic factor. We also assume é < d for simplicity, and handle

the regime i = Q(d) with a much simpler algorithm in Appendix A of the supplemental material.
1
our algorithms will use operations such as principal components analysis in @(i) dimensions. This

is because a substantial portion of the challenge is reducing to the problem of learning the mean in
@(é) dimensions, at which point naive random sampling suffices (up to logarithmic factors).

Finally, £ will be reserved for values which are ©( =) for explicitly stated constants. In particular,

Organization. In this shortened version of our paper, we give a full statement and analysis of our
“slow algorithm” SIFT in Section 4, achieving optimal sample complexity and error, at a logarithmic
overhead in list size and an O(n) overhead in runtime compared to our final method. We then provide
a detailed outline of our techniques to improve this result in Section 5, focusing on the statement of
key technical ingredients developed in this work. Due to space constraints, we defer a more rigorous
treatment of proofs, as well as an extended exposition of our techniques and comparison to the prior
work on this problem, to an unabridged version in the supplementary material.

4 Warmup: SIFT algorithm and analysis

We develop a conceptually new and simple algorithm for solving list-decodable mean estimation
based on a “soft downweighting” approach, which forms the backbone of our faster methods. In brief,
its design philosophy can be summarized as follows: first learn the mean in all but © () directions,
and then randomly sample in the remaining subspace. All omitted proofs are either straightforward
or from prior work, and are given in Section 3 of the supplementary material. We define two useful
concepts in analyzing our downweighting methods.

Definition 2 (Saturated weights). We call w € A" “saturated” if w < 11 and |ws|, > o\/[Jw]];.

Definition 3 (Safe scores). We call scores {7;}icr € RY, “safe with respect to w € A™” if
W, . l W4 . . - . “«“ ”»
ZiES TwsT, T <3 ZieT Tl i When w is clear from context, we simply call T “safe”.

In algorithms based on soft filtering in the presence of a small amount of adversarial noise (e.g.
[DKKT17, Lil8, Stel8]), a typical goal is to iteratively remove more “good weight” than “bad
weight.” However, when the overwhelming majority of the initial weight is bad, this is too strong of a
goal. The intuition for Definition 2 is that a weaker goal suffices for our guarantees; while the good
weight decreases throughout, Definition 2 requires that the good weight becomes more saturated
when more weight is removed. We now make the connection between these definitions formal.

Lemma 1. Let weights w be saturated. Then w' is also saturated, where w' is the result of the
following update: let {7}, . be safe with respect to w, and update for all i € T':

T

/ (3

w; < [ 1— w;, where Ty = 1Max ;. @))]
Tmax i€T |w; #0

We next give three helper lemmas which reason about how the quality of empirical estimates based
on S deteriorate, as weight allocated to .S is reduced. The first shows how the quality of the empirical
mean relates to the empirical covariance and proportion of weight in .S.

ao(T) = 113 < /21 Covan (1) o Tl + 25
The second shows how the empirical covariance of S grows relative to how much of .S is kept.

Lemma 3. Let w € A" have w < 11 entrywise. Then Cov,,(S) < —%—1

= llwslly ™

Lemma 2. Ifw € A" hasw < L1 entrywise,

The third shows how a bound on the saturation of S in a weight vector can be used to bound the
distance between empirical means in S and T" via the weighted empirical covariance matrix.

Lemma 4. (11,,(S) — pu(T)) (11 (S) — (1)) T = 1w, (T).

= llwslly




We now present SIFT as Algorithm 1. It requires calls to an approximate k-PCA subroutine Power,
the classical simultaneous power iteration method, whose guarantees we state here.

Proposition 2 (Theorem 1, [MM15]). Forany 6 € (0,1) and k € [d], there is an algorithm, Power,
which takes as input k, 6, A € S‘éo and € € (0,1), and returns with probability 1 — § a set of
orthonormal vectors V. € R¥¥ such that if V .; is column i of V,

(Vi,AV,) € [L£ A (A) foralli € [k], [(IT-VVT)A(I-=VVT)[ < (14Xt (A).

When A is given in the form MM for some M € R"*%, the runtime of Power is O (”—gk log (%))

Algorithm 1 SIFT (T, 0)

Input: 7 C R? with [T| = n satisfying Assumption 1, § € (0,1)
w® — L1p b 0,8 1k« [2]
V « Power(Cov,, (T),k,0.2, 2)

) 2n
while )\ (VTCOVwm (T)V) = \/B do

2
5. @ HE’%VT (X; —uu,(T))H foralli € T

B

zGT\w(t)#O i

6: w(tﬂ) (t) ) ™ for all i € T, where m\ax := max 70
tt+1,8+« ||w(t H
: 'V« Power(Cov, (T), k,0.2, 2)
9: end while
10: return L :={VV'X;+ (I-VVT) n, (T) where i € T is sampled uniformly at random},

with list size |L| = [2 log 2]

N
&

As Lines 4 through 9 of Algorithm 1 constitute a weight removal method of the form given in (1), we
now demonstrate the scores used are safe, which implies that w(®) is always saturated.

