
Data Augmentation as Feature Manipulation:
a story of desert cows and grass cows

Ruoqi Shen * Sébastien Bubeck † Suriya Gunasekar ‡

Abstract

Data augmentation is a cornerstone of the machine learning pipeline, yet its theoretical underpinnings remain
unclear. Is it merely a way to artificially augment the data set size? Or is it about encouraging the model to satisfy
certain invariance? In this work we consider another angle, and we study the effect of data augmentation on the
dynamic of the learning process. We find that data augmentation can alter the relative importance of various features,
effectively making certain informative but hard to learn features more likely to be captured in the learning process.
Importantly, we show that this effect is more pronounced for non-linear models, such as neural networks. Our main
contribution is a detailed analysis of data augmentation on the learning dynamic for a two layer convolutional neural
network in the recently proposed multi-view model by Allen-Zhu and Li [2020b]. We complement this analysis with
further experimental evidence that data augmentation can be viewed as a form of feature manipulation.

1 Introduction
Data augmentation is a powerful technique for inexpensively increasing the size and diversity of training data.
Empirically, even minimal data augmentation can substantially increase the performance of neural networks. It
is commonly argued that data augmentation is useful to impose domain specific symmetries on the model, which
would be difficult to enforce directly in the architecture [Simard et al., 2000, 2003, Chapelle et al., 2001, Yaeger et al.,
1996, Shorten and Khoshgoftaar, 2019]. For example, semantics of a natural image is invariant under translation
and scaling, so it is reasonable to augment an image data set with translated and scaled variations of its inputs.
Simple augmentation with random crop up to 4 pixels can lead to gains in the range 5-10% [Ciregan et al., 2012,
Krizhevsky et al., 2017]. Another explanation often proposed for the role of data augmentation is merely that it
increases the sample size. As an alternative to symmetry inducing or sample size increase, we consider in this work the
possibility that data augmentation should in fact be viewed as a more subtle feature manipulation mechanism on the data.

Consider, for illustration, an image data set with the task of learning to detect whether there is a cow in the image. A
simplified view would be that there are true cow features that generate the cow images, and we hope to learn those true
features. At the same time, because most images of cows contain grass, it would not be surprising if a neural network
would learn to detect the spurious grass feature for the task, and perhaps simply overfit the rare images such as desert
cows that are not explained by the grass feature (and similarly overfit the perhaps few images with grass and no cows).
Now consider a simple data augmentation technique such as Gaussian smoothing (let us assume black and white images
or else use additional color space augmentations). The grass feature, sans color, is essentially a high frequency texture
information, so we can expect the smoothing operation to make this feature significantly diminished. In this example,
the feature manipulation that data augmentation performs is effectively to render the spurious feature harder to detect,
or more precisely to make it harder to learn, which in turn boosts the true cow features to become the dominant features.

Continuing the illustration above, let us explore further the idea of data augmentation as feature manipulation. First
note that the true cow feature need not be one “single well-defined object”, but rather we may have many different true
cow features. For example, true cow features could be different for left-facing and right-facing cows. An imbalance in
the training data with respect to those different features could make the rarer features hard to learn compared to the

*University of Washington, shenr3@cs.washington.edu. Part of this work was done as a intern at Microsoft Research.
†Microsoft Research, sebubeck@microsoft.com
‡Microsoft Research, suriyag@microsoft.com

1

ar
X

iv
:2

20
3.

01
57

2v
1

 [c
s.L

G
]

3
M

ar
 2

02
2

more common features, similarly to how the spurious grass feature was occluding the true cow features. In the example
above, it could happen that in most images in the training data, the cows are facing right, which in turn could mean
that the neural network will learn a cow feature with an orientation (right-facing), and then simply memorize/overfit
the cows facing left. Yet another commonly used data augmentation technique such as random horizontal flip would
solve this by balancing the occurrence of cow features with right-orientation and those with left-orientation, hopefully
leading to a neural network dynamic that would discover both of those types of cow features. Note that one might be
tempted to interpret this as inducing a mirror symmetry invariance in the model, but we emphasize that the effect is
more subtle: the learned invariance is only for the relevant features, rather than being an invariance for all images (e.g.,
on non-cow images one might not be invariant to the orientation).

More generally, to understand feature learning with and without data augmentation in gradient descent trained
neural networks, we can think of three types of features of interest: (a) The “easy to learn and good” features, which are
accurate features for the learning problem and are easy to learn in the sense that they have large relative contribution in
the gradient descent updates of the network. (b) The “hard to learn and good” features, which are more nuanced to detect
but are essential to fit the harder samples in the population distribution (e.g., examples with rare object orientations).
These are features that despite being accurate have small relative contribution in the gradient descent updates (perhaps
due to lack of sufficient representation in the training data), which in turn makes them hard to learn. (c) Finally, there
are the “easy to learn and bad” features, which while inaccurate, nevertheless interfere with the learning process as they
have a large contribution in the gradient updates. Such features often correspond to spurious correlations or dominating
noise patterns (e.g., the grass feature) which arise due to limitations in training data size or data collection mechanisms.1

In this paper, we study data augmentation as a technique for manipulating the “easiness” and “hardness” of features by
essentially changing their relative contributions in the gradient updates for the neural network.

We believe that this view of data augmentation as a feature manipulation mechanism is more insightful (and closer
to the truth) than the complementary and more straightforward views of “symmetry inducing” or “it’s just more data”.
For one, data augmentation with specific symmetries do not necessarily lead to models that are respectively invariant.
For example, Azulay and Weiss [2019] show that even models trained with extensive translation and scale augmentation
can be sensitive to single pixel changes in translation and scaling on inputs far from the training distribution, suggesting
the inductive bias from data augmentation is more subtle. Further, this view could form a basis for studying more recent
data augmentation techniques like MixUp [Zhang et al., 2017], CutOut [DeVries and Taylor, 2017], and variants, which
in spite of being widely successful in image tasks do not fit the conventional narrative of data augmentation.

Contributions Given the diversity of data augmentation techniques (e.g., see Shorten and Khoshgoftaar [2019],
Feng et al. [2021] for a survey), it is a formidable challenge to understand and analyze the corresponding feature
manipulation for each case, and this task is beyond the scope of the present paper. Our more modest objective is
to start this program by studying a simple mathematical model where data augmentation can be provably shown to
perform feature manipulation along the lines described in the illustration above. Specifically, we consider a variant of
the multi-view data setting introduced in the pioneering work of Allen-Zhu and Li [2020b] on ensemble learning. In
our data model, each data point is viewed as a set of patches, with each patch being represented by a high-dimensional
vector in Rd. Moreover there is a set of K “true/good” features v1,v2, . . . ,vK ∈ Rd. For any data point, each patch is
then some combination of noise and features. Specifically at least one patch contains a “good” feature whose orientation
indicates the label, i.e., for some k ∈ [K] this patch is yvk where y ∈ {−1, 1} is the binary class label to be predicted.
In this case we say that the data point is of the kth type. The other patches contain different forms of noise. If the
training data contains sufficiently many type-k data points, then the corresponding feature vk is “easy to learn and
good”, while the features corresponding to rare types are “hard to learn and good”. To model the “easy to learn and bad”
features we assume that one patch per datapoint receives a large (Gaussian) noise, which we call the dominant noise.
See Section 2 for exact details of the model. Given such training data we show the following for a two layer patch-wise
convolutional network (see (3)) trained using gradient descent (there is a number of caveats, see below for a list):

1. When one or more features are sufficiently rare, the network will only learn the frequent “easy to learn and good”
features, and will overfit the remaining data using the “easy to learn and bad” noise component.

2. On the other hand, with any data augmentation technique that can permute or balance the features, the network

1We do not mention “hard to learn and inaccurate” features as they are conceptually irrelevant for the training dynamics or accuracy of the model.

2

will learn all K features, and thus achieve better test loss (and, importantly learn a better representation of this
data2). We show that this happens because the representation of the “hard to learn and good” features in the
gradient updates will be boosted, and simultaneously the relative contribution of the dominant noise or the “easy
to learn and bad” features will be diminished.

3. We show that this phenomenon is more pronounced for gradient descent dynamics in non-linear models in the
following sense: we prove that even at high signal-to-noise ratio (SNR) the non-linear models might memorize
through the noise components, while gradient descent on linear models overfit to noise only at much lower SNR.
This shows that data augmentation is useful in a wider range of cases for non-linear models than for linear models.

Moreover, our non-linear model can learn the distribution even in the presence of feature noise (in the form of
−αyvk′ for some small α > 0, which points to wrong class). On the other hand, a linear model cannot have low
test error with such feature noise, thus showing a further separation between linear and non-linear models.

Some of the caveats to our theoretical results include the following points (none seem essential, but for some of
them going beyond would require significant technical work):

• Neural network architecture: we study two layer neural network with a special activation function (the latter can
be viewed as a smoothed ReLU with fixed bias). We also assume poly-logarithmic (in d) width.

• Training: we study gradient descent rather than stochastic gradient descent, and furthermore we assume a specific
training time (the same one with and without data augmentation).

• Data model: the distribution can be generalized in many ways, including having data points with mixed types
(e.g., “multi-view” as in Allen-Zhu and Li [2020b]), heterogeneous noise components, or even correlated noise
components (see below for more on this). We also assume a very high dimensional regime d� n2 (where n is
the training set size), although we believe our results should hold for d� n.

Even though our theoretical results are in a limited setting, the feature manipulation effect of data augmentation
is conceptually broader. We complement our analysis with experiments on CIFAR-10 and synthetic datasets, where
we study data augmentation in more generality. We circle back to our motivating problem with spurious features (àla
the cow grass features story) in a classification task. Our experiments show that simply shifting the spurious feature
position randomly up to 2 pixels in each epoch, can significantly improve the test performance by making the spurious
feature hard to learn. This happens even when we do not change any non-spurious pixels/features (and hence control
learning additional image priors). We further formulate experiments to evaluate the value of a single data augmented
image compared to an fully independent sample, and see that on CIFAR10 dataset that once 50% independent samples
are available, a data augmented sample is almost as effective as an independent sample for the learning task. Finally, we
show on synthetic dataset that the problem arising from imbalance in views (as studied in our main result) also holds for
deeper convolutional architectures, even when the views are merely translations of each other.

Related Work Starting with [Bishop, 1995] there is a long line of work casting data augmentation as an effective
regularization technique, see [Dao et al., 2019, Rajput et al., 2019, Wu et al., 2020, Yang et al., 2022] for recent
developments in that direction. Other theoretical analyses have studied and quantified the gains of data augmentation
from an invariance perspective [Chen et al., 2020, Mei et al., 2021]. The viewpoint we take here, based on studying
directly the effect of augmentation on the learning dynamic, is strongly influenced by the work of Zeyuan Allen-Zhu and
Yuanzhi Li in the last few years. For example in Allen-Zhu and Li [2020a] they develop this perspective for adversarial
training (which in some ways can be thought as a form of data augmentation, where each data point is augmented to its
adversarial version). There they show that adversarial training leads to a certain form of feature purification, which in
essence means that the filters learned by a convolutional neural network become closer to some “ground truth” features.
In [Allen-Zhu and Li, 2020b] they introduce the multi-view model that we study here, and they used it to study (among
other things) ensemble learning. In a nutshell, in their version of the model each data point has several views that can
be used for classification, and the idea is that each model might learn only one of those views, hence there is benefit
to ensembling in that it will allow to uncover all the features, just like here we suggest that data augmentation is a
way to uncover all the features. Other notable works which share the philosophy of studying the dynamic of learning

2As a consequence of learning all the K features, the learned model will not only be more accurate on the data distribution of training samples,
but will also be robust to distribution shifts that alter the proportion of data of the K feature types.

3

(although focused on linear models) include [Hanin and Sun, 2021] which investigates the impact of data augmentation
on optimization, and [Wu et al., 2020] which considers the overparametrized setting and show that data augmentation
can improve generalization in this case.

Notation We use tilde notation Õ, Θ̃, Ω̃ to hide log factors in standard asymptotic notation. For an integer K,
[K] = {1, 2, . . . ,K}. We interchangeably use a · b, 〈a,b〉, or a>b for standard inner product between two vectors.

2 A mathematical model for understanding feature manipulation
Our data model defined below is a variation of the multi-view data distribution in Allen-Zhu and Li [2020b] for a binary
classification task. We represent the inputs x as a collection of P non-overlapping patches x = (x1,x2, . . . ,xP) ∈
Rd×P , where each patch is a d dimensional vector. The task is associated with K unknown “good” features denoted
as v1,v2, . . . ,vK ∈ Rd, such that for labels y ∈ {−1, 1}, their orientation as {yvk}k∈[K] constitutes the K views or
sub-types of the class y.3 Each input xp patches either contain one of the “good” feature {yvk} or a “bad” feature in
the form of random and/or feature noise. Formally, our distribution is defined below.

Definition 1. D is parametrized by
(
ρ, σξ, σζ , α

)
, where ρ = (ρ1, ρ2, . . . , ρK) is a discrete distribution over the

features {vk}k∈[K], and σξ,σζ , and α are noise parameters. Without loss of generality, let ρ1 ≥ . . . ρK . A sample
(x, y) ∼ D is generated as follows:

(a) Sample y ∈ {1,−1} uniformly.

(b) Given y, the input x = (x1,x2, . . . ,xP) ∈ Rd×P is sampled as below:

Choose the main feature patch p∗ ∈ [P] arbitrarily and set

xp∗ = yvk∗ , where k∗ ∼ ρ. (Feature patch)

Choose a dominant noise patch pξ 6= p∗ and generate

xpξ = ξ, where ξ
i.i.d∼ N

(
0,
σ2
ξ

d
Id
)
. (Dominant noise)

For the remaining background patches4 p ∈ [P] \ {p∗, pξ}, select 0 ≤ αp ≤ α and set

xp = −αpyvkp + ζp, where kp ∼ ρ, ζp ∼ N (0, σ2
ζId). (Background)

Assumption 1. We assume the features {vk}k∈[K] are orthonormal, i.e., ∀k,k′∈[K], vk · vk′ = 1k=k′ .

The training dataset consists of n i.i.d., samples from D, Dtrain = {(x(i), y(i)) : i ∈ [n]} ∼ D⊗n. We are interested
in the high dimensional regime where n� d. n, P and K can grow with d. Note that, in Definition 1 k∗, p∗, pξ, ξ,
and (αp, kp, ζp)p/∈{p∗,pξ} all depend on x, but we have dropped this dependence in the notation to avoid clutter. In
our analysis, for i = 1, 2, . . . , n, we use k∗i , p∗i , pξi , ξ

(i), and (αp,i, kp,i, ζp,i)p/∈{p∗i ,pξ}i to denote the corresponding
quantities for the sample (x(i), y(i)) in the training dataset.

Data augmentation Let D(aug)
train denote the augmented dataset obtained by transforming the i.i.d. training dataset

Dtrain. Our model for data augmentation is such that D(aug)
train has equal number of samples with main feature yvk for each

k ∈ [K]. Concretely, consider linear transformations T1, . . . TK−1, such that for all k, Tk : Rd → Rd and satisfies

∀ k′ ∈ [K], Tk(vk′) = v((k′+k−1) mod K)+1). (1)

Such transformations are well defined for K ≤ d, and in essence permute the feature vectors vk on patches with
true feature or feature noise. At the same time, the Gaussian noise patches before and after transformation are no longer

3For M -class classification, our analysis can be adapted by using separate set of features {vk,m}k for each class m ∈ [M], rather than {±vk}k .
ForM = 2, under our learning algorithm, using (vk,−1,vk,1) as features for y = −1, 1 is equivalent to using−vk,vk with vk = vk,1−vk,−1.

4In our definition, the dominant noise ξ and the main feature vk∗ appear in exactly one patch. But our results also hold (by virtue of parameter
sharing in (3)) when for any disjoint non-empty subsetsPf ,Pn ⊂ [P], we set ∀ p ∈ Pf , xp = yvk∗ and ∀ p ∈ Pn, xp = ξp ∼i.i.d N (0, σ2

ξId/d).

4

i.i.d. We slightly abuse notation and define Tk(x) on x ∈ Rd×P as Tk(x) = (Tk(x1), Tk(x2), . . . , Tk(xp)) ∈ Rd×P ,
as well as Tk(Dtrain) on the training dataset as Tk(Dtrain) = {(Tk(x(i)), y(i)) : i ∈ [n]}.

Our augmented dataset D(aug)
train consists of Dtrain along with the K − 1 transformations of of Dtrain as defined below:

D(aug)
train = Dtrain ∪ T1(Dtrain) . . . ∪ TK−1(Dtrain). (2)

Note that in D(aug)
train all the views are equally represented, i.e., for each k ∈ [K], we will have exactly n samples from the

feature yvk, and further D(aug)
train has more samples compared to Dtrain with |D(aug)

train | = nK, but they are no longer i.i.d.

Since the features {vk}k are orthonormal (Assumption 1) and all the non-feature noise are spherically symmetric,
without loss of generality, we can assume that {vk}k∈[K] are simply the first K standard basis vectors in Rd, i.e.,
vk = ek. In this case, we can choose Tk for k ∈ [K − 1] as a permutation of coordinates satisfying (1) on the first K
coordinate. If we further assume that the the permutations Tk do not have any fixed points, i.e., ∀ i ∈ [d], Tk(z)[i] 6= z[i],
then at initialization and updates of gradient descent, the augmented samples in D(aug)

train satisfy the same properties as
i.i.d. samples in Dtrain (upto constants and log factors). In this rest of the proof, we thus assume that Tk are permutations
of coordinates without any fixed points in the orthogonal basis extended from {vk}k, and satisfies (1).

