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Abstract

We consider the problem of learning an unknown ReLU network with respect to Gaussian
inputs and obtain the first nontrivial results for networks of depth more than two. We give
an algorithm whose running time is a fixed polynomial in the ambient dimension and some
(exponentially large) function of only the network’s parameters.

Our bounds depend on the number of hidden units, depth, spectral norm of the weight
matrices, and Lipschitz constant of the overall network (we show that some dependence on the
Lipschitz constant is necessary). We also give a bound that is doubly exponential in the size
of the network but is independent of spectral norm. These results provably cannot be obtained
using gradient-based methods and give the first example of a class of efficiently learnable neural
networks that gradient descent will fail to learn.

In contrast, prior work for learning networks of depth three or higher requires exponential
time in the ambient dimension, even when the above parameters are bounded by a constant. Ad-
ditionally, all prior work for the depth-two case requires well-conditioned weights and /or positive
coefficients to obtain efficient run-times. Our algorithm does not require these assumptions.

Our main technical tool is a type of filtered PCA that can be used to iteratively recover an
approximate basis for the subspace spanned by the hidden units in the first layer. Our analysis
leverages new structural results on lattice polynomials from tropical geometry.

1 Introduction

We study the problem of learning the following class of concepts:

Definition 1.1 (ReLU Networks). Let Cg denote the concept class of (feedforward) ReLU net-
works over R? of size S. Specifically, F' € Cg if there exist weight matrices W € RF*d W, ¢
RFixko W € RFLxkr-1 Wy, € RYFL for which

F(z) = Wr¢(Wro(---¢(Woz)---)),

where ¢(2) £ max(z,0) is the ReLU activation applied entrywise, and ko + - -+ + kz, = S. In this
case we say that F'is computed by a ReLU network with depth L + 2. We will refer to the rank of
W, as k, to emphasize that the value of F' only depends on a k-dimensional subspace of R%. We
will also let kr.1 = 1.
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When the weight matrices of two ReLU networks F, F’ € Cg have the same dimensions (at all
layers), then we say that F' and F’ have the same architecture.

For example, a depth two ReLU network of size S in d-dimensions is a function F : R¢ — R of
the form

S
Fz) =3 nio((wi, ),
i=1

where \; € R are scalars and w; € R? are arbitrary vectors.

Note that any Boolean function F' : {£1}" — {£1} can be computed by an n-layer ReLU
network (see Lemma A.2 in Appendix A.2). In particular, if F' is a junta depending only on k
variables, then it can be computed by a k-layer ReLU network with size that depends only on k.

Learning ReLU Networks The problem of PAC learning an unknown ReLU network from
labeled examples is a central challenge in the theory of machine learning. Given samples from a
distribution of the form (z,y) € R% x R where y = F(x) with F an unknown size-S ReL.U network,
and z is drawn according to a distribution D, the goal is to output a function f : R® — R with
small test error, i.e., Eqy[(y — f(2))?] < eE[y?]. In this work, we focus on the widely studied case
where the input distribution on z is Gaussian.

Ideally, we would like an algorithm with sample complexity and running time that is polynomial
in all the relevant parameters. As a first step, the algorithm should depend polynomially on the
dimension (it is often easy to obtain brute-force search algorithms that run in time exponential
in the dimension'). Even this goal, however, has been elusive: it is not known how to achieve
subexponential-time algorithms for general depth two ReLU networks (without making additional
assumptions on the network).

In this work, we give the first algorithm for learning ReLLU networks whose running time is a
fixed polynomial in the dimension, regardless of the depth of the network. Our algorithm is fized-
parameter tractable: we show that we can properly learn (i.e., the output hypothesis is also a ReLU
network) ReLU networks with sample complexity and running time that is a fixed polynomial in
the dimension and an exponential function of the network’s parameters.

More precisely, our main result is as follows. We will also make the (as it turns out necessary)
assumption that the ReLU network has a bounded Lipschitz constant: a function f : R¢ — R is
A-Lipschitz if |f(x) — f(2)] < Aljxz — 2'||2 for all z, 2.

Theorem 1.2 (Main, see Theorem 5.2 for formal statement). Let D be the distribution over pairs
(z,y) € R x R where x ~ N(0,1d) and y = F(x) for a size-S ReLU network F with depth L + 2,
Lipschitz constant at most A, rank of bottom weight matrix Wq being k, and whose weight matrices
all have spectral norm at most B.

_ There is an algorithm that draws dlog(21/5) exp (poly(k, S, A/e)) BOEF) samples, Tuns in time
O(d?log(1/6)) exp (poly(k, S, A/e)) BOUEFST) - and outputs a ReLU network F such that E[(y —

F(z))?] < & with probability at least 1 — §.?