Lemma 5. In each iteration t of Algorithm I until termination, ™) is safe with respect to w®).

Proof. Throughout this proof, let w := w(®) and 7 := 7(). Furthermore, let V, /3 correspond to the
weights w(*), and let 3 := VT Cov,, ) (T)V. We first compute the average score in S:

> e S 2
S

= (37 VT Covu (V) + [ S5V () — D),

k
B T YV .
( TosTy )+ sl S 14VP v <3

The first three equalities expanded definitions; the first inequality is by Lemmas 3 and 4. The second
inequality used Definition 2 twice, which implies that |[wg||; > a+/f, as well as the exit condition in
Line 4. The third inequality follows from the definition of k. Finally, we conclude that 7 is safe, by

2

ZH wl, " Zuwm [ =4V =
<2 v <Z o (X6 (1) (Xi - uw<T>>T> v> — (3 s) =k

€T

|57V (X ()|

||ws||1 |st||1 2

Tk (=47 = D[+ 24T (1(3) — )

O

Theorem 2. Under Assumption 1, with probability 1 — 0§, the output of Algorithm 1 satisfies
min,er, ||p — p* H; < % The overall runtime of Algorithm 1 is O (n?dklog (%)).



Proof. Runtime. There are at most n iterations in Algorithm 1, since at least one weight is zeroed
out in each iteration. Further, the bottleneck operation in each iteration is Power, since an eigende-
composition of X takes time O(k3) = O(ndk). Since ¢ is a constant in Proposition 2, this yields
the runtime. We note that the algorithm must terminate before removing all the weight: since w
is saturated, ||w||, > «? via Definition 2 and ||wl|; > ||ws]|,. By a union bound, with probability

1— %, Proposition 2 applies every iteration; we condition on this event for the remainder of the proof.

Correctness. As in Lemma 5, we let w denote the weights in the last iteration of the algorithm (after
exiting on Line 10). Denote P := VVT andV; := PX, forall i € T. Since

1 . T 1 . T
(Y — - — _ o - <
Zan(Yz Pu*) (Y — Pu") P(Zan(Xz p') (Xi u))P_P,
€S €S

by Assumption 1, the expectation of ||Y; — Pu* Hg for a uniformly random sample i € S is 2 by
8

linearity of trace. By Markov, with probability > % a sample from S has [|Y; — Pp* ||§ < =, so with

probability > 1 — g, some element of L uses an X; with ||Y; — Pu* ||§ < %. For this 4, we expand
112 .12 -
[(PXi 4+ (I =P) p(T)) — p I3 = [IYi = P[5 + (T = P) (e (T) — ") I3

8 *
< @ P) (uao(T) = )3
To bound this second term, we apply Lemma 2 on the set of points {(I — P) X };cr. This implies

258 200 12y/B 2o 14

1T = P) (1 (T) = 1)l < === (T = P)Covy(T)(T = P) g + = < o + = < —.
27 Jlwslly ® B T wslly BT a

Here, the last inequality used that saturation implies 3 > . The second used that Power and the

termination condition imply that, since eigenvalues of 3 are the same as VV T Cov,, (T)VV T,

(T = P) Covan (T) (T — P)|,.. < 1.20(Covan(T)) < 15M(E) < . 0

* VB
While Theorem 2 achieves the desired error, it has a quadratic dependence on the sample size n, and
a suboptimal list size by a factor of O(log %) We address both issues with our fast algorithm.

5 Nearly-PCA time algorithm: overview of FastSIFT

In this section, we highlight the main technical ideas behind our fast algorithms. In particular, we
show how to leverage tools built in developing SIFT and combine them with a weight removal
scheme based on a Ky Fan variant of the matrix multiplicative weights (MMW) regret minimization
framework we develop, to give our final algorithm. Throughout this overview, we define integer
k= @(i) to represent some dimensionality of a linear subspace; constants will be specified in
relevant algorithms in the supplementary material.