Role of different noise components Our main result shows that when the dominant noise parameter σξ is sufficiently
large, a neural network can overfit to this noise rather than learn all the views. However, with the right data augmentation,
we can show that all the views can be accurately learned using a non-linear network. Furthermore, in the presence
of feature noise {−αpyvkp} (pointing to wrong class), linear models are unable to fit our data distribution, thus
establishing a gap from linear models.

We choose the noise parameters σξ, σζ , α such that the dominant noise ξ and the true features {yvk∗} have the
main contribution to the learning dynamic compared to the feature noise (i.e., −αpyvkp) or the minor noise (i.e., ζp).
Thus, our results do not necessarily require noise in the background patches beyond establishing gap with linear models.
Since the minor noise σζ does not provide any additional insight, we assume σζ = 0. Our analysis can handle small σζ
with more tedious bookkeeping.

2.1 Learning algorithm
We use the following patch-wise convolutional network architecture with C channels: let w = {w1,w2, . . .wC} ∈
Rd×C denote the learnable parameters of the model,

F (w,x) =
∑
c∈[C]

∑
p∈[P]

ψ(wc · xp) , (3)

where ψ is a non-linear activation function defined below:

ψ(z) =


sign(z) · 1

q |z|
q if |z| ≤ 1

z − q−1
q if z ≥ 1

z + q−1
q if z ≤ 1

−1 1

q=3

q=9
z

ψ(z)

Our activation is a smoothed version of symmetrized ReLU with a fixed bias φ(z) = ReLU(z+1)−ReLU(−z−1).
In fact, as q → ∞, ψ → φ. Note that since we do not train the second layer weights, we choose an odd-function as
activation to ensure that the outputs can be negative.

Consider the following logistic loss over the training dataset Dtrain =
{

(x(i), y(i)), i ∈ [n]
}

:

L(w) =
1

n

n∑
i=1

`(y(i)F (w,x(i))), where `(z) = log(1 + exp(−z)). (4)

5

We learn the model using gradient descent on the above loss with step size η, i.e., for c ∈ [C], the weights wc at time
step t are given by wc(t) = wc(t− 1)− η

n

∑n
i=1 y

(i)`′(y(i)F (w(t),x(i)))∇F (w(t),x(i)).

The following lemma summarizes the conditions at Gaussian initialization w(0) = {wc(0) ∼ N (0, σ2
0Id) : c ∈ [C]}.

Lemma 1. [Ginit-conditions] Consider n i.i.d. samples Dtrain = {(x(i), y(i)) : i ∈ [n]} from the distribution in
Definition 1. Let the parameters w of the network in (3) be initialized as wc(0) ∼ N (0, σ2

0Id) ∀ c ∈ [C]. If the number
of channels is C = Ω(log d), then with probability greater than 1−O(n

2KC
poly(d)), the following conditions hold :

1. Feature-vs-parameter: ∀ k ∈ [K], max
c∈[C]

wc(0) · vk ≥ Ω(σ0), and max
c∈[C]

|wc(0) · vk| ≤ Õ (σ0) .

2. Noise-vs-parameter:∀ i ∈ [n], max
c∈[C]

wc(0) · y(i)ξ(i) ≥ Ω̃ (σ0σξ), and max
c∈[C]

|wc(0) · ξ(i)| ≤ Õ (σ0σξ) .

3. Noise-vs-noise: ∀ i ∈ [n], ξ(i) · ξ(i) = Θ(σ2
ξ) and ∀ i, j ∈ [n], i 6= j, |ξ(i) · ξ(j)| ≤ Õ(σ2

ξ/
√
d).

4. Feature-vs-noise: ∀ i ∈ [n], k ∈ [K], |ξ(i) · vk| ≤ Õ(σξ/
√
d).

5. Parameter norm: ∀ c ∈ [C], ‖wc(0)‖ = Θ(σ0

√
d).

The above lemma proved in the Appendix C follows from standard Gaussian concentration bounds. Further, we can
show that Ginit also hold for the augmented dataset D(aug)

train even though the samples in D(aug)
train are not i.i.d.

Lemma 1a. Ginit in Lemma 1 also holds for D(aug)
train defined in (2) with n replaced by nK.

2.2 Clarification on capacity in this model
We now informally discuss the size of our model class in the context of our data distribution. Consider the convolutional
model (3) with C = 1 and say α = 0 for sake of simplicity in the data distribution. Using w1 = wgen = γ

∑K
k=1 vk

for some large γ > 0 will yield excellent training and test error. This is a model that would “generalize”. On the
other hand for a fixed training set {(x(i), y(i))}i∈[n], one could also obtain almost perfect training error by using
w1 = woverfit = γ

∑n
i=1 y

(i)ξ(i), whenever σξ and d � n (noise components {ξ(i)}i∈[n] are near orthonormal).
Indeed with high probability, ∀i∈[n], y

(i)f(woverfit,x(i)) = y(i)
∑
p∈[P] ψ(woverfit · x(i)

p) is exactly

ψ
(
γσ2

ξ (1 + Õ(
√
n/d))

)
+ ψ

(
γσξO(

√
n/d)

)
= γσ2

ξ (1 + o(1)) .

In other words the model with woverfit will almost perfectly memorize the training set, while on the other hand
it is clear that it will completely fail to generalize. This shows that the model class is large enough so that any
classical measure of complexity, e.g., Rademacher complexity, would fail to predict generalization (even data-dependent
Rademacher complexity where the x(i) follow our data distribution). In fact, our arguments below show that gradient
descent could lead to a model of the form woverfit in a Rademacher complexity setting (i.e., with random label y(i)

independent of the inputs x(i)). Thus, even restricting to models reached by gradient descent would still yield a high
Rademacher complexity. This phenomenon has also been empirically observed in practical neural networks Neyshabur
et al. [2015], Zhang et al. [2021], and shown theoretically in simpler models in Nagarajan and Kolter [2019]. Thus, we
are in a case where not only do we need to leverage the fact that we are using gradient descent to prove generalization,
but we also need to use the specific target function (i.e., the relation between y and x) that we are working with.

2.3 Our argument in a nutshell
At a high level we show that there is a cutoff point in the features, denote it Kcut, such that running gradient descent on
the above architecture and data distribution will lead to a model which is essentially a mixture of parts of wgen and
parts of woverfit described above. Roughly it will be:∑

k≤Kcut

vk +
∑

i:k∗i>Kcut

y(i)ξ(i) . (5)

6

In words, the frequent enough features will be learned, and the data points that correspond to infrequent enough
features will be memorized through their noise component. Quite naturally, this cutoff point will be decreasing with the
magnitude of the noise σξ, i.e., the bigger the noise the fewer features will be learned. While this argument also holds
for gradient descent dynamics on linear models, the cutoff point Kcut of linear models can be higher than that of the
non-linear models, which shows that non-linear models can memorize through the noise component at a higher SNR
(see Section 3.3 for the exact cutoff point).

Where data augmentation will come in is that it can effectively change the frequency of the features, and in the
extreme case we consider make them all equal for example,i.e., all with frequency 1/K. We then show that there exists
setting of the parameters such that frequency 1/K is learned at noise magnitude σξ , so that with data augmentation all
the features are learned.

2.4 Linear and tensor models
Before diving into the dynamics of gradient descent for our neural network architecture and data distribution, let us
expand briefly on linear models. In Appendix D we study the max-`2 margin linear classifier for our data, but for sake
of simplicity we consider here an even more basic predictor that is specifically tailored to our data distribution:

θ̄ :=
1

n

n∑
i=1

∑
p∈[P]

y(i)x(i)
p .

Note that θ̄ is a linear function on Rd, and we naturally extend it to the domain Rd×P of our data points (with slight
overloading of notation) as θ̄(x) =

∑
p∈[P] θ̄ · xp. Compared to a gradient descent learned model, it is not clear

whether this predictor is meaningful beyond our specific data distribution, and we emphasize that we study it merely
as a shortest path to get quantitative estimates for the discussion in Section 2.3 (e.g., for the cutoff point and for the
SNR of interest). In fact the (gradient descent learnable) max margin linear classifier has even better properties than the
estimator w̄, see the Appendix D for more details.

Derivation of a cutoff point. It is easy to check that with our data distribution we have θ̄ = θ̄S + θ̄N where
θ̄S =

∑K
k=1 ρkvk (say the fraction of examples of type k is exactly ρk) and θ̄N = 1

n

∑n
i=1 y

(i)ξ(i) (assume α = 0 for

this discussion). In particular for x sampled from our distribution, we have with high probability |θ̄N (x)| ' σ2
ξ√
nd

and

θ̄S(x) ' ρky if x is of type k. This means that the predictor θ̄ has successfully learned feature vk iff ρk >
σ2
ξ√
nd

. In

other words for this linear model the cutoff frequency is at ρcut =
σ2
ξ√
nd

. With a small leap of faith (related to the fact
that after data augmentation the noise terms are no longer i.i.d., which we show to be not a in our proof of non-linear
model) we can see that as long as this cutoff frequency is smaller than 1√

K
, data augmentation would enable full

learning of all the views, since in that case the post-augmentation frequencies 1
K are larger than the cutoff frequency

with n replaced by nK, i.e., 1
K �

σ2
ξ√
nKd

= ρcut√
K

.

Effect of simple non-linearity on SNR. The simplest type of “non-linearity” would be to consider a tensor method
for this problem (note that this is nothing but a kernel method). Specifically, let

T =
1

n

n∑
i=1

∑
p∈[P]

yi

(
x(i)
p

)⊗q
,

be the natural empirical tensor for this problem, for some odd q ∈ N, whose domain is extended from Rd to Rd×P as
before, i.e., T (x) =

∑
p∈[P] T (xp). Note that this function can be realized in our architecture with a pure polynomial

activation function ψ(z) = zq, see Bubeck et al. [2021] for more on neural network memorization with tensors.
Similarly to the linear case one can decompose the tensor into a signal and noise components:

T = S +N, where S =
K∑
k=1

ρkv
⊗q
k , N =

1

n

n∑
i=1

yi

(
ξ(i)
)⊗q

.

7

For x sampled from our distribution, we have with high probability, |N(x)| ' σ2q
ξ√
ndq

and S(x) ' ρky if x has vk as its

main feature. Thus here the cutoff frequency is at ρ(q)
cut =

σ2q
ξ√
ndq

. In particular we see that even at high SNR, say when
√
nd� σ2

ξ �
√
d (in which case ρ(1)

cut = o(1)) we might have ρ(q)
cut = Ω(1) for q > 1. To put it differently, the tensor

methods will overfit to the noise at a different SNR from the pure linear model would, which in turns mean that there is
a different range of SNR where data augmentation will be useful for non-linear models such as tensors. We will see this
story repeating itself for the gradient descent on our neural network architecture.

Quantitative comparison with the neural network results. We note that the thresholds derived here are better than
those we obtain via our neural network analysis (note also that the tensor method can handle α > 0 similarly to what
our non-linearity allows). However we emphasize again that, on the contrary to gradient descent on neural networks,
the predictors here are artificial and specifically tailored to the data distribution at hand. Furthermore the complexity of
the tensor method scales up with q, on the contrary to the neural network dynamic.

3 Overview of gradient descent dynamics
Let us do some heuristic calculation in the simple case where α = 0 (so that effectively there are only two relevant
patches in inputs, xp∗ = yvk∗ and xpξ = ξ, respectively). Recall that wc(0) ∼ N (0, σ2

0Id) and ξ ∼ N (0, σ2
ξId/d).

Thus, E[|wc(0) ·xp∗ |2] = σ2
0 and E[|wc(0) ·xpξ |2] = σ2

0σ
2
ξ for all channels c. We will initialize so that these quantities

are o(1), and thus f(w(0),x) = o(1) for (x, y) ∼ D. We study the gradient flow on minimizing f in this section.

3.1 When you really learn...
For f to correctly classify a datapoint x with feature vk, it is morally sufficient that |wc · vk| is of order 1 for some
channel c. Let us look at the dynamics starting close to initialization (when f(w(0),x) = o(1)),

d

dt
wc · vk

= − 1

n

∑
i∈[n]

y(i) `′
(
y(i)F (wc,x

(i))
) [
∇wcF (w,x(i)) · vk

]
(a)
=

1 + o(1)

2n

∑
i∈[n]

∑
p∈[P]

ψ′(|wc · x(i)
p |) y(i)x(i)

p · vk

=
1 + o(1)

2n

∑
i∈[n]

ψ′(|wc · vk∗i |)vk∗i · vk +
1 + o(1)

2n

∑
i∈[n]

ψ′(|wc · ξ(i)|)y(i)ξ(i) · vk︸ ︷︷ ︸
:=ϑ

(b)
=

1 + o(1)

2
ρk ψ

′(|wc · vk|) + ϑ , (6)

where in (a), we use −`′(o(1)) = 1/2 + o(1) for logistic loss `, ψ′(z) = ψ(|z|) since ψ is odd, and (b) follows from
{vk} being orthogonal.

If we can ignore ϑ, resulting dynamic reduces to an ODE of the form g′(t) = ρkψ
′(g(t)) (ignoring constants) with

g(0) ≈ σ0 = o(1). As long as g(t) = wc(t) · vk is smaller than 1 this can be rewritten as g′(t) = ρkg(t)q−1 (because
of the form of ψ we chose), or equivalently (g(t)2−q)′ = −ρk up to constants. In particular, we see that after time
t = g(0)2−q/ρk, we will have g(t) = Θ(1). This suggests that by time of order 1/(σq−2

0 ρk) at least one channel should
have learned vk

5.

When can we indeed ignore (morally) the noise term ϑ? At initialization this term is of order
σq−1
0 σqξ√
nd

. On the other

hand the “main” term wc · vk in (6) is of order ρkσ
q−1
0 . Thus we see that we need

σqξ√
nd
� ρk. In fact we will

5We assume q ≥ 3. For the case q = 1 or q = 2, the time needed is 1/(σq−1
0 ρk).

8

need a slightly more stringent condition, because the cancellation in ϑ leading to a scaling of 1/
√
n becomes more

complicated to analyze after initialization due to the dependencies getting introduced. So we will use the more brutal

bound |ϑ| . σq−1
0 σqξ√
d

which in turn means we need
σqξ√
d
� ρk.

Summarizing the above, we expect that if σqξ/
√
d� ρk, then by time 1/(σq−2

0 ρk) we will have one channel that
has learned the feature vk.

3.2 ... and when you overfit ...
Another sufficient condition to correctly classify a datapoint (x(j), y(j)) would be to overfit to its dominant noise part
ξ(j), i.e., |wc · ξ(j)| is of order 1 for some channel c. Here we have at initialization:

d

dt
wc · ξ(j)

=
1 + o(1)

2n

∑
i∈[n]

∑
p∈[P]

ψ′(|wc · x(i)
p |)y(i)x(i)

p · ξ
(j)

=
1 + o(1)

2n

(
y(j)ψ′(|wc · ξ(j)|)‖ξ(j)‖2 + ψ′(|wc · vk∗j |)vk∗j · ξ

(j) +
∑

i6=j,p∈[P]

ψ′(|wc · x(i)
p |) y(i)x(i)

p · ξ
(j)

)

=
(1 + o(1))σ2

ξ

2n
y(j)ψ′(|wc · ξ(j)|) + Γ (7)

where Γ is the last two term from the penultimate step.

Assuming Γ can be ignored, we can mimic the reasoning above (for wc · vk) with h(t) = y(j)wc · ξ(j) and
h(0) = O(σ0σξ). We thus expect to correctly classify a datapoint by overfitting to its noise after time O(n/(σq−2

0 σqξ)).

When can we ignore the noise term Γ? The order of Γ is σq+1
ξ σq−1

0 /
√
d (at initialization it is in fact this times 1/

√
n

but we ignore this improvement due to the dependencies arising through learning). On the other hand the main term in
(7) is of order σq+1

ξ σq−1
0 /n at initialization, so we obtain the condition

√
d� n (which could possibly be improved to

d� n if cancellation remained correct throughout learning).

Summarizing again, if d� n2, by time in the order of n/(σq−2
0 σqξ), we can expect the data points that were not fit

before this time to be overfit using noise parameters.

3.3 ... and in what order

Let us assume d � n2 and
σqξ√
d
� ρk. Then the above discussion reveals that if n/(σq−2

0 σqξ) � 1/(σ0ρk) ⇔ ρk �
σqξ/n, we will not be able to learn vk because we will overfit before learning (In fact, in this case, we do not need the

condition
σqξ√
d
� ρk). This essentially gives rise to a channel filter (or a combination thereof) of the form (5), with the

cutoff point Kout = {k : ρk � σqξ/n} being now specified.

Data augmentation can fix the order by effectively permuting the features. After data augmentation, we get the
proportion of any feature to be 1/K and the training set size to be nK. Note that our data augmentation only permutes
the coordinates so that the inner product between ξ and Tk(ξ) should be at the same order as two independent noise.
The learning process only depend on the inner product between the samples so our previous analysis still holds. Then,
after data augmentation, for every view k ∈ [K], we have ρ(aug)

k = 1/K. Then, as long as σqξ/n = o(1), we have

ρ(aug)
k � σqξ/(nK) and are able to learn vk before overfitting.

9

4 Main Results
We learn the model F (w,x) in (3) using gradient descent with step size η on loss L(w) in (4). The weight wc, c ∈ [C],
at time step t is denoted as wc(t). The weight wc(t) for training on D(aug)

train is obtained similarly, with the samples
replaced by D(aug)

train =
{

(x(i), y(i)), i ∈ [Kn]
}

. In addition to the assumptions we have discussed in Section 3, we make
some additional assumptions for controlling the omitted quantities arising through training and testing.

Assumption 2. We assume the following holds. For some constant q ≥ 3,

1. The first view is dominant, 1 ≥ ρ1 ≥ Ω(1). The other views k ∈ [K]\ {1} are minor views, nρk ≤ o
(
σqξ

)
.

