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Abstract

Data augmentation is a cornerstone of the machine learning pipeline, yet its theoretical underpinnings remain
unclear. Is it merely a way to artificially augment the data set size? Or is it about encouraging the model to satisfy
certain invariance? In this work we consider another angle, and we study the effect of data augmentation on the
dynamic of the learning process. We find that data augmentation can alter the relative importance of various features,
effectively making certain informative but hard to learn features more likely to be captured in the learning process.
Importantly, we show that this effect is more pronounced for non-linear models, such as neural networks. Our main
contribution is a detailed analysis of data augmentation on the learning dynamic for a two layer convolutional neural
network in the recently proposed multi-view model by Allen-Zhu and Li [2020b]. We complement this analysis with
further experimental evidence that data augmentation can be viewed as a form of feature manipulation.

1 Introduction

Data augmentation is a powerful technique for inexpensively increasing the size and diversity of training data.
Empirically, even minimal data augmentation can substantially increase the performance of neural networks. It
is commonly argued that data augmentation is useful to impose domain specific symmetries on the model, which
would be difficult to enforce directly in the architecture [Simard et al., 2000, 2003, Chapelle et al., 2001, Yaeger et al.,
1996, Shorten and Khoshgoftaar, 2019]. For example, semantics of a natural image is invariant under translation
and scaling, so it is reasonable to augment an image data set with translated and scaled variations of its inputs.
Simple augmentation with random crop up to 4 pixels can lead to gains in the range 5-10% [Ciregan et al., 2012,
Krizhevsky et al., 2017]. Another explanation often proposed for the role of data augmentation is merely that it
increases the sample size. As an alternative to symmetry inducing or sample size increase, we consider in this work the
possibility that data augmentation should in fact be viewed as a more subtle feature manipulation mechanism on the data.

Consider, for illustration, an image data set with the task of learning to detect whether there is a cow in the image. A
simplified view would be that there are true cow features that generate the cow images, and we hope to learn those true
features. At the same time, because most images of cows contain grass, it would not be surprising if a neural network
would learn to detect the spurious grass feature for the task, and perhaps simply overfit the rare images such as desert
cows that are not explained by the grass feature (and similarly overfit the perhaps few images with grass and no cows).
Now consider a simple data augmentation technique such as Gaussian smoothing (let us assume black and white images
or else use additional color space augmentations). The grass feature, sans color, is essentially a high frequency texture
information, so we can expect the smoothing operation to make this feature significantly diminished. In this example,
the feature manipulation that data augmentation performs is effectively to render the spurious feature harder to detect,
or more precisely to make it harder to learn, which in turn boosts the true cow features to become the dominant features.

Continuing the illustration above, let us explore further the idea of data augmentation as feature manipulation. First
note that the frue cow feature need not be one “single well-defined object”, but rather we may have many different true
cow features. For example, true cow features could be different for left-facing and right-facing cows. An imbalance in
the training data with respect to those different features could make the rarer features hard to learn compared to the
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more common features, similarly to how the spurious grass feature was occluding the true cow features. In the example
above, it could happen that in most images in the training data, the cows are facing right, which in turn could mean
that the neural network will learn a cow feature with an orientation (right-facing), and then simply memorize/overfit
the cows facing left. Yet another commonly used data augmentation technique such as random horizontal flip would
solve this by balancing the occurrence of cow features with right-orientation and those with left-orientation, hopefully
leading to a neural network dynamic that would discover both of those types of cow features. Note that one might be
tempted to interpret this as inducing a mirror symmetry invariance in the model, but we emphasize that the effect is
more subtle: the learned invariance is only for the relevant features, rather than being an invariance for all images (e.g.,
on non-cow images one might not be invariant to the orientation).

More generally, to understand feature learning with and without data augmentation in gradient descent trained
neural networks, we can think of three types of features of interest: (a) The “easy to learn and good” features, which are
accurate features for the learning problem and are easy to learn in the sense that they have large relative contribution in
the gradient descent updates of the network. (b) The “hard to learn and good” features, which are more nuanced to detect
but are essential to fit the harder samples in the population distribution (e.g., examples with rare object orientations).
These are features that despite being accurate have small relative contribution in the gradient descent updates (perhaps
due to lack of sufficient representation in the training data), which in turn makes them hard to learn. (c) Finally, there
are the “easy to learn and bad” features, which while inaccurate, nevertheless interfere with the learning process as they
have a large contribution in the gradient updates. Such features often correspond to spurious correlations or dominating
noise patterns (e.g., the grass feature) which arise due to limitations in training data size or data collection mechanisms.!
In this paper, we study data augmentation as a technique for manipulating the “easiness” and “hardness” of features by
essentially changing their relative contributions in the gradient updates for the neural network.

We believe that this view of data augmentation as a feature manipulation mechanism is more insightful (and closer
to the truth) than the complementary and more straightforward views of “symmetry inducing” or “it’s just more data”.
For one, data augmentation with specific symmetries do not necessarily lead to models that are respectively invariant.
For example, Azulay and Weiss [2019] show that even models trained with extensive translation and scale augmentation
can be sensitive to single pixel changes in translation and scaling on inputs far from the training distribution, suggesting
the inductive bias from data augmentation is more subtle. Further, this view could form a basis for studying more recent
data augmentation techniques like MixUp [Zhang et al., 2017], CutOut [DeVries and Taylor, 2017], and variants, which
in spite of being widely successful in image tasks do not fit the conventional narrative of data augmentation.

Contributions Given the diversity of data augmentation techniques (e.g., see Shorten and Khoshgoftaar [2019],
Feng et al. [2021] for a survey), it is a formidable challenge to understand and analyze the corresponding feature
manipulation for each case, and this task is beyond the scope of the present paper. Our more modest objective is
to start this program by studying a simple mathematical model where data augmentation can be provably shown to
perform feature manipulation along the lines described in the illustration above. Specifically, we consider a variant of
the multi-view data setting introduced in the pioneering work of Allen-Zhu and Li [2020b] on ensemble learning. In
our data model, each data point is viewed as a set of patches, with each patch being represented by a high-dimensional
vector in R, Moreover there is a set of K “true/good” features vq,vs, ..., VK € R<. For any data point, each patch is
then some combination of noise and features. Specifically at least one patch contains a “good” feature whose orientation
indicates the label, i.e., for some k € [K] this patch is yv, where y € {—1, 1} is the binary class label to be predicted.
In this case we say that the data point is of the k** type. The other patches contain different forms of noise. If the
training data contains sufficiently many type-k data points, then the corresponding feature vy, is “easy to learn and
good”, while the features corresponding to rare types are “hard to learn and good”. To model the “easy to learn and bad”
features we assume that one patch per datapoint receives a large (Gaussian) noise, which we call the dominant noise.
See Section 2 for exact details of the model. Given such training data we show the following for a two layer patch-wise
convolutional network (see (3)) trained using gradient descent (there is a number of caveats, see below for a list):

1. When one or more features are sufficiently rare, the network will only learn the frequent “easy to learn and good”
features, and will overfit the remaining data using the “easy to learn and bad” noise component.

2. On the other hand, with any data augmentation technique that can permute or balance the features, the network
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will learn all K features, and thus achieve better test loss (and, importantly learn a better representation of this
data?). We show that this happens because the representation of the “hard to learn and good” features in the
gradient updates will be boosted, and simultaneously the relative contribution of the dominant noise or the “easy
to learn and bad” features will be diminished.

3. We show that this phenomenon is more pronounced for gradient descent dynamics in non-linear models in the
following sense: we prove that even at high signal-to-noise ratio (SNR) the non-linear models might memorize
through the noise components, while gradient descent on linear models overfit to noise only at much lower SNR.
This shows that data augmentation is useful in a wider range of cases for non-linear models than for linear models.

Moreover, our non-linear model can learn the distribution even in the presence of feature noise (in the form of
—ayvy for some small o > 0, which points to wrong class). On the other hand, a linear model cannot have low
test error with such feature noise, thus showing a further separation between linear and non-linear models.

Some of the caveats to our theoretical results include the following points (none seem essential, but for some of
them going beyond would require significant technical work):

» Neural network architecture: we study two layer neural network with a special activation function (the latter can
be viewed as a smoothed ReLU with fixed bias). We also assume poly-logarithmic (in d) width.

 Training: we study gradient descent rather than stochastic gradient descent, and furthermore we assume a specific
training time (the same one with and without data augmentation).

* Data model: the distribution can be generalized in many ways, including having data points with mixed types
(e.g., “multi-view” as in Allen-Zhu and Li [2020b]), heterogeneous noise components, or even correlated noise
components (see below for more on this). We also assume a very high dimensional regime d >> n? (where n is
the training set size), although we believe our results should hold for d >> n.

Even though our theoretical results are in a limited setting, the feature manipulation effect of data augmentation
is conceptually broader. We complement our analysis with experiments on CIFAR-10 and synthetic datasets, where
we study data augmentation in more generality. We circle back to our motivating problem with spurious features (ala
the cow grass features story) in a classification task. Our experiments show that simply shifting the spurious feature
position randomly up to 2 pixels in each epoch, can significantly improve the test performance by making the spurious
feature hard to learn. This happens even when we do not change any non-spurious pixels/features (and hence control
learning additional image priors). We further formulate experiments to evaluate the value of a single data augmented
image compared to an fully independent sample, and see that on CIFAR10 dataset that once 50% independent samples
are available, a data augmented sample is almost as effective as an independent sample for the learning task. Finally, we
show on synthetic dataset that the problem arising from imbalance in views (as studied in our main result) also holds for
deeper convolutional architectures, even when the views are merely translations of each other.

Related Work Starting with [Bishop, 1995] there is a long line of work casting data augmentation as an effective
regularization technique, see [Dao et al., 2019, Rajput et al., 2019, Wu et al., 2020, Yang et al., 2022] for recent
developments in that direction. Other theoretical analyses have studied and quantified the gains of data augmentation
from an invariance perspective [Chen et al., 2020, Mei et al., 2021]. The viewpoint we take here, based on studying
directly the effect of augmentation on the learning dynamic, is strongly influenced by the work of Zeyuan Allen-Zhu and
Yuanzhi Li in the last few years. For example in Allen-Zhu and Li [2020a] they develop this perspective for adversarial
training (which in some ways can be thought as a form of data augmentation, where each data point is augmented to its
adversarial version). There they show that adversarial training leads to a certain form of feature purification, which in
essence means that the filters learned by a convolutional neural network become closer to some “ground truth” features.
In [Allen-Zhu and Li, 2020b] they introduce the multi-view model that we study here, and they used it to study (among
other things) ensemble learning. In a nutshell, in their version of the model each data point has several views that can
be used for classification, and the idea is that each model might learn only one of those views, hence there is benefit
to ensembling in that it will allow to uncover all the features, just like here we suggest that data augmentation is a
way to uncover all the features. Other notable works which share the philosophy of studying the dynamic of learning

2 As a consequence of learning all the K features, the learned model will not only be more accurate on the data distribution of training samples,
but will also be robust to distribution shifts that alter the proportion of data of the K feature types.



(although focused on linear models) include [Hanin and Sun, 2021] which investigates the impact of data augmentation
on optimization, and [Wu et al., 2020] which considers the overparametrized setting and show that data augmentation
can improve generalization in this case.

Notation We use tilde notation 5, é, Q to hide log factors in standard asymptotic notation. For an integer K,
[K] ={1,2,..., K}. We interchangeably use a - b, (a, b), or a' b for standard inner product between two vectors.

2 A mathematical model for understanding feature manipulation

Our data model defined below is a variation of the multi-view data distribution in Allen-Zhu and Li [2020b] for a binary
classification task. We represent the inputs x as a collection of P non-overlapping patches x = (x1,X2,...,Xp) €
R¥* P where each patch is a d dimensional vector. The task is associated with & unknown “good” features denoted
as vi,va, ..., v € R such that for labels y € {—1, 1}, their orientation as {yvi }re|k) constitutes the K views or
sub-types of the class y.> Each input x,, patches either contain one of the “good” feature {yv}} or a “bad” feature in
the form of random and/or feature noise. Formally, our distribution is defined below.

Definition 1. D is parametrized by (p, O¢,0¢, a), where p = (p1, pa, ..., pK) is a discrete distribution over the
features {Vy.} k), and o¢,0¢, and o are noise parameters. Without loss of generality, let p1 > ... pg. A sample
(x,y) ~ D is generated as follows:

(a) Sample y € {1, —1} uniformly.

(b) Given y, the input x = (X1,Xa,...,xp) € R¥F is sampled as below:

Choose the main feature patch p* € [P)] arbitrarily and set

Xp+ = YVi+, Where k™ ~ p. (Feature patch)
Choose a dominant noise patch p¢ # p* and generate
iid o ? . .
xpe =& where € '~ N (0, gfd)- (Dominant noise)

For the remaining background patches* p € [P]\ {p*,p*}, select 0 < o, < v and set
Xp = —QpYVi, + G, Where ky ~ p, C,, ~ N(0, 02[(1). (Background)

Assumption 1. We assume the features {Vk}ke[K] are orthonormal, i.e., Vk,k/e[K], Vi Vi = 1p—pr.