Scoring via Ky Fan matrix multiplicative weights. To obtain the main result of this paper, it
remains to show how we can improve the number of iterations of SIFT to polylogarithmic. For
this, we turn to a strategy originating in [DHL19] in the large-a regime, which is to use the matrix
multiplicative weights regret minimization framework to define weights for stronger performance
guarantees. The intuition is that by using scores defined by more than the top eigenvector of the
current covariance matrix (or in this paper, the top k eigenvectors), we capture more than one bad
point at a time and obtain better worst-case iteration bounds. The main MMW regret guarantee makes
this formal. Roughly, it says that if in each iteration we can downweight the current covariance so that
its inner product with a matrix given by the MMW framework is small, then in O(log d) iterations
we can halve the operator norm (the maximal inner product against all trace-1 nonnegative matrices).

A key technical contribution of this paper is to give a Ky Fan k-norm (sum of k largest eigenvalues)
generalization of MMW, which typically gives operator norm guarantees. We analyze our algorithm
and show that it is tolerant to the error guarantees of approximate k-PCA procedures such as
simultaneous power iteration [MM15]. Crucial to our tightest runtime bounds are strengthenings
of the analysis of a similar procedure found in [CMY20] in several places, which save multiple &k
factors in our guarantees and may be of independent interest; we now highlight a few here.

>We believe that similar wins following from our tighter analysis apply to [CMY20], and brings their overall
runtime down to roughly O(ndk®*). We give a discussion of their k dependence in the supplementary material.



The main idea of our Ky Fan MMW regret guarantee is to bound the cost of actions {Y, };>o against
a sequence of positive semidefinite “gain matrices” {G};>¢ as measured by inner products. The
actions {Y };>¢ are given by the algorithm (depending on the gain matrices), and live in

Vi={YecR¥>|0=<Y <L Tr(Y) = k}.

The reason for this choice of action set, the “k-Fantope,” is because it satisfies supyey (U, G) =
|G|, so the best action over ) in hindsight captures this norm. Ultimately, our re-weighting
scheme requires matrix-vector query access to each Y, which are defined by Bregman projections
onto the set ). It was shown in [CMY20] that the natural choice of projection, induced by a
regularizer 7(Y') chosen to be matrix entropy, is a truncated exponential, where truncation occurs
on the top-k eigenspace. The bottleneck cost is computing this space, which normally requires an
eigendecomposition.

To this end, we show new guarantees on the performance of approximate k-PCA, which allow for
their use in this process. In particular, we prove the following new (informal) fact; a more formal
statement is in the supplementary material.

Proposition 3 (Informal, see Proposition 7 of the supplementary material). Let P = VV T where
V € R¥* js the result of O(e™1) iterations of simultaneous power iteration (approximate top-k
eigenvectors)on S € S‘io. Then with high probability,

(1—e)S<PSP+(I-P)SI—P) =< (1+¢)S.

This improves a similar analysis in [CMY20], which showed an approximation factor of 1 £ ke. The
other technical piece required by our MMW algorithm is the following refined divergence bound.

Proposition 4 (Informal, see Lemma 13 of the supplementary material). Let 7(Y) = (Y,logY) be
the matrix entropy function defined on Y, let r* be its convex conjugate over S%, and let VX* (B) :=
fB)—f(A)—(Vf(A),B — A) be the induced Bregman divergence. Then forall S € S¢, G € Séo

and n > 0 satisfying |nG|[,, < 1

VI (S +1G) < (nG,Y), where Y := Vr*(S) € ).

This is a strengthening of a much more straightforward bound of & ||nG||,, which follows easily

op’
from strong convexity of 7 in the trace norm (and hence smoothness of its dual).® We require this
strengthening so that we can use the action matrices {Y};>o to define scores, to decrease inner
products: the weaker bound above has no dependence on Y, so without the stronger bound it is
unclear how to use the MMW update structure to downweight. A similar refined regret bound as

Proposition 3 is derived in [Nes07], in the special case when k = 1 (and ) C S‘éo is trace-1 matrices).

We prove our refined divergence bound by adapting arguments from previous literature [CDST19,
JLL*20] on using Hessian formulae of spectral functions to prove divergence bounds, whenever
the conjugate r* is twice-differentiable, and applying the Alexandrov theorem. Finally, up to (non-
dominant) approximation error terms, our Ky Fan MMW procedure’s main guarantee can be stated
as: given a sequence of positive semidefinite matrices {Gy };>0, let step size n > 0 satisfy nG, < 1
for all ¢. The procedure plays a sequence {Y;}:>0 € Y, so that forany T’ € N,
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Win-win-win analysis of MMW: FastSIFT. We now describe how to use the regret guarantee
(2) to obtain a faster algorithm. In particular, when the sequence {G¢};>¢ is monotonically non-