2. The standard deviation of the dominant noise satisfies ω(1) ≤ σqξ ≤ o(n).

3. The standard deviation of the weights at initialization is bounded, σ0 ≤ o(1/σξ).

4. The number of samples and views are bounded, nK ≤ o
(
σq−1

0 σq−1
ξ d1/2

)
.

5. The feature noise satisfies, for T = Θ̃
(

max
{
nη−1σ−qξ σ−q+2

0 ,Kη−1σ−q+2
0

})
,

ω(P−1) ≤ α ≤ o
(
η−1T−1P−

1
q σξ min{d− 1

2 , σ0}
)
.

Condition 1-3 in Assumption 2 have been explained in Section 3. σ0 ≤ o(1) and σ0σξ ≤ o(1) guarantee that at
initialization, the main features and the dominant noise have o(1) correlation with the weight. We choose σξ ≥ ω(1) so
that without properly learning the main feature, the inner product between random initialized weights and the dominant
patch can dominate the model output. Condition 4 is a more stringent version of the condition n� d1/2 in Section 3 to
control all the terms during training. In Condition 5, we assume an upper bound on the feature noise α. We assume the
existence of feature noise only for establishing gap with linear models, so we did not optimize the upper bound on α. It
is possible the proof can go through with milder constraints on α.

An example of a set of parameters that satisfy the above assumption is

q = 3, σ0 = d−0.15, σξ = d0.1, n = d0.33,

K = d0.06, ρ1 =
1

2
, ρ2 = ρ3 = ... = ρK =

1

2(K − 1)
,

α = d−0.95, P = d.

In Theorem 3, we show that under the above conditions, without data augmentation, gradient descent can find a
classifier with perfect training accuracy without learning the minor views. On the other hand, Theorem 4 shows that
with data augmentation, all k views can be learned without overfitting to noise.

Theorem 3 (Training without data augmentation). Suppose that Assumption 2 holds. Let T be the first time step such
that w(T) can classify all (x(i), y(i)) ∈ Dtrain with constant margin, i.e., ,

y(i)F (w(T),x(i)) ≥ Ω̃(1), for all (x(i),y(i))∈ Dtrain.

For hidden channel number C = Θ(log d), and small step size η, with probability at least 1 − O(n2K
poly(d)), T =

Θ̃
(
nη−1σ−qξ σ−q+2

0

)
. Moreover, at time step T , views v2, . . . ,vK have never been learned, so that ∀0≤t≤T ,

Pr
(x,y)∼D

[yF (w(t),x) < 0] ≥
(

1

2
−O

(
1√
C

)) K∑
k=2

ρk.

10

Theorem 4 (Training with data augmentation). Suppose assumption 2 holds. Let T aug be the first time step such that
w(T aug) can classify all (x(i), y(i)) ∈ D(aug)

train with constant margin, i.e.,

y(i)F (w(T aug),x(i)) ≥ Ω̃(1), for all (x(i),y(i))∈ D(aug)
train .

For hidden channels number C = Θ(log d), and small step size η, with probability at least 1 − O(n
2K3

poly(d)), T aug =

Θ̃
(
Kη−1σ−q+2

0

)
, and at T aug,

Pr
(x,y)∼D

[
yF (w(T aug),x) < 0

]
≤ nK

polyd
.

Remark 5. In Theorem 3 and Theorem 4, we evaluate the testing accuracy at the earliest time step T when the trained
neural network with weights w(T) can classify all samples in the training set Dtrain with a constant margin. Our result
does not rule out the possibility that if trained longer than T̄ , the network can learn the minor views as well. However,
we should expect the gradients on the training set stay small after the network can classify all sample correctly. The
main reason we assume an upper bound on ηT is when training too long, the norm of the weights w can blow up. One
possible strategy to avoid such upper bound on ηT is to add weight decay to the gradient descent algorithm in training.

Remark 6. For simplicity of the proof, we only keep track of the channel with the maximum correlation with the main
feature or the noise, arg maxc∈[C] wc(t) · vk and arg maxc∈[C] ywc(t) · ξ. For the other channels, we only give a
rough bound on their correlation. For this reason, we assume the number of channels is C = Θ(log d) so that the output
is dominated by the channel with the maximum correlation. To extend the result to higher number of channel, such as
polynomial in d, we need to keep track of all channels and scale the output layer by 1

C .

Remark 7. In our model, we show that when there exists some large dominant noise, the neural network overfits to the
noise instead of learning the minor features. In practice, the model can overfit to any vector that contributes significantly
to the gradient of the loss. For example, our proof can be extended to the case where there exists some spurious feature
that appears in sufficiently many sample. In such case, even when the magnitude of the spurious feature is smaller than
the dominant noise in our distribution, the network can still overfit it.

5 Experiments
Our theoretical results showed that data augmentation can make it harder to overfit to the noise components (the “easy
to learn and bad” feature in our model) by manipulating the relative gradient contribution of noise vs true features.
To simplify our analysis, we assumed independent dominant noise in each sample. We hypothesize that the feature
manipulation effect of data augmentation is broader in practice. In particular, our high level argument suggests that a
model can also overfit to spurious features, like the grass feature in our story of cows in the introduction, which have
strong class dependent correlations. In Section 5.1, we show experiments to this effect that complement our theory. We
further conduct two additional experiments that support this paper’s thesis. In Section 5.2, we show an experiment
with a modified data augmentation pipeline that demonstrates that the benefits of data augmentation cannot be fully
explained by the learning of right invariance by the model. Finally, in Section 5.3 we elaborate on the problem with
unbalanced views, where we show that adding extra samples from one dominant view to balanced dataset can hurt the
performance of the learned models.

5.1 Spurious Feature
We use images of the dog class and the cat class from CIFAR-10 dataset, which are of size 32×32 pixels and 3 channels.
We generate a row of random pixels u ∼ N (0, σ2Id), where d = 32 and σ = 25, which is added as a synthetic spurious
feature to a class dependent position in an image. The spurious feature u is added to the first channel in the row rcat for
cat images, and in row rdog for dog images. For each image x in the dataset, with probability p < 1 we introduce a
spurious feature, and with probability (1− p) we leave it unperturbed. We always select rcat ∈ {0, 1, . . . , 15} in the
upper half of the image, and rdog ∈ {16, 17, . . . , 31} in the lower half. In this way, the spurious feature position has a
weak correlation to the class label. See Figure 1 for sample images with spurious features. We consider three types
training sets with varying degrees of data augmentation as shown Figure 1-(b,c,d).

1. No augmentation: As a baseline without augmentation, we center-crop the image to size [3, 28, 28].

11

2. Random crop: In each epoch, we randomly crop a [3, 28, 28] from the original [3, 32, 32] image—a standard
technique used in practice. This would in essence disperse the position of spurious feature u. For example, cat
images with u in row rcat = 9, will now contain u in a row uniformly chosen from raug

cat ∼ U({5, 6, 7, 8, 9}).
3. Randomized noise position: Random crop, although standard, has a confounding effect that in addition to

perturbing the position of u, it might also incorporate other useful inductive biases about images. For a more
direct comparison to the baseline, we also look at a special augmentation, wherein we perturb just the spurious
feature row position by a uniform random number in [−2, 2] in each epoch and then use a simple center crop. As in
the case of random crop, this would again disperse the spurious feature from rcat = 9 to raug

cat ∈ U({5, 6, 7, 8, 9}).
But the non-spurious features/pixels remain the same as baseline.

(a) Original images (b) No augmentation (c) Random crop (d) Random noise position

Figure 1: Examples of training images in the spurious features experiment (Section 5.1). For ease of visualization, we use a green
line rather than random row vector u to indicate the spurious feature. In the original [3, 32, 32] images shown in (a), the spurious
feature is added to the first channel of row rcat = 9 for the cat class (lower images), and of row rdog = 22 for the dog class (upper
images). Sub-figures (b,c,d) correspond to samples from different data augmentation methods described in the experiment.

We compare the testing accuracy of training on these three types of training set in Figure 2 for different values of
rcat and rdog. When (rcat, rdog) = (15, 16) (Figure 2, right), after data augmentation with either random noise position
or random crop, the position of u in the perturbed imaged has a large overlap across classes. So it is not surprising
that the test accuracy with augmentation remains about the same for almost all values of p (fraction of images with
spurious features). On the other hand, for positions (9, 22) and (12, 19) (Figure 2, left & center)), although the two data
augmentation techniques disperse the positions of spurious feature, its location in the two classes still stays separated.
The cat images always have u in the upper half of the image while the dog images always have u in the lower half
of the image. Interestingly, even so, the data augmentation, specially even the simple random feature position, can
improve the test accuracy. In this case, while augmentation does not eliminate the existence of spurious features, it still
diminishes them by making the spurious features harder to be learned and overfitted. In addition to shifting the spurious
features, random crop can shift other important features as well to boost the minor views, so the testing accuracy when
training with random crop can be even higher than only shifting the spurious feature position.

0.0 0.2 0.4 0.6 0.8 1.0

50

60

70

80

Te
st
 a
cc
ur
ac
y

rcat= 9, rdog= 22

Random noise position
Random crop
No augmentation

0.0 0.2 0.4 0.6 0.8 1.0
Fraction p of images with spurious features

rcat= 12, rdog= 19

Random noise position
Random crop
No augmentation

0.0 0.2 0.4 0.6 0.8 1.0

rcat= 15, rdog= 16

Random noise position
Random crop
No augmentation

Figure 2: Comparison of different data augmentation strategies for the CIFAR-10 cat-vs-dog classification task with a synthetic
spurious feature. The plots show results for different sets of positions of spurious feature (rcat, rdog) as we vary the fraction p of all
the images that have the spurious feature. The plots are averaged over five runs with error bars of one standard deviation. The test
datapoints are always center-cropped images of size [3, 28, 28] with no spurious feature. In all configurations, we train a ResNet20
network using SGD for 120 epochs with momentum 0.9, weight decay 0.005, and learning rate starting at 0.1 and annealed to
(0.01, 0.001) at epochs (40, 80).

12

5.2 Augmented samples vs. independent samples
When using data augmentation, typically a new random transformation (e.g., random flip or crop at a random position
of an image) is used in each epoch of training. This procedure effectively increases the training dataset size (albeit with
non i.i.d correlated samples). In this experiment, we control for the number of unique samples seen by the training
algorithm and ask the question: how effective is a single data augmented sample compared to an independent sample?

For this experiment, we work with the full CIFAR-10 dataset which has 50000 training examples for 10 classes.
Given a ratio p of independent samples to total sample size, we generate a training set of size n = 50000 as follows:
We first select pn independent samples for the task. We then cyclically generate a data augmented variant these pn
independent samples until we obtain the remaining (1− p)n datapoint. For example, in the CIFAR-10 dataset with
n = 50000, if p = 0.6, the training set consists of 30000 independent samples, of which 20000 have one additional
augmented sample. If p = 0.2, the training set has 10000 independent samples and four data augmented versions of
each of the 10000 independent samples. Thus, for p = 1, there is no augmentation, and for smaller p, there are more
augmented samples, but less independent samples. The dataset thus generated is then fixed for all epochs. In this way,
the number of unique samples seen by training algorithm is always n = 50000 for all p.

0.2 0.4 0.6 0.8 1.0
Ratio p of independent data to total data

0.6

0.7

0.8

Te
st

in
g

ac
cu

ra
cy

With data augmentation
Without data augmentation

Figure 3: Augmented vs independent samples: for each p on the x-axis, the data augmented training (red-solid curve) uses 50000p
independent images from CIFAR-10, along with 50000(1 − p) data augmented samples. The augmented dataset is fixed across
epochs. For the baseline without data augmentation (blue-dashed curve) we simply use the 50000p independent samples. We use the
standard CIFAR-10 test dataset and the results are averaged over 3 runs. In each instance, we train a ResNet20 for 160 epochs using
SGD with momentum 0.9, weight decay 0.005, and learning rate starting at 0.1 and annealed to (0.01, 0.001) at epochs (80, 120).

In Figure 3, we compare the accuracies of a ResNet20 model trained on such partially data augmented samples
to the baseline of training with just the pn independent samples without any augmentation. Our experiment shows
that even this partial data augmentation can significantly improve the testing accuracy. In this experiment, since each
example has only a small number of augmented variations (e.g., for p ≥ 0.5 at most one augmented variant of the
an example is seen throughout training), it is unlikely that they lead to learning any kind of task specific invariance,
which is the usual motivation. However, by having the important feature appearing at a slightly different location, data
augmentation can still facilitate the learning of the important features via the feature manipulation view described in our
paper. Furthermore, comparing the accuracy of un-augmented full dataset with p = 1.0 on blue-dashed curve to that of
data augmented training for p ≥ 0.5 on the red curve, we see that a fixed data augmented image can improve the test
accuracy nearly as much as an independent sample does. This shows that if we have an important feature in an image,
e.g., a cat ear, shifting it two pixels can help nearly as effectively as a completely new cat ear.

5.3 Unbalanced Dataset
In this experiment, we train a simple convolutional neural network on a synthetic dataset with unbalanced views.
We show that when one view is much more prevalent in the dataset than the other views, having more samples of
the dominant view can hurt learning. Our data consist of samples (x, y) from two classes y ∈ {−1, 1}. The input
x ∈ R3×15 has 3 channels, each with 15 pixels. After sampling y uniformly, we generate x by setting one of the 15

13

pixels to the main feature [y, y, y]. The other pixels are set to a Gaussian noise N (0, σ2
ξI3). For different choices of σξ ,

we first construct a balanced dataset Dbal of size nbal such that roughly equal number of samples that have the good
feature [y, y, y] present at each pixel. Our full dataset Dfull with nfull samples consists of Dbal along with additional
nfull − nbal samples with the main feature only at pixel 3. We use a balanced testing dataset.

0.85

0.90

0.95

1.00

Te
st

 a
cc

ur
ac

y

σξ= 0.3

full
bal

σξ= 0.4 σξ= 0.5

0.25 0.50 0.75 1.00
nbal/nfull

0.7

0.8

0.9

Te
st

 a
cc

ur
ac

y

σξ= 0.6

0.25 0.50 0.75 1.00
nbal/nfull

σξ= 0.7

0.25 0.50 0.75 1.00
nbal/nfull

σξ= 0.8

Figure 4: Comparison of training on Dbal to Dfull as we vary the ratio of balanced examples nbal/nfull for different values of noise
magnitude σξ . We learn the data using a simple convolutional neural network with two convolutional layers with ReLU activation, a
maxpool layer and a linear layer. The two convolutional layers and the max pool layer have kernel size 4, and strides 2,1 and 2,
respectively. The models are trained for 200 epochs using SGD with momentum 0.9, weight decay 0.05, and learning rate starting at
0.1 and annealed to 0.01 at epoch 100. For all training sets, the training accuracy at the end of training is at least 0.99.

In Figure 4, we see that compared to the balanced dataset Dbal, although the full dataset Dfull has strictly more
samples with the accurate kind of features, when σξ is not too large, the test accuracy is consistently on par or even
lower than training on just the balanced subset. In this case, the views are simply features positioned at different pixels.
For very large σξ , the test accuracy of the balanced subset can be low because in such case, the full dataset can learn the
dominant view well, but the unbalanced dataset has too few samples to learn any view. The experiment shows that even
for architectures such as convolutional networks, which are believed to have some translation invariance, we should not
expect samples from one view to help the learning of other views.

14

References
Zeyuan Allen-Zhu and Yuanzhi Li. Feature purification: How adversarial training performs robust deep learning. arXiv

preprint arXiv:2005.10190, 2020a.

Zeyuan Allen-Zhu and Yuanzhi Li. Towards understanding ensemble, knowledge distillation and self-distillation in
deep learning. arXiv preprint arXiv:2012.09816, 2020b.

Aharon Azulay and Yair Weiss. Why do deep convolutional networks generalize so poorly to small image
transformations? Journal of Machine Learning Research, 20:1–25, 2019.

Andrew C Berry. The accuracy of the gaussian approximation to the sum of independent variates. Transactions of the
american mathematical society, 49(1):122–136, 1941.

Chris M Bishop. Training with noise is equivalent to tikhonov regularization. Neural computation, 7(1):108–116, 1995.

Sébastien Bubeck, Yuanzhi Li, and Dheeraj Nagaraj. A law of robustness for two-layers neural networks. Conference
on Learning Theory (COLT), 2021.

Olivier Chapelle, Jason Weston, Léon Bottou, and Vladimir Vapnik. Vicinal risk minimization. Advances in neural
information processing systems, pages 416–422, 2001.

Shuxiao Chen, Edgar Dobriban, and Jane H Lee. A group-theoretic framework for data augmentation. Journal of
Machine Learning Research, 21(245):1–71, 2020.

Dan Ciregan, Ueli Meier, and Jürgen Schmidhuber. Multi-column deep neural networks for image classification. In
2012 IEEE conference on computer vision and pattern recognition, pages 3642–3649. IEEE, 2012.

Tri Dao, Albert Gu, Alexander Ratner, Virginia Smith, Chris De Sa, and Christopher Ré. A kernel theory of modern
data augmentation. In International Conference on Machine Learning, pages 1528–1537. PMLR, 2019.

Terrance DeVries and Graham W Taylor. Improved regularization of convolutional neural networks with cutout. arXiv
preprint arXiv:1708.04552, 2017.

Regina C Elandt. The folded normal distribution: Two methods of estimating parameters from moments. Technometrics,
3(4):551–562, 1961.

Steven Y Feng, Varun Gangal, Jason Wei, Sarath Chandar, Soroush Vosoughi, Teruko Mitamura, and Eduard Hovy. A
survey of data augmentation approaches for nlp. arXiv preprint arXiv:2105.03075, 2021.