Note that the sample complexity is linear while the run-time is quadratic in the ambient di-
mension. In particular, in the well-studied special case where the product of the spectral norms of
the weight matrices is a constant (see e.g. [GRS18]), in which case the Lipschitz constant of the
network is also constant, we can obtain the following corollary:

! Although in our specific case even this type of search turns out to be nontrivial.
2See Remark 5.3 for a discussion of why this guarantee is scale-invariant.



Corollary 1.3. Let D be the distribution over pairs (v,y) € R x R where x ~ N(0,1d) and
y = F(x) for a size-S ReLU network F for which the product of the spectral norms of its weight
matrices s a constant.

Then there is an algorithm that draws N = dlog(1/8) exp(O(k?/e* +kS)) samples, runs in time
O(d*1og(1/6)) exp(O(k352 /e2+kS3)), and outputs a ReLU network F such that E[(y— F(z))?] < e
with probability at least 1 — 6.

As mentioned earlier, no algorithms that were sub-exponential in d were known even for S, B, e
being constants.

Before going further, we note that a dependence on the Lipschitz constant of the network is
necessary even for learning depth two RelLU networks with respect to Gaussians:

Example 1.4. Let A > 0. Consider the size-3, depth two ReLU network F : R?2 — R given by
F(x1,m9) = ¢(x1 + Axa) + ¢(3x1 + Axg) — 2¢(—x1 + Axo).

The Lipschitz constant of F is O(A): F(0,1/A) =1 and F(1,1/A) = 2. Furthermore, note that
for (x1,22) € SY, F(z1,72) = 0 unless z2 € [-3/A,3/A]. By rotational symmetry, for (x1,z2) ~
N(0,1d), F(z1,x2) # 0 with probability at most O(1/A).

Note that for depth two ReLU networks with positive weights, no such dependence on the
Lipschitz constant is necessary intuitively because without cancellations between the hidden units,
one cannot devise “spiky” functions F' which simultaneously have small variance but attain a large
value at some bounded-norm z.

Interestingly, our techniques are also general enough to handle general continuous piecewise-
linear functions (see Definition 4.2 for a formal definition):

Theorem 1.5 (See Theorem 5.1 for formal statement). Let D be the distribution over pairs (x,y) €
RY x R where x ~ N(0,1d) and y = F(x) for a continuous piecewise-linear function F which only
depends on the projection of x to a k-dimensional subspace V', has at most M linear pieces, and is
A-Lipschitz.

There is an algorithm that draws dlog(1/§) - poly (exp (k3A2/62) ,Mk) samples, runs in time
O(d?10g(1/8)) - MM* . poly (exp (k*A? /%) ,Mkz), and outputs a piecewise-linear function F such
that E[(y — F(x))2] < e with probability at least 1 — 6.

Note that a size-S ReLU network is a continuous piecewise-linear function with at most 2°
linear pieces. Specializing Theorem 1.5 to ReLLU networks gives a guarantee which is incomparable
to Theorem 1.2: we obtain an algorithm that depends doubly exponentially on S but has no
dependence on the norms of the weight matrices.

1.1 Prior Work on Provably Learning Neural Networks

Algorithmic Results Algorithms for learning neural networks (obtaining small test error) have
been intensely studied in the literature. In the last few years alone there have been many pa-
pers giving provable results for learning restricted classes of neural networks under various set-
tings [JSA15, ZLJ16, ZSJ*t17, BG17, GKKT17, LY17, ZPS17, Tial7, GKM18, DLT18, GLM18,
GKLW18, MR18, BJW19, GK19, AZLL19, VW19, ZYWG19, DGK 20, GMOV18, LMZ20].

The predominant techniques are spectral or tensor-based dimension reduction [JSA15, ZSJ 17,
BJW19, DKKZ20], kernel methods [ZLJ16, GKKT17, Dan17, MR18, GK19], and gradient-based
methods [GLM18, GKLW18, VW19]. All prior work takes distributional and/or architectural



assumptions, the most common one being that the inputs come from a standard Gaussian. We will
also work in this setting.?

As pointed out in [GGJT20, DGK™20], all existing algorithmic results for Gaussian inputs hold
only for depth two networks and make at least one of two assumptions on the unknown network F
in question:

Assumption (1) Weight matrix W is well-conditioned and, in particular, full rank.

Assumption (2) The vector at the output layer (W7 when L = 0) has all positive entries.

Assumption (1) allows one to use tensor decomposition to recover the parameters of the network
and hence PAC learn, an idea that has inspired a long line of works [JSA15, ZSJ"17, GLMIS,
GKLW18, BJW19]. However, the assumption is not necessary for PAC learning or achieving low-
prediction error. For instance, consider a pathological case where Wy has repeated rows. Here,
while parameter recovery is not possible it is still possible to PAC learn. To our knowledge, the only
work that can PAC learn depth two networks over Gaussian inputs without a condition number
bound on Wy is [DKKZ20]. However, their work still requires assumption (2) (and only holds for
depth two networks). Our work shows that assumption (2) is neither information-theoretically nor
computationally necessary.