increasing, we can choose n = ||Gg ||0_p1 to meet all the boundedness conditions nG; =< I. If we can
guarantee that every (G, Y,) is bounded by, say, 1 |G|, and k 1Gollop < 2[|Golly, (ie. the top &
eigenvalues of G are roughly uniform), the above regret guarantee becomes
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Now, T' = O(log d) iterations suffice to halve the Ky Fan-k norm. Our strategy, following [DHL19],
is to let G be the empirical covariance matrix with respect to wy, for monotonically decreasing
weight sequence {w; },>¢ formed by safe weight removals (1). This suggests that if we can implement
this strategy, we will reach the termination condition of SIFT in polylogarithmically many iterations
of MMW (since an upper bound on the Ky Fan norm of the empirical covariance also implies a bound
on the k" largest eigenvalue). At this point, a few questions remain.

1. How do we define the sequence {Gy};>¢ so that it is monotonically decreasing? For
instance, our safety condition (Definition 3) is defined with respect to normalized scores,
but normalizing the covariance matrices makes them no longer (necessarily) monotone.

2. How do we whiten the scores so that any one of the top k eigenvalues does not dominate?
This requirement arises in several places in the analysis (akin to in the analysis of SIFT),
for example in our earlier assumption that & | Gol|,, < 2{|Goll,. We note that using a trick
similar to normalizing the top-k eigenspace to be the identity, as in SIFT, is not effective
here as these spaces may be incompatible, and break monotonicity of gain matrices.

3. How do we safely downweight the covariances to make them satisfy (G¢, Y¢) < 1 [|Gol|,?

We show that a careful analysis of each failure case leads to a different “win condition” in the
algorithm, which lets us certify progress in a different way.

1. We restart the algorithm in phases where the /1 norm of the weights halves, so that in each
phase the normalizing constant is stable. There can only be logarithmically many phases.

2. We restart the algorithm whenever the k" largest eigenvalue of the covariance matrix is
smaller than half the largest, setting aside the k& eigendirections. The remainder of the
algorithm works in the space orthogonal to these directions. Since each time we set aside
k directions we halve the operator norm on the remaining subspace, this only occurs

logarithmically many times, and yields a “set-aside subspace” of dimension 9] (k).

3. Whenever O(log d) iterations pass without meeting either of the above “exit criteria,” we
use binary searches to safely remove as much weight as possible so each covariance matrix
G; meets the inner product criteria through Y to progress, i.e. we use weight removal
to bound the right hand side of the regret guarantee (2). This argument follows the safety
analysis of SIFT closely, crucially using that the top k eigenvalues are roughly uniform.

By carefully reasoning about when each of the above three cases occurs, we eventually conclude
that we are able to return in polylogarithmically many iterations a pair (B, w) such that B is an
orthonormal basis of a subspace of dimension roughly & log d, and w is some weight vector whose
empirical covariance’s projection into B+ has bounded operator norm. At this point, we can use the
empirical mean in B- to learn the mean in all but & log d dimensions. To learn the mean in B, there
are a number of much simpler strategies such as random sampling from the dataset, which we discuss
when describing ListDecodableMeanEstimation in the sequel.

Preprocessing and postprocessing. The above argument assumed that we initially had a bounded
dataset diameter. We show a simple equivalence class partitioning, PreProcess, based on one-
dimensional projections efficiently produces clusters with polynomially bounded diameter, so that
the entire good dataset lies in the same partition (with high probability), yielding the following claim.

Lemma 6 (Informal, see Lemma 12 of the supplementary material). There is an algorithm running
in time O(nd + n'logn) that partitions T into disjoint clusters with radius poly(n, 1) so that all of
S is in the same cluster with probability > 1 — 6.

Furthermore, we give a greedy clustering step PostProcess which works in a low-dimensional
subspace, reducing the size of a candidate list to the optimal O(k) (removing extraneous logarithmic
factors), while only affecting the error guarantee by a constant. The statement of PostProcess depends
on the specific guarantees of SIFT and FastSIFT (i.e. the decomposition into a @(i)-dimensional
subspace and its complement), so we defer it to the supplementary material for brevity.

Putting it all together: ListDecodableMeanEstimation. Applying PreProcess and FastSIFT se-
quentially yields a O(%d)—time algorithm which learns a subspace of dimension O(k) spanned by B,
where the empirical mean in B+ is an estimate attaining the information-theoretic limit. It remains to



produce a list which learns the mean inside B. At this stage, we employ two strategies: we can either
randomly sample, as in the last line of SIFT, or we can simply run SIFT itself with a smaller dataset
size on the subspace. Applying PostProcess to the output lists of these two strategies yield our full
algorithms, whose guarantees are respectively summarized in the last two rows of Table 1.
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