Boris Hanin and Yi Sun. How data augmentation affects optimization for linear regression. Advances in Neural
Information Processing Systems, 34, 2021.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional neural
networks. Communications of the ACM, 60(6):84–90, 2017.

Song Mei, Theodor Misiakiewicz, and Andrea Montanari. Learning with invariances in random features and kernel
models. arXiv preprint arXiv:2102.13219, 2021.

Vaishnavh Nagarajan and J. Zico Kolter. Uniform convergence may be unable to explain generalization in deep learning.
In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 32. Curran Associates, Inc., 2019. URL https://proceedings.
neurips.cc/paper/2019/file/05e97c207235d63ceb1db43c60db7bbb-Paper.pdf.

Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. In search of the real inductive bias: On the role of implicit
regularization in deep learning. In ICLR (Workshop), 2015.

Shashank Rajput, Zhili Feng, Zachary Charles, Po-Ling Loh, and Dimitris Papailiopoulos. Does data augmentation
lead to positive margin? In International Conference on Machine Learning, pages 5321–5330. PMLR, 2019.

15

https://proceedings.neurips.cc/paper/2019/file/05e97c207235d63ceb1db43c60db7bbb-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/05e97c207235d63ceb1db43c60db7bbb-Paper.pdf

Connor Shorten and Taghi M Khoshgoftaar. A survey on image data augmentation for deep learning. Journal of Big
Data, 6(1):1–48, 2019.

Patrice Y Simard, Yann A Le Cun, John S Denker, and Bernard Victorri. Transformation invariance in pattern
recognition: Tangent distance and propagation. International Journal of Imaging Systems and Technology, 11(3):
181–197, 2000.

Patrice Y Simard, Dave Steinkraus, and John C Platt. Best practices for convolutional neural networks applied to visual
document analysis. In Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings.,
volume 3, pages 958–958. IEEE Computer Society, 2003.

Sen Wu, Hongyang Zhang, Gregory Valiant, and Christopher Ré. On the generalization effects of linear transformations
in data augmentation. In International Conference on Machine Learning, pages 10410–10420. PMLR, 2020.

Larry Yaeger, Richard Lyon, and Brandyn Webb. Effective training of a neural network character classifier for word
recognition. Advances in neural information processing systems, 9:807–816, 1996.

Shuo Yang, Yijun Dong, Rachel Ward, Inderjit S Dhillon, Sujay Sanghavi, and Qi Lei. Sample efficiency of data
augmentation consistency regularization. arXiv preprint arXiv:2202.12230, 2022.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding deep learning (still)
requires rethinking generalization. Communications of the ACM, 64(3):107–115, 2021.

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical risk minimization.
arXiv preprint arXiv:1710.09412, 2017.

16

Appendix
We clarify that throughout the appendix c1, c2, . . . denote constants, while C denotes the number of channels in our
model (3) and is not a constant, but is a function of d. Throughout the appendix, for any sample (x(i), y(i)), we let
P(i)
bp be the background patches of (x(i), y(i)) and for k ∈ [K], P(i)

bp,k be the background patches with feature noise
−αp,iyvk.

A Useful concentration lemmas
We first state the following standard results on Gaussian samples. These will be used in our proof frequently. .

Lemma 2 (Laurent-Massart χ2 tail bound). Consider a standard Gaussian vector z ∼ N (0, Id). For any positive
vector a ∈ Rd≥0, and any t > 0, the following concentration holds

Pr
[d∑
i=1

aiz
2
i ≥ ‖a‖1 + 2‖a‖2

√
t+ 2‖a‖∞t

]
≤ exp(−t),

Pr
[d∑
i=1

aiz
2
i ≤ ‖a‖1 − 2‖a‖2

√
t
]
≤ exp(−t).

The following corollary immediately follows from using t = log (2/δ) and ai = 1 in the above lemma

Corollary 3 (`2 norm of Gaussian vector). Consider z ∼ N (0, σ2Id), for any δ ∈ (0, 1) and large enough d, we have
with probability greater than 1− δ,

σ2d

(
1− 2

√
log(2/δ)

d

)
≤ ‖z‖22 ≤ σ2d

(
1 + 4

√
log(2/δ)

d

)
.

Lemma 4 (Gaussian correlation). Consider independently sampled Gaussian vectors z1 ∼ N (0, σ2
1Id) and z2 ∈

N (0, σ2
2Id). For any δ ∈ (0, 1) and large enough d, there exists a constant c1, c2 such that

|z1 · z2| ≤ c1σ1σ2

√
d log(2/δ) w.p ≥ 1− δ,

z1 · z2 ≥ c2σ1σ2

√
d w.p ≥ 1/4.

Lemma 5 (Gaussian tail concentration). Consider i.i.d samples {zc ∼ N (0, σ2) : c ∈ [C]}. We have the following:

max
c∈[C]

|zc| ≤ σ
√

2 log
2C

δ
, w.p ≥ 1− δ,

max
c∈[C]

zc ≥
σ

2
, w.p ≥ 1− exp(−C/4).

Proof. These are standard Gaussian tail bounds, which we prove here for completeness. We have:

Pr

(
max
c∈[C]

zc ≥ t
)
≤
∑
c∈[C]

Pr(zc ≥ t) ≤ C exp

(
−t2

2σ2

)
.

Using the same argument for over 2C variables {zc ∼ N (0, σ2),−zc ∼ N (0, σ2)}c∈[C] along with t = σ
√

2 log(2C/δ),

we have the first inequality that maxc∈[C] |zc| ≤ σ
√

2 log 2C
δ , w.p ≥ 1− δ.

Furthermore, ∀c∈[C], we have Pr(zc ≥ σ/2) ≥ 1/4, hence

Pr

(
max
c∈[C]

zc ≥ σ/2
)
≥ 1−

(
1− 1/4

)C ≥ 1− exp(−C/4)

This concludes the proof of the lemma.

17

Lemma 8 (Berry–Esseen theorem [Berry, 1941]). Consider i.i.d samples {ui : i ∈ [n]} with Eui = 0, Eu2
i = σ2 > 0

and E |ui|3 = ρ < ∞. Let Fn be the cumulative distribution function of 1
σ
√
n

∑n
i=1 ui, and Φ be the cumulative

distribution function of the standard normal distribution. For all t, there exists a constant c1 such that

|Fn(t)− Φ(t)| ≤ c1ρ

σ3
√
n
.

Lemma 9 (Anti-concentration of q-th power of Gaussian random variables). Consider i.i.d samples {zc ∼ N (0, 1) :
c ∈ [C]}. For constant integer q ≥ 1, there exist constants c1, c2 > 0 such that for any t ≤ o(1),

Pr

∑
c∈[C]

zqc ≥ c1t
√
C

 ≥ 1

2
− o(1)− c2√

C
.

Proof. For constant q, Ez2q
c ≤ O(1) and E |zc|3q ≤ O(1) [Elandt, 1961]. Then, by Lemma 8, for any t, there exist c1

and c2 such that

Pr

 1

c1
√
C

∑
c∈[C]

zqc ≥ t

 ≥ Pr [z1 ≥ t]−
c2√
C
.

Choosing t = o(1) proves the lemma.

B Additional notation
Recall the data distribution D from Definition 1. Further recall that, for i ∈ [n], we use k∗i , p∗i , pξi , ξ

(i), and
(αp,i, kp,i)p/∈{p∗i ,p

ξ
i }

to denote the respective quantities k∗, p∗, pξ, ξ, and (αp, kp)p/∈{p∗,pξ} in Definition 1 for the

ith training sample (x(i), y(i)) ∈ Dtrain ∼ D. In addition to these notation in Section 2, we introduce the following
additional notation for the proofs.

1. ∀ k ∈ [K], let Ik = {i ∈ [n] : k∗i = k} denote the set of indices of the training data (x, y) with yvk as the main
feature. Further, let nk = |Ik|

2. ∀ i ∈ [n] and ∀ k ∈ [K], let P(i)
bp,k be the background patches of the ith sample with kth-type feature noise, i.e.,

P(i)
bp,k = {p ∈ [P] \ {p∗i , p

ξ
i } : x(i)

p = −αp,iyvk};

and let P(i)
bp =

⋃
k∈[K] P

(i)
bp,k = [P] \ {p∗i , p

ξ
i } denote the set of all background patches of the ith sample.

Remark 1. For k ∈ [K], let ρ̂k = 1
n |Ik| denote the empirical fraction in the training data of kth. Recall that ki are

sampled independently with Pr(k∗i = k) = ρk. Thus, with with high probability, ρk and ρ̂k differ at most by
√

log(n)
n .

In the rest of the paper, for simplicity we assume ρk = ρ̂k.

Similarly, let ρ̂(noise)
k be the proportion of feature noise −yvk in dataset Dtrain, i.e., ρ̂(noise)

k = 1
n(P−2) |{i ∈ [n], p ∈

[P] \ {p∗i , p
ξ
i }]|kp,i = k}| Again from standard concentration, we have ρk and ρ̂(noise)

k differ by negligible quantity with
high probability, thus we also assume ρk = ρ̂(noise)

k .

C Proof of initialization conditions in Lemma 1
Lemma 1. [Ginit-conditions] Consider n i.i.d. samples Dtrain = {(x(i), y(i)) : i ∈ [n]} from the distribution in
Definition 1. Let the parameters w of the network in (3) be initialized as wc(0) ∼ N (0, σ2

0Id) ∀ c ∈ [C]. If the number
of channels is C = Ω(log d), then with probability greater than 1−O(n

2KC
poly(d)), the following conditions hold :

18

1. Feature-vs-parameter: ∀ k ∈ [K], max
c∈[C]

wc(0) · vk ≥ Ω(σ0), and max
c∈[C]

|wc(0) · vk| ≤ Õ (σ0) .

2. Noise-vs-parameter:∀ i ∈ [n], max
c∈[C]

wc(0) · y(i)ξ(i) ≥ Ω̃ (σ0σξ), and max
c∈[C]

|wc(0) · ξ(i)| ≤ Õ (σ0σξ) .

3. Noise-vs-noise: ∀ i ∈ [n], ξ(i) · ξ(i) = Θ(σ2
ξ) and ∀ i, j ∈ [n], i 6= j, |ξ(i) · ξ(j)| ≤ Õ(σ2

ξ/
√
d).

4. Feature-vs-noise: ∀ i ∈ [n], k ∈ [K], |ξ(i) · vk| ≤ Õ(σξ/
√
d).

5. Parameter norm: ∀ c ∈ [C], ‖wc(0)‖ = Θ(σ0

√
d).

Proof. Recall the setting of the lemma: ∀ k ∈ [K], ‖vk‖2 = 1, ∀ i ∈ [n], y(i)ξ(i) i.i.d∼ N (0,
σ2
ξ

d Id), and ∀ c ∈ [C],

wc(0)
i.i.d∼ N (0, σ2

0Id). We have the following arguments that prove the lemma, where we use δ = 1
poly(d) .

1. Feature parameter correlations: ∀ k ∈ [K], we have {wc(0) · vk ∼ N (0, σ2
0)}c∈[C] are C i.i.d Gaussian.

Thus, using union bound on the Gaussian tail concentration in Lemma 5 we have condition (1) holds w.p.
≥ 1−Kδ −K exp(−C/4).

2. Noise-parameter correlation: ∀ i ∈ [n] and ∀ c ∈ [C] using Gaussian correlation bound from Lemma 4, we have
|wc(0) · ξ(i)| ≥ Õ(σ0σξ) w.p. ≥ 1− nCδ.

Furthermore, using the second inequality in Lemma 4, we have wc(0) · y(i)ξ(i) ≥ c2
√
σ0σξ w.p. ≥ 1/4. Hence,

maxc∈[C] wc(0) · y(i)ξ(i) ≥ c2
√
σ0σξ w.p. ≥ 1− (1− 1/4)C ≥ 1− exp(C).

Thus, summing over failure probabilities, we have that condition (2) holds w.p. ≥ 1− nCδ − n exp(−C/4)

3. Noise-noise correlations: Using the `2 norm bound from Corollary 3 on ‖ξ(i)‖
2

2, and the correlation tail bound
on |ξ(i) · ξ(j)| for i 6= j from Lemma 4, we have condition (3) holds w.p. ≥ 1− 2n2δ

4. Feature noise correlation: ∀ k ∈ [K], we have {ξ(i) · vk ∼ N (0, σ2
ξ/d)}i∈[n] are n i.i.d Gaussians. Thus, again

using union bound on the Gaussian tail concentration in Lemma 5 condition (4) holds w.p. ≥ 1− nδ.

5. Parameter norm: From concentration of `2 norm of Gaussian vector in Corollary 3, condition (5) holds w.p.
≥ 1− 2Cδ .

The lemma follows from using δ = 1
poly(d) and C = Ω(log d)⇒ exp(−C) = O(1

poly(d)).

Lemma 1a. Ginit in Lemma 1 also holds for D(aug)
train defined in (2) with n replaced by nK.

Proof. Recall that since the features {vk}k are orthonormal (Assumption 1) and all the non-feature noise are spherically
symmetric, without loss of generality, we assume that {vk}k∈[K] are simply the first K standard basis vectors in Rd,
i.e., vk = ek. In this case, we choose Tk for k ∈ [K − 1] as a permutation of coordinates of Rd without any fixed
points, i.e., ∀ i ∈ [d], Tk(z)[i] 6= z[i] that satisfies (1) on the first K coordinate.

We now show that the Ginit conditions in Lemma 1 holds for D(aug)
train = Dtrain ∪ T1(Dtrain) ∪ T2(Dtrain) ∪ . . . ∪

TK−1(Dtrain) defined with transformations {Tk}k∈[K−1] described above.

• First, among the Ginit conditions, (1) and (5) are independent of the samples and hence immediately hold.

• Secondly, ∀ i ∈ [n] and ∀ k ∈ [K], Tk(ξ(i)) is simply some permutation of the coordinates of ξ(i) ∼ N (0, σ2
ξId/d),

and hence Tk(ξ(i)) ∼ N (0, σ2
ξId/d) has the same marginal distribution as ξ(i). This implies that conditions (2)

and (4), as well the norm condition in (3) of Lemma 1 also holds for D(aug)
train .

• Finally, note that ∀ i 6= j, ∀ k, k′, Tk(ξ(i)) and Tk′(ξ(j)) are independent Gaussians. Thus, the correlation bounds
in (3) of the form |Tk(ξ(i)) · Tk′(ξ(j))| = Õ(σ2

ξ/
√
d) for all i 6= j also follow from the proof of Lemma 1.

19

The only non-trivial condition we want to show is the following bound on the noise correlations of distinct transformations
of the same sample, i.e., we only need to show that |ξ(i)·Tk(ξ(i))| ≤ Õ(σ2

ξ/
√
d) with high probability for all k ∈ [K−1].

Note that for any 1 ≤ k < k′ ≤ K − 1, Tk(ξ(i)) · Tk′(ξ(i)) is equivalent in distribution to ξ(i) · Tk′−k(ξ(i)).

Claim 1. If ξ ∼ N (0, σ2
ξId/d) then ∀ k ∈ [K − 1], |ξ · Tk(ξ)| ≤ O

(
σ2
ξ

√
log (1/δ)

d

)
w.p. ≥ 1− δ.

Proof. At a high level, we create a non-overlapping partition of the entries of ξ into three vectors ξ′, ξ′′, and ξ′′′, each
of which of length at least d/6. The partition is chosen such that same partitioning of entries of Tk(ξ) denoted as ξ̃

′
, ξ̃
′′

,
and ξ̃

′′′
are independent of ξ′, ξ′′, and ξ′′′, respectively. We then have ξ · Tk(ξ) = ξ′ · ξ̃

′
+ ξ′′ · ξ̃

′′
+ ξ′′′ · ξ̃

′′′
, where

each term is a dot product of two independent spherical Gaussians of length at least d/6 and entrywise variance of
σ2
ξ/d. The claim then follows from bounding each term using Lemma 4.

We divide the coordinates of ξ into disjoint and ordered lists L1, L2, . . ., constructed as follows. The first list is

L1 =
[
ξ[1], Tk(ξ)[1], T 2

k (ξ)[1], . . . , T s1k (ξ)[1]
]
,

where T mk denotes composition of Tk for m times, and we stop the list at the first s1 ≤ d− 1 such that T s1+1
k (e1) = e1

(when T s1+1
k (ξ)[1] = ξ[1]). We claim that this stopping criteria ensures that L1 has s1 unique coordinate of ξ without

any duplicates. If not, there exists some 0 ≤ s′ < s′′ ≤ s1 such that T s′′k (e1) = T s′k (e1). Since Tk is a permutation
(hence invertible), this would imply that T s

′′−s′
k (e1) = e1 for s′′ − s′ ≤ s1, which contradicts the stopping criteria.

Note that if s1 = d− 1, we have included all the coordinates of ξ in L1, and we stop our stop our construction here.
If L1 does not contain all coordinates of ξ, let 1 < j2 ≤ d be the first coordinate such that ξ[j2] /∈ L1. Let,

L2 =
[
ξ[j2], Tk(ξ)[j2], T 2

k (ξ)[j2], . . . , T s2k (ξ)[j2]
]
,

where we stop either when all the entries of ξ have been included in L(m)
1 or L(m)

2 , or at the first integer s2 such that
T s2+1
k (ej2) = ej2 (when T s2+1

k (ξ)[j2] = ξ[j2]). With a similar argument as with L1, there are no duplicate coordinates
in L2. Furthermore, we either have have L2 and L1 containing disjoint coordinates of ξ, or have L1 ⊂ L2. To see this,
suppose for 0 ≤ s′ ≤ s1 and 0 ≤ s′′ ≤ s2, we have T s′k (e1) = T s′′k (ej2). If s′ ≥ s′′, again from invertibility of Tk, we
would have T s

′−s′′
k (e1) = ej2 for s′ − s′′ ≤ s1, which is contradiction for ξ[j2] /∈ L1. On the other hand, if s′ < s′′,

then T s
′′−s′

k (ej2) = e1, and the entire construction of L1 would also be contained in L2. This would imply that all the
coordinates of L1 are contained in L2 exactly once (since L2 does not have duplicates). Without loss of generality, we
assume the former condition that L2 and L1 are disjoint holds as otherwise, L1 ⊂ L2 and we can simply drop the first
list L1 from our construction, and our proof follows exactly.