The training dataset consists of n i.i.d., samples from D, Dyin = {(x(i), y(i)) i € [n]} ~ D®". We are interested
in the high dimensional regime where n < d. n, P and K can grow with d. Note that, in Definition 1 k*, p*, pg, £,
and (v, kp, C,)pg {p p¢} all depend on x, but we have dropped this dependence in the notation to avoid clutter. In

our analysis, for¢ = 1,2,...,n, we use k, p;, pf, f(i), and (ap i, kp.i, pri)pg{p;ﬂ ¢}, to denote the corresponding
quantities for the sample (x(?), (?)) in the training dataset.

(aug)

Data augmentation Let D .~

denote the augmented dataset obtained by transforming the i.i.d. training dataset
Dirain- Our model for data augmentation is such that fo;ﬁ) has equal number of samples with main feature yvy, for each

k € [K]. Concretely, consider linear transformations 77, . . . Tz _1, such that for all k, 7 : R? — R? and satisfies

VE € [K], Te(Vir) = V((k'+k-1) mod K)+1)- (1)

Such transformations are well defined for K < d, and in essence permute the feature vectors v on patches with
true feature or feature noise. At the same time, the Gaussian noise patches before and after transformation are no longer

3For M-class classification, our analysis can be adapted by using separate set of features {Vy, ,, }x for each class m € [M], rather than {£v, }.
For M = 2, under our learning algorithm, using (v, _1, Vk,l) as features for y = —1, 1 is equivalent to using — v, vg with v, = v 1 —vg 1.
“In our definition, the dominant noise £ and the main feature v« appear in exactly one patch. But our results also hold (by virtue of parameter

sharing in (3)) when for any disjoint non-empty subsets Py, Pr, C [P], wesetVp € Py, Xp = yvix andVp € Pn, xp =€, ~ N(0, U?Id/d).
1.1



i.i.d. We slightly abuse notation and define 73 (x) on x € R as Tp.(x) = (Tr(x1), Te(X2), - - -, Tr(x,)) € RIXF,
as well as Ty (Dyqin) on the training dataset as Tx,(Dyain) = {(Te(x), @) 1 i € [n]}.

D(aUg)

Our augmented dataset D,

consists of Dyin along with the K — 1 transformations of of Dy, as defined below:

,D(aug) = Dtrain U 7—1(,Dlrain> .U TKfl(,Dtrain)~ (2)

train

Note that in Dira;ﬁ) all the views are equally represented, i.e., for each k € [K], we will have exactly n samples from the
(aug)

feature yvy, and further D€ has more samples compared to Dy With D

nin | = nK, but they are no longer i.i.d.

Since the features {v }« are orthonormal (Assumption 1) and all the non-feature noise are spherically symmetric,
without loss of generality, we can assume that {vy}c[x] are simply the first K standard basis vectors in R, ie.,
v = e. In this case, we can choose Ty, for k € [K — 1] as a permutation of coordinates satisfying (1) on the first &
coordinate. If we further assume that the the permutations 7y, do not have any fixed points, i.e., Vi € [d], Tx(2)[i] # z[i],
then at initialization and updates of gradient descent, the augmented samples in Dt(ra;ﬁ) satisfy the same properties as

i.i.d. samples in Dy, (upto constants and log factors). In this rest of the proof, we thus assume that 7y, are permutations
of coordinates without any fixed points in the orthogonal basis extended from {vy }«, and satisfies (1).

Role of different noise components Our main result shows that when the dominant noise parameter o is sufficiently
large, a neural network can overfit to this noise rather than learn all the views. However, with the right data augmentation,
we can show that all the views can be accurately learned using a non-linear network. Furthermore, in the presence
of feature noise {—a,yvy,} (pointing to wrong class), linear models are unable to fit our data distribution, thus
establishing a gap from linear models.

We choose the noise parameters o¢, o¢, a such that the dominant noise & and the true features {yvy- } have the
main contribution to the learning dynamic compared to the feature noise (i.e., —ay,yvy,) or the minor noise (i.e., ¢ p).
Thus, our results do not necessarily require noise in the background patches beyond establishing gap with linear models.
Since the minor noise o¢ does not provide any additional insight, we assume o¢ = 0. Our analysis can handle small o¢
with more tedious bookkeeping.

2.1 Learning algorithm

We use the following patch-wise convolutional network architecture with C' channels: let w = {wy,wa,...w¢o} €
R*C denote the learnable parameters of the model,

Fw,x)= Y Y t(we-xp), 3)
ce[C] pe[P]

where 1) is a non-linear activation function defined below:

sign(z) - %\z|q if|z| <1

W(z) = z—% ifz>1 - —
z4+ 42 ifz<1 /‘

Our activation is a smoothed version of symmetrized ReLU with a fixed bias ¢(z) = ReLU(z+1) —ReLU(—z—1).
In fact, as ¢ — oo, ¥ — ¢. Note that since we do not train the second layer weights, we choose an odd-function as
activation to ensure that the outputs can be negative.

Consider the following logistic loss over the training dataset Dyyin = {(x(,yV), 4 € [n]}:

L(w) = % Zﬁ(y(i)F(w,x(i))), where £(z) = log(1 + exp(—2z)). 4)
i=1



We learn the model using gradient descent on the above loss with step size 7, i.e., for ¢ € [C], the weights w . at time
step t are given by w.(t) = w.(t — 1) — 250"y (5D F(w(t),xD))VE (w(t),x®).

n i=1
The following lemma summarizes the conditions at Gaussian initialization w(0) = {w.(0) ~ N(0,021,) : ¢ € [C]}.

Lemma 1. [G-conditions] Consider n i.i.d. samples Dy = {(X(i),y(i)) : i € [n]} from the distribution in
Definition 1. Let the parameters w of the network in (3) be initialized as w.(0) ~ N(0,021;) ¥ ¢ € [C). If the number

of channels is C = Q(log d), then with probability greater than 1 — O(;ﬁﬁg)

), the following conditions hold :

1. Feature-vs-parameter: ¥V k € [ K], m?CX] wc(0) - vi > Q(og), and m.[aé(] [we(0) - vi| < O (00).
ce ce

2. Noise-vs-parameter:'i € [n), max w,(0) - y»¢® > Q (oo0¢), and m%{} lw.(0)-£D| <O (o00¢) .
ce

ce[C]
3. Noise-vs-noise: Vi € [n], €9 - €9 = ©(02) and Vi, j € [n],i # j, [€V - €9| < O(o2/d).
4. Feature-vs-noise: ¥i € [n], k € [K], |E(i) “vi| < 5(06/\/@-
w(0)] = ©(0oV/d).

5. Parameter norm: ¥ ¢ € [C],

The above lemma proved in the Appendix C follows from standard Gaussian concentration bounds. Further, we can

show that Giy;; also hold for the augmented dataset fo;i) even though the samples in Dira:iﬁ) are not i.i.d.

Lemma 1a. G, in Lemma 1 also holds for plaus) defined in (2) with n replaced by nK.

train

2.2 Clarification on capacity in this model

We now informally discuss the size of our model class in the context of our data distribution. Consider the convolutional
model (3) with C' = 1 and say o = 0 for sake of simplicity in the data distribution. Using w; = w9" = ~ Zle Vi
for some large v > 0 will yield excellent training and test error. This is a model that would “generalize”. On the
other hand for a fixed training set {(x(®, y(i))}ie[n], one could also obtain almost perfect training error by using

wp = wovertit — 43 yDe@ | whenever o¢ and d > n (noise components {S(i)}ie[n] are near orthonormal).
Indeed with high probability, V;c[,), y¥ f(woverfit x(D)) = () Dopep) Y(WoTEEEE ng)) is exactly

U (yo2(1+ O(v/n/d))) + ¥ (v0:0(y/n/d)) = vo#(1 + o(1)).

In other words the model with w°ve*£i* will almost perfectly memorize the training set, while on the other hand
it is clear that it will completely fail to generalize. This shows that the model class is large enough so that any
classical measure of complexity, e.g., Rademacher complexity, would fail to predict generalization (even data-dependent
Rademacher complexity where the x(*) follow our data distribution). In fact, our arguments below show that gradient
descent could lead to a model of the form w°ve*f't in a Rademacher complexity setting (i.e., with random label (%)
independent of the inputs x(*)). Thus, even restricting to models reached by gradient descent would still yield a high
Rademacher complexity. This phenomenon has also been empirically observed in practical neural networks Neyshabur
et al. [2015], Zhang et al. [2021], and shown theoretically in simpler models in Nagarajan and Kolter [2019]. Thus, we
are in a case where not only do we need to leverage the fact that we are using gradient descent to prove generalization,
but we also need to use the specific target function (i.e., the relation between y and x) that we are working with.

2.3 Our argument in a nutshell

At a high level we show that there is a cutoff point in the features, denote it K+, such that running gradient descent on
the above architecture and data distribution will lead to a model which is essentially a mixture of parts of w9¢" and
parts of wovertit described above. Roughly it will be:

doovet+ Yy, (5)

k<Keu ik > Ko



In words, the frequent enough features will be learned, and the data points that correspond to infrequent enough
features will be memorized through their noise component. Quite naturally, this cutoff point will be decreasing with the
magnitude of the noise o, i.e., the bigger the noise the fewer features will be learned. While this argument also holds
for gradient descent dynamics on linear models, the cutoff point K. of linear models can be higher than that of the
non-linear models, which shows that non-linear models can memorize through the noise component at a higher SNR
(see Section 3.3 for the exact cutoff point).

Where data augmentation will come in is that it can effectively change the frequency of the features, and in the
extreme case we consider make them all equal for example,i.e., all with frequency 1/K. We then show that there exists
setting of the parameters such that frequency 1/K is learned at noise magnitude o, so that with data augmentation all
the features are learned.

2.4 Linear and tensor models

Before diving into the dynamics of gradient descent for our neural network architecture and data distribution, let us
expand briefly on linear models. In Appendix D we study the max-¢» margin linear classifier for our data, but for sake
of simplicity we consider here an even more basic predictor that is specifically tailored to our data distribution:

Z Z y(z X(’L

i= lpe

Note that @ is a linear function on R?, and we naturally extend it to the domain R%* ¥ of our data points (with slight
overloading of notation) as 8(x) = Zpe[ Pl 0 - x,. Compared to a gradient descent learned model, it is not clear
whether this predictor is meaningful beyond our specific data distribution, and we emphasize that we study it merely
as a shortest path to get quantitative estimates for the discussion in Section 2.3 (e.g., for the cutoff point and for the
SNR of interest). In fact the (gradient descent learnable) max margin linear classifier has even better properties than the
estimator w, see the Appendix D for more details.

Derivation of a cutoff point. It is easy to check that with our data distribution we have 0 = 05 + O where
s = Z,Ile pr Vi (say the fraction of examples of type k is exactly py,) and Oy = L 37 | y@D¢® (assume a = 0 for

— 0_2
this discussion). In particular for x sampled from our distribution, we have with high probability |6y (x)| ~ ﬁ and

_ _ o2
05 (x) ~ pry if x is of type k. This means that the predictor 8 has successfully learned feature vy, iff pj, > \/—i In

other words for this linear model the cutoff frequency is at peut = \/Ti With a small leap of faith (related to the fact

that after data augmentation the noise terms are no longer i.i.d., which we show to be not a in our proof of non-linear
model) we can see that as long as this cutoff frequency is smaller than \F data augmentation would enable full

learning of all the views, since in that case the post-augmentation frequencies = 7 are larger than the cutoff frequency

2
with n replaced by nK, i.e., = > \/% = Zon,

Effect of simple non-linearity on SNR. The simplest type of “non-linearity” would be to consider a tensor method
for this problem (note that this is nothing but a kernel method). Specifically, let

= %i > wi (x§f>>®q :
i=1 pe[P]

be the natural empirical tensor for this problem, for some odd ¢ € N, whose domain is extended from R? to R4*” as
before, i.e., T'(x) = 3_ ¢ (p) T'(xp). Note that this function can be realized in our architecture with a pure polynomial
activation function ¥ (z) = z9, see Bubeck et al. [2021] for more on neural network memorization with tensors.
Similarly to the linear case one can decompose the tensor into a signal and noise components:

K n
1 A\ ®g
T=S+N, where S =Y pvi?, N = = i(“))
+ where 2 PrV, n 2 yi [ &



For x sampled from our distribution, we have with high probability, | N (x)| ~ \;:LW and S(x) ~ pyy if x has vy, as its
(@) _ %

cut T Vndd®
Vnd > ag > /d (in which case p§u1 = 0(1)) we might have p((ffl)t = Q(1) for ¢ > 1. To put it differently, the tensor
methods will overfit to the noise at a different SNR from the pure linear model would, which in turns mean that there is
a different range of SNR where data augmentation will be useful for non-linear models such as tensors. We will see this

story repeating itself for the gradient descent on our neural network architecture.

main feature. Thus here the cutoff frequency is at p, In particular we see that even at high SNR, say when

Quantitative comparison with the neural network results. We note that the thresholds derived here are better than
those we obtain via our neural network analysis (note also that the tensor method can handle a > 0 similarly to what
our non-linearity allows). However we emphasize again that, on the contrary to gradient descent on neural networks,
the predictors here are artificial and specifically tailored to the data distribution at hand. Furthermore the complexity of
the tensor method scales up with g, on the contrary to the neural network dynamic.

