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Abstract

We study the problem of list-decodable linear regression, where an adversary can
corrupt a majority of the examples. Specifically, we are given a set T of labeled
examples (x, y) ∈ Rd × R and a parameter 0 < α < 1/2 such that an α-fraction
of the points in T are i.i.d. samples from a linear regression model with Gaussian
covariates, and the remaining (1 − α)-fraction of the points are drawn from an
arbitrary noise distribution. The goal is to output a small list of hypothesis vectors
such that at least one of them is close to the target regression vector. Our main
result is a Statistical Query (SQ) lower bound of dpoly(1/α) for this problem. Our
SQ lower bound qualitatively matches the performance of previously developed
algorithms, providing evidence that current upper bounds for this task are nearly
best possible.

1 Introduction

1.1 Background and Motivation

Linear regression is one of the oldest and most fundamental statistical tasks with numerous applica-
tions in the sciences [RL87, Die01, McD09]. In the standard setup, the data are labeled examples
(x(i), y(i)), where the examples (covariates) x(i) are i.i.d. samples from a distribution Dx on Rd and
the labels y(i) are noisy evaluations of a linear function. More specifically, each label is of the form
y(i) = β · x(i) + η(i), where η(i) is the observation noise, for an unknown target regression vector
β ∈ Rd. The objective is to approximately recover the hidden regression vector. In this basic setting,
linear regression is well-understood. For example, under Gaussian distribution, the least-squares
estimator is known to be statistically and computationally efficient.

Unfortunately, classical efficient estimators inherently fail in the presence of even a very small
fraction of adversarially corrupted data. In several applications of modern data analysis, including
machine learning security [BNJT10, BNL12, SKL17, DKK+19] and exploratory data analysis, e.g.,
in biology [RPW+02, PLJD10, LAT+08], typical datasets contain arbitrary or adversarial outliers.
Hence, it is important to understand the algorithmic possibilities and fundamental limits of learning
and inference in such settings. Robust statistics focuses on designing estimators tolerant to a small
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amount of contamination, where the outliers are the minority of the dataset. Classical work in this
field [HRRS86, HR09] developed robust estimators for various basic tasks, alas with exponential
runtime. More recently, a line of work in computer science, starting with [DKK+16, LRV16],
developed the first computationally efficient robust learning algorithms for various high-dimensional
tasks. Subsequently, there has been significant progress in algorithmic robust statistics by several
communities, see [DK19] for a survey on the topic.

In this paper, we study high-dimensional robust linear regression in the presence of a majority of
adversarial outliers. As we explain below, in several applications, asking for a minority of outliers
is too strong of an assumption. It is thus natural to ask what notion of learning can capture the
regime when the clean data points (inliers) constitute the minority of the dataset. While outputting a
single accurate hypothesis in this regime is information-theoretically impossible, one may be able
to compute a small list of hypotheses with the guarantee that at least one of them is accurate. This
relaxed notion is known as list-decodable learning [BBV08, CSV17], formally defined below.
Definition 1.1. (List-Decodable Learning) Given a parameter 0 < α < 1/2 and a distribution
family D on Rd, the algorithm specifies n ∈ Z+ and observes n i.i.d. samples from a distribution
E = αD + (1−α)N , where D is an unknown distribution in D and N is arbitrary. We say D is
the distribution of inliers, N is the distribution of outliers, and E is an (1−α)-corrupted version of
D. Given sample access to an (1−α)-corrupted version of D, the goal is to output a “small” list of
hypotheses L at least one of which is (with high probability) close to the target parameter of D.

We note that a list of size O(1/α) typically suffices; an algorithm with a poly(1/α) sized list, or
even a worse function of 1/α (but independent of the dimension d) is also considered acceptable.

Natural applications of list-decodable learning include crowdsourcing, where a majority of partic-
ipants could be unreliable [SVC16, MV18], and semi-random community detection in stochas-
tic block models [CSV17]. List-decoding is also useful in the context of semi-verified learn-
ing [CSV17, MV18], where a learner can audit a very small amount of trusted data. If the trusted
dataset is too small to directly learn from, using a list-decodable learning procedure, one can pinpoint a
candidate hypothesis consistent with the verified data. Importantly, list-decodable learning generalizes
the task of learning mixture models, see, e.g., [DeV89, JJ94, ZJD16, LL18, KC20, CLS20, DK20] for
the case of linear regression studied here. Roughly speaking, by running a list-decodable estimation
procedure with the parameter α equal to the smallest mixing weight, each true cluster of points is an
equally valid ground-truth distribution, so the output list must contain candidate parameters close to
each of the true parameters.

In list-decodable linear regression (the focus of this paper), D is a distribution on pairs (X, y), where
X is a standard Gaussian on Rd, y is approximately a linear function of x, and the algorithm is asked
to approximate the hidden regressor. The following definition specifies the distribution family D of
the inliers for the case of linear regression with Gaussian covariates.
Definition 1.2. (Gaussian Linear Regression) Fix σ > 0. For β ∈ Rd, let Dβ be the distribution
over (X, y), X ∈ Rd, y ∈ R, such that X ∼ N (0, Id) and y = βTX + η, where η ∼ N (0, σ2)
independently of X . We define D to be the set {Dβ : β ∈ S′} for some set S′ ⊆ Rd.