We construct L3, L4, . . . , L` similarly until all coordinates of ξ belong to exactly one list. We also define
T L1, T L2, . . . , T L` as lists obtained by circularly shifting the coordinates of L1, L2, . . . , L`, respectively, by one
index. For example, T L1 =

[
Tk(ξ)[1], T 2

k (ξ)[1], . . . , T s1k (ξ)[1], ξ[1]
]
.

By construction, for l = 1, 2 . . . `, for every coordinate of ξ that is included in Ll, has the same coordinate of Tk(ξ)
is included in T Ll at the same position, i.e., for all i ≤ sl, j ≤ d, Ll[i] = ξ[j] =⇒ T Ll[i] = T (ξ)[j]. We now
construct ξ′, ξ′′, and ξ′′′. For l = 1, 2 . . . , `, do the following:

• Sequentially distribute all the elements except the last element of Ll to ξ′, ξ′′, ξ′′′, e.g., the 1st element of Ll
goes to ξ′, 2nd to ξ′′, 3rd to ξ′′′, 4th to ξ′ and so on. This assignment ensures that ξ′, ξ′′, ξ′′′ do not contain any
adjacent entries of Ll, i.e., if Ll[i] is in ξ′, then Ll[i+ 1] is not in ξ′, and same is true for ξ′′, and ξ′′.

• Include the last element of Ll to a list among ξ′, ξ′′, ξ′′′ that does not contain the first or the second last element
of Ll. Thus the last element of Ll is not in the same list as its circularly adjacent neighbors ξ[jl] and T sl−1

k (ξ)[jl].

• Repeat the exact assignment as above to distribute the elements of T Ll to ξ̃
′
, ξ̃

(′′
, ξ̃
′′′

.

20

By construction, {ξ′, ξ′′, ξ′′′} and {ξ̃
′
, ξ′′, ξ′′′} satisfy the following properties: (a) ξ · Tk(ξ) = ξ′ · ξ̃

′
+ ξ′′ · ξ̃

′′
+

ξ′′′ · ξ̃
′′′

. (b) ξ′, ξ′′, and ξ′′′ are independent of ξ̃
′
, ξ̃
′′

, and ξ̃
′′′

, respectively. Furthermore, each of these vectors is a
spherical Gaussian with entrywise variance of σ2

ξ/d. (c) we have included at least d/3− 1 = Θ(d) entries of ξ in each

of ξ′, ξ′′, and ξ′′′. The claim now follows from using Lemma 4 on ξ′ · ξ̃
′
, ξ′′ · ξ̃

′′
, and ξ′′′ · ξ̃

′′′
.

The above claim completes the proof of Lemma 1a.

D Linear models
In this section we discuss the behavior of linear models for data from our distribution D in Definition 1. We consider
the same patchwise convolutional model in (3), but without non-linearity. Without loss of generality, assume C = 1.
Thus, for θ ∈ Rd, the model effectively becomes f linear(θ,x) = θ · x̄, where x̄ =

∑
p xp.

Linear models without feature noise. In the first result stated and proved below, we assume no feature noise αp = 0.
In this case, x̄(i) = y(i)vk∗i + ξ(i). Recall the notation that for k ∈ [K], Ik = {i ∈ [n] : k∗i = k} and nk = |Ik|.

Theorem 6. With high probability, the max `2 margin linear model over Dtrain = {(x̄(i), y(i)) : i ∈ [n]} is given by

θ̂`2 =
∑
k∈[K]

1

1 + (1 + o(1))σ2
ξ/nk

(
vk +

1

nk

∑
i∈Ik

y(i)ξ(i)

)
(8)

Proof. Without loss of generality, assume the data points are grouped by the feature type k∗i , such that I1 =
{1, 2, . . . , n1}, I2 = {n1 + 1, n1 + 2, . . . n1 + n2}, and so on. Also let X ∈ Rn×d denote a matrix containing
y(i)x̄(i) as rows and let K = XX> ∈ Rn×n denote the corresponding kernel matrix.

The `2 max margin classifier is given by θ̂`2 = minθ ‖θ‖22 s.t. Xθ ≥ 1. From the optimality conditions of the
max-margin problem, we know that there exists a dual variable ν ∈ Rn+, s.t. θ̂`2 = X>ν. We use notation νk ∈ Rnk+

such that ν = [ν>1 ,ν
>
2 , . . .ν

>
K]>. We can now write the objective and constraints of the max margin problem in terms

of dual variables as follows: ‖θ‖22 = ν>Kν and the margin condition is Kν ≥ 1.

Let us first look at structure of K. Recall that x̄(i) = y(i)vk∗i + ξ(i), where {vk}k are orthonormal and ξ(i) ∼
N (0, σ2

ξId/d). Using the standard concentration inequalities in Appendix A, the following holds with high probability.

Kij = y(i)x̄(i) · y(j)x̄(j) =


1 + σ2

ξ + Õ(
σ2
ξ√
d
) if i = j

1 + Õ(
σ2
ξ√
d
) if i 6= j, k∗i = k∗j

Õ(
σ2
ξ√
d
) if i 6= j, k∗i 6= k∗j

.

We can combine all the Õ(
σ2
ξ√
d
) terms in ∆, and write K = K̄ + ∆ where K̄ij = 1k∗i=k∗j

+ σ2
ξ1i=j . Thus, K̄ is a block

diagonal matrix which is dominant compared to lower order terms in ∆.

Based on this block dominant structure of K, for w = X>ν and ν ≥ 0, the margin on data points is given by,

∀ i ∈ Ik, (Kν)i = ‖νk‖1 + σ2
ξνk,i + (∆ν)i, (9)

and the `2 norm is given by,

‖θ‖22 = ν>Kν =

 ∑
k∈[K]

‖νk‖21 + σ2
ξ‖νk‖22

+ ν>∆ν. (10)

Recall that ∆ij = Õ(σ2
ξ/
√
d), we have the following two possibilities of ν:

21

Case 1. ‖ν‖∞ = O(1): In this case (∆ν)i = o(σ2
ξ) and we have (Kν)i = ‖νk‖1 + σ2

ξνk,i + o(σ2
ξ). Thus the margin

constraint requires that mink mini∈Ik ‖νk‖1 + σ2
ξνk,i + o(σ2

ξ) ≥ 1. Furthermore, for large enough d, ‖θ‖22 is
monotonic in νk,i (for positive νk,i). Thus the optimal ν is given by

∀ k ∈ [K], ∀ i ∈ Ik, νk,i =
1

nk + (1 + o(1))σ2
ξ

. (11)

In this case, ‖θ‖22 = 1
1+σ2

ξ/nk
(1 + o(1)) = O(1).

Case 2. If ν = ω(1), then ‖θ‖22 = ω(1) which is suboptimal compared to the above case.

In conclusion, we have the optimal ν for the max-margin problem given by (11). Thus,

θ̂`2 = X>ν =
∑
k∈[K]

∑
i∈Ik

νk,iy
(i)x̄(i)

=
∑
k∈[K]

∑
i∈Ik

vk + y(i)ξ(i)

nk + (1 + o(1))σ2
ξ

=
∑
k∈[K]

1

1 + (1 + o(1))σ2
ξ/nk

(
vk +

1

nk

∑
i∈Ik

y(i)ξ(i)

)
.

This concludes the proof of the theorem.

For the above classifier, for simplicity, we look at the case when there are only two views, k = 2. Corollary 7

follows from direct calculation on θ̂
>
`2x for a sample x from our distribution. The thresholds given in Corollary 7 are

better than the threshold we derive for our neural network.

Corollary 7. Suppose k = 2, ω(1) ≤ σ2
ξ ≤
√
nd and n ≤ d. The `2 max-margin linear model in (8) can successfully

learn feature v1. To successfully learn feature v2, we need ρ2 �
σ2
ξ√
nd

if n ≤ o(σ2
ξ) and ρ2 �

σ3
ξ

n
√
d

otherwise.

Linear models with feature noise. In the second result, we study linear models in the presence of feature noise. We
show linear models are not able to learn samples from our data distribution D while the non-linear model we study can
learn D. To facilitate the proof of linear models, we make some additional simplifications. These simplifications are not
necessary for our main results. For linear model results alone, we consider the case when the dominant noise ξ is zero,
i.e., σξ = 0. Note that letting σξ > 0 can only make the classification harder. Let Λ(x) be the sum of the coefficients of
the feature noise if x, i.e., Λ(x) =

∑
k∈[K]

∑
p∈Pbp αp. Let µΛ be the probability that Λ(x) > 1 for each (x, y). We

assume that the patch with the main feature is chosen uniform randomly from [P]. Let D′ be the distribution satisfies
the above assumptions.

Theorem 10. For any linear classifier θ ∈ Rd×P , we have

Pr
(x,y)∼D′

[sign 〈x, θ〉 6= sign y] >
1

P
min {µΛ, 1− µΛ} min

k∈[K]
ρk.

Moreover, there exists a non-linear model F in (3) with weights w, such that

Pr
(x,y)∼D′

[sign F (w,x) 6= sign y] = 0.

Proof. Let ∆ = minp∈[P],k∈[K] θ(p−1)d+k−1 and p∗, k∗ = arg minp∈[P],k∈[K] θ(p−1)d+k−1. If ∆ ≤ 0, for any
sample with main feature yvk∗ in patch p∗, and Λ(x) ≤ 1,

y 〈x, θ〉 ≤ −∆ + Λ(x)∆ < 0.

22

If ∆ > 0, then for any sample with main feature yvk∗ in patch p∗, with Λ(x) > 1,

y 〈x, θ〉 ≤ ∆− Λ(x)∆ ≤ 0.

Then, for both the case that ∆ > 0 and the case that ∆ ≤ 0, with probability at least min {µΛ, 1− µΛ}mink∈[K] ρk/P ,
sign 〈x, θ〉 6= sign y.

Now, consider the non-linear model given by weights w1 =
∑
k∈[K] vk and wc = 0 for all c ∈ [C]\ {1}. For any

datapoint (x, y) with main feature yvk∗ ,

yF (w,x) = y
∑
c∈[C]

∑
p∈[P]

ψ (〈wc,xp〉)

= ψ (〈w1,vk∗〉)−
∑
k∈[K]

∑
Pbp,k

ψ (〈w1, αvk〉)

≥ 1

q
− 1

q
αqP

> 0.

Thus, we have sign F (w,x) = sign y for all samples (x, y).

E Proof of the Main Results

E.1 Dynamics of network weights: learning features and noise
We first present a few lemmas useful for the proof of the main results. We derive the training trajectories for the dataset
without data augmentation Dtrain. All lemmas in this section also hold for the dataset with data augmentation D(aug)

train

with n replaced Kn and ρk replaced by ρ(aug)
k = 1

K . We defer the proof of the lemmas to Appendix F.
Lemma 11 and Lemma 12 give some rough bounds on 〈wc(t),vk〉 and 〈wc(t), ξ

(i)〉, which are used repeatedly in
the proof.

Lemma 11 (Rough upper and lower bound on 〈wc(t),vk〉). Suppose Ginit holds and

α ≤ o
(
σ

1
q

ξ d
− 1

2qP−
1
q

(
σ0 + ηTρk + ηTσξd

−1/2
)− q−1

q

)
.

For all 0 ≤ t′ ≤ t ≤ T and k ∈ [K], we have

max
c∈[C]

〈wc(t),vk〉 ≤ max
c∈[C]

〈wc(t
′),vk〉+ η(t− t′)Õ

(
ρk + σξd

−1/2
)

≤ Õ
(
σ0 + ηT

(
ρk + σξd

−1/2
))

,

and

min
c∈[C]

〈wc(t),vk〉 ≥ min
c∈[C]

〈wc(t
′),vk〉 − η(t− t′)Õ

(
σξd
−1/2

)
≥ −Õ

(
σ0 + ηTσξd

−1/2
)
.

Lemma 12 (Rough lower bound on 〈wc(t), ξ
(i)〉). Suppose Ginit holds and

α ≤ Õ

(
min

{
1, σ

1
q

ξ d
− 1

2q

}
P−1/q

(
σ0 + ηT

(
max
k∈[K]

ρk + σξd
−1/2

))−(q−1)/q
)
.

For all 0 ≤ t ≤ t′ ≤ T and i ∈ [n], we have

min
c∈[C]

y(i)
〈
wc(t), ξ

(i)
〉
≥ min
c∈[C]

y(i)
〈
wc(t

′), ξ(i)
〉
− η(t− t′)Õ

(
σ2
ξd
−1/2 + σξd

−1/2
)
.

23

Combining Lemma 11 and Lemma 12, we can show that when the time step T is bounded, 〈wc(t),vk〉 and
〈wc(t), ξ

(i)〉 are lower bounded.

Lemma 13 (Lower bound on 〈wc(t),vk〉 and 〈wc(t), ξ
(i)〉). Suppose Ginit holds,

n ≤ o
(

min
{
σq−1

0 σqξd
1/2, σq−1

0 σq−1
ξ d1/2

})
, K ≤ o

(
min

{
σq−1

0 σ−1
ξ d1/2, σq−1

0 d1/2
})

, and

α ≤ Õ

(
min

{
1, σ

1
q

ξ d
− 1

2q

}
P−1/q

(
σ0 + ηT

(
max
k∈[K]

ρk + σξd
−1/2

))−(q−1)/q
)
.

for some T = Θ̃
(

max
{
nη−1σ−qξ σ−q+2

0 ,Kη−1σ−q+2
0

})
. For all 0 ≤ t′ ≤ t ≤ T , and c ∈ [C],

〈wc(t),vk〉 ≥ 〈wc(t
′),vk〉 − o(σ0),

and for all i ∈ [n],

y(i)
〈
wc(t), ξ

(i)
〉
≥ y(i)

〈
wc(t

′), ξ(i)
〉
− o (σ0σξ) .

Next, Lemma 14 and Lemma 15 compute the time it takes for the model to learn the main feature vk, k ∈ [K] and
overfit the noise ξ(i), i ∈ [n]. Lemma 16 and Lemma 17 upper bound 〈wc(t),vk〉 and 〈wc(t), ξ

(i)〉 for t smaller than
the time identified in Lemma 14 and Lemma 15.

Lemma 14 (Learning the main feature). Suppose Ginit holds, C = Θ(log d), σ0σξ ≤ o(1), σqξd
−1/2 ≤ o(ρk) and

α ≤ o

(
P−

1
q min

{
1, σ

1
q

ξ d
− 1

2q

(
σ0 + ηT max

k∈[K]
ρk + ηTσξd

−1/2

)− q−1
q

,

(
σ0 + ηT max

k∈[K]
ρk + ηTσξd

−1/2

)−1
})

,

for some T ≥ Ω̃

((
ηρkσ

q−2
0

)−1
)

. For any k ∈ [K] and 0 ≤ t ≤ T , if

max
c∈[C]

〈wc(t),vk〉 ≤ O(C−1/q), and max
i∈[n],c∈[C]

y(i)
〈
wc(t), ξ

(i)
〉
≤ Õ(σ0σξ),

then

max
c∈[C]

〈wc(t+ 1),vk〉 = max
c∈[C]

〈wc(t),vk〉+ Θ

(
ηρkψ

′
(

max
c∈[C]

〈wc(t),vk〉
))

.

Moreover, if maxi∈[n],c∈[C]

〈
wc(t), ξ

(i)
〉
≤ Õ(σ0σξ) for all t ≤ Õ

(
1

ηρkσ
q−2
0

)
, there exists T ′ ≤ Õ

(
1

ηρkσ
q−2
0

)
such

that maxc∈[C] 〈wc(T
′),vk〉 ≥ Ω

(
C−1/q

)
.

Lemma 15 (Overfitting the dominant noise). Suppose Ginit holds,C = Θ(log d), n ≤ o
(

min
{
σq−1

0 σqξd
1/2, σq−1

0 σq−1
ξ d1/2

})
and

α ≤ o

(
P−

1
q min

{
1, σ

1
q

ξ d
− 1

2q

(
σ0 + ηT max

k∈[K]
ρk + ηTσξd

−1/2

)− q−1
q

,

(
σ0 + ηT max

k∈[K]
ρk + ηTσξd

−1/2

)−1
})

,

for some T ≥ Ω̃
(
nη−1σ−qξ σ−q+2

0

)
.

Let i ∈ [n] be some sample such that for all 0 ≤ t ≤ T , maxc∈[C]

〈
wc(t),vk∗i

〉
≤ O(C−1/q). For any time step

0 ≤ t ≤ T , if
max
c∈[C]

y(i)
〈
wc(t), ξ

(i)
〉
≤ O(C−1/q),

we have

max
c∈[C]

y(i)
〈
wc(t+ 1), ξ(i)

〉
= max
c∈[C]

y(i)
〈
wc(t), ξ

(i)
〉

+
η

n
Θ̃

(
σ2
ξψ
′
(

max
c∈[C]

y(i)
〈
wc(t), ξ

(i)
〉))

.

Moreover, there exists times step T ′ ≤ Õ
(
nη−1σ−qξ σ−q+2

0

)
such that maxc∈[C] y

(i)
〈
wc(T

′), ξ(i)
〉
≥ Ω

(
C−1/q

)
.