3 Overview of gradient descent dynamics

Let us do some heuristic calculation in the simple case where o = 0 (so that effectively there are only two relevant
patches in inputs, x,- = yvj- and x,¢ = &, respectively). Recall that w.(0) ~ N(0,0514) and & ~ N(0, 0¢1a/d).
Thus, E[|w(0) - x,+ [*] = 0 and E[|w(0) - x,¢|*] = oo for all channels c. We will initialize so that these quantities
are o(1), and thus f(w(0),x) = o(1) for (x,y) ~ D. We study the gradient flow on minimizing f in this section.

3.1 When you really learn...

For f to correctly classify a datapoint x with feature vy, it is morally sufficient that |w.. - vi| is of order 1 for some
channel c. Let us look at the dynamics starting close to initialization (when f(w(0),x) = o(1)),

4
dt
1 . . . .
= _ﬁ Z y(l) K/ (y(l)F(chx(l))) [VWCF(WaX(l)) : Vk}

ie[n]

We - Vi

(a>1+0 Z 3 ¢ (we - x0) yOx) vy

i€[n] pe[P]

1+0 1+0 i (i)
= Zi/) (IlWe - vie )iy - vie + —5—— Zw (Jwe-€9)) Vi

i€[n] 1€[n]

=0
1+o(1
2 %Pkw/“wc‘vk‘)ﬂ‘?% (6)
where in (a), we use —¢'(0(1)) = 1/2 + o(1) for logistic loss £, ¢’ (z) = 1(|z|) since ¢ is odd, and (b) follows from
{Vv} being orthogonal.

—~

If we can ignore 9, resulting dynamic reduces to an ODE of the form ¢’(t) = pr¢’(g(¢)) (ignoring constants) with
g(0) ~ o9 = o(1). As long as g(t) = w,(t) - vy is smaller than 1 this can be rewritten as g’ (t) = prg(t)9~" (because
of the form of v we chose), or equivalently (g(t)2~%)" = —pj, up to constants. In particular, we see that after time
t = g(0)2~%/py, we will have g(t) = ©(1). This suggests that by time of order 1/(c > p},) at least one channel should
have learned v;°.

qlq

ﬁ
hand the “main” term w,. - v in (6) is of order pkao . Thus we see that we need F < pr. In fact we will

When can we indeed ignore (morally) the noise term 19? At initialization this term is of order . On the other

5We assume g > 3. For the case ¢ = 1 or ¢ = 2, the time needed is 1/(0871pk).



need a slightly more stringent condition, because the cancellation in ¢ leading to a scaling of 1/+/n becomes more
complicated to analyze after initialization due to the dependencies getting introduced. So we will use the more brutal

q
bound 9] < Z f 8% which in turn means we need f < Pk

Summarizing the above, we expect that if ag /Vd < p, then by time 1/ (o ~2pi) we will have one channel that
has learned the feature vy,.

3.2 ... and when you overfit ...

Another sufﬁcient condition to correctly classify a datapoint (x(j ),4)) would be to overfit to its dominant noise part
€9 e, |w, - £9|is of order 1 for some channel c. Here we have at initialization:

d .
Zw. . e\
Y-
1+0
ZZ¢|WC )()()5()
i€[n] p€[P]
1+o(1 . : , i D (i ;
:Tf )<y<ﬂ>w’<|wc~s<”|>||e<”2+w’<|wc-vk;>vk;-£“ > (w5 >x§,>-£<”>
i#4,pE[P]

2
- ;(1*1))% y o ([we - €9]) +T ™

where I is the last two term from the penultimate step.

Assuming T' can be ignored, we can mimic the reasoning above (for w. - vi) with h(t) = yDw, - £(j) and
h(0) = O(ooo¢). We thus expect to correctly classify a datapoint by overfitting to its noise after time O(n/ (087203)).

When can we ignore the noise term I'? The order of T is Ug+1ag_1 / V/d (at initialization it is in fact this times 1/y/n
but we ignore this improvement due to the dependencies arising through learning). On the other hand the main term in
(7) is of order 05 g -t /n at initialization, so we obtain the condition v/d > n (which could possibly be improved to
d > n if cancellation remained correct throughout learning).

Summarizing again, if d > n?, by time in the order of n/ (08_202), we can expect the data points that were not fit
before this time to be overfit using noise parameters.

3.3 ... and in what order

q
Let us assume d > n? and % < pi. Then the above discussion reveals that if n/(03720g) < 1/(oopr) & pr <
O'g /m, we will not be able to learn vy, because we will overfit before learning (In fact, in this case, we do not need the

condition % < pi)- This essentially gives rise to a channel filter (or a combination thereof) of the form (5), with the
cutoff point Kopr = {k : pr < ag/n} being now specified.

Data augmentation can fix the order by effectively permuting the features. After data augmentation, we get the
proportion of any feature to be 1/K and the training set size to be nK . Note that our data augmentation only permutes
the coordinates so that the inner product between & and 7 (&) should be at the same order as two independent noise.
The learning process only depend on the inner product between the samples so our previous analysis still holds. Then,
after data augmentation, for every view k € [K], we have p(aug) 1/K. Then, as long as of /n = o(1), we have

p(]:ug) > ag /(nK) and are able to learn v}, before overfitting.



4 Main Results

We learn the model F'(w, x) in (3) using gradient descent with step size 7 on loss L(w) in (4). The weight w., ¢ € [C],
at time step ¢ is denoted as w.(t). The weight w,(t) for training on D™ is obtained similarly, with the samples

replaced by DI = {(x(),y()),i € [Kn]}. In addition to the assumptions we have discussed in Section 3, we make

some additional assumptions for controlling the omitted quantities arising through training and testing.

Assumption 2. We assume the following holds. For some constant q > 3,
1. The first view is dominant, 1 > p1 > Q(1). The other views k € [K]\ {1} are minor views, np, < o (O'g).

2. The standard deviation of the dominant noise satisfies w(1) < of < o(n).

3. The standard deviation of the weights at initialization is bounded, oy < o(1/0¢).

4. The number of samples and views are bounded, nK < o (08710271&/2)‘
5. The feature noise satisfies, for T = © (max {nnflagqaaﬁz, Kn’laaqw}),
wP ) <ac<o (nflelP_%ag min{d7%,00}> .

Condition 1-3 in Assumption 2 have been explained in Section 3. 0y < o(1) and ogo¢ < o(1) guarantee that at
initialization, the main features and the dominant noise have o(1) correlation with the weight. We choose o¢ > w(1) so
that without properly learning the main feature, the inner product between random initialized weights and the dominant
patch can dominate the model output. Condition 4 is a more stringent version of the condition n < d'/2 in Section 3 to
control all the terms during training. In Condition 5, we assume an upper bound on the feature noise . We assume the
existence of feature noise only for establishing gap with linear models, so we did not optimize the upper bound on «. It
is possible the proof can go through with milder constraints on «.

An example of a set of parameters that satisfy the above assumption is

q= 370_0 _ d_0'15,0'§ _ do'l,n:d0'337
K — (0-06 ,1 _ _ _ 1

= ,Plf27P2*P3*---*PKf2(K_1)>
a=d "% P=d

In Theorem 3, we show that under the above conditions, without data augmentation, gradient descent can find a
classifier with perfect training accuracy without learning the minor views. On the other hand, Theorem 4 shows that
with data augmentation, all £ views can be learned without overfitting to noise.

Theorem 3 (Training without data augmentation). Suppose that Assumption 2 holds. Let T be the first time step such
that w(T') can classify all (X(i)7 y(i)) € Dyyain With constant margin, i.e., ,

yOFw(T),xD) > Q(1), forall (x,y'))€ Dy
For hidden channel number C = O(logd), and small step size m, with probability at least 1 — O(%), T =

Q -1_—q9_—q+2 ; Ty
(S} (nn o "0y ) Moreover, at time step T, views Vs, ...,V have never been learned, so that Vogtg?y

P WE(w().) < 0] > (; 0 (\1@)) épk.
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Theorem 4 (Training with data augmentation). Suppose assumption 2 holds. Let Taug be the first time step such that

W(Taug) can classify all (xD,y®) € D8 with constant margin, i.e.,

YO F(W(Tag), x") = Q1) forall (x¥,y@)e D

= train

n?K?3

For hidden channels number C = O(log d), and small step size 1, with probability at least 1 — O(W)’ Tug =
&) (Kn’logqﬁ), and at T 4g,

— nk
(x’l;)rw - [YF(W(Taug),x) < 0] < polyd
Remark 5. In Theorem 3 and Theorem 4, we evaluate the testing accuracy at the earliest time step 7" when the trained
neural network with weights w(7") can classify all samples in the training set D, with a constant margin. Our result
does not rule out the possibility that if trained longer than T, the network can learn the minor views as well. However,
we should expect the gradients on the training set stay small after the network can classify all sample correctly. The
main reason we assume an upper bound on 7" is when training too long, the norm of the weights w can blow up. One
possible strategy to avoid such upper bound on 17" is to add weight decay to the gradient descent algorithm in training.

Remark 6. For simplicity of the proof, we only keep track of the channel with the maximum correlation with the main
feature or the noise, arg max,cjc) W¢(t) - vi and arg max.cjc) ywe(t) - §. For the other channels, we only give a
rough bound on their correlation. For this reason, we assume the number of channels is C' = O(log d) so that the output
is dominated by the channel with the maximum correlation. To extend the result to higher number of channel, such as
polynomial in d, we need to keep track of all channels and scale the output layer by % .

Remark 7. In our model, we show that when there exists some large dominant noise, the neural network overfits to the
noise instead of learning the minor features. In practice, the model can overfit to any vector that contributes significantly
to the gradient of the loss. For example, our proof can be extended to the case where there exists some spurious feature
that appears in sufficiently many sample. In such case, even when the magnitude of the spurious feature is smaller than
the dominant noise in our distribution, the network can still overfit it.

S Experiments

Our theoretical results showed that data augmentation can make it harder to overfit to the noise components (the “easy
to learn and bad” feature in our model) by manipulating the relative gradient contribution of noise vs true features.
To simplify our analysis, we assumed independent dominant noise in each sample. We hypothesize that the feature
manipulation effect of data augmentation is broader in practice. In particular, our high level argument suggests that a
model can also overfit to spurious features, like the grass feature in our story of cows in the introduction, which have
strong class dependent correlations. In Section 5.1, we show experiments to this effect that complement our theory. We
further conduct two additional experiments that support this paper’s thesis. In Section 5.2, we show an experiment
with a modified data augmentation pipeline that demonstrates that the benefits of data augmentation cannot be fully
explained by the learning of right invariance by the model. Finally, in Section 5.3 we elaborate on the problem with
unbalanced views, where we show that adding extra samples from one dominant view to balanced dataset can hurt the
performance of the learned models.

5.1 Spurious Feature

We use images of the dog class and the cat class from CIFAR-10 dataset, which are of size 32 x 32 pixels and 3 channels.
We generate a row of random pixels u ~ N'(0, 021;), where d = 32 and o = 25, which is added as a synthetic spurious
feature to a class dependent position in an image. The spurious feature u is added to the first channel in the row 7, for
cat images, and in row 740 for dog images. For each image x in the dataset, with probability p < 1 we introduce a
spurious feature, and with probability (1 — p) we leave it unperturbed. We always select 7 € {0,1,...,15} in the
upper half of the image, and 740, € {16,17,...,31} in the lower half. In this way, the spurious feature position has a
weak correlation to the class label. See Figure 1 for sample images with spurious features. We consider three types
training sets with varying degrees of data augmentation as shown Figure 1-(b,c,d).
1. No augmentation: As a baseline without augmentation, we center-crop the image to size [3, 28, 28].
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2. Random crop: In each epoch, we randomly crop a [3, 28, 28] from the original [3, 32, 32] image—a standard
technique used in practice. This would in essence disperse the position of spurious feature u. For example, cat
images with u in Tow 7, = 9, will now contain u in a row uniformly chosen from 75, ~ U({5,6,7,8,9}).

3. Randomized noise position: Random crop, although standard, has a confounding effect that in addition to
perturbing the position of u, it might also incorporate other useful inductive biases about images. For a more
direct comparison to the baseline, we also look at a special augmentation, wherein we perturb just the spurious
feature row position by a uniform random number in [—2, 2] in each epoch and then use a simple center crop. As in
the case of random crop, this would again disperse the spurious feature from re, = 9 to 75,8 € U({5,6,7,8,9}).
But the non-spurious features/pixels remain the same as baseline.

i

(a) Original images (b) No augmentation (c) Random crop (d) Random noise position
Figure 1: Examples of training images in the spurious features experiment (Section 5.1). For ease of visualization, we use a green
line rather than random row vector u to indicate the spurious feature. In the original [3, 32, 32] images shown in (a), the spurious
feature is added to the first channel of row 7., = 9 for the cat class (lower images), and of row 4., = 22 for the dog class (upper
images). Sub-figures (b,c,d) correspond to samples from different data augmentation methods described in the experiment.