Recent algorithmic progress [KKK19, RY20a] has been made on this problem using the sum-of-
squares (SoS) hierarchy. The guarantees in [KKK19, RY20a] are very far from the information-
theoretic limit in terms of sample complexity. In particular, they require dpoly(1/α) samples and time
to obtain non-trivial error guarantees (see Table 1): [KKK19] obtains an error guarantee of O(σ/α)
with a list of size O(1/α), whereas [RY20a] obtains an error guarantee of O(σ/α3/2) with a list of
size (1/α)O(log(1/α)).

On the other hand, as shown in this paper (see Theorem 1.4), poly(d/α) samples information-
theoretically suffice to obtain near-optimal error guarantees. This raises the following natural
question:

What is the complexity of list-decodable linear regression?
Are there efficient algorithms with significantly better sample-time tradeoffs?

We study the above question in a natural and well-studied restricted model of computation, known as
the Statistical Query (SQ) model [Kea98]. As the main result of this paper, we prove strong SQ lower
bounds for this problem. Via a recently established equivalence [BBH+20], our SQ lower bound also
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Table 1: The table summarizes the sample complexity, running time, and list size of the known
list-decodable linear regression algorithms in order to obtain a 1/4-additive approximation to the
hidden regression vector β in the setting of Theorem 1.5, i.e., when ‖β‖2 ≤ 1 and σ is sufficiently
small as a function of α: [KKK19] requires σ = O(α) and [RY20a] requires σ = O(α3/2).

Algorithmic Result Sample Size Running Time List size

Karmalkar-Klivans-Kothari [KKK19] (d/α)O(1/α4) (d/α)O(1/α8) O(1/α)

Raghavendra and Yau [RY20a] dO(1/α4) dO(1/α8)(1/α)log(1/α) (1/α)O(log(1/α))

implies low-degree testing lower bounds for this task. Our lower bounds can be viewed as evidence
that current upper bounds for this problem may be qualitatively best possible.

Before we state our contributions in detail, we give some background on SQ algorithms. SQ
algorithms are a broad class of algorithms that are only allowed to query expectations of bounded
functions of the distribution rather than directly access samples. Formally, an SQ algorithm has
access to the following oracle.

Definition 1.3 (STAT Oracle). Let D be a distribution on Rd. A statistical query is a bounded
function q : Rd → [−1, 1]. For τ > 0, the STAT(τ) oracle responds to the query q with a value v
such that |v −EX∼D[q(X)]| ≤ τ . We call τ the tolerance of the statistical query.

The SQ model was introduced by Kearns [Kea98] in the context of supervised learning as a natural
restriction of the PAC model [Val84]. Subsequently, the SQ model has been extensively studied in a
plethora of contexts (see, e.g., [Fel16] and references therein). The class of SQ algorithms is rather
broad and captures a range of known supervised learning algorithms. More broadly, several known
algorithmic techniques in machine learning are known to be implementable using SQs. These include
spectral techniques, moment and tensor methods, local search (e.g., Expectation Maximization), and
many others (see, e.g., [FGR+17, FGV17]).

1.2 Our Results

We start by showing that poly(d/α) samples are sufficient to obtain a near-optimal error estimator,
albeit with a computationally inefficient algorithm.

Theorem 1.4 (Information-Theoretic Bound). There is a (computationally inefficient) list-decoding
algorithm for Gaussian linear regression that uses O(d/α3) samples, returns a list of O(1/α) many
hypothesis vectors, and has `2-error guarantee of O((σ/α)

√
log(1/α)). Moreover, if the dimension

d is sufficiently large, any list-decoding algorithm that outputs a list of size poly(1/α) must have
`2-error at least Ω((σ/α)/

√
log(1/α)).

Due to space limitations, the proof of Theorem 1.4 is deferred to the supplementary material (see
Theorems D.1 and D.4). We note that the (computationally inefficient) estimator achieving the upper
bound in Theorem 1.4 is implicit in [KKK19]. See Appendix D.1 for more details.

Our main result is a strong SQ lower bound for the list-decodable Gaussian linear regression problem.
We establish the following theorem (see Theorem 2.1 for a more detailed formal statement).

Theorem 1.5 (SQ Lower Bound). Assume that the dimension d ∈ Z+ is sufficiently large and
consider the problem of list-decodable linear regression, where the fraction of inliers is α ∈ (0, 1/2),
the regression vector β ∈ Rd has norm ‖β‖2 ≤ 1, and the additive noise has standard deviation
σ ≤ α. Then any SQ algorithm that returns a list L of candidate vectors containing a β̂ such that
‖β̂ − β‖2 ≤ 1/4 does one of the following: (i) it uses at least one query with tolerance at most
d−Ω(1/

√
a)/σ, (ii) it makes 2d

Ω(1)

queries, or (iii) it returns a list of size |L| = 2d
Ω(1)

.

Informally speaking, Theorem 1.5 shows that no SQ algorithm can approximate β to constant
accuracy with a sub-exponential in dΩ(1) size list and sub-exponential in dΩ(1) many queries, unless
using queries of very small tolerance – that would require at least σdΩ(1/

√
α) samples to simulate.