24

Lemma 16 (Upper bound on 〈wc(t),vk〉). If Ginit holds, for all k ∈ [K] and t ≤ o
(

σ0

ηρkσ
q−1
0 +ησξd−1/2

)
,

max
c∈[C]

〈wc(t),vk〉 ≤ Õ (σ0) .

Lemma 17 (Upper bound on 〈wc(t), ξ
(i)〉). Suppose Ginit holds, n ≤ o

(
min

{
σq−1

0 σqξd
1/2, σq−1

0 σq−1
ξ d1/2

})
and

α ≤ o

(
P−

1
q min

{
1, σ

1
q

ξ d
− 1

2q

(
σ0 + ηT max

k∈[K]
ρk + ηTσξd

−1/2

)− q−1
q

})
,

for some T ≥ Ω̃
(
nη−1σ−qξ σ−q+2

0

)
. For all t ≤ o(nη−1σ−qξ σ−q+2

0) and i ∈ [n], maxc∈[C] y
(i)
〈
wc(t), ξ

(i)
〉
≤

Õ(σ0σξ).

Finally, Lemma 18 bounds 〈wc(t), ξ〉 for some noise patch ξ from the testing set. Lemma 18 is useful in proving
the test accuracy.

Lemma 18 (Bound on 〈wc(t), ξ〉 for ξ from the testing set). Let ξ ∼ N (0, σ2
ξId) be a random noise vector

independent of the dataset. Suppose Ginit holds, C = Θ(log d), n ≤ o
(

min
{
σq−1

0 σqξd
1/2, σq−1

0 σq−1
ξ d1/2

})
,

K ≤ o
(

min
{
σq−1

0 σ−1
ξ d1/2, σq−1

0 d1/2
})

, and

α ≤ o

(
P−

1
q min

{
1, σ

1
q

ξ d
− 1

2q

(
σ0 + ηT max

k∈[K]
ρk + ηTσξd

−1/2

)− q−1
q

,

(
σ0 + ηT max

k∈[K]
ρk + ηTσξd

−1/2

)−1
})

,

for some T = Θ̃
(

max
{
nη−1σ−qξ σ−q+2

0 ,Kη−1σ−q+2
0

})
. With probability at least 1 − nK

polyd , for all c ∈ [C] and
0 ≤ t ≤ T ,

|〈wc(t), ξ〉 − 〈wc(0), ξ〉| ≤ o(σ0σξ).

E.2 Proof of main results from Lemmas in Appendix E.1
We first derive some implications of Assumption 2 that we use as conditions in the lemmas in E.1.

1. nK ≤ o
(

min
{
σq−1

0 σqξd
1/2, σq−1

0 σq−1
ξ d1/2

})
follows from nK ≤ o(σq−1

0 σq−1
ξ d1/2) and σξ ≥ ω(1).

2. K ≤ o
(

min
{
σq−1

0 σ−1
ξ d1/2, σq−1

0 d1/2
})

follows from nK ≤ o(σq−1
0 σq−1

ξ d1/2), σξ ≥ ω(1) and n ≥ ω(σqξ).

3. σξd−1/2 ≤ o(1) follows from nK ≤ o
(
σq−1

0 σq−1
ξ d1/2

)
, σ0σξ ≤ o(1) and n ≥ ω(σqξ).

4. σqξK ≤ o(d1/2) follows from nK ≤ o(σq−1
0 σq−1

ξ d1/2), σξσ0 ≤ o(1) and o(n) ≥ σqξ ≥ ω(1).

5. α ≤ o
(
P−

1
q σξ min

{
d−1/2, σ0

} (
σ0 + ηT maxk∈[K] ρk + ηTσξd

−1/2
)−1
)

follows from σξd
−1/2 ≤ o(1),

σ0 ≤ o(1) and ηT ≥ ω(1).

Now, using Lemma 11 - 18, we prove the main theorems.

Theorem 3 (Training without data augmentation). Suppose that Assumption 2 holds. Let T be the first time step such
that w(T) can classify all (x(i), y(i)) ∈ Dtrain with constant margin, i.e., ,

y(i)F (w(T),x(i)) ≥ Ω̃(1), for all (x(i),y(i))∈ Dtrain.

For hidden channel number C = Θ(log d), and small step size η, with probability at least 1 − O(n2K
poly(d)), T =

Θ̃
(
nη−1σ−qξ σ−q+2

0

)
. Moreover, at time step T , views v2, . . . ,vK have never been learned, so that ∀0≤t≤T ,

Pr
(x,y)∼D

[yF (w(t),x) < 0] ≥
(

1

2
−O

(
1√
C

)) K∑
k=2

ρk.

25

Proof. By Lemma 1, with probability at least 1−O
(
n2K log d

polyd

)
, Ginit holds. We first show that all (x(i), y(i)) ∈ Dtrain

can be classified correctly with constant margin at some T = Θ̃
(
nη−1σ−qξ σ−q+2

0

)
. We first consider the samples

i ∈ [n] such that k∗i = 1. If Assumption 2 holds, ω(σqξ) ≤ n, so η−1ρ−1
1 σ−q+2

0 ≤ o
(
nη−1σ−qξ σ−q+2

0

)
. By Lemma

17, maxc∈[C] y
(i)
〈
wc(t), ξ

(i)
〉
≤ Õ(σ0σξ) for all t ≤ Õ

(
η−1ρ1σ

−q+2
0

)
. Then, by Lemma 14, there exists some

t∗ ≤ Õ
(
η−1ρ−1

1 σ−q+2
0

)
such that maxc∈[C] 〈wc(t

∗),v1〉 = Θ
(
C−1/q

)
. Moreover, by Lemma 13, at any time step

t∗ ≤ t′ ≤ Õ
(
nη−1σ−qξ σ−q+2

0

)
, the feature v1 satisfies,

max
c∈[C]

〈wc(t
′),v1〉 ≥ max

c∈[C]
〈wc(t

∗),v1〉 − o (σ0) ≥ Ω
(
C−1/q

)
.

We can further show for all c ∈ [C] and t′ ≤ Õ
(
nη−1σ−qξ σ−q+2

0

)
, 〈wc(t

′),v1〉 and y(i)
〈
wc(t

′), ξ(i)
〉

are lower
bounded. By Lemma 13, when Ginit holds,

〈wc(t
′),v1〉 ≥ 〈wc(0),v1〉 − o (σ0) ≥ −Õ(σ0),

and for all i ∈ [n],
y(i)

〈
wc(t

′), ξ(i)
〉
≥ y(i)

〈
wc(0), ξ(i)

〉
− o (σ0σξ) ≥ −Õ(σ0σξ).

Then, there exists some T = Θ̃
(
nη−1σ−qξ σ−q+2

0

)
such that for i with k∗i = 1,

y(i)F (w(T),x(i)) = y(i)
∑
c∈[C]

∑
p∈[P]

ψ
(〈

wc(T),x(i)
p

〉)
= y(i)

∑
c∈[C]

ψ
(〈

wc(T), y(i)vk∗i

〉)
+ y(i)

∑
c∈[C]

∑
k∈[K]

∑
p∈P(i)

bp,k

ψ
(〈

wc(T),−αp,iy(i)vk

〉)
+ y(i)

∑
c∈[C]

ψ
(〈

wc(T), ξ(i)
〉)

(12)

≥ Ω

(
1

C

)
− CÕ(σq0)− CPαqÕ

((
σ0 + ηT

(
max
k∈[K]

ρk + σξd
−1/2

))q)
− CÕ(σq0σ

q
ξ)

≥ Ω̃ (1) .

The third step follows from maxc∈[C] 〈wc(T),v1〉 ≥ Ω
(
C−1/q

)
, minc∈[C] 〈wc(T),v1〉 ≥ −Õ(σ0),

minc∈[C] y
(i)
〈
wc(T), ξ(i)

〉
≥ −Õ(σ0σξ) and Lemma 11. The last step follows from the the upper bound assumption

on α, σ0 ≤ o(1) and σ0σξ ≤ o(1).
We next show that the training accuracy is perfect for all i ∈ [n] such that k∗i 6= 1. By Lemma 16 and Assumption 2

that ρk ≤ o
(
n−1σqξ

)
and n ≤ o(σq−1

ξ σq−1
0 d1/2), we have σ0

ηρkσ
q−1
0 +ησξd−1/2

≥ ω
(
nη−1σ−qξ σ−q+2

0

)
, and therefore

maxc∈[C] 〈wc(t),vk〉 ≤ Õ (σ0) for all 0 ≤ t ≤ Õ
(
nη−1σ−qξ σ−q+2

0

)
and k 6= 1. Then, for any i ∈ [n] such

that k∗i 6= 1, by Lemma 15, there exists some time step t(i) such that maxc∈[C] y
(i)
〈
wc(t

(i)), ξ(i)
〉
≥ Ω

(
C−1/q

)
.

Moreover, by Lemma 13, for all t(i) ≤ t′ ≤ Õ
(
nη−1σ−qξ σ−q+2

0

)
, maxc∈[C] y

(i)
〈
wc(t

′), ξ(i)
〉
≥ Ω

(
C−1/q

)
.

Then, there exists some T = Θ̃
(
nη−1σ−qξ σ−q+2

0

)
such that for all (x(i), y(i)) ∈ Dtrain such that k∗i 6= 1,

y(i)F (w(T),x(i)) ≥ Ω

(
1

C

)
− CÕ(σq0)− CPαqÕ

((
σ0 + ηT

(
max
k∈[K]

ρk + σξd
−1/2

))q)
− CÕ(σq0σ

q
ξ)

≥ Ω

(
1

C

)
.

26

The first step follows from (12), and Lemma 11. The second step follows from the upper bound assumption on α,
σ0 ≤ o(1) and σ0σξ ≤ o(1).

Thus, at some T = Θ̃
(
nη−1σ−qξ σ−q+2

0

)
, for all i ∈ [n], we have y(i)F (w(t),x(i)) ≥ Ω

(
1
C

)
≥ Ω̃ (1).

Next, we show that the margin is o(1) at t ≤ o
(
nη−1σ−qξ σ−q+2

0

)
for any (x(i), y(i)) such that k∗i 6= 1. Since

t ≤ o
(

σ0

ηρkσ
q−1
0 +ησξd−1/2

)
, by Lemma 16, maxc∈[C]

〈
wc(t),vk∗i

〉
≤ Õ (σ0). Since t ≤ o

(
nη−1σ−qξ σ−q+2

0

)
, by

Lemma 17, y(i)
〈
wc(T), ξ(i)

〉
≤ Õ(σ0σξ). Then,

y(i)F (w(t),x(i)) ≤ CÕ(σq0) + CPαqÕ

((
σ0 + ηT

(
max
k∈[K]

ρk + σξd
−1/2

))q)
+ CÕ(σq0σ

q
ξ)

≤ o(1). (13)

The first step follows from (12). The second step follows from the upper bound assumption on α, σ0 ≤ o(1) and
σ0σξ ≤ o(1). Thus, we have show that T = Θ̃

(
nη−1σ−qξ σ−q+2

0

)
.

Finally, we show that the testing accuracy is bad on the testing dataset. For any (x, y) ∼ D with the main feature
vk∗ such that k∗ 6= 1 and dominant noise ξ, since maxc∈[C] |〈wc(t),vk〉| ≤ Õ (σ0) for any t ≤ T , following (12),

yF (w(t),x) ≤ CÕ(σq0) + CPαqÕ

((
σ0 + ηT

(
max
k∈[K]

ρk + σξd
−1/2

))q)
+ y

∑
c∈[C]

ψ (〈wc(t), ξ〉)

≤ CÕ(σq0) + CÕ
(
σqξσ

q
0

)
+ y

∑
c∈[C]

ψ (〈wc(0), ξ〉) +

∣∣∣∣∣∣y
∑
c∈[C]

ψ (〈wc(t), ξ〉)− y
∑
c∈[C]

ψ (〈wc(0), ξ〉)

∣∣∣∣∣∣
≤ Co(σqξσ

q
0) + y

∑
c∈[C]

ψ (〈wc(0), ξ〉) +

∣∣∣∣∣∣y
∑
c∈[C]

ψ (〈wc(t), ξ〉)− y
∑
c∈[C]

ψ (〈wc(0), ξ〉)

∣∣∣∣∣∣ .
The second step uses the upper bound on α. The last step follows the assumption σξ ≥ ω(1). For any c ∈ [C], by
Lemma 4, with probability at least 1− 1

polyd , |〈wc(0), ξ〉| ≤ Õ(σ0σξ). Then, by Lemma 18, |〈wc(t), ξ〉 − 〈wc(0), ξ〉| ≤
o(σ0σξ) with probability at least 1− nK

polyd and therefore |〈wc(t), ξ〉| ≤ Õ(σ0σξ) and∣∣∣∣∣∣y
∑
c∈[C]

ψ (〈wc(t), ξ〉)− y
∑
c∈[C]

ψ (〈wc(0), ξ〉)

∣∣∣∣∣∣ ≤
∑
c∈[C]

qÕ(σq−1
0 σq−1

ξ) |〈wc(t), ξ〉 − 〈wc(0), ξ〉|

≤ Co(σqξσ
q
0)

For t = 0, 〈wc(0), ξ〉 ∼ N (0, σ2
0 ‖ξ‖

2
) and {〈wc(0), ξ〉 : c ∈ [C]} are independent. By Lemma 3, ‖ξ‖2 = Θ(σ2

ξ).
Then, by Lemma 9, with probability at least 1

2 −O(1√
C

),

yF (w(t),x) ≤ Co(σqξσ
q
0) + y

∑
c∈[C]

ψ (〈wc(0), ξ〉) < 0.

Theorem 4 (Training with data augmentation). Suppose assumption 2 holds. Let T aug be the first time step such that
w(T aug) can classify all (x(i), y(i)) ∈ D(aug)

train with constant margin, i.e.,

y(i)F (w(T aug),x(i)) ≥ Ω̃(1), for all (x(i),y(i))∈ D(aug)
train .

For hidden channels number C = Θ(log d), and small step size η, with probability at least 1 − O(n
2K3

poly(d)), T aug =

Θ̃
(
Kη−1σ−q+2

0

)
, and at T aug,

Pr
(x,y)∼D

[
yF (w(T aug),x) < 0

]
≤ nK

polyd
.

27

Proof. By Lemma 1a, Ginit holds with probability at least 1−O
(
n2K3 log d

polyd

)
.

We first show that T aug = Õ
(
Kη−1σ−q+2

0

)
. For the augmented dataset, we have ρ(aug)

k = 1
K for all k ∈ [K]

and the size of the dataset is Kn. For any k ∈ [K], if Assumption 2 holds, ω(σqξ) ≤ n, so η−1ρ(aug)
k
−1σ−q+2

0 ≤
o
(
Knη−1σ−qξ σ−q+2

0

)
. Then, for any i ∈ [Kn] with k∗i = k, by Lemma 17 maxc∈[C] y

(i)
〈
wc(T), ξ(i)

〉
≤ Õ (σ0σξ)

for all 0 ≤ t ≤ Õ
(
Kη−1σ−q+2

0

)
. Then, under the assumption σqξK ≤ o

(
d1/2

)
, by Lemma 14, there exists

some tk = Θ̃
(

1

ηρ(aug)
k σq−2

0

)
such that maxc∈[C] 〈wc(tk),vk〉 ≥ Ω

(
C−1/q

)
. By Lemma 13, for any tk ≤ t′ ≤

Θ̃
(
Kη−1σ−q+2

0

)
, maxc∈[C] 〈wc(t

′),vk〉 ≥ Ω
(
C−1/q

)
. Then, there exists some T = Θ̃

(
Kη−1σ−q+2

0

)
such that

for all (x(i), y(i)) ∈ D(aug)
train ,

y(i)F (w(T),x(i)) = y(i)
∑
c∈[C]

∑
p∈[P]

ψ
(〈

wc(T),x(i)
p

〉)
= y(i)

∑
c∈[C]

ψ
(〈

wc(T), y(i)vk∗i

〉)
+ y(i)

∑
c∈[C]

∑
k∈[K]

∑
p∈P(i)

bp,k

ψ
(〈

wc(T),−αp,iy(i)vk

〉)
+ y(i)

∑
c∈[C]

ψ
(〈

wc(T), ξ(i)
〉)

(14)

≥ Ω

(
1

C

)
− CÕ(σq0)− CPαqÕ

((
σ0 + ηT

(
max
k∈[K]

ρk + σξd
−1/2

))q)
− CÕ(σq0σ

q
ξ)

≥ Ω̃ (1) .

The third step follows from maxc∈[C] 〈wc(T),vk〉 ≥ Ω
(
C−1/q

)
, Lemma 11 and Lemma 13. The last step follows

from the upper bound assumption on α, σ0 ≤ o(1) and σ0σξ ≤ o(1).

Next, when t = o
(

1

ηρ(aug)
k σq−2

0

)
, by Lemma 16 ,

〈
wc(t),vk∗i

〉
≤ Õ(σ0). By Lemma 17, y(i)

〈
wc(T), ξ(i)

〉
≤

Õ(σ0σξ). Then,

y(i)F (w(t),x(i)) ≤CÕ(σq0) + CPαqÕ

((
σ0 + ηT

(
max
k∈[K]

ρk + σξd
−1/2

))q)
+ CÕ(σq0σ

q
ξ)

≤o(1).

The second step follows from the upper bound assumption on α, σ0 ≤ o(1) and σ0σξ ≤ o(1). Thus, we have shown

that T (aug) = Θ̃
(
Kη−1σ−q+2

0

)
.