We compare the testing accuracy of training on these three types of training set in Figure 2 for different values of
Teat aNd Taog. When (7rear, raog) = (15, 16) (Figure 2, right), after data augmentation with either random noise position
or random crop, the position of u in the perturbed imaged has a large overlap across classes. So it is not surprising
that the test accuracy with augmentation remains about the same for almost all values of p (fraction of images with
spurious features). On the other hand, for positions (9, 22) and (12, 19) (Figure 2, left & center)), although the two data
augmentation techniques disperse the positions of spurious feature, its location in the two classes still stays separated.
The cat images always have u in the upper half of the image while the dog images always have u in the lower half
of the image. Interestingly, even so, the data augmentation, specially even the simple random feature position, can
improve the test accuracy. In this case, while augmentation does not eliminate the existence of spurious features, it still
diminishes them by making the spurious features harder to be learned and overfitted. In addition to shifting the spurious
features, random crop can shift other important features as well to boost the minor views, so the testing accuracy when
training with random crop can be even higher than only shifting the spurious feature position.

lcat =9, ldog =22 reat =12, rdog =19 lcat =15, rgog =16
A = e e T J e pm—————— A=y
. 80 T S I it Rssso__ S
1°] ~— +o ~.Z~ ~.
1] ~. ~\ ~-J <~ ~4
3 . e N .
5 70 N M - N E ~N,
5 =,
IS AR \ \1
- Y \ \
ﬁ 60— =} - Random noise position ‘\‘\ -1 =F- Random noise position \\\ -1 =F- Random noise position \
Random crop \ \ Random crop \ Random crop "\
50 =1+ No augmentation 1 - —-- No augmentation : - —{-- No augmentation 1
T

T T T T T T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Fraction p of images with spurious features

Figure 2: Comparison of different data augmentation strategies for the CIFAR-10 cat-vs-dog classification task with a synthetic
spurious feature. The plots show results for different sets of positions of spurious feature (7ca, Taog) as we vary the fraction p of all
the images that have the spurious feature. The plots are averaged over five runs with error bars of one standard deviation. The test
datapoints are always center-cropped images of size [3, 28, 28] with no spurious feature. In all configurations, we train a ResNet20
network using SGD for 120 epochs with momentum 0.9, weight decay 0.005, and learning rate starting at 0.1 and annealed to
(0.01,0.001) at epochs (40, 80).
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5.2 Augmented samples vs. independent samples

When using data augmentation, typically a new random transformation (e.g., random flip or crop at a random position
of an image) is used in each epoch of training. This procedure effectively increases the training dataset size (albeit with
non i.i.d correlated samples). In this experiment, we control for the number of unique samples seen by the training
algorithm and ask the question: how effective is a single data augmented sample compared to an independent sample?

For this experiment, we work with the full CIFAR-10 dataset which has 50000 training examples for 10 classes.
Given a ratio p of independent samples to total sample size, we generate a training set of size n = 50000 as follows:
We first select pn independent samples for the task. We then cyclically generate a data augmented variant these pn
independent samples until we obtain the remaining (1 — p)n datapoint. For example, in the CIFAR-10 dataset with
n = 50000, if p = 0.6, the training set consists of 30000 independent samples, of which 20000 have one additional
augmented sample. If p = 0.2, the training set has 10000 independent samples and four data augmented versions of
each of the 10000 independent samples. Thus, for p = 1, there is no augmentation, and for smaller p, there are more
augmented samples, but less independent samples. The dataset thus generated is then fixed for all epochs. In this way,
the number of unique samples seen by training algorithm is always n = 50000 for all p.

>
9]
© 0.8
>
9]
9]
S
o)
£ 0.7 -
i /
2 /I —A— With data augmentation
/ -l Without data augmentation
0.6 MW

| | | | |
0.2 0.4 0.6 0.8 1.0

Ratio p of independent data to total data

Figure 3: Augmented vs independent samples: for each p on the x-axis, the data augmented training (red-solid curve) uses 50000p
independent images from CIFAR-10, along with 50000(1 — p) data augmented samples. The augmented dataset is fixed across
epochs. For the baseline without data augmentation (blue-dashed curve) we simply use the 50000p independent samples. We use the
standard CIFAR-10 test dataset and the results are averaged over 3 runs. In each instance, we train a ResNet20 for 160 epochs using
SGD with momentum 0.9, weight decay 0.005, and learning rate starting at 0.1 and annealed to (0.01, 0.001) at epochs (80, 120).

In Figure 3, we compare the accuracies of a ResNet20 model trained on such partially data augmented samples
to the baseline of training with just the pn independent samples without any augmentation. Our experiment shows
that even this partial data augmentation can significantly improve the testing accuracy. In this experiment, since each
example has only a small number of augmented variations (e.g., for p > 0.5 at most one augmented variant of the
an example is seen throughout training), it is unlikely that they lead to learning any kind of task specific invariance,
which is the usual motivation. However, by having the important feature appearing at a slightly different location, data
augmentation can still facilitate the learning of the important features via the feature manipulation view described in our
paper. Furthermore, comparing the accuracy of un-augmented full dataset with p = 1.0 on blue-dashed curve to that of
data augmented training for p > 0.5 on the red curve, we see that a fixed data augmented image can improve the test
accuracy nearly as much as an independent sample does. This shows that if we have an important feature in an image,
e.g., a cat ear, shifting it two pixels can help nearly as effectively as a completely new cat ear.

5.3 Unbalanced Dataset

In this experiment, we train a simple convolutional neural network on a synthetic dataset with unbalanced views.
We show that when one view is much more prevalent in the dataset than the other views, having more samples of
the dominant view can hurt learning. Our data consist of samples (x,y) from two classes y € {—1,1}. The input
x € R3*15 has 3 channels, each with 15 pixels. After sampling 3 uniformly, we generate x by setting one of the 15
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pixels to the main feature [y, y, y]. The other pixels are set to a Gaussian noise A/ (0, ag I3). For different choices of o,
we first construct a balanced dataset Dy, of size np, such that roughly equal number of samples that have the good
feature [y, y, y] present at each pixel. Our full dataset D,y with ng samples consists of Dy, along with additional
Tl — Nbal Samples with the main feature only at pixel 3. We use a balanced testing dataset.
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Test accuracy
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] ]
] ]
] ]
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Npal/Nsull Npal/Nsuil Npal/ Nt

Figure 4: Comparison of training on Dy to Dr as we vary the ratio of balanced examples nva /ngmn for different values of noise
magnitude o¢. We learn the data using a simple convolutional neural network with two convolutional layers with ReLU activation, a
maxpool layer and a linear layer. The two convolutional layers and the max pool layer have kernel size 4, and strides 2,1 and 2,
respectively. The models are trained for 200 epochs using SGD with momentum 0.9, weight decay 0.05, and learning rate starting at
0.1 and annealed to 0.01 at epoch 100. For all training sets, the training accuracy at the end of training is at least 0.99.

In Figure 4, we see that compared to the balanced dataset Dy,, although the full dataset Dy, has strictly more
samples with the accurate kind of features, when o is not too large, the test accuracy is consistently on par or even
lower than training on just the balanced subset. In this case, the views are simply features positioned at different pixels.
For very large o, the test accuracy of the balanced subset can be low because in such case, the full dataset can learn the
dominant view well, but the unbalanced dataset has too few samples to learn any view. The experiment shows that even
for architectures such as convolutional networks, which are believed to have some translation invariance, we should not
expect samples from one view to help the learning of other views.
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Appendix

We clarify that throughout the appendix ¢y, co, . . . denote constants, while C' denotes the number of channels in our
model (3) and is not a constant, but is a function of d. Throughout the appendix, for any sample (x(?), (), we let

73,5;) be the background patches of (x(i), y(i)) and for k € [K], 7315;)7 .. be the background patches with feature noise
—Qp Y V.

A Useful concentration lemmas

We first state the following standard results on Gaussian samples. These will be used in our proof frequently. .

Lemma 2 (Laurent-Massart x? tail bound). Consider a standard Gaussian vector z ~ N(0,1;). For any positive
vector a € R%O, and any t > 0, the following concentration holds

d
PrYaiz? = Jlally + 2llallo v + 2lallt] < exp(-t),
=1

d
Pr|Y ez < [lally — 2ljall2Vi] < exp(-0).
i=1

The following corollary immediately follows from using ¢ = log (2/4) and a; = 1 in the above lemma

Corollary 3 (/5 norm of Gaussian vector). Consider z ~ N (0,021,), for any 6 € (0, 1) and large enough d, we have
with probability greater than 1 — 0,

0‘2d<1—2 bg(j/(s)>§||z||§§02d<1+4 log(j/(;)>

Lemma 4 (Gaussian correlation). Consider independently sampled Gaussian vectors z; ~ N (0, U%Id) and zo €
N(0,031,). Forany § € (0,1) and large enough d, there exists a constant c1, ca such that

|Z1 - Z2| < c101024/dlog(2/0) wp >1-—4,
VAR ) Z 62(710'2\/g w.p Z 1/4

Lemma 5 (Gaussian tail concentration). Consider i.i.d samples {z. ~ N (0,0?) : ¢ € [C]}. We have the following:

2C
J<oy/2log =, wp>1-—0,
?El%cﬁzl\_cr og 5 wp >

o
max z. > —, wp>1—exp(—C/4).
maxze> 5, WP xp(—=C/4)

Proof. These are standard Gaussian tail bounds, which we prove here for completeness. We have:
—¢2
Pr(zrelﬁcx} Ze > t) < CEE[;] Pr(z. >t) < Cexp(w).
Using the same argument for over 2C variables {z. ~ N'(0,02), —z. ~ N(0,0%)}.c(c) along with t = o/210g(2C/0),
we have the first inequality that max c(c) |z.| < oy/2log %, wp>1-06.

Furthermore, V.¢[c], we have Pr(z. > ¢/2) > 1/4, hence
Pr(m[agvi]zc > 0/2) >1- (1 — 1/4)C >1—exp(—C/4)
ce

This concludes the proof of the lemma. O
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Lemma 8 (Berry-Esseen theorem [Berry, 1941]). Consider i.i.d samples {u; : i € [n]} with Eu; = 0, Eu? = 02 > 0
and B |u;|> = p < oo. Let F, be the cumulative distribution function of ﬁ St u;, and ® be the cumulative
distribution function of the standard normal distribution. For all t, there exists a constant ¢y such that

C1p
ady/mn’

Lemma 9 (Anti-concentration of g-th power of Gaussian random variables). Consider i.i.d samples {z. ~ N (0,1) :
¢ € [C]}. For constant integer ¢ > 1, there exist constants ¢1, co > 0 such that for any t < o(1),

[Fn(t) — @(1)] <

Pr Z 20> etVC| > %—0(1)—
c€[C]

2
Ve

Proof. For constant ¢, Ez2¢ < O(1) and E |zc\3q < O(1) [Elandt, 1961]. Then, by Lemma 8, for any ¢, there exist ¢,
and ¢y such that

1
Tr
(21\/5

Zzgzt zPr[zlzt]—C—g.

P
ce[C] \/a

Choosing ¢ = o(1) proves the lemma. O

B Additional notation

Recall the data distribution D from Definition 1. Further recall that, for i € [n], we use k¥, p¥, pt, €7, and
(vp.s, kp,i)pg{p* péy 0 denote the respective quantities k*, p*, p%, £, and (ay, kp)pg{p+pey in Definition 1 for the

i™ training sample (x(9,y(*)) € Dyyn ~ D. In addition to these notation in Section 2, we introduce the following
additional notation for the proofs.

1. Vk € [K],let T, = {i € [n] : k} = k} denote the set of indices of the training data (z,y) with yvy, as the main
feature. Further, let n; = |Z|

2. Vi€ [n]andVk € [K], let PZE;), ., be the background patches of the i sample with k"-type feature noise, i.e.,
Pie = {p € [P\ {0795} : x() = —apayvik:

and let ’P}E;)) = Ureix 77;5;)7 e = [P\ Ap;, pf} denote the set of all background patches of the i sample.

Remark 1. For k € [K], let pj, = 1|I;;| denote the empirical fraction in the training data of k™. Recall that k; are

sampled independently with Pr(k} = k) = py. Thus, with with high probability, pi, and py, differ at most by %.
In the rest of the paper, for simplicity we assume pi, = p.
Similarly, let ﬁg’”im be the proportion of feature noise —yvy, in dataset Dy, i.e., ﬁg’”im = ﬁHz €lnl,pe

P p*,pg k,; = k}| Again from standard concentration, we have p;. and p"75) differ by negligible quantity with
i»Di 511Kp, p P 4q

high probability, thus we also assume py = P .

C Proof of initialization conditions in Lemma 1

Lemma 1. [G-conditions] Consider n i.i.d. samples Dy = {(x,y®) : i € [n]} from the distribution in
Definition 1. Let the parameters w of the network in (3) be initialized as w.(0) ~ N'(0,0314) V ¢ € [C]. If the number

of channels is C = Q(log d), then with probability greater than 1 — O( n’KQ

m), the following conditions hold :
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1. Feature-vs-parameter: ¥k € [K], m[acx] wc(0) - v > Q(oy), and m?CX] [we(0) - vi| < O (00).
ce ce

. Noise-vs-parameter:V i € |n|, max we -y gl > 0 000¢), and max |w & < O o00¢) -
2. Noi Vi x 0) - yDeD > Q(og0¢), and o 0)-£9| < O (ogoe
ce ce

3. Noise-vs-noise: Vi € [n], €9 . ¢ = O(0f) and Vi, j € [n],i # j, €@ . ¢W)] < 5(0?/\/&)
4. Feature-vs-noise: Vi € [n], k € [K], |€V - v;| < 5(05/\/8).
5. Parameter norm: ¥ ¢ € [C], |[w.(0)| = ©(coV/d).