For σ not too small, e.g., σ = poly(α), in view of Theorem 1.4, this result can be viewed as an
information-computation tradeoff for the problem, within the class of SQ algorithms.
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A conceptual implication of Theorem 1.5 is that list-decodable linear regression is harder (within
the class of SQ algorithms) than the related problem of learning mixtures of linear regressions
(MLR). Recent work [DK20] gave an algorithm (easily implementable in SQ) for learning MLR
with k equal weight separated components (under Gaussian covariates) with sample complexity and
running time kpolylog(k), i.e., quasi-polynomial in k. Recalling that one can reduce k-MLR (with
well-separated components) to list-decodable linear regression for α = 1/k, Theorem 1.5 implies
that the aforementioned algorithmic result cannot be obtained via such a reduction.

Remark 1.6. We note that our lower bounds rule out efficient algorithms in the SQ model, which is
a broad class of algorithms. The two existing algorithms [RY20a, KKK19] for the present problem
are based on the sum-of-squares (SoS) hierarchy. In general, SQ lower bounds do not imply lower
bounds against all SoS algorithms, and SoS lower bounds do not imply SQ lower bounds. At the
same time, lower bounds against low-degree tests [HS17, HKP+17, Hop18, KWB19] have become
the standard heuristic for SoS lower bounds, and we establish hardness against low-degree tests as
well. In particular, recent work [BBH+20] established that (under certain assumptions) an SQ lower
bound also implies a qualitatively similar lower bound in the low-degree model. By leveraging this
connection, we deduce a similar lower bound in the latter model as well (see Appendix F).

1.3 Overview of Techniques

In this section, we provide a detailed overview of our SQ lower bound construction. We recall that
there exists a general methodology for establishing SQ lower bounds via an appropriate complexity
measure, known as SQ dimension. Several related notions of SQ dimension exist in the literature,
see, e.g., [BFJ+94, FGR+17, Fel17]. Here we focus on the framework introduced in [FGR+17]
for search problems over distributions, which is more natural in our setting. A lower bound on the
SQ dimension of a search problem provides an unconditional lower bound on the SQ complexity
of the problem. Roughly speaking, for a notion of correlation between distributions in our family
D (Definition 1.8), establishing an SQ lower bound amounts to constructing a large cardinality
sub-family D′ ⊆ D such that every pair of distributions in D′ are nearly uncorrelated with respect to
a given reference distribution R (see Definition 1.10 and Lemma 1.11).

A general framework for constructing SQ-hard families of distributions was introduced in [DKS17],
which showed the following: Let the reference distribution R be N (0, I) and A be a univariate
distribution whose low-degree moments match those of the standard Gaussian (and which satisfies
an additional mild technical condition). Let PA,v be the distribution that is a copy of A in the v-
direction and standard Gaussian in the orthogonal complement (Definition 1.12). Then the distribution
family {PA,v}v∈S , where S is a set of nearly orthogonal unit vectors, satisfies the pairwise nearly
uncorrelated property (Lemma 1.13), and is therefore SQ-hard to learn.

Unfortunately, the [DKS17] framework does not suffice in the supervised setting of the current paper
for the following reason: The joint distribution over labeled examples (X, y) in our setting does not
possess the symmetry properties required for moment-matching with the reference R = N (0, I) to
be possible. Specifically, the behavior of y will necessarily be somewhat different than the behavior of
X . To circumvent this issue, we leverage an idea from [DKS19]. The high-level idea is to construct
distributions Ev on (X, y) such that for any fixed value y0 of y, the conditional distribution of
X | y = y0 under Ev is of the form PA,v described above, where A is replaced with some Ay0

.

We further explain this modified construction. Note that Ev should be of the form αDv + (1−α)Nv ,
where Dv is the inlier distribution (corresponding to the clean samples from the linear regression
model) and Nv is the outlier (noise) distribution. To understand what properties our distribution
should satisfy, we start by looking at the inlier distribution D. By definition, for (X, y) ∼ D, we
have that y = βTX + η, where X ∼ N(0, I) and η ∼ N(0, σ2) is independent of X . A good
place to start here is to understand the distribution of X conditioned on y = y0, for some y0, under
D. It is not hard to show (Fact 2.3) that this conditional distribution is already of the desired form
PA,β : it is a product of a (d − 1)-dimensional standard Gaussian in directions orthogonal to β,
while in the β-direction it is a much narrower Gaussian with mean proportional to y0. To establish
our SQ-hardness result, we would like to mix this conditional distribution with a carefully selected
outlier distribution N | y = y0, such that the resulting mixture E | y = y0 matches many of its
low-degree moments with the standard Gaussian in the β-direction, while being standard Gaussian
in the orthogonal directions. In the setting of minority of outliers, [DKS19] was able to provide an
explicit formula for N and match three moments to show an SQ lower bound of Ω(d2). The main
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technical difficulty in our paper is that, in order to prove the desired SQ lower bound of Ω(dpoly(1/α)),
we need to match poly(1/α) many moments. We explain how to achieve this below.

Here we take a different approach and establish the existence of the desired outlier distribution
N |y = y0 in a non-constructive manner. We note that our problem is an instance of the moment-
matching problem, where given a sequence of real numbers, the goal is to decide whether a distribution
exists having that sequence as its low-degree moments. At a high-level, we leverage classical results
that tackle this general question by formulating a linear program (LP) and using LP-duality to derive
necessary and sufficient feasibility conditions (see [KS53] and Theorem 3.1). This moment-matching
via LP duality approach is fairly general, but stumbles upon two technical obstacles in our setting.