Finally, we show that the testing accuracy is perfect at T (aug) = Θ̃
(
Kη−1σ−q+2

0

)
. For any sample (x, y) in the

testing set with dominant noise ξ, if Ginit hold, by (14),

yF (w(T (aug)),x) ≥ Ω

(
1

C

)
− CÕ(σq0)− CPαqÕ

((
σ0 + ηT (aug)

(
max
k∈[K]

ρk + σξd
−1/2

))q)
+ y

∑
c∈[C]

ψ
(〈
wc(T

(aug)), ξ
〉)

≥ Ω

(
1

C

)
+ y

∑
c∈[C]

ψ (〈wc(0), ξ〉)−

∣∣∣∣∣∣y
∑
c∈[C]

ψ
(〈
wc(T

(aug)), ξ
〉)
− y

∑
c∈[C]

ψ (〈wc(0), ξ〉)

∣∣∣∣∣∣ .
For any c ∈ [C], by Lemma 4, with probability at least 1 − 1

polyd , |〈wc(0), ξ〉| ≤ Õ(σ0σξ). Then, by Lemma 18,∣∣〈wc(T
(aug)), ξ

〉
− 〈wc(0), ξ〉

∣∣ ≤ o(σ0σξ) with probability at least 1− nK
polyd and therefore

∣∣〈wc(T
(aug)), ξ

〉∣∣ ≤ Õ(σ0σξ)

28

and ∣∣∣∣∣∣y
∑
c∈[C]

ψ
(〈
wc(T

(aug)), ξ
〉)
− y

∑
c∈[C]

ψ (〈wc(0), ξ〉)

∣∣∣∣∣∣ ≤
∑
c∈[C]

qÕ(σq−1
0 σq−1

ξ)
∣∣〈wc(T

(aug)), ξ
〉
− 〈wc(0), ξ〉

∣∣
≤ Co(σqξσ

q
0).

Thus, with probability at least 1− nK
polyd , yF (w(T (aug)),x) ≥ Ω̃(1).

F Deferred Proof of Lemmas in Appendix E
In this section, we present the proof of lemmas necessary for proving our main result.

Lemma 11 (Rough upper and lower bound on 〈wc(t),vk〉). Suppose Ginit holds and

α ≤ o
(
σ

1
q

ξ d
− 1

2qP−
1
q

(
σ0 + ηTρk + ηTσξd

−1/2
)− q−1

q

)
.

For all 0 ≤ t′ ≤ t ≤ T and k ∈ [K], we have

max
c∈[C]

〈wc(t),vk〉 ≤ max
c∈[C]

〈wc(t
′),vk〉+ η(t− t′)Õ

(
ρk + σξd

−1/2
)

≤ Õ
(
σ0 + ηT

(
ρk + σξd

−1/2
))

,

and

min
c∈[C]

〈wc(t),vk〉 ≥ min
c∈[C]

〈wc(t
′),vk〉 − η(t− t′)Õ

(
σξd
−1/2

)
≥ −Õ

(
σ0 + ηTσξd

−1/2
)
.

Proof. For any k ∈ [K], c ∈ [C] and 0 ≤ t < T ,

〈wc(t+ 1),vk〉

= 〈wc(t),vk〉+
η

n

∑
i:k∗i=k

(
1

1 + ey(i)F (w(t),x(i))
ψ′ (〈wc(t),vk〉) ‖vk‖22

)

− η

n

n∑
i=1

 1

1 + ey(i)F (w(t),x(i))

∑
p∈P(i)

bp,k

αp,iψ
′ (〈wc(t), αp,ivk〉) ‖vk‖22


+
η

n

n∑
i=1

(
1

1 + ey(i)F (w(t),x(i))
ψ′
(〈

wc(t), ξ
(i)
〉)

y(i)
〈
ξ(i),vk

〉)
(15)

We bound each term separately. Since 1

1+ey
(i)F (w(t),x(i))

≤ 1 for all i ∈ [n], ‖vk‖22 = 1, and ψ′ (〈wc(t),vk〉) ≤ 1 for
all k ∈ [K], we have

η

n

∑
i:k∗i=k

(
1

1 + ey(i)F (w(t),x(i))
ψ′ (〈wc(t),vk〉) ‖vk‖22

)
≤ O(ηρk).

The feature noise term

− η
n

n∑
i=1

 1

1 + ey(i)F (w(t),x(i))

∑
p∈P(i)

bp,k

αp,iψ
′ (〈wc(t), αp,ivk〉) ‖vk‖22

 ≤ 0.

29

When Ginit holds,
〈
ξ(i),vk

〉
≤ Õ(σξd

−1/2) for all i ∈ [n]. Since 1

1+ey
(i)F (w(t),x(i))

≤ 1 and ψ′
(〈

wc(t), ξ
(i)
〉)
≤ 1,

η

n

n∑
i=1

(
1

1 + ey(i)F (w(t),x(i))
ψ′
(〈

wc(t), ξ
(i)
〉)

y(i)
〈
ξ(i),vk

〉)
≤ Õ

(
ησξd

−1/2
)
.

Then, for all 0 ≤ t < T ,

〈wc(t+ 1),vk〉 ≤ 〈wc(t),vk〉+ ηÕ
(
ρk + σξd

−1/2
)
,

which implies for any 0 ≤ t′ ≤ t ≤ T ,

〈wc(t),vk〉 ≤ 〈wc(t
′),vk〉+ η(t− t′)Õ

(
ρk + σξd

−1/2
)
.

Next, we lower bound 〈wc(t),vk〉 using induction. When Ginit holds, 〈wc(0),vk〉 ≥ −Õ
(
σ0 + ηTσξd

−1/2
)
.

Assume for all 0 ≤ t′ ≤ t,

min
c∈[C]

〈wc(t),vk〉 ≥ min
c∈[C]

〈wc(t
′),vk〉 − η(t− t′)Õ

(
σξd
−1/2

)
≥ −Õ

(
σ0 + ηTσξd

−1/2
)

for induction. We have

η

n

∑
i:k∗i=k

(
1

1 + ey(i)F (w(t),x(i))
ψ′ (〈wc(t),vk〉) ‖vk‖22

)
≥ 0.

We have shown that 〈wc(t),vk〉 ≤ Õ
(
σ0 + ηTρk + ηTσξd

−1/2
)

for all c ∈ [C] and k ∈ [K]. By the induction
hypothesis,

η

n

n∑
i=1

 1

1 + ey(i)F (w(t),x(i))

∑
p∈P(i)

bp,k

αp,iψ
′ (〈wc(t), αp,ivk〉) ‖vk‖22


≤ ηαqPÕ

((
σ0 + ηTρk + ηTσξd

−1/2
)q−1

)
≤ Õ

(
ησξd

−1/2
)
.

The last inequality follows from α ≤ Õ
(
σ

1
q

ξ d
− 1

2qP−
1
q /
(
σ0 + ηTρk + ηTσξd

−1/2
) q−1

q

)
. When Ginit holds,

− η
n

n∑
i=1

(
1

1 + ey(i)F (w(t),x(i))
ψ′
(〈

wc(t), ξ
(i)
〉)

y(i)
〈
ξ(i),vk

〉)
≤ Õ

(
ησξd

−1/2
)
.

Then, plugging into (15), for any 0 ≤ t′ ≤ t+ 1 ≤ T,

−〈wc(t+ 1),vk〉 ≤ − 〈wc(t
′),vk〉+ η(t+ 1− t′)Õ

(
σξd
−1/2

)
.

Thus, we have completed the induction and therefore

min
c∈[C]

〈wc(t),vk〉 ≥ min
c∈[C]

〈wc(t
′),vk〉 − η(t− t′)Õ

(
σξd
−1/2

)
.

Finally, for t′ = 0, when Ginit holds, |〈wc(0),vk〉| ≤ Õ(σ0).

30

Lemma 12 (Rough lower bound on 〈wc(t), ξ
(i)〉). Suppose Ginit holds and

α ≤ Õ

(
min

{
1, σ

1
q

ξ d
− 1

2q

}
P−1/q

(
σ0 + ηT

(
max
k∈[K]

ρk + σξd
−1/2

))−(q−1)/q
)
.

For all 0 ≤ t ≤ t′ ≤ T and i ∈ [n], we have

min
c∈[C]

y(i)
〈
wc(t), ξ

(i)
〉
≥ min
c∈[C]

y(i)
〈
wc(t

′), ξ(i)
〉
− η(t− t′)Õ

(
σ2
ξd
−1/2 + σξd

−1/2
)
.

Proof. For any c ∈ [C] and i ∈ [n], we have

y(i)
〈
wc(t+ 1), ξ(i)

〉
= y(i)

〈
wc(t), ξ

(i)
〉

+
η

n

1

1 + ey(i)F (w(t),x(i))
ψ′
(〈

wc(t), ξ
(i)
〉)∥∥∥ξ(i)

∥∥∥2

2

+
η

n

∑
j:j 6=i

(
y(i)y(j)

1 + ey(j)F (w(t),x(j))
ψ′
(〈

wc(t), ξ
(j)
〉)〈

ξ(j), ξ(i)
〉)

(16)

+
η

n

n∑
j=1

(
y(i)

1 + ey(j)F (w(t),x(j))
ψ′
(〈

wc(t),vk∗j

〉)〈
vk∗j , ξ

(i)
〉)

(17)

− η

n

n∑
j=1

 y(i)

1 + ey(j)F (w(t),x(j))

∑
k∈[K]

∑
p∈P(j)

bp,k

ψ′ (〈wc(t), αp,jvk〉)
〈
αp,jvk, ξ

(i)
〉 (18)

We have η
n

(
1

1+ey
(i)F (w(t),x(i))

ψ′
(〈

wc(t), ξ
(i)
〉)∥∥∥ξ(i)

∥∥∥2

2

)
positive for any i ∈ [n]. Since 1

1+ey
(j)F (w(t),x(j))

≤ 1 and

ψ′
(〈

wc(t), ξ
(j)
〉)
≤ 1 for all j ∈ [n] , if Ginit holds,

(16) ≥ −ηÕ
(
σ2
ξd
−1/2

)
, (17)≥ −ηÕ

(
σξd
−1/2

)
.

Also,

(18) ≥ −ηÕ
(
αqPσξd

−1/2 max
k∈[K]

|〈wc(t),vk〉|q−1

)
≥ −ηÕ

(
αqPσξd

−1/2
(
σ0 + ηT

(
ρk + σξd

−1/2
))q−1

)
≥ −ηÕ

(
σξd
−1/2

)
The second inequality follows from Lemma 11. The third inequality follows from the upper bound on α. Then,

y(i)
〈
wc(t+ 1), ξ(i)

〉
− y(i)

〈
wc(t), ξ

(i)
〉
≥ −ηÕ

(
σ2
ξd
−1/2 + σξd

−1/2
)
,

which gives

min
c∈[C]

y(i)
〈
wc(t), ξ

(i)
〉
≥ min
c∈[C]

y(i)
〈
wc(t

′), ξ(i)
〉
− η(t− t′)Õ

(
σ2
ξd
−1/2 + σξd

−1/2
)
.

Lemma 13 (Lower bound on 〈wc(t),vk〉 and 〈wc(t), ξ
(i)〉). Suppose Ginit holds,

n ≤ o
(

min
{
σq−1

0 σqξd
1/2, σq−1

0 σq−1
ξ d1/2

})
, K ≤ o

(
min

{
σq−1

0 σ−1
ξ d1/2, σq−1

0 d1/2
})

, and

α ≤ Õ

(
min

{
1, σ

1
q

ξ d
− 1

2q

}
P−1/q

(
σ0 + ηT

(
max
k∈[K]

ρk + σξd
−1/2

))−(q−1)/q
)
.

31

for some T = Θ̃
(

max
{
nη−1σ−qξ σ−q+2

0 ,Kη−1σ−q+2
0

})
. For all 0 ≤ t′ ≤ t ≤ T , and c ∈ [C],

〈wc(t),vk〉 ≥ 〈wc(t
′),vk〉 − o(σ0),

and for all i ∈ [n],

y(i)
〈
wc(t), ξ

(i)
〉
≥ y(i)

〈
wc(t

′), ξ(i)
〉
− o (σ0σξ) .

Proof. By Lemma 12, for any (x(i), y(i)),

max
c∈[C]

y(i)
〈
wc(t), ξ

(i)
〉
≥ max
c∈[C]

y(i)
〈
wc(t

′), ξ(i)
〉
− η(t− t′)Õ

(
σ2
ξd
−1/2 + σξd

−1/2
)
.

Then, when t − t′ ≤ Õ
(
nη−1σ−qξ σ−q+2

0

)
and n ≤ o

(
min

{
σq−1

0 σqξd
1/2, σq−1

0 σq−1
ξ d1/2

})
, or when t − t′ ≤

Õ
(
Kη−1σ−q+2

0

)
and K ≤ o

(
min

{
σq−1

0 σ−1
ξ d1/2, σq−1

0 d1/2
})

, η(t− t′)Õ
(
σ2
ξd
−1/2 + σξd

−1/2
)
≤ o (σ0σξ).

By Lemma 11,

max
c∈[C]

〈wc(t),vk〉 ≥ max
c∈[C]

〈wc(t
′),vk〉 − η(t− t′)Õ

(
σξd
−1/2

)
.

Then, when t − t′ ≤ Õ
(
nη−1σ−qξ σ−q+2

0

)
and n ≤ o

(
σq−1

0 σq−1
ξ d1/2

)
, or when t − t′ ≤ Õ

(
Kη−1σ−q+2

0

)
and

K ≤ o(σq−1
0 σ−1

ξ d1/2),

η(t− t′)Õ
(
σξd
−1/2

)
≤ o (σ0) ,

which completes the proof.

Lemma 14 (Learning the main feature). Suppose Ginit holds, C = Θ(log d), σ0σξ ≤ o(1), σqξd
−1/2 ≤ o(ρk) and

α ≤ o

(
P−

1
q min

{
1, σ

1
q

ξ d
− 1

2q

(
σ0 + ηT max

k∈[K]
ρk + ηTσξd

−1/2

)− q−1
q

,

(
σ0 + ηT max

k∈[K]
ρk + ηTσξd

−1/2

)−1
})

,

for some T ≥ Ω̃

((
ηρkσ

q−2
0

)−1
)

. For any k ∈ [K] and 0 ≤ t ≤ T , if

max
c∈[C]

〈wc(t),vk〉 ≤ O(C−1/q), and max
i∈[n],c∈[C]

y(i)
〈
wc(t), ξ

(i)
〉
≤ Õ(σ0σξ),

then

max
c∈[C]

〈wc(t+ 1),vk〉 = max
c∈[C]

〈wc(t),vk〉+ Θ

(
ηρkψ

′
(

max
c∈[C]

〈wc(t),vk〉
))

.

Moreover, if maxi∈[n],c∈[C]

〈
wc(t), ξ

(i)
〉
≤ Õ(σ0σξ) for all t ≤ Õ

(
1

ηρkσ
q−2
0

)
, there exists T ′ ≤ Õ

(
1

ηρkσ
q−2
0

)
such

that maxc∈[C] 〈wc(T
′),vk〉 ≥ Ω

(
C−1/q

)
.

Proof. By the upper bound on α and Lemma 11, for any i ∈ [n] and c ∈ [C],∑
k′∈[K]

∑
p∈P(i)

bp,k′

ψ
(〈

wc(t),−y(i)αp,ivk′
〉)
≤
∑
k′∈[K]

∑
p∈P(i)

bp,k

|〈wc(t), αp,ivk′〉|q

≤ Õ
(
αqP

(
σ0 + ηT

(
max
k′

ρk′ + σξd
−1/2

))q)
≤ o(1).

Then, since maxc∈[C] 〈wc(t),vk〉 ≤ O(C−1/q), and maxc∈[C] y
〈
wc(t), ξ

(i)
〉
≤ o(1) for all i ∈ [n], we have for all

i such that k∗i = k, y(i)F (w(t),x(i)) ≤ O(1) and 1

1+ey
(i)F (w(t),x(i))

≥ Ω(1).

32

Now, we compute the update 〈wc(t+ 1),vk〉 − 〈wc(t),vk〉,

〈wc(t+ 1),vk〉

= 〈wc(t),vk〉+
η

n

∑
i:k∗i=k

(
1

1 + ey(i)F (w(t),x(i))
ψ′ (〈wc(t),vk〉) ‖vk‖22

)

− η

n

n∑
i=1

 1

1 + ey(i)F (w(t),x(i))

∑
p∈P(i)

bp,k

αp,iψ
′ (〈wc(t), αp,ivk〉) ‖vk‖22

 (19)

+
η

n

n∑
i=1

(
1

1 + ey(i)F (w(t),x(i))
ψ′
(〈

w(t)
c , ξ(i)

〉)
y(i)

〈
ξ(i),vk

〉)
(20)

Then, when Ginit holds, since 1

1+ey
(i)F (w(t),x(i))

≥ Ω(1) for all i ∈ [n] such that k∗i = k,

η

n

∑
i:k∗i=k

(
1

1 + ey(i)F (w(t),x(i))
ψ′ (〈wc(t),vk〉) ‖vk‖22

)
= Θ

(
ηρk |〈wc(t),vk〉|q−1

)
.

We can bound the term (19) as

|(19)| ≤ Õ

 η

N

n∑
i=1

∑
p∈P(i)

bp,k

αp,iψ
′ (〈wc(t), αp,ivk〉)


≤ Õ

(
ηρkα

qP |〈wc(t),vk〉|q−1
)
≤ o(ηρk |〈wc(t),vk〉|q−1

).

For the term (20), if Ginit holds,

|(20)| ≤ η

n

n∑
i=1

(
1

1 + ey(i)F (w(t),x(i))
ψ′
(〈

w(t)
c , ξ(i)

〉) ∣∣∣〈ξ(i),vk

〉∣∣∣)

≤ Õ

(
η

n

n∑
i=1

∣∣∣〈w(t)
c , ξ(i)

〉∣∣∣q−1 〈
ξ(i),vk

〉)
≤ Õ

(
ησq−1

0 σqξd
−1/2

)
.