WIOKES o?
Proof. Recall the setting of the lemma: Vk € [K], |vi|2 = 1, Vi € [n], y@D¢® L N(0,514), and Ve € [C],

w.(0) N (0,031,). We have the following arguments that prove the lemma, where we use § = m.

1. Feature parameter correlations: V' k € [K], we have {w(0) - v, ~ N(0,03)}.¢(c) are C i.i.d Gaussian.
Thus, using union bound on the Gaussian tail concentration in Lemma 5 we have condition (1) holds w.p.
>1—Ké— Kexp(—C/4).

2. Noise-parameter correlation: ¥ i € [n] and ¥V ¢ € [C] using Gaussian correlation bound from Lemma 4, we have
(w.(0) - €9 > O(0g0¢) wp. > 1 — nC0.
Furthermore, using the second inequality in Lemma 4, we have w.(0) - ye () > C2,/000¢ W.p. > 1 /4. Hence,
max,c(c] We(0) D@ > Ca\/T00e W.p. > 1— (1 — 1/4)¢ > 1 — exp(C).
Thus, summing over failure probabilities, we have that condition (2) holds w.p. > 1 — nC'§ — nexp(—C/4)

52
3. Noise-noise correlations: Using the £, norm bound from Corollary 3 on ||| 5, and the correlation tail bound
on \ﬁ(i) . €(j)| for i # j from Lemma 4, we have condition (3) holds w.p. > 1 — 2n?§

4. Feature noise correlation: ¥k € [K], we have {£") - v ~ N(0, of/d)}ie[n] are n i.i.d Gaussians. Thus, again
using union bound on the Gaussian tail concentration in Lemma 5 condition (4) holds w.p. > 1 — nJ.

5. Parameter norm: From concentration of /5 norm of Gaussian vector in Corollary 3, condition (5) holds w.p.
>1-2C9.

The lemma follows from using § = polyl(d) and C' = Q(logd) = exp(—C) = O(m). O

Lemma 1a. G, in Lemma 1 also holds for plaus) defined in (2) with n replaced by nK.

train

Proof. Recall that since the features {vy, } are orthonormal (Assumption 1) and all the non-feature noise are spherically
symmetric, without loss of generality, we assume that { vy } (] are simply the first K standard basis vectors in R?,
i.e., Vi = e. In this case, we choose Ty for k € [K — 1] as a permutation of coordinates of R¢ without any fixed
points, i.e., Vi € [d], Ti(2z)[i] # z[i] that satisfies (1) on the first K coordinate.

We now show that the Gy conditions in Lemma 1 holds for D™ = Dyuin U Ti(Dgain) U T3 (DPygain) U ... U

train
Tt —1(Duain) defined with transformations {7y }rec[x—1) described above.

* First, among the Gi,; conditions, (1) and (5) are independent of the samples and hence immediately hold.

« Secondly, Vi € [n] andV k € [K], Tx(€?) is simply some permutation of the coordinates of £ ~ A/ (0, JEI a/d),
and hence T (& (i)) ~ N(0, agI 4/d) has the same marginal distribution as £(i). This implies that conditions (2)

and (4), as well the norm condition in (3) of Lemma 1 also holds for Dt(f;ﬁ) .

* Finally, note that Vi # j,Vk, k', Tr.(&€ (i)) and Ty (€ & )) are independent Gaussians. Thus, the correlation bounds
in (3) of the form |7;,(¢") - T (¢9))] = O(ag/\/g) for all ¢ # j also follow from the proof of Lemma 1.

19



The only non-trivial condition we want to show is the following bound on the noise correlations of distinct transformations
of the same sample, i.e., we only need to show that |£V .7, (£))| < O(O‘?/\/&) with high probability for all k € [K —1].

Note that forany 1 < k < k' < K — 1, T,,(€™) - Tr, (¢€) is equivalent in distribution to €% - T, . (€9).

Claim 1. If§ ~ N(0,0214/d) thenV k € [K — 1], |€ - Ti(€)] < O <ag bg(;”) wp. >1—4.

Proof. At a high level, we create a non-overlapping partition of the entries of £ into three vectors &', £”, and £”, each
of which of length at least d/6. The partition is chosen such that same partitioning of entries of 7 (&) denoted as é/, é”,
and & are independent of ¢/, ¢, and ", respectively. We then have & - T(¢) = ¢ - & +¢&" - & +¢" - &, where
each term is a dot product of two independent spherical Gaussians of length at least d/6 and entrywise variance of
0'? /d. The claim then follows from bounding each term using Lemma 4.

We divide the coordinates of £ into disjoint and ordered lists L1, Lo, . . ., constructed as follows. The first list is

where 7, denotes composition of Ty, for mn times, and we stop the list at the first s; < d — 1 such that 7, T (e1) = ¢;
(when 7,51 (€)[1] = &[1]). We claim that this stopping criteria ensures that L; has s; unique coordinate of & without
any duplicates. If not, there exists some 0 < s’ < s” < s such that 7;°" (1) = T (e1). Since 7y, is a permutation
(hence invertible), this would imply that 77;”78,(61> = e for s” — s’ < s1, which contradicts the stopping criteria.

Note that if s; = d — 1, we have included all the coordinates of £ in L1, and we stop our stop our construction here.
If L, does not contain all coordinates of &, let 1 < jo < d be the first coordinate such that £[js] ¢ L;. Let,

Ly = [€[j2], Tr(©)l52], T2 (E)lsa)s -, T (©)d2]]

where we stop either when all the entries of £ have been included in Lgm) or Lém), or at the first integer s such that
T2 (ej,) = e;, (When T2 (€)[jia] = &[j2]). With a similar argument as with L, there are no duplicate coordinates
in Ls. Furthermore, we either have have Ly and L containing disjoint coordinates of &, or have Ly C Ls. To see this,
suppose for 0 < s’ < s7 and 0 < s” < so, we have 7% (e1) = T;° (ej,). If s > s, again from invertibility of 7, we
would have 7768/_3” (e1) = ej, for s — s” < s1, which is contradiction for £[j2] ¢ L1. On the other hand, if s’ < s”,
then 77 ~* (ej,) = e1, and the entire construction of L; would also be contained in L,. This would imply that all the
coordinates of L are contained in Lo exactly once (since Lo does not have duplicates). Without loss of generality, we
assume the former condition that Lo and L are disjoint holds as otherwise, L; C Ly and we can simply drop the first
list Ly from our construction, and our proof follows exactly.

We construct Ls, Ly, ..., L, similarly until all coordinates of £ belong to exactly one list. We also define
TLy,TLs,...,TLy as lists obtained by circularly shifting the coordinates of L1, Lo, ..., Ly, respectively, by one
index. For example, 7L1 = [Tw(€)[1], TZ(€)[1], ..., T (€)[1], €[1]].

By construction, for { = 1,2. .. ¢, for every coordinate of £ that is included in L;, has the same coordinate of 7 (&)
is included in 7 L; at the same position, i.e., for all i < s;,7 < d, L;[i] = &[j] = TLi[i] = T(&)[j]. We now
construct &', ¢, and £”’. For 1 = 1,2..., ¢, do the following:

* Sequentially distribute all the elements except the last element of L; to &', £”, £"”, e.g., the 1% element of L;
goes to &', 2" to £”, 3" to &, 4™ to ¢’ and so on. This assignment ensures that &', £, £’ do not contain any
adjacent entries of Ly, i.e., if L;[i] is in &', then L;[i + 1] is not in &', and same is true for £”, and £”.

"

+ Include the last element of L; to a list among &', £”, &¢"” that does not contain the first or the second last element
s;—1

of ;. Thus the last element of L; is not in the same list as its circularly adjacent neighbors £[7;] and 7,7~ (&) [1].

~! ~(1 ~n
 Repeat the exact assignment as above to distribute the elements of 7L; to € , € ( L€ .
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By constructlon {¢',¢" ¢"} and {E ¢, 5’"} satlsfy the followmg properties: (a) & - Tr(€) = ¢ - E+¢ &+

g 5 (b) ¢',¢", and ¢ are independent of € £ and S , respectively. Furthermore, each of these vectors is a
spherical Gaussian with entrywise variance of o / d. (¢) we have included at least d/3 — 1 = ©(d) entries of £ in each

of &', ¢", and €. The claim now follows from using Lemma 4 on &’ - g.¢" & ande" &
O]

The above claim completes the proof of Lemma la. O

D Linear models

In this section we discuss the behavior of linear models for data from our distribution D in Definition 1. We consider
the same patchwise convolutional model in (3), but without non-linearity. Without loss of generality, assume C = 1.
Thus, for @ € R, the model effectively becomes f"¥ (9, x) = 6 - X, where X = >y Xp-

Linear models without feature noise. In the first result stated and proved below, we assume no feature noise o, = 0.
In this case, X() = yvy,. + €. Recall the notation that for k € [K], Ty = {i € [n] : kf = k} and ny, = |Zy,].

Theorem 6. With high probability, the max {3 margin linear model over Diygin = { (XD, y)) : i € [n]} is given by

_ 1
0, = > 1+ (1+o(1))og /nu ( k+7zy( « ) X

ke[K] kel

Proof. Without loss of generality, assume the data points are grouped by the feature type k], such that Z; =
{14,2, cooymib, Io = {n1 +1,n1 +2,...n5 + n2}, and so on. Also let X € R™*? denote a matrix containing
yMx( as rows and let £ = XX € R™ ™ denote the corresponding kernel matrix.

The /5 max margin classifier is given by 542 ming ||@]|3 s.t. X6 > 1. From the optimality conditions of the
max-margin problem, we know that there exists a dual variable v € R}, s.t. 0(2 = X "v. We use notation v, € R
suchthatv = [v] ,v],... v K] . We can now write the objective and constraints of the max margin problem in terms
of dual variables as follows: ||@]|3 = v " Kv and the margin condition is Kv > 1.

Let us first look at structure of K. Recall that () = y(‘)vk* + ¢9, where {Vk }% are orthonormal and e
N(0,021,/d). Using the standard concentration inequalities in Appendlx A, the following holds with high probablhty.
§

2
1+0€+O(T£) ifi=3j
K:ij — y(z))—((z) . y(J))—((J) — 1+ O( ) ifi # j, k: = k‘;
O(j%) if i # j, ki # K

We can combine all the O( ) terms in A, and write IC = K + A where IC” = lk*_k* + 05 j. Thus, K is a block
diagonal matrix which is dommant compared to lower order terms in A.

Based on this block dominant structure of K, forw = X "v and v > 0, the margin on data points is given by,
Vi€ Iy, (Kv)i = |lvlls + ofvi, + (Av);, )
and the /5 norm is given by,
113 =v Kv = > vkl +oZlvel3 | +v Av. (10)
ke[K]

Recall that A;; = 6(0? /V/d), we have the following two possibilities of v:
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Case 1. [|[v]|oo = O(1): In this case (Av); = o(c7) and we have (Kv); = |[vill1 + 0Zvy,i 4 o(0F). Thus the margin
constraint requires that miny min;ez, ||vi|1 + O’?Vkﬂ' + O(Jg) >
monotonic in vy, ; (for positive vy, ;). Thus the optimal v is given by

1

Vke K|, VieTly, v, = . 11
K] b VRS L T T o(1))o? (n
In this case, |03 = m(l +0o(1)) = O(1).
Case 2. If v = w(1), then ||0]|3 = w(1) which is suboptimal compared to the above case.
In conclusion, we have the optimal v for the max-margin problem given by (11). Thus,
0, =X"v= Z Z Vi iy Dx®
ke[K] i€l
-y e
= 2
ke[K] i€l e+ (1+0(1))og
1 1 N
— (1) ¢(9)
> e (v T,
o 1+(1+ 0(1))J£/nk < e S
This concludes the proof of the theorem. O

For the above classifier, for simplicity, we look at the case when there are only two views, kK = 2. Corollary 7
~T
follows from direct calculation on 6,,x for a sample x from our distribution. The thresholds given in Corollary 7 are
better than the threshold we derive for our neural network.

Corollary 7. Suppose k =2, w(1) < 0'2 < vndandn < d. The {5 max-margin linear model in (8) can successfully

2 3
learn feature v1. To successfully learn feature va, we need pa > \ﬁ ifn < 0(05) and ps > f otherwise.

Linear models with feature noise. In the second result, we study linear models in the presence of feature noise. We
show linear models are not able to learn samples from our data distribution D while the non-linear model we study can
learn D. To facilitate the proof of linear models, we make some additional simplifications. These simplifications are not
necessary for our main results. For linear model results alone, we consider the case when the dominant noise £ is zero,
i.e., o¢ = 0. Note that letting o¢ > 0 can only make the classification harder. Let A(x) be the sum of the coefficients of
the feature noise if x, i.e., A(X) = 3 1k ZpePbp ap. Let puy be the probability that A(x) > 1 for each (x,y). We
assume that the patch with the main feature is chosen uniform randomly from [P]. Let D’ be the distribution satisfies
the above assumptions.