The first technical issue is that our final distributions Ev on (X, y) need to have bounded χ2-
divergence with respect to the reference distribution, since the pairwise correlations scale with this
quantity (see Lemma 1.13). To guarantee this, we can ensure that the outlier distribution in the
β-direction is in fact equal to the convolution of a distribution with bounded support with a narrow
Gaussian: (i) The contraction property of this convolution operator means that it can only reduce the
χ2-divergence, and (ii) the bounded support can be used in combination with tail-bounds on Hermite
polynomials (Lemma 3.6) to bound from above the contribution to the χ2-divergence of each Hermite
coefficient of our distribution (Lemma 2.6). These additional constraints necessitate a modification to
the moment-matching problem, but it can still be readily analyzed (Theorem 2.5).

The second and more complicated issue involves the fraction of outliers, i.e., the parameter “1−α”.
Unfortunately, it is easy to see that the fraction of outliers necessary to make the conditional
distributions match the desired number of moments must necessarily go to 1 as |y| goes to infinity:
As |y| gets bigger, the conditional distribution of inliers moves further away from N (0, I) (Fact 2.3)
and thus needs to be mixed more heavily with outliers to be corrected. This is a significant problem,
since by definition we can only afford to use a (1−α)-fraction of outliers overall. To handle this issue,
we consider a reference distribution R on (X, y) that has much heavier tails in y than the distribution
of inliers has. This essentially means that as |y| gets large, the conditional probability that a sample
is an outlier gets larger and larger. This is balanced by having slightly lower fraction of outliers for
smaller values of |y|, in order to ensure that the total fraction of outliers is still at most 1−α. To
address this issue, we leverage the fact that the probability that a clean sample has large value of |y|
is very small. Consequently, we can afford to make the error rates for such y quite large without
increasing the overall probability of error by very much.

1.4 Preliminaries

Notation We use N to denote natural numbers and Z+ to denote positive integers. For n ∈ Z+ we
denote [n]

def
= {1, . . . , n} and use Sd−1 for the d-dimensional unit sphere. We denote by 1(E) the

indicator function of the event E . We use Id to denote the d × d identity matrix. For a random
variable X , we use E[X] for its expectation. For m ∈ Z+, the m-th moment of X is defined as
E[Xm]. We use N (µ,Σ) to denote the Gaussian distribution with mean µ and covariance matrix Σ.
We let φ denote the pdf of the one-dimensional standard Gaussian. When D is a distribution, we use
X ∼ D to denote that the random variable X is distributed according to D. For a vector x ∈ Rd, we
let ‖x‖2 denote its `2-norm. For y ∈ R, we denote by δy the Dirac delta distribution at y, i.e., the
distribution that assigns probability mass 1 to the single point y ∈ R and zero elsewhere. When there
is no confusion, we will use the same letters for distributions and their probability density functions.

Ornstein-Uhlenbeck Operator For a ρ > 0, we define the Gaussian noise (or Ornstein-Uhlenbeck)
operator Uρ as the operator that maps a distribution F on R to the distribution of the random variable
ρX +

√
1− ρ2Z, where X ∼ F and Z ∼ N (0, 1) independently of X .

Background on the SQ Model We provide the basic definitions and facts that we use.

Definition 1.7 (Search problems over distributions). Let D be a set of distributions over Rd, F be
a set called solutions, and Z : D → 2F be a map that assigns sets of solutions to distributions of
D. The distributional search problem Z over D and F is to find a valid solution f ∈ Z(D) given
statistical query oracle access to an unknown D ∈ D.

The hardness of these problems is conveniently captured by the SQ dimension. For this, we first need
to define the notion of correlation between distributions.
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Definition 1.8 (Pairwise Correlation). The pairwise correlation of two distributions with probability
density functions D1, D2 : Rd → R+ with respect to a reference distribution with density R : Rd →
R+, where the support of R contains the supports of D1 and D2, is defined as χR(D1, D2)

def
=∫

Rd D1(x)D2(x)/R(x) dx− 1. When D1 = D2, the pairwise correlation becomes the same as the

χ2-divergence between D1 and R, i.e., χ2(D1, R)
def
=
∫
Rd D

2
1(x)/R(x)dx− 1.

Definition 1.9. For γ, β > 0, the set of distributions D = {D1, . . . , Dm} is called (γ, β)-correlated
relative to the distribution R if |χR(Di, Dj)| ≤ γ, if i 6= j, and |χR(Di, Dj)| ≤ β otherwise.

The statistical dimension of a search problem is based on the largest set of (γ, β)-correlated distribu-
tions assigned to each solution.
Definition 1.10 (Statistical Dimension). For γ, β > 0, a search problem Z over a set of solutions
F and a class D of distributions over X , we define the statistical dimension of Z , denoted by
SD(Z, γ, β), to be the largest integer m such that there exists a reference distribution R over X and
a finite set of distributions DR ⊆ D such that for any solution f ∈ F , the set Df = DR \ Z−1(f) is
(γ, β)-correlated relative to R and |Df | ≥ m.
Lemma 1.11 (Corollary 3.12 in [FGR+17]). Let Z be a search problem over a set of solutions F and
a class of distributions D over Rd. For γ, β > 0, let s = SD(Z, γ, β) be the statistical dimension
of the problem. For any γ′ > 0, any SQ algorithm for Z requires either sγ′/(β − γ) queries or at
least one query to STAT(

√
γ + γ′) oracle.