For t = 0, if Ginit holds, maxc∈[C] 〈wc(0),vk〉 ≥ Ω̃(σ0). Then, if σq−1
0 σqξd

−1/2 ≤ o(ρkσq−1
0), we have

max
c∈[C]

〈wc(t+ 1),vk〉 = max
c∈[C]

〈wc(t),vk〉+ Θ

(
ηρkψ

′
(

max
c∈[C]

〈wc(t),vk〉
))

, (21)

which shows maxc∈[C] 〈wc(t),vk〉 is increasing. Then, (21) holds for all t.
Starting from some 〈wc(t

′),vk〉, the number of iterations it takes to reach maxc∈[C] 〈wc(t),vk〉 ≥ 2 maxc∈[C] 〈wc(t
′),vk〉

is at most O
(

maxc∈[C]〈wc(t′),vk〉
ηρk(maxc∈[C]〈wc(t′),vk〉)

q−1

)
. Then, starting from Θ(σ0), it takes at most

Õ

(∞∑
i=0

2iσ0

ηρk(2iσ0)q−1

)
≤ Õ

(
1

ηρkσ
q−2
0

)

time steps to reach maxc∈[C] 〈wc(t),vk〉 ≥ Ω
(
C−1/q

)
.

Lemma 15 (Overfitting the dominant noise). Suppose Ginit holds,C = Θ(log d), n ≤ o
(

min
{
σq−1

0 σqξd
1/2, σq−1

0 σq−1
ξ d1/2

})
and

α ≤ o

(
P−

1
q min

{
1, σ

1
q

ξ d
− 1

2q

(
σ0 + ηT max

k∈[K]
ρk + ηTσξd

−1/2

)− q−1
q

,

(
σ0 + ηT max

k∈[K]
ρk + ηTσξd

−1/2

)−1
})

,

33

for some T ≥ Ω̃
(
nη−1σ−qξ σ−q+2

0

)
.

Let i ∈ [n] be some sample such that for all 0 ≤ t ≤ T , maxc∈[C]

〈
wc(t),vk∗i

〉
≤ O(C−1/q). For any time step

0 ≤ t ≤ T , if
max
c∈[C]

y(i)
〈
wc(t), ξ

(i)
〉
≤ O(C−1/q),

we have

max
c∈[C]

y(i)
〈
wc(t+ 1), ξ(i)

〉
= max
c∈[C]

y(i)
〈
wc(t), ξ

(i)
〉

+
η

n
Θ̃

(
σ2
ξψ
′
(

max
c∈[C]

y(i)
〈
wc(t), ξ

(i)
〉))

.

Moreover, there exists times step T ′ ≤ Õ
(
nη−1σ−qξ σ−q+2

0

)
such that maxc∈[C] y

(i)
〈
wc(T

′), ξ(i)
〉
≥ Ω

(
C−1/q

)
.

Proof. By the upper bound on α and Lemma 11, for any c ∈ [C],∣∣∣∣∣∣∣
∑
k′∈[K]

∑
p∈P(i)

bp,k′

ψ (〈wc(t), αp,ivk′〉)

∣∣∣∣∣∣∣ ≤
∑
k′∈[K]

∑
p∈P(i)

bp,k

|〈wc(t), αp,ivk′〉|q

≤ Õ
(
αqP

(
σ0 + ηT

(
max
k′

ρk′ + σξd
−1/2

))q)
≤ o(1).

For i, when maxc∈[C]

〈
wc(t), vk∗i

〉
≤ O(C−1/q), maxc∈[C] y

(i)
〈
wc(t), ξ

(i)
〉
≤ O(C−1/q) and∣∣∣∣∣∣∣

∑
k∈[K]

∑
p∈P(i)

bp,k

ψ (〈wc(t),−yαp,ivk〉)

∣∣∣∣∣∣∣ ≤ o(1),

we have y(i)F (w(t),x(i)) ≤ O(1) and therefore 1

1+ey
(i)F (w(t),x(i))

≥ Ω(1). Then,

y(i)
〈
wc(t+ 1), ξ(i)

〉
= y(i)

〈
wc(t), ξ

(i)
〉

+
η

n

(
1

1 + ey(i)F (w(t),x(i))
ψ′
(〈

wc(t), ξ
(i)
〉)∥∥∥ξ(i)

∥∥∥2

2

)
+
η

n

∑
j:j 6=i

(
y(i)y(j)

1 + ey(j)F (w(t),x(j))
ψ′
(〈

wc(t), ξ
(j)
〉)〈

ξ(j), ξ(i)
〉)

(22)

+
η

n

n∑
j=1

(
y(i)

1 + ey(j)F (wc(t),x(j))
ψ′
(〈

wc(t),vk∗j

〉)〈
vk∗j , ξ

(i)
〉)

(23)

− η

n

n∑
j=1

 y(i)

1 + ey(j)F (wc(t),x(j))

∑
k∈[K]

∑
p∈P(j)

bp,k

ψ′ (〈wc(t), αp,jvk〉)
〈
αp,jvk, ξ

(i)
〉 . (24)

If 1

1+ey
(i)F (w(t),x(i))

≥ Ω(1), and Ω̃ (σ0σξ) ≤ maxc∈[C] y
(i)
〈
wc(t), ξ

(i)
〉

,

η

n

(
1

1 + ey(i)F (w(t),x(i))
ψ′
(〈

wc(t), ξ
(i)
〉)∥∥∥ξ(i)

∥∥∥2

2

)
≥ Ω̃

(η
n

(σ0σξ)
q−1

σ2
ξ

)
.

When Ginit holds, since 1

1+ey
(i)F (w(t),x(i))

≤ 1, ψ′
(〈

wc(t), ξ
(j)
〉)
≤ 1, and ψ′

(〈
wc(t),vk∗j

〉)
≤ 1, |(22)| ≤

Õ
(
ησ2

ξd
−1/2

)
and |(23)| ≤ Õ

(
ησξd

−1/2
)
.

34

By Lemma 11 and the upper bound on α,

|(24)| ≤ Õ
(
ηαqP max

k∈[K]
|〈wc(t),vk〉|q−1

σξd
−1/2

)
≤ Õ

(
ηαqP (σ0 + ηT (ρk + σξ))

q−1
σξd
−1/2

)
≤ Õ

(
ησξd

−1/2
)
.

When Ginit holds, Ω̃ (σ0σξ) ≤ y(i) maxc∈[C]

〈
wc(0), ξ(i)

〉
. Then, when n ≤ o

(
min

{
σq−1

0 σqξd
1/2, σq−1

0 σq−1
ξ d1/2

})
,

for t = 0,

max
c∈[C]

y(i)
〈
wc(t+ 1), ξ(i)

〉
= max
c∈[C]

y(i)
〈
wc(t), ξ

(i)
〉

+
η

n
Θ̃

(
σ2
ξψ
′
(

max
c∈[C]

y(i)
〈
wc(t), ξ

(i)
〉))

, (25)

which shows maxc∈[C] y
(i)
〈
wc(t), ξ

(i)
〉

is increasing. Then, (25) holds for all 0 ≤ t ≤ T .

Starting from maxc∈[C] y
(i)
〈
wc(t

′), ξ(i)
〉

, the number of iterations it takes to reach maxc∈[C] y
(i)
〈
wc(t), ξ

(i)
〉
≥

2 maxc∈[C] y
(i)
〈
wc(t

′), ξ(i)
〉

is at mostO
(

nmaxc∈[C] y
(i)〈wc(t′),ξ(i)〉

ησ2
ξ(maxc∈[C] y(i)〈wc(t′),ξ(i)〉)q−1

)
. Then, starting from maxc∈[C] y

(i)
〈
wc(0), ξ(i)

〉
≥

Ω̃ (σ0σξ), it takes at most

T ′ ≤ Õ

(∞∑
i=0

n2iσ0σξ
ησ2

ξ (2iσ0σξ)q−1

)
≤ Õ

(
n

ησ2
ξ (σ0σξ)q−2

)

time steps to reach maxc∈[C] y
(i)
〈
wc(T

′), ξ(i)
〉
≥ Ω(C−1/q).

Lemma 16 (Upper bound on 〈wc(t),vk〉). If Ginit holds, for all k ∈ [K] and t ≤ o
(

σ0

ηρkσ
q−1
0 +ησξd−1/2

)
,

max
c∈[C]

〈wc(t),vk〉 ≤ Õ (σ0) .

Proof. For every k ∈ [K],

〈wc(t+ 1),vk〉

= 〈wc(t),vk〉+
η

n

∑
i:k∗i=k

(
1

1 + ey(i)F (w(t),x(i))
ψ′ (〈wc(t),vk〉) ‖vk‖22

)

− η

n

n∑
i=1

 1

1 + ey(i)F (w(t),x(i))

∑
p∈P(i)

bp,k

αp,iψ
′ (〈wc(t), αp,ivk〉) ‖vk‖22

 (26)

+
η

n

n∑
i=1

(
1

1 + ey(i)F (w(t),x(i))
ψ′
(〈

w(t)
c , ξ(i)

〉)
y(i)

〈
ξ(i),vk

〉)
(27)

Then, since 1

1+ey
(i)F (w(t),x(i))

≤ 1 and ψ′ (〈wc(t),vk〉) ≤ O
(
|〈wc(t),vk〉|q−1

)
,

η

n

∑
i:k∗i=k

(
1

1 + ey(i)F (w(t),x(i))
ψ′ (〈wc(t),vk〉) ‖vk‖22

)
≤ O

(
ηρk |〈wc(t),vk〉|q−1

)
.

The second term (26)≤ 0. For (27), since
∣∣∣ y(i)

1+ey
(i)F (w(t),x(i))

∣∣∣ ≤ 1 and ψ′
(〈

w
(t)
c , ξ(i)

〉)
≤ 1, if Ginit holds, (27) ≤

Õ
(
σξd
−1/2

)
.

Finally, if Ginit holds, 〈wc(0),vk〉 ≤ Õ (σ0), so it takes at least t ≥ Ω̃
(

σ0

ηρkσ
q−1
0 +ησξd−1/2

)
time steps to reach

〈wc(t),vk〉 ≥ 2 〈wc(0),vk〉.

35

Lemma 17 (Upper bound on 〈wc(t), ξ
(i)〉). Suppose Ginit holds, n ≤ o

(
min

{
σq−1

0 σqξd
1/2, σq−1

0 σq−1
ξ d1/2

})
and

α ≤ o

(
P−

1
q min

{
1, σ

1
q

ξ d
− 1

2q

(
σ0 + ηT max

k∈[K]
ρk + ηTσξd

−1/2

)− q−1
q

})
,

for some T ≥ Ω̃
(
nη−1σ−qξ σ−q+2

0

)
. For all t ≤ o(nη−1σ−qξ σ−q+2

0) and i ∈ [n], maxc∈[C] y
(i)
〈
wc(t), ξ

(i)
〉
≤

Õ(σ0σξ).

Proof. We prove using induction. At t = 0, when Ginit holds, maxi∈[n],c∈[C] y
(i)
〈
wc(0), ξ(i)

〉
≤ Õ(σ0σξ). Assume

maxi∈[n],c∈[C] y
(i)
〈
wc(t

′), ξ(i)
〉
≤ Õ(σ0σξ) for any 0 ≤ t′ ≤ t for induction. For any c ∈ [C],

y(i)
〈
wc(t+ 1), ξ(i)

〉
= y(i)

〈
wc(t), ξ

(i)
〉

+
η

n

(
1

1 + ey(i)F (w(t),x(i))
ψ′
(〈

wc(t), ξ
(i)
〉)∥∥∥ξ(i)

∥∥∥2

2

)
+
η

n

∑
j:j 6=i

(
y(i)y(j)

1 + ey(j)F (w(t),x(j))
ψ′
(〈

wc(t), ξ
(j)
〉)〈

ξ(j), ξ(i)
〉)

(28)

+
η

n

n∑
j=1

(
y(i)

1 + ey(j)F (wc(t),x(j))
ψ′
(〈

wc(t),vk∗j

〉)〈
vk∗j , ξ

(i)
〉)

(29)

− η

n

n∑
j=1

 y(i)

1 + ey(j)F (wc(t),x(j))

∑
k∈[K]

∑
p∈P(j)

bp,k

ψ′ (〈wc(t), αp,jvk〉)
〈
αp,jvk, ξ

(i)
〉 . (30)

Then, when Ginit holds, by 1

1+ey
(i)F (w(t),x(i))

≤ 1 and ψ′(·) ≤ 1,

y(i)
〈
wc(t+ 1), ξ(i)

〉
≤ y(i)

〈
wc(t), ξ

(i)
〉

+ ηÕ(n−1σq−1
0 σq+1

ξ + σ2
ξd
−1/2 + σξd

−1/2 + αqPσξd
−1/2

(
σ0 + ηT

(
ρk + σξd

−1/2
))q−1

)

≤ y(i)
〈
wc(0), ξ(i)

〉
+ ηtÕ(n−1σq−1

0 σq+1
ξ + σ2

ξd
−1/2 + σξd

−1/2).

The last step uses the upper bound onα and the induction hypothesis. Since n ≤ o
(

min
{
σq−1

0 σqξd
1/2, σq−1

0 σq−1
ξ d1/2

})
and t ≤ o(nη−1σ−qξ σ−q+2

0), maxi∈[n],c∈[C] y
(i)
〈
wc(t), ξ

(i)
〉
≤ Õ(σ0σξ).

Lemma 18 (Bound on 〈wc(t), ξ〉 for ξ from the testing set). Let ξ ∼ N (0, σ2
ξId) be a random noise vector

independent of the dataset. Suppose Ginit holds, C = Θ(log d), n ≤ o
(

min
{
σq−1

0 σqξd
1/2, σq−1

0 σq−1
ξ d1/2

})
,

K ≤ o
(

min
{
σq−1

0 σ−1
ξ d1/2, σq−1

0 d1/2
})

, and

α ≤ o

(
P−

1
q min

{
1, σ

1
q

ξ d
− 1

2q

(
σ0 + ηT max

k∈[K]
ρk + ηTσξd

−1/2

)− q−1
q

,

(
σ0 + ηT max

k∈[K]
ρk + ηTσξd

−1/2

)−1
})

,

for some T = Θ̃
(

max
{
nη−1σ−qξ σ−q+2

0 ,Kη−1σ−q+2
0

})
. With probability at least 1 − nK

polyd , for all c ∈ [C] and
0 ≤ t ≤ T ,

|〈wc(t), ξ〉 − 〈wc(0), ξ〉| ≤ o(σ0σξ).

36

Proof. For any 0 ≤ t < T ,

〈wc(t+ 1), ξ〉

= 〈wc(t), ξ〉+
η

n

n∑
i=1

y(i)

1 + ey(i)F (w(t),x(i))
ψ′
(〈

wc(t), ξ
(i)
〉)〈

ξ(i), ξ
〉

+
η

n

n∑
i=1

(
1

1 + ey(i)F (w(t),x(i))
ψ′
(〈
wc(t),vk∗i

〉) 〈
vk∗i , ξ

〉)

− η

n

n∑
i=1

 1

1 + ey(i)F (w(t),x(i))

∑
k∈[K]

∑
p∈P(i)

bp,k

ψ′ (〈wc(t), αp,ivk〉) 〈αp,ivk, ξ〉

 .

By Lemma 4, with probability at least 1 − nK
polyd , for all i ∈ [n],

〈
ξ(i), ξ

〉
≤ Õ(σ2

ξd
−1/2) and for all k ∈ [K],

〈vk, ξ〉 ≤ Õ(σξd
−1/2). Then, by 1

1+ey
(i)F (w(t),x(i))

≤ 1 , ψ′
(〈

wc(t), ξ
(i)
〉)
≤ 1, ψ′

(〈
wc(t),vk∗i

〉)
≤ 1 and

ψ′ (〈wc(t), αp,ivk〉) ≤ 1,

|〈wc(t+ 1), ξ〉 − 〈wc(t), ξ〉|

≤ Õ(ησ2
ξd
−1/2) + Õ(ησξd

−1/2) + Õ

(
ηαqPσξd

−1/2

(
σ0 + ηT

(
max
k′

ρk′ + σξd
−1/2

))q−1
)

≤ ηÕ(σ2
ξd
−1/2 + σξd

−1/2).

The second step uses Lemma 11. The third step uses the upper bound on α. Summing over 0 ≤ t′ ≤ t,

|〈wc(t), ξ〉 − 〈wc(0), ξ〉| ≤ ηT Õ(σ2
ξd
−1/2 + σξd

−1/2).

When n ≤ o
(

min
{
σq−1

0 σqξd
1/2, σq−1

0 σq−1
ξ d1/2

})
, K ≤ o

(
min

{
σq−1

0 σ−1
ξ d1/2, σq−1

0 d1/2
})

, and

T ≤ Õ
(

max
{
nη−1σ−qξ σ−q+2

0 ,Kη−1σ−q+2
0

})
,

|〈wc(t), ξ〉 − 〈wc(0), ξ〉| ≤ o(σ0σξ).

37

	1 Introduction
	2 A mathematical model for understanding feature manipulation
	2.1 Learning algorithm
	2.2 Clarification on capacity in this model
	2.3 Our argument in a nutshell
	2.4 Linear and tensor models

	3 Overview of gradient descent dynamics
	3.1 When you really learn...
	3.2 ... and when you overfit ...
	3.3 ... and in what order

	4 Main Results
	5 Experiments
	5.1 Spurious Feature
	5.2 Augmented samples vs. independent samples
	5.3 Unbalanced Dataset

	A Useful concentration lemmas
	B Additional notation
	C Proof of initialization conditions in Lemma 1
	D Linear models
	E Proof of the Main Results
	E.1 Dynamics of network weights: learning features and noise
	E.2 Proof of main results from Lemmas in Appendix E.1

	F Deferred Proof of Lemmas in Appendix E