Theorem 10. For any linear classifier @ € R*>F | we have

1
P i 0 ; Lo
(X-,y)iD’ sign (x, 6) # sign y] > pmn {pa1—pa} km[lg] Pk-

Moreover, there exists a non-linear model F' in (3) with weights w, such that

Pr [sign F(w,x) # sign y] = 0.
(x,y)~D’

Proof. Let A = minpe[pwe[K] a(pil)dJrkil and p*, k* = argminpe[p]’ke[[q 0(p71)d+k71. If A <0, for any
sample with main feature yvy- in patch p*, and A(x) < 1,

y(x,0) < —A+A(x)A <0.
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If A > 0, then for any sample with main feature yvy- in patch p*, with A(x) > 1,
y(x,0) <A —A(x)A <0.

Then, for both the case that A > 0 and the case that A < 0, with probability at least min {za, 1 — pa } minge(x) pr/ P,

sign (x,0) # sign y.
Now, consider the non-linear model given by weights w1 = 3=, (x| Vi and w. = 0 for all ¢ € [C]\ {1}. For any

datapoint (x,y) with main feature yvy-,

wx—yz Zw ((We,%xp))

c€[C] pe([P]
= ((wi,vie)) = D > P ((wi,avy))
kE€[K] Pop,k
11,
qa q
> 0.
Thus, we have sign F'(w,x) = sign y for all samples (x, y). O

E Proof of the Main Results

E.1 Dynamics of network weights: learning features and noise

We first present a few lemmas useful for the proof of the main results. We derive the training trajectories for the dataset
without data augmentation Dyi,. All lemmas in this section also hold for the dataset with data augmentation Dif;;ﬁ)
(aug) _

with n replaced K'n and py, replaced by p. . We defer the proof of the lemmas to Appendix F.

Lemma 11 and Lemma 12 give some rough bounds on (we(t), vy) and (we(t), £¥), which are used repeatedly in
the proof.

Lemma 11 (Rough upper and lower bound on (w(t), vi)). Suppose Ginir holds and

)
-Q‘H

1 _ag=1
a<o (05‘1 d" 2P (O‘Q +nTpr + nTogd_l/z) ! ) .
Forall0 <t <t <Tandk € [K], we have

ot < (1), t—)O d=—17?
ma (we(f), vi) < max (we(t'), vi)) +(t =10 (p +0ed ™)

<0 (00 +nT (pk + agd_1/2)> ,
and

. > mi / B EAVSS —1/2
min (We(t), Vi) 2 min (we(t'), vie) = n(t =)0 <Usd )

>-0 (00 + nTagd_l/Q) .

Lemma 12 (Rough lower bound on (w(t), €V)). Suppose Gini holds and

~ i, —(a—1)/q
o 20 (min {0 (ot (e cca)) ).

Forall0 <t <t <Tandi € [n], we have

min y(* )< o(t), € )> > min y® < (), €0 )> n(t—1t)0 (Jgd_l/2 +05d_1/2) .

ce[C) c€[C]
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Combining Lemma 11 and Lemma 12, we can show that when the time step T is bounded, (w.(t), vy) and
(we(t), €D are lower bounded.

Lemma 13 (Lower bound on (w(t), vi) and (w,(t), £€®)). Suppose Ginit holds,
n < o(min{a0 dl/2 al” Lya= 1d1/2}) K< o(mm{ 1dl/2 Jqfldl/z}), and

~ PR —(a—1)/q
a<O0 min{l,agdzq}p—l/q (00 +0T (m?X]pk +oed 1/2)) .

for some T = © (max {mflog o K?]7100 ‘HQ}). Forall 0 <t <t<T, andc e [C],

<W0(t)7vk> > <W6(t/)7vk> - 0(00)7
and for all i € [n),
g (we(®),€7) =y (we(t'),67) — 0 (000) .

Next, Lemma 14 and Lemma 15 compute the time it takes for the model to learn the main feature vy, k € [K] and

overfit the noise £, i € [n]. Lemma 16 and Lemma 17 upper bound (w.(t), v;) and (w.(t), £®) for ¢ smaller than
the time identified in Lemma 14 and Lemma 15.

Lemma 14 (Learning the main feature). Suppose Giyic holds, C' = ©(log d), ogoe < o(1), qd 12 < o(py,) and

1 -5 -1
a<o (P_(lz min {1,05 d~ 7 <ao + nTgré% P+ nTJEd1/2) , <00 +77T’§r€1%>(<] Pk +77T05d1/2> }) ,
- 1
for some T > Q ((ka082> ) Foranyk € [K|and0 <t <T,if
(1), vi) < O(C~Y9), and (i) < (w> ,
ggﬁﬁ(vv (), vi) < O( ), an ephax Y c(t), € O(0o0¢)

then
max (W.(t + 1), vg) = max (w.(t),vg) + © ( o1’ (max <Wc(t),vk>>> .
ce[C] c€[C] €]

Moreover, if maxX;c () ce[C) <Wc(t) I3 > < O(J()O’g)for allt < O (72) there exists T' < O (W) such
PkO, k0o
that max.c(c) (We(T"),vi) > Q (C~ 1/‘1).

Lemma 15 (Overfitting the dominant noise). Suppose Gy holds, C = O(logd), n < o (min {cj(‘flcfgdl/z7 08710371d1/2 })
and

_g-1 -1
1 1 1 q
a<o| P aming 1l,07d 2 | 09 +nT max p, + n1'o d—1/? , | o0 + 1T max pr, +nTo d—1/? ,
= ( { € < 0T n et Pr T 1L O¢ o+n e Pk +nloe

for some T > (nn 105 o, q+2)

Let i € [n] be some sample such that for all 0 < t < T, max.c|c] (We(t), vir ) < O(C~/?). For any time step
0<t<T,if

max g (w(t),€") < O(C™V/1),

ce[C]

we have

maxy(i)< S+ 1), 5()>fmaxy( < ()£(Z> n@(dgj) <maxy( < ()é()>>)

c€[C] c€[C] c€[C]

Moreover; there exists times step T' < 9] (my 105 oy St ) such that max.¢ ¢ y® <WC(T’)7 £(i)> >0 (Cil/q).
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Lemma 16 (Upper bound on (w.(t), vi)). If Gy holds, for all k € [K] andt < o (+)
nprog +noed=1/2

max (w(t),vg) < O (09) .
ce[C]

Lemma 17 (Upper bound on (w(t), €D)). Suppose Ginie holds, n < o (min {ag_lagdl/Q, 08_102_1d1/2}) and

g—1
1 T a
a<o <P<11 min {1,0'gd21q (o’o + UT;E?KX] pr + 7]T05d_1/2> }) 7

for some T > (nn oo, ot ) Forallt < o(nnflogqaaqﬁ) and i € [n], max.cic) Yy <Wc(t),£(i)> <
0(0'00'5).

Finally, Lemma 18 bounds (w(t), &) for some noise patch £ from the testing set. Lemma 18 is useful in proving
the test accuracy.

Lemma 18 (Bound on (w,(t),&) for £ from the testing set). Let & ~ (0,0?1,1) be a random noise vector
independent of the dataset. Suppose Gy holds, C = O(logd), n < o (mln {08_10gd1/2,08_102_1d1/2}) ,
K<o (min {og_lagld1/2,08_1dl/2}>, and

g—1

_a—-1 —1
1 1 1 q
<o|P amin{1l,08d 2 +nT + nToed'/? , +nT +nToed1/? ,
a_o< mm{ o <Uo 0T max pi + 1T o0 +nT max pi +1Toe

for some T = 5) (max {mflcrf_qao_‘ﬁﬂ, Kn’lao_q"'z}). With probability at least 1 — forall ¢ € [C] and

0<t<T,

m,
[(We(t),€) — (We(0),8)| < o(a0oe).

E.2 Proof of main results from Lemmas in Appendix E.1
We first derive some implications of Assumption 2 that we use as conditions in the lemmas in E.1.

1. nK <o (mm{ 162412, 086" 1d1/2}) follows from nK < o(od o7~ d"/2) and ¢ > w(1).

2. K<o (min{ao 1d1/2 - 1d1/2}) follows from nK < o(cd ™" ol Yd'/?), o > w(1) and n > w(ad).
3. ged™'/? < o(1) follows from nK < o (08710g71d1/2), 090 < o(1) and n > w(of).

4. oK < o(d"/?) follows from nK < 0(08_102_1d1/2), o¢o9 < o(1) and o(n) > o > w(1).

5.a <o (P_%ag min {d=1/2, 00} (00 + 1T maxye(x] pr + nTagd*1/2)_1) follows from o¢d~1/2 < o(1),
oo < o(l) and nT > w(1).
Now, using Lemma 11 - 18, we prove the main theorems.

Theorem 3 (Training without data augmentation). Suppose that Assumption 2 holds. Let T be the first time step such
that w(T) can classify all (x,y)) € D,y with constant margin, i.e.,

yOF(w(T),x%) > (1), forall (x7,y*))€ Dy

For hidden channel number C = ©(logd), and small step size 1, with probability at least 1 — O(%), T =

~ 1 —q —qg+2 . .
(S (nn lg5 ‘IJO g+ ) Moreover, at time step T, views va, . .., Vi have never been learned, so that vogtgf’

WEr WE %) <02 (5-0(75) ) > Zpk
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Proof. By Lemma 1, with probability at least 1 — O ("2:;;‘;‘%‘1) Ginit holds. We first show that all (x(*),3(")) € Dy
can be classified correctly with constant margin at some 1" = 5) (nn 1J§ o Sat? ) We first consider the samples
i € [n] such that &} = 1. If Assumption 2 holds, w(c{) < n,s0o 7~ ilog T <o (nn 105 o q+2) By Lemma
17, max (¢ y® <wc( ), 3 > < 0(0'00'5) forall t < O (n_ P10, St2 ) Then, by Lemma 14, there exists some
t* <O (77 Lo oy @t ) such that maxcjc] (We(t*),vi) = © (C~1/7). Moreover, by Lemma 13, at any time step
<t <0 (nn 105 o —a+2 ) the feature v satisfies,

/ > * _ > —1/q ]
Helﬁc}ﬁ (We(t'),v1) > ?el%(} (We(t™),vi) —o(og) > Q (C )

We can further show for all ¢ € [C] and ¢/ < O (nn’logqao_q“), (we(t'),v1) and <wc(t’), f(i)> are lower
bounded. By Lemma 13, when G;y;; holds,

(we(t'),v1) = (we(0),v1) = 0(00) = ~O(00),

and for all 7 € [n],

y(z') <Wc(t/)’£(i)> > y(i) <Wc(0),£(i)> _ O(UO%) > —O(ang).

Then, there exists some T = e (my 105 oo —at2 )such that for ¢ with £} = 1,

IR0 0 F 5 o ()

ce[C] pe[P]
=y 3 v ((wey i )) 450 S ST S 6 ((welT), —apay i)
ce[C] c€[C] kE[K] Pepéﬁlk
v 3 o ((welm€")) 12
ce[C]
> (é) — CO(o{) — CPa’0 ((ao +nT <H€1?X] pr+ocd” 1/2)>q> — CO(cfo})
>Q(1).

The third step follows from max (o] (We(T), vi) > Q (C~Y9), min.c(o) (we(T), vi) > —O(00),
min.¢(c) y® <WC(T)7 3 (i)> > 76(0005) and Lemma 11. The last step follows from the the upper bound assumption
on o, 0g < o(1) and ogoe < o(1).

We next show that the training accuracy is perfect for all ¢ € [n] such that & # 1. By Lemma 16 and Assumption 2

1.9 q—1_q—141/2 o -1_—q_—q+2

that pr, < o (n ag) and n < 0(0£ oy d / ), we have W > w (m] oo, ), and therefore
max.cic) (We(t),vi) < O(op) forall0 <t < O (nn_lagqaaq”) and k # 1. Then, for any ¢ € [n] such
that k; # 1, by Lemma 15, there exists some time step ¢(*) such that max.c(c] y*) <Wc(t(i)), E(i)> > Q(CVa).
Moreover, by Lemma 13, for all t() < ¢/ < O (nn_lagqao_q+2), max,.cc) ¥ <wc(t’),£(i)> >Q(Cc-V),

Then, there exists some T = © (m] 1‘75 oy —at2 ) such that for all (x(V), y(?)) € Dy, such that k& # 1,

~ ~ q ~
yDF(w(T),xV) > Q (é) — CO(al) — CPa?0O ((0’0 +nT (m[ax] P+ oed” 1/2>) ) — CO(og0f)
1
>Q(=].
=4(c)
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The first step follows from (12), and Lemma 11. The second step follows from the upper bound assumption on «,
oo < o(1) and ogoe < o(1).