We continue by recalling the machinery from [DKS17] that will be used for our construction.
Definition 1.12 (High-Dimensional Hidden Direction Distribution). For a unit vector v ∈ Rd and a
distribution A on the real line with probability density function A(x), define PA,v to be a distribution
over Rd, where PA,v is the product distribution whose orthogonal projection onto the direction of v is
A, and onto the subspace perpendicular to v is the standard (d−1)-dimensional normal distribution.
That is, PA,v(x) := A(vTx)φ⊥v(x), where φ⊥v(x) = exp

(
−‖x− (vTx)v‖22/2

)
/(2π)(d−1)/2.

The distributions {PA,v} defined above are shown to be nearly uncorrelated as long as the directions
where A is embedded are pairwise nearly orthogonal.
Lemma 1.13 (Lemma 3.4 in [DKS17]). Let m ∈ Z+. Let A be a distribution over R that agrees
with the first m moments of N (0, 1). For any v, let PA,v denote the distribution from Definition 1.12.
For all v, u ∈ Rd, we have that χN (0,Id)(PA,v, PA,u) ≤ |uT v|m+1χ2(A,N (0, 1)).

The following result shows that there are exponentially many nearly-orthogonal unit vectors.
Lemma 1.14 (see, e.g., Lemma 3.7 of [DKS17]). For any 0 < c < 1/2, there is a set S, of at least
2Ω(dc) unit vectors in Rd, such that for each pair of distinct v, v′ ∈ S, it holds |vT v′| ≤ O(dc−1/2).

1.5 Prior and Related Work

Early work in robust statistics, starting with the pioneering works of Huber and Tukey [Hub64, Tuk75],
pinned down the sample complexity of high-dimensional robust estimation with a minority of outliers.
In contrast, until relatively recently, even the most basic computational questions in this field were
poorly understood. Two concurrent works [DKK+16, LRV16] gave the first provably robust and
efficiently computable estimators for robust mean and covariance estimation. Since the dissemination
of these works, there has been a flurry of activity on algorithmic robust estimation in a variety of
high-dimensional settings; see [DK19] for a recent survey on the topic. Notably, the robust estimators
developed in [DKK+16] are scalable in practice and yield a number of applications in exploratory
data analysis [DKK+17] and adversarial machine learning [TLM18, DKK+19]

The list-decodable learning setting studied in this paper was first considered in [CSV17] with a
focus on mean estimation. [CSV17] gave a polynomial-time algorithm with near-optimal statis-
tical guarantees for list-decodable mean estimation under a bounded covariance assumption on
the clean. Subsequent work has led to significantly faster algorithms for the bounded covariance
setting [DKK20a, CMY20, DKK+20b, DKK+21] and polynomial-time algorithms with improved
error guarantees under stronger distributional assumptions [DKS18, KSS18]. More recently, a
line of work developed list-decodable learners for more challenging tasks, including linear regres-
sion [KKK19, RY20a] and subspace recovery [RY20b, BK21].
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2 Main Result: Proof of Theorem 1.5

In this section, we present the main result of this paper: SQ hardness of list-decodable linear regression
(Definitions 1.1 and 1.2). We consider the setting when β has norm less than 1, i.e., β = ρv for
v ∈ Sd−1 and ρ ∈ (0, 1).1 Note that the marginal distribution of the labels is N (0, σ2

y), where
σ2
y = ρ2 + σ2. We ensure that the labels y have unit variance by using σ2 = 1− ρ2. Specifically, the

choice of parameters will be such that obtaining a ρ/2-additive approximation of the regressor β is
possible information-theoretically with poly(d/α) samples (cf. Appendix D.1), but the complexity of
any SQ algorithm for the task must necessarily be at least dpoly(1/α)/σ. We show the following more
detailed statement of Theorem 1.5.
Theorem 2.1 (SQ Lower Bound). Let c ∈ (0, 1/2), d ∈ Z+ with d = 2Ω(1/(1/2−c)), α ∈ (0, 1/2),
ρ ∈ (0, 1), σ2 = 1 − ρ2, and m ∈ Z+ with m ≤ c1/

√
α for some sufficiently small constant

c1 > 0. Any list-decoding algorithm that, given statistical query access to a (1−α)-corrupted
version of the distribution described by the model of Definition 1.2 with β = ρv for v ∈ Sd−1,
returns a list L of hypotheses vectors that contains a β̂ such that ‖β̂ − β‖2 ≤ ρ/2, does one of the

following: (i) it uses at least one query to STAT
(

Ω(d)−(2m+1)(1/4−c/2)eO(m)/
√

1− ρ2
)

, (ii) it

makes 2Ω(dc)d−(2m+1)(1/2−c) many queries, or (iii) it returns a list L of size 2Ω(dc).

In the rest of this section, we will explain the hard-to-learn construction for our SQ lower bound, i.e.,
a set of distributions with large statistical dimension. The proof would then follow from Lemma 1.11.
We begin by describing additional notation that we will use.

Notation: As β = ρv for a fixed ρ, we will slightly abuse notation by using Dv(x, y) to denote
the joint distribution of the inliers and we use Ev(x, y) to denote the (1−α)-corrupted version of
Dv(x, y). To avoid using multiple subscripts, we use Dv(x|y) to denote the conditional distribution
of X|y according to the distribution Dv and similarly for the other distributions. In addition, we use
Dv(y) to denote the marginal distribution of y under Dv and similarly for other distributions.