Limitations of Gradient-Based Methods Two recent works [GGJ ™20, DKKZ20] showed that
a broad family of algorithms, namely correlational statistical query (CSQ) algorithms, fail to PAC
learn even depth two ReLU networks; that is, functions of the form F(z) = Zle Aid({v;, x)) with
respect to Gaussian inputs in time polynomial in d where d is the ambient dimension (in fact,
[DKKZ20] rules out running time do(k)). Informally, a CSQ algorithm is limited to using noisy
estimates of statistics of the form E[y - o(z)] for arbitrary bounded o, where the expectation is over
examples (z,y) and y = F(z) is computed by the network. The point is that this already rules
out a wide range of algorithmic approaches in theory and practice, including gradient descent on
overparameterized networks (i.e., using neural tangent kernels [JGH18] or the mean-field approxi-
mation for gradient dynamics [MMN18]). Note that the algorithms of [DKKZ20] for learning depth
two ReLU networks with positive coefficients are CSQ algorithms as well.

Note that as a consequence of Theorem 1.2, for any ¢ a function of k, our algorithm can learn
the lower bound instances in [GGJ'20, DKKZ20] to error ¢ in time g(k) - poly(d) for some g (note
that the norm bounds and Lipschitz constants for these instances are upper bounded by functions
of k), which is impossible for any CSQ algorithm. We explain why our algorithm is not a CSQ
algorithm in Section 2.

For the classification version of this problem (i.e., taking a softmax) where we observe Y € {0, 1}
such that E[Y|X] = o(f(X)) where o is say sigmoid and f(X) is a depth two ReLU network, Goel
et al. [GGJT20] show that even general SQ algorithms cannot achieve a runtime with polynomial
dependence on the dimension. We also remark there is an extensive literature of previous work
showing various hardness results for learning certain classes of neural networks [BR89, Vu06, KS09,
LSSS14, GKKT17, SVWX17, SSSS17, Shal8, VW19, GKK19, DV20]. We refer the reader to
[GGJT20] for a discussion of how these prior works relate to the above CSQ lower bounds.

1.2 Other Related Work

Multi-Index Models Functions computed by ReLU networks where Wy has fewer rows than
columns are a special case of a multi-index model, that is, a function F : R? — R given by

30ther works such as [AZLL19)] or kernel-based methods [ZLJ16, CKKT17] require strong norm-based assumptions
on the inputs and weights.



F(z) = f(WTz) for some matrix W € R¥*4 and some function f : R¥ — R. In the theoretical
computer science literature, these are sometimes referred to as subspace juntas [VX11, DMN19].

One of the strongest results in this line of work, and the closest in spirit to the setting we
consider, is that of [DH18|, which gives various conditions on f under which one can recover W
(under Gaussian inputs) in the special case where k = 1, as well as a vector in the row span
of W in the case of general k (although these results do not hold for ReLU). In general, the
literature on multi-index models is vast, and we refer to [DH18] for a comprehensive overview of
this body of work. Many works were inspired by a simple but powerful connection to Stein’s lemma
[Li92, Bril2, PV16], which was also a key ingredient in the above algorithms for learning neural
networks using tensor decomposition. One technique in this literature which is somewhat similar
in spirit to the techniques we employ in this work is that of sliced inverse regression [BBT 18, Li91],
and we elaborate in Remark 2.1 on this connection.

Piecewise-Linear Regression Lastly, we mention that previous works on segmented regression
(see e.g. [ADLS16] on the references therein) study regression for piecewise-linear functions but
work with a different notion of piecewise-linearity that is unrelated to our setting.

2 Proof Overview

Suppose we are given samples (z,y) where y = F(x) is computed by a size S ReLU network as
in Definition 1.1. Let V C R? denote the span of the rows of Wy and let k be its dimension. We
will call V' the relevant subspace, because the value of F' only depends on the projection of x to
V. In particular, we can write y = F’'(Ily (z)) for some function F' : V — R that is itself a size S
ReLU network and IIy denotes the projection operator onto V. The main focus of our algorithm
will be in figuring out the relevant subspace V' given samples (x,y). This is the hardest part of the
algorithm, because once we learn the relevant subspace to high enough accuracy, we can grid-search
over ReLU networks in this subspace. Even this grid search turns out to be non-trivial to analyze
and entails proving new stability results for piecewise-linear functions.

Filtered PCA Our algorithm builds upon the filtered PCA approach, originally introduced in
[CM20] for the purposes of learning low-degree polynomials over Gaussian space.* For any 1 : R —
R, let My, £ E[¢(Y)(XXT —1d)]. A basic