Thus, at some 7 = O (nn_lagqao_q“), for all i € [n], we have y ) F(w(t),x?) > Q (&) > Q(1).
Next, we show that the margin is o(1) att < o (nn’lagqao_q“) for any (x(*, y() such that k* # 1. Since

t<o (m) by Lemma 16, max c(c) (Wc(t), vir) < O (0g). Since t < o (mflagqaofqﬁ), by

Lemma 17, y(*) <WC(T), £(i)> < 5(0005). Then,

~ ~ q ~
y I F(w(t),x?) < CO(cd) + CPa0 <(00 +nT (m?X] pr +oed” 1/2)> > +CO(og0f)

< o(1). 13)
The first step follows from (12). The second step follows from the upper bound assumption on «, og < o(1) and
ooo¢ < o(1). Thus, we have show that T = e (nn 105 o q+2)
Finally, we show that the testing accuracy is bad on the testing dataset. For any (x,y) ~ D with the main feature
Vv« such that £* # 1 and dominant noise &, since max.cc] [(We(t), vi)| < O (00) for any t < T, following (12),

yF(w(t),x) < CO(cd) + CPa’0 ((0‘0 +nT (m?X] P+ oed” 1/2>) ) +y Z Y ((we(t

ce[C]
< CO(c%) +CO (agag)

+y Y W ((wWe(0),€) + |y D D ((welt).€) —y Y ¥ ((we(0),8))

ce[C] c€[C] c€[C]

< Co(alol) +y Y ¥ ((we(0 +y2w (we(t),€) =y Y ¢ ((we(0),€))|.
c€(C] celC]
The second step uses the upper bound on . The last step follows the assumption o¢ > w(1). For any ¢ € [C], by
Lemma 4, with probability at least 1—@, |(wc(0),€)| < O(ogo¢). Then, by Lemma 18, [(w.(t), &) — (w.(0),&)| <

o(ogo¢) with probability at least 1 — - and therefore [(w.(t), §)| < 6(0005) and

ly

Z 17/1 Wr -y Z 1/1 WC Z qO - )‘<Wc(t)75> - <WC(O)7€>|
c€e[C] c€e[C]
< Co(a{ag)
For t = 0, (w.(0),€) ~ N(0,02 ||£]|*) and {(wc(0),€) : ¢ € [C]} are independent. By Lemma 3, ||€]|* = O (7).

1)’

yF(w(t),x) < Co(afog) +y21/) w.(0),&)) < 0.
c€[C]

Then, by Lemma 9, with probability at least % ol

&\

O

Theorem 4 (Training with data augmentation). Suppose assumption 2 holds. Let Taug be the first time step such that

W(Taug) can classify all (x 9,y D) € D) with constant margin, i.e.,

YD F(W(Tag),x") = Q(1), forall (xV,y)e Diis.

train
For hidden channels number C' = O(log d), and small step size n, with probability at least 1 — O(;(Ljyi({;) ) Taug =
5) (Kn’lao_qw), and at T 4q,

nK
polyd’

Pr [yF(W(TWg),X) < 0] <
(x,9)~D
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Proof. By Lemma 1a, Gy holds with probability at least 1 — O (%).

We first show that Ty = O (K ntog q+2> For the augmented dataset, we have p"® = L for all k € [K]
and the size of the dataset is Kn. For any k € [K], if Assumption 2 holds, w(ag) < n, so n_lp(aug) 100_q+2 <
0 (Knn_lagqao_q'ﬂ). Then, for any i € [Kn] with k; = k, by Lemma 17 max..c(c) y*) <WC(T), ¢ > < O (090¢)

forall0 < t < O (Kn‘la()_q+2). Then, under the assumption O'EK < o0 (d1/2) by Lemma 14, there exists

(
n p’:ug)

O (Knlo 12 , max,cio] (We(t'), vi) > Q (C~1/7). Then, there exists some T’ = O (Kn~'o777%) such that
n 0 €[C] n 0
for all (x(V, (1)) ¢ D

train °

VR, x) =y 30 3 w(< %))

some 1 = 5 (%) such that max.cic) (We(tr), vi) > Q (C’*l/q). By Lemma 13, for any t;, < ¢/ <
0

ce[C] pe[P)
0 5 (et w>> 350 S RT(CT R
c€[C] c€[C] kE[K] Pepézk
+o 30 v ((wlD).62)) (149
ce[C]
>Q (é) — Cé(og) — CPa’0 ((O’O +nT (m?x] P+ oed” 1/2))q> — Cé(agog)
>Q(1).

The third step follows from max .cc) (We(T), vi) > Q (C‘l/ 7), Lemma 11 and Lemma 13. The last step follows
from the upper bound assumption on «, o9 < o(1) and ogoe < o(1).

Next, when t = o (W)’ by Lemma 16 , (w.(t), vk»«> < 5(00). By Lemma 17, y® <WC(T),£(i)> <
5(0005). Then,
~ ~ q ~
y D F(w(t),xV) <CO(cl) + CPa?0 ((0’0 +nT <m?x] pr + oed” 1/2>> ) + CO(og0f)
<o(1).

The second step follows from the upper bound assumption on «, o < o(1) and ogoe < o(1). Thus, we have shown
that 7 = © (Ko "),

Finally, we show that the testing accuracy is perfect at 7% = ) (K n~tog q+2>. For any sample (x, y) in the
testing set with dominant noise &, if Giy; hold, by (14),

~ ~ q
yF(w(T®™) x) > Q <é> — CO(ol) — CPa?0 <<ao + T8 <I§Ielﬁl)<(] Pr T 05d1/2>) )
+y Z ¥ ((we(T), €))
<>+y§jw we(0),8) = |y Y ¥ ((We(T™),€)) —y > ¥ ((we(0),8))].
ce[C] ce[C] ce[C]

For any ¢ € [C], by Lemma 4, with probability at least 1 —

pofyd, |<wc( ), &) < 6(0005) Then, by Lemma 18,
[{(we(T@9), &) — (we(0),€)| < o(agoe) with probability at least 1— 2 and therefore | (w.(T@9), £)| < O(ogo¢)

old
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and

y 3w (wolT®),€)) —y 3 (we(0),8)| < 37 qO(of 1ol [(wo(T), €) — (we(0), &)

celC] ce(C]

Thus, with probability at least 1 — %

ce[C]
< Co(a{og).

L yF (w(T@9),x) > Q(1).

F Deferred Proof of Lemmas in Appendix E

In this section, we present the proof of lemmas necessary for proving our main result.

Lemma 11 (Rough upper and lower bound on (w(t), vi)). Suppose Giix holds and

1 _g=1
ago(“sqdzl‘zpé (o0 +nTpy + nToed V/?) )

Forall0 <t <t <Tandk € [K], we have

max (wc(t), vi) < max (w.(t'),vg) +n(t —t')O (pk + agd_1/2)

c€[C]

and

ce[C]

Proof. Forany k € [K],c € [C]and 0

(we(t +1), vi)

= (we(t)ve) + 2 3

() F(w
kI =k 1 €

c€[C]

< O (00 +nT (pk + ogdfl/z)) ,

min (w.(t),vg) > Crél[lél] (we(t'),vi) = n(t —t")O (agd_l/Q)

> -0 (0’0 + nTagdfl/z) .

<t<T,

1

SRS

@
o\ Lte

F(w(t),x(®)

! (welt), vid) ||vk|§)

>yt ((welt), apivi)) Vil

PEP

RN 1
+’%z_;<1+ey“)

We bound each term separately. Since
all k € [K], we have

1

/
Fiw (D) ¥

-
1+ey(i)F(w(t),x(i))

n
n Z <1+€y(i)F(w(t),x(i)

ik =k

The feature noise term

1

n
n
n Zz:; 1+ ev®

Flw(t)x®)

Y apat! ((welt), apivi)) [vell3 | <0.

(i)

((we®.69)) <5<i>,vk>)

< 1foralli € [n],

o (w0, va) el < OGap).

pE”PbP,k
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When Gy holds, <£(i)7vk> < 5(05d*1/2) for all ¢ € [n]. Since m <1land9’ (<wc(t),£(i)>) <1,

23 (s ((w0:€7)) 5 (€030 ) £ (soct ).
i=1

Then, forall 0 <t < T,

<Wc(t + 1),Vk> < <Wc(t)7vk> + 7’]6 (Pk + O.Edfl/Q) ’
which implies forany 0 < ¢’ <¢ < T,
(We(t), vi) < (we(t'), vi) +n(t —t")O (pk + de—l/z) _

Next, we lower bound (w,(t), v;,) using induction. When Gin holds, (w.(0),v;) > —O (00 + nToed™1/?).
Assume forall 0 < ¢/ <t

in (we(t > min (we(t —n(t —t)0 (oed™/?
min (We(t), vi) > min (we(t'), vi) = n(t = t') (Us )

> -0 (00 + nT05d71/2>

for induction. We have

1+ev®F

1
( ! (e ) vl ) 0.
i:kf=k

We have shown that (w,(t),vi) < O (00 + 1T py +nToed=/?) for all ¢ € [C] and k € [K]. By the induction
hypothesis,

n " 1 / 2
2 | Tramreme 2 onst! (vl o) Il

PEPy,

~ q—1
<na?PO ((Uo +nTpr + nTagd‘l/Q) )

< O (nagd_l/Q) .

q—1
d=2 P41/ (00 + nTpy, + nToed™/2) @ ) . When Giny holds,

LA T

The last inequality follows from a < 19) (a

N 1 / O\, () /[ £0) > ~1/2
o Zl (1 O Fw ™) Y ((welt).€)) v (€. v1) ) < O (o ™).
Then, plugging into (15), forany 0 < ¢/ <t+1< T,
- <Wc(t + 1)7vk> < - <Wc(t/)avk> + n(t +1-— t’)6 (Ogd_l/Q) .
Thus, we have completed the induction and therefore
min (w.(t), vi) > min (we(t'),vi) —nt -t 6( d_1/2>.
min (we(t), vi) > min (we(t),vi) —n(t —#)0 (o

Finally, for ¢’ = 0, when Gy, holds, |(w(0), vi)| < O(oy). O
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Lemma 12 (Rough lower bound on (w.(t), S }) Suppose Gy holds and

~ —(a=1)/q
a<0 mm{l Uad Zq} ~1/q (00+77T<m?X]Pk+0£d 1/2)> :

Forall0 <t <t <Tandi€ [n], we have

celC] ce(C]

Proof. Forany c € [C] and i € [n], we have
g (we(t+1),69)
=y (welt).€7) + n1+ey<>F1(w<t>,x<>>¢/(<Wc(t)’5(i)>)Hg(i)
235 (e (w0.€) (€.€0)

2
j#i
0 |
%z:: (1 - ey(’)F v ((wel®):vi;)) <V’f?’£m>>
>

_n
n

1+€y(7>F (w(t),x@) Z Z U ((We(t), p, Vi) <0¢p,jvk’€(l)>

Jj=1 ]pep(”

We have <1+ey(i)F:(Lw(t)yx('i))¢/ <<Wc(t)7€(z)>) H
" (<wc(t),§(j)>) < 1forall j € [n] . if Giny, holds,

(16) > —nO (agd*ﬂ) . (7> —n0 (agd*ﬁ).

2
> positive for any ¢ € [n]. Since
2

Also,
(18) > —nO (aangd‘”2 e |<wc(t)7v;c>|q1)
N —1
> —n0 (oﬂpagd—l/2 (Uo +nT (Pk: + Usd_l/g))q )

—n0O (ogd_l/Q)

v

min y¥ <wc(t),£(i)> > min y® <Wc(t/),£(i)> —n(t—t)O (U?al_l/2 + Ogd_l/Q) .

- r
14ev) F(w(t),x))

(16)

A7)

(18)

<1 and

The second inequality follows from Lemma 11. The third inequality follows from the upper bound on «. Then,

O (welt +1,69) 49 (e (0,60) > 40 (2077 4 0 ).

which gives

celC] ce(C]

Lemma 13 (Lower bound on (w(t), v;.) and (w(t), €D)). Suppose Gini holds,
n<o (min {08_1agd1/2,ag_log_ldl/Q}), K<o (min {08_10g1d1/2,08_1d1/2}), and

~ i, —(a—1)/q
o 20 (min {0 (ot (e cca)) ).
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for some T = © (max {m)’lggqoaqﬁ,KT)*la(;q“}). Forall0 <t <t<T, andc € [C],

<W0(t)>vk> > <Wc(t/)7vk> - 0(0'0)7
and for all i € [n],
g (we(t),€7) =y (we(t'),67) — 0 (000) .

Proof. By Lemma 12, for any (x(*), (),

max y¥) < [t ),ﬁ(i)> > max y® <Wc(t/),€(i)> —n(t—t)O (U?d_l/Q + Ogd_l/Q) .

ce[C] c€[C]

Then, when ¢ — t/ < O (nn_lagqao_q“) andn < o (min {00 d1/2 = Lga= 1d1/2}>, or when t — t/ <

9) (anloo_q'ﬂ) and K <o (min {crg_lcrgldl/Z7 crg_ldl/Q}), n(t =)0 (a?d*1/2 + Ugd*1/2) < o (0gog).
By Lemma 11,

o[t > ot —n(t —t")0 (oed™/?).
ma (we(1), vi) > max (we(t'), vi) ~n(t — )0 (ocd™/?)