Following the general construction of [DKS17], we will specify a reference joint distribution R(x, y)
where X and y are independent, and X ∼ N (0, Id). We will find a marginal distribution R(y) and a
way to add the outliers so that the following hold for each Ev (where m = Θ(1/

√
α)):

(I) Ev is indeed a valid distribution of (X, y) in our corruption model (i.e., can be written as a
mixture αDv(x, y)+(1−α)Nv(x, y) for some noise distributionNv). Moreover, the marginal
of Ev on the labels, Ev(y), coincides with R(y).

(II) For every y ∈ R, the conditional distribution Ev(x|y) is of the form PAy,v of Definition 1.12,
with Ay being a distribution that matches the first 2m moments with N (0, 1).2

(III) For Ay defined above, Ey∼R(y)[χ
2(Ay,N (0, 1))] is bounded.

We first briefly explain why a construction satisfying the above properties suffices to prove our main
theorem (postponing a formal proof for the end of this section). We start by noting the following
decomposition (proved in Appendix B).
Lemma 2.2. For u, v ∈ Sd−1, if Eu andEv have the same marginalsR(y) on the labels, they satisfy
χR(x,y)(Ev(x, y), Eu(x, y)) = Ey∼R(y)

[
χN (0,Id) (Ev(x|y), Eu(x|y))

]
.

Using the decomposition in Lemma 2.2 for Eu and Ev satisfying Property (II), Lemma 1.13 implies
that |χR(x,y)(Ev(x, y), Eu(x, y))| ≤ |uT v|2m+1 Ey∼R(y)[χ

2(Ay, N(0, 1))]. Letting D = {Ev :
v ∈ S}, where S is the set of nearly uncorrelated unit vectors from Lemma 1.14, we get that
D is (γ, b)-correlated relative to R, for b = Ey∼R(y)[χ

2(Ay,N (0, 1))] and γ ≤ d−Ω(m)b. As
|S| = 2Ω(dc), b is bounded, and the list size is much smaller than |S|, we can show that the statistical
dimension of the list-decodable linear regression is large.

Thus, in the rest of the section we focus on showing that such a construction exists. We first note
that according to our linear model of Definition 1.2, the conditional distribution of X given y for the
inliers is Gaussian with unit variance in all but one direction (see Appendix B for a proof).

1This is a standard assumption and considered by existing works [KKK19, RY20a] (cf. Remark B.4).
2We use even number of moments for simplicity. The analysis would slightly differ for odd number.
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Fact 2.3. Fix ρ > 0, v ∈ Sd−1, and consider the regression model of Definition 1.2 with β = ρv.
Then the conditional distributionX|y of the inliers isN (yρv, Id−ρ2vvT ), i.e., independent standard
Gaussian in all directions perpendicular to v and N (ρy, 1− ρ2) in the direction of v.

Since Fact 2.3 states that Dv(x|y) is already of the desired form (standard normal in all directions
perpendicular to v and N (yρ, 1− ρ2) in the direction of v), the problem becomes one-dimensional.
More specifically, for every y ∈ R, we need to find a one-dimensional distributionQy and appropriate
values αy ∈ [0, 1] such that the mixture Ay = αyN (yρ, 1 − ρ2) + (1−αy)Qy matches the first
2m moments with N (0, 1). Then, multiplying by φ⊥v (which denotes the contribution of the
space orthogonal to v to the density of standard Gaussian, as defined in Definition 1.12) yields
the d-dimensional mixture distribution αyDv(x|y) + (1−αy)Qy(vTx)φ⊥v(x). We show that an
appropriate selection of αy can ensure that this is a valid distribution for our contamination model.

Lemma 2.4. Let R be a distribution on pairs (x, y) ∈ Rd+1 such that αy := αDv(y)/R(y) ∈ [0, 1]
for all y ∈ R. Suppose that for every y ∈ R there exists a univariate distribution Qy such that
Ay := αyN (yρ, 1−ρ2)+(1−αy)Qy matches the first 2m moments withN (0, 1). If the distribution
of the outliers is Nv(x, y) = ((1−αy)/(1−α))Qy(vTx)φ⊥v(x)R(y), Properties (I) and (II) hold.

The proof of Lemma 2.4 is included in Appendix B. We will choose the reference distribution R(x, y)
to have X ∼ N (0, Id) and y ∼ N (0, 1/α) independently, which makes the corresponding value of
αy to be αy = αDv(y)/R(y) =

√
α exp(−y2(1− α)/2). This satisfies the condition in Lemma 2.4

that αy ∈ [0, 1]. Our choice ofR(y) ∼ N (0, 1/α) is informed by Properties (II) and (III), and will be
used later on in the proofs of Theorem 2.5 and Lemma 2.6 (also see the last paragraph of Section 1.3
for more intuition). Going back to our goal, i.e., making Ay = αyN (yρ, 1−ρ2) + (1−αy)Qy match
moments with N (0, 1), we will argue that it suffices to only look for Qy of the specific form UρFy ,
where Uρ is the Ornstein-Uhlenbeck operator. This suffices because Uρδy = N (yρ, 1− ρ2) and the
operator Uρ preserves the moments of a distribution if they match with N (0, 1) (see Lemma 2.6 (i)
below). Letting Ay = Uρ(αyδy + (1 − αy)Fy), the new goal is to show that the argument of Uρ
matches moments with N (0, 1). We show the following structural result:

Theorem 2.5. Let y ∈ R, B ∈ R, α ∈ (0, 1/2), and define αy :=
√
α exp(−y2(1−α)/2). For any

m ∈ Z+ such that m ≤ C1/
√
α and B ≥ C2

√
m, with C1 > 0 being a sufficiently small constant

and C2 being a sufficiently large constant, there exists a distribution Fy that satisfies the following:

1. The mixture distribution αyδy + (1− αy)Fy matches the first 2m moments with N (0, 1).

2. Fy is a discrete distribution supported on at most 2m+ 1 points, all of which lie in [−B,B].

The proof of Theorem 2.5 is the bulk of the technical work of this paper and is deferred to Section 3. As
mentioned before, applying Uρ preserves the required moment-matching property. More crucially, it
allows us to bound the χ2-divergence: the following result bounds χ2(Ay,N (0, 1)) using contraction
properties of Uρ, tail bounds of Hermite polynomials, and the discreteness of Fy .

Lemma 2.6. In the setting of Theorem 2.5, let ρ > 0 and Qy = UρFy. Then the following holds
for the mixture Ay = αyN (yρ, 1 − ρ2) + (1−αy)Qy: (i) Ay matches the first 2m moments with
N (0, 1), and (ii) χ2(Ay,N (0, 1)) ≤ αO(ey

2(α−1/2))/(1− ρ2) +O(eB
2/2)/(1− ρ2).

We prove Lemma 2.6 in Appendix B. We are now ready to sketch the proof of Theorem 2.1 (see
Appendix B for the detailed proof).

Proof Sketch of Theorem 2.1. Consider the search problem Z , where D is the set of all distributions
Ev satisfying properties (I),(II), and (III) (let β(v) = ρv be the corresponding regressors). For each
Ev, the corresponding solution set is defined to consist of all lists L of size ` having one element
that is (ρ/2)-close to β(v). Let the subset DR = {Ev}v∈S , for S being the set of nearly orthogonal
vectors of Lemma 1.14. Since |uT v| ≤ O(dc−1/2) for any distinct u, v ∈ S and d = 2Ω(1/(1/2−c)),
for any vector w, at most one element of S can be (ρ/2)-close to w. Thus, for any list L of size
` = |S|/2, |DR \Z−1(L)| ≥ |S|−` ≥ 2Ω(dc). Using Lemmas 2.2 and 1.13 along with the χ2-bound
of Lemma 2.6, we get that DR is (γ, b)-correlated with respect to R, for b := eO(m)/(1− ρ2) and
γ := Ω(d)−(2m+1)(1/2−c)b. An application of Lemma 1.11 completes the proof.
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3 Duality for Moment Matching: Proof of Theorem 2.5

We now prove the existence of a bounded distribution Fy such that the mixture αyδy + (1−αy)Fy
matches the first 2m moments with N (0, 1). The proof follows a non-constructive argument based
on the duality between the space of moments and the space of non-negative polynomials.

Let B > 0 and m ∈ Z+. Let P(m) denote the class of all polynomials p : R → R with
degree at most m. Let P≥0(2m,B) be the class of polynomials that can be represented in either
the form p(t) = (

∑m
i=0 ait

i)2 or the form p(t) = (B2 − t2)(
∑m−1
i=0 bit

i)2. The intuition for
P≥0(2m,B) is that every polynomial of degree at most 2m that is non-negative in [−B,B] can
be written as a finite sum of polynomials from P≥0(2m,B). By slightly abusing notation, for
a polynomial p(t) =

∑m
i=0 pit

i, we also use p to denote the vector in Rm+1 consisting of the
coefficients (p0, . . . , pm). The following classical result characterizes when a vector is realizable as
the moment sequence of a distribution with support in [−B,B] (for simplicity, we focus on matching
an even number of moments in the rest of this section).

Theorem 3.1 (Theorem 16.1 of [KS53]). Let B > 0, k ∈ Z+, and x = (x0, x1, . . . , x2k) ∈ R2k+1

with x0 = 1. There exists a distribution with support in [−B,B] having as its first 2k moments the
sequence (x1, . . . , x2k) if and only if for all p ∈ P≥0(2k,B) it holds that

∑2k
i=0 xipi ≥ 0.

As we require the distribution to be discrete, we prove the following result using Theorem 3.1:

Proposition 3.2. Fix y ∈ R, αy ∈ (0, 1), B > 0, and m ∈ Z+. There exists a discrete distribution
Fy supported on at most 2m+ 1 points in [−B,B] such that αyδy + (1− αy)Fy matches the first
2m moments with N (0, 1) if and only if EX∼N (0,1)[p(X)] ≥ αyp(y) for all p ∈ P≥0(2m,B).

The proof of Proposition 3.2 is deferred to Appendix C.1. To prove Theorem 2.5, we need to establish
the condition of Proposition 3.2. To this end, we first need the following two technical lemmas, whose
proofs are sketched towards the end of this section (for detailed proofs see Sections C.2 and C.3).

Lemma 3.3. Let m ∈ Z+. If B ≥ C
√
m for some sufficiently large constant C > 0, then for every

q ∈ P(m), it holds that B2 EX∼N (0,1)[q
2(X)] ≥ 2EX∼N (0,1)[X

2q2(X)].