Then, when ¢t — ¢ < O (nn’lagqao_q“) andn < o (ag_lag_ld1/2>, orwhent — ' < O (Kn*105q+2) and
K< 0(087105—1(11/2)’

n(t =)0 (7ed /) < o (o),
which completes the proof. ]
Lemma 14 (Learning the main feature). Suppose Giyit holds, C = ©(log d), ogoe < o(1), qd 12 < o(py,) and

q—1

1 - -1
a<o (P(lz min {1, o¢ d 2 <0’0 +nT l?elﬁ)é] K+ nTagd_l/Q) , (00 +nT kHGl?KX] L+ nTagd_1/2> }) ,
- ~1
for some T > Q ((’r]pkgg_2> ) Foranyk € [K]and0 <t <T, if
max (wo(t), vi) < O(C™0), and  max o (w(t),€") < Oooo),

ce[C] i€[n],c€[C]

then
max (we(t + 1), vi) = max (w.(t),vg) + O ( pr’ <max <WC(t),Vk>>> .
c€[C] c€[C] [C]
Moreover, if maxX;c () ce[C) <Wc(t) I3 > < O(J()O’g)for allt < O (72) there exists T' < O (W) such
PkO, kOg
that max.c(c) (Wo(T"),vi) > Q (C~1/9).

Proof. By the upper bound on o and Lemma 11, for any ¢ € [n] and ¢ € [C],

> X e (el Oami)) < 33 welt). v

k'€[K] pepép)k/ k'€[K] pepép),k

_ q
<0 (aqP <Jo +nT (H}gxpk/ + ogd_l/g)) )

<o(1).

Then, since max .c(c) (We(t), Vi) < O(C~%/4), and max.cic] Y <wc(t), £(i)> < o(1) for all i € [n], we have for all

i such that k¥ = k, ) F(w(t),x") < O(1) and m > Q(1).
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Now, we compute the update (w.(t + 1), vg) — (w.(t), Vi),
(We(t+1),vg)

1
= (we(t), Vi) +g Z (1 i ey(“F(w(t),x("'))w/ ((we(t), vi)) Hvkll;)

i:k=k
RS 1
22 | TTomrmae 2wt (welt) apavid) vl (19)
=t pepb;)k
ny 1 (@ <z‘)>) (z‘>< ) >
+nzl<1+ey<i)F(w(t),x<i>)¢ (<Wc € Y £, vk (20)
Then, when Gini holds, since W > Q(1) for all i € [n] such that k} =
. ¥ (e, vi) a2 ) = © (o [wel), vigl )
n 1+ ey F(w(t)x®) (), Vi) [Ivilly | = © (npw [(we(t), vi .
w:kr=k

We can bound the term (19) as

(19)] <O Z Y apt ((welt), apivi))

(i)
Pb;k

< 0 (npra”P |(we(t).vi)|"") < olmpr [ (welt),vi)|" ).

For the term (20), if Gipn;c holds,

n

0] < gz <1 T e JF(w(t) <y ¥ (<Wgt)’€(i)>) ’<§(i)’vk>‘>

1=

o (232w 6w
(7703 old 1/2)

For t = 0, if Giny holds, max,cjc) (We(0), Vi) > (NZ(UO). Then, if agflogdfl/z < o(pkogfl), we have

—

IN
o}

| /\

e (w0 1), 1) = s wel0)vid + © (s’ (s bwelt).v) ) ) @

ce[C] ce(C]

which shows max.c(c) (We(t), V) is increasing. Then, (21) holds for all ¢.
Starting from some (w(t'), v}.), the number of iterations it takes to reach max.c(c) (Wc(t), Vi) > 2max.c(c) (We(t'), Vi)

. e we(t),
is at most O maxeefc)(we () Vi) — | . Then, starting from O(oy), it takes at most
npik (max.e(oy(wWe(t'),vi) )’

time steps to reach max.c(cy (We(t), vi) > Q (C~9). O
Lemma 15 (Overfitting the dominant noise). Suppose Gini, holds, C = O(logd), n < o (min{ qd1/2 I=15a ldl/Q})
and

q—1

1 1 1
<o P imin{l,0fd 2 T Toed /2
a_o( mln{ y O¢ <ao+17 Igré?Kx]pk+17 ¢

-1
s <O’0 +77T]?el?[)((] Pk +7]T0’5d1/2) }) R
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for some T > (m] 105 o, q+2>

Let i € [n] be some sample such that for all 0 < t < T, max,c(c) (We(t), Vk;> < O(C~19). For any time step
0<t<T,if

max @ (w(t),€") < O(C~1/1),

ce[C]
we have
max y® (we(t +1),67) = maxy® (wo(t),€9) + 210 o2y ( maxy® (w.(1),67)
ce(C) €[] n ce(C]

Moreover, there exists times step T' < 0] (nn 105 oy sat2 ) such that max.c|c y® < (T, 5 > (C 1/‘1)

Proof. By the upper bound on « and Lemma 11, for any ¢ € [C],

S Y wlwedapve| < XY welt) apevie)l?

k'e[K (4) k'e[K (4)
€l ]pEPbM, €lK] pepl ook

~ q
<O <oﬂP (00 +nT (n}cz}xpk/ + U§d1/2>) )

o(1).

IA

For i, when max.c(c) (We(t), vg:) < o(Cc—19), maxe[c] y® <wc(t),§(i)> < O(C~"9) and

Z Z w(<wc(t)7_yap7ivk>) SO(l),

ke[K] pep(?,

we have (") F(w(t),x(") < O(1) and therefore > Q(1). Then,

-1
14eyD F(w(t),x(D)
v (welt+1),6")

= y( < (1), E( )> (1 Jrey(L)I«}(W(t) (l))d/ (<wc(t),£(i)>> Hé(i) z)
+ % Z (1 + ey:l{J'(>;zZ\(aZ()t),x(j>) v (<Wc(t)’£(j)>> <$(j)’£(i)>) -

% Z:: (1 + eywi@v)vc(t),an 4 (<Wc(t)’ vk >) <V’“-7' ’ g(i)>) )

y®

Z ey O 2 Y (welt) o vi)) (apvi €7) | (24)

ke[K] peP?,

3\3

I e = Q(1), and Q (000¢) < maxee(cyy™® <Wc(t),£(i)>,

2 (s (we0€0)) [€0]) 28 (2o 2)

When Giyit holds, since m <1,v (<Wc(t),§(j)>) <1, and ¢/ <<wc(t)av’f§>) <Ljef <
9] (nagd—l/z> and |(23)| < O (noed="/?).
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By Lemma 11 and the upper bound on «,
|24)| <O <noﬂP max [(we(t), vi) |7 agdl/z)
<0 (naqP (00 + 1T (p. + 0¢))* " agd_l/Q)
< 6 (UUgd_l/2> .

When Gy holds, €2 (o90¢) <y mMaX.c(C] <Wc(0),£(i)>. Then, whenn < o (min {O’O d1/2 al” 1y 1d1/2}),
fort =0,

max y¥) <wc(t + 1),£(i)> = max y¥) <wc(t),£(i)> + gé <U§1// (max y @ <Wc(t),£(i)>)> , (25)

c€e[C] c€lC] c€[C]

which shows max (] y <Wc(t) E(i)> is increasing. Then, (25) holds forall 0 < ¢ < T.

Starting from max.c[cj y® < (), €D > the number of iterations it takes to reach max .cc) y*) <wc(t),£(i)> >

. . n max, y O {w (t , @ . ; i
2max.c(c] y(® <wc(t’), 5(’)> is at most O (ngg(maxcliéilyii) <ivcéf)?§u)>>)qﬂ ) Then, starting from max.¢ (¢ y® <Wc(0)7 3 )> >

Q (000¢), it takes at most

~ (& nQiaoag ~ n
T <0 E 2P0 V<O ———2
- (z‘:o 7)0?(210005)‘11) = (nag(aoog)q2>
time steps to reach max.c(cy y'*) <WC(T’)7 §(i>> > Q(C-V), 0

Lemma 16 (Upper bound on (w.(t), vi)). If G holds, for all k € [K] and t < o (W)
9o TE

max (we(t), vi) < O (o).
ce[C]

Proof. Forevery k € [K],

(We(t+1),vg

)
1 !
CUACEED ) (s (vl )

i

n
52 1+ey<>F<w(f) 7 2 ! (welt), apivid) Vil (26)
=1 pEPbpk
Ny 1 1 ({w® <z‘)>) (z‘>< (@) >
+ nzl <1+ey<i)F(w(t),x<i>)"¢’ <<Wc & Y £, vk 27

. —1
Then, since m <land ¢ ((w(t),vg)) <O (|<wc(t),vk>|q )

DY (e (0w vl ) <0 (e ol vl

Oy
Y
i:kf=k 1+€

y (D

The second term (26)< 0. For (27), since @ )

6 (O'Ed_l/2) .
Finally, if G;py holds, (w.(0),vy) < O (00), so it takes at least ¢ > Q (+) time steps to reach
nprog  +nogd=1/2

(we(t), vi) = 2(we(0), V). O

‘ < 1and ¢/ <<w£”75<“>) < 1, if Gt holds, (27) <
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Lemma 17 (Upper bound on (w(¢), E(i)>). Suppose G holds, n < o (min {00 dl/2 al” Lo ldl/z}) and

a<o<P qmm{l ofd 2 (00+UT£%pk+nTU§d_l/2> ‘ }>’

for some T > (nnflagqooﬂﬂﬂ). Forall t < o(mflagqaaqﬁ) and i € [n], max.cic) y <wc(t),£(i)> <
6(0’00’5).

Proof. We prove using induction. At¢ = 0, when Gy holds, max;¢y,) ce[c y(® <wc( ), £(Z > (0005) Assume

max;e ] ce(c] Y <wc(t’)7 E(i)> < O(ogo¢) for any 0 < ¢’ < t for induction. For any ¢ € [C],

)

Y (welt+1).67)

0 016+ 2 (e (06 |6

(/) | .
o Z (1 rarreamr? ((we0:€7)) <£m’£(2)>) (28)
) |
gg (1 n eyu):lyw wo (1)) Y’ (<Wc(t)vvk§->) <Vk;a§(2)>) (29)
n () |
I ey 2 2 v (welt) o i) (o vi 67) | (30)
j=1 kE[K] pePD),

Then, when ginit hOldS, by W < < 1and w ( )

(4) (@)
v (welt+1),60)

“) (i) -1 q+1 2 ,-1/2 1/2 | 4 ~1/2 —12\\¢!
<y < c(t), € > +70(n! ad +ogd™F +0ed” /7 4+ alPoed (ao +nT (Pk + o¢d )) )

<y® <wc(0), E(“> +tO(n~tod ot + od V2 4 oed V).

The last step uses the upper bound on « and the induction hypothesis. Since n < o (min {ag *lagdl/ 2ol 7lagfld1/ 2 })

and ¢ < o(nn ™o 705 ), maxiem ey <Wc(t)a€(i)> < O(000e).

O
Lemma 18 (Bound on (w,(t),&) for £ from the testing set). Let & ~ (O,UEId) be a random noise vector
independent of the dataset. Suppose Giyx holds, C = O(logd), n < o (mln {Jgflogdl/Z,agflagfldl/Q}) ,
K<o (mm{ 1dl/z Uqfldl/Q}), and

q—1

N IS -1
a<o (P_clr min {1,05 d~2a (ao + nTlgrel% Pk + nTogd_l/Q) ' , (00 + nTgrel% P+ nTagd_1/2> }) ,

for some T = 0 (max {nnilagqaa‘HQ, Kn’laa‘HQ}). With probability at least 1 — %, forall ¢ € [C] and
0<t<T,

[(We(t), &) = (We(0),€)] < o(oooe).
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Proof. Forany0 <t < T,

(we(t +1),€)

<wC<t>ve>+ziHeyﬂziivwf ((we0r6) (e7-¢)

Z: (1 + eyl >F(w(t) x(1) W' (<Wc(t)vvk;‘>) <Vk;*7£>>

3\3

’r] n
ﬁz 1+ey“>F(w x() S> 0 W ((welt), apivi)) (v, €)

ke[K] pefp( i)

By Lemma 4, with probability at least 1 — & for all i € [n], <£(l £> < O(o gd- /2y and for all k € [K],
<

polyd’
(Vi, &) < O(oed=1/?). Then, by s < 1, W (< > 1 (we(t), vi)) < 1 and

O (welt), apivi)) <1,
[(We(t+1),8) = (We(t), €]
< O(nogd™"?) + O(noed™"/?) + O (naangd_1/2 (Uo +nT (H}?}X Prr + U&d—1/2>>q_1>
< 775(0?d_1/2 +oed?).
The second step uses Lemma 11. The third step uses the upper bound on «. Summing over 0 < ¢’ < ¢,
[(wWel(t), &) — (we(0), )] < HTO(02d Y2 + ged=1/?).
Whenn < o (min {Ug_lggdl/Q’ gg_lgg_ldl/Q})’ K <o (min {Ug—laé—ldl/gjag—ldlm})’ and
T<O (max {”77_105_(100_‘”2,Kn—lgo—q“})’

[(We(t), &) = (We(0), €)] < o(o00e).
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