Lemma 3.4. Let y ∈ R, α ∈ (0, 1/2), m ∈ Z+, and αy =
√
α exp(−y2(1 − α)/2). Sup-

pose m ≤ C/
√
α for some sufficiently small constant C > 0. Then for all r ∈ P(m), r 6≡ 0:

r2(y)/(EX∼N (0,1)[r
2(X)]) ≤ 1/(2αy).

Proof of Theorem 2.5. By Proposition 3.2, it remains to show that if B ≥ C2
√
m, then the condition

EX∼N (0,1)[p(X)] ≥ αyp(y) holds for all p ∈ P≥0(2m,B). Thus, it suffices to ensure that the
following two inequalities hold for X ∼ N (0, 1):

sup
r∈P(m),r 6≡0

r2(y)

E[r2(X)]
≤ 1

αy
and sup

q∈P(m−1),q 6≡0

(B2 − y2)q2(y)

E[(B2 −X2)q2(X)]
≤ 1

αy
, (1)

where we use Lemma 3.3 to show that E[(B2 − X2)q2(X)] > 0 for all non-zero polynomials
q ∈ P(m − 1). The first expression can be bounded using Lemma 3.4 when m ≤ C1/

√
α.

We now focus on the second expression. By Lemma 3.3, EX∼N (0,1)[(B
2 − X2)q2(X)] ≥

0.5EX∼N (0,1)[B
2q2(X)]. Therefore, we have that

sup
q∈P(m−1),q 6≡0

(B2 − y2)q2(y)

EX∼N (0,1)[(B2 −X2)q2(X)]
≤ sup
q∈P(m−1),q 6≡0

B2q2(y)

EX∼N (0,1)[(B2 −X2)q2(X)]

≤ sup
q∈P(m−1),q 6≡0

B2q2(y)

EX∼N (0,1)[0.5B2q2(X)]
= 2 sup

q∈P(m−1),q 6≡0

q2(y)

EX∼N (0,1)[q2(X)]
,

where the first inequality uses that the denominator is positive and y2q2(y) ≥ 0 and the second
inequality uses that EX∼N (0,1)[(B

2 − X2)q2(X)] ≥ 0.5EX∼N (0,1)[B
2q2(X)]. The expression

above is of the same form as the first expression in Equation (1), and thus is also bounded above by
1/αy when m ≤ C1/

√
α using Lemma 3.4. This completes the proof of Theorem 2.5.
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Proof sketch of Lemma 3.3: The proof of Lemma 3.3 is a relatively straightforward application
of Hölder’s inequality and the Gaussian Hypercontractivity Theorem (stated below). For p ∈ (0,∞),
we define the Lp-norm of a random variable X to be ‖X‖Lp := (E[|X|p])1/p.
Fact 3.5 (Gaussian Hypercontractivity [Bog98, Nel73]). Let X ∼ N (0, 1). If p ∈ P(d) and t ≥ 2,
then ‖p(X)‖Lt ≤ (t− 1)d/2 ‖p(X)‖L2 .

Proof sketch of Lemma 3.4: The proof is based on Hermite Analysis (see Appendix A for more
details). The normalized probabilist’s Hermite polynomials, {hi, i ∈ [m]} form a basis of P(m) and
satisfy the property EX∼N (0,1)[hi(X)hj(X)] = 1(i = j). Since r is a polynomial of degree at most
m, we can represent r(x) =

∑m
i=1 aihi(x) for some ai ∈ R. Using orthonormality of hi under the

Gaussian measure, we get that EX∼N (0,1)[r
2(X)] =

∑m
i=1 a

2
i . By a standard optimization argument,

we get that the supremum of r2(y)/E[r2(X)] is exactly
∑m
i=1 h

2
i (y). It remains to show that for

every y ∈ R,
∑m
i=1 αyh

2
i (y) ≤ 1/2. As m ≤ C/

√
α for a small enough constant C, it suffices to

show that for every i ∈ [m], αyh2
i (y) ≤ O(

√
α). As αy :=

√
α exp(−y2(1−α)/2), the following

tail bound on the Hermite polynomials can be used:
Lemma 3.6. Let hi be the i-th normalized probabilist’s Hermite polynomial. Then
maxx∈R h

2
k(x)e−x

2/2 = O(k−1/6).

We break our analysis in two cases:

Case 1: |y| ≤ 1/
√
α. Since α2y ≤ 1, Lemma 3.6 implies that for every |y| ≤ 1/

√
α, αyh2

i (y) =√
α exp(1)h2

i (y) exp(−y2/2) = O(
√
α).

Case 2: |y| > 1/
√
α. In this case, we use rather crude bounds. A direct calculation shows that

|hi(x)| ≤ ii(1 + |x|)i. Since α ∈ (0, 1/2), we get that αyh2
i (y) ≤

√
α exp(−y2/4 + 2i log(2i|y|)).

It remains to show that exp(−y2/4 + 2i log(2i|y|)) = O(1) under given conditions on i and y. We
have that exp(−y2/4 + 2i log(2i|y|)) = O(1) whenever |y| = Ω(

√
i log i). Since |y| ≥ 1/

√
α, the

former condition is satisfied whenever i = O(1/
√
α). This completes the proof sketch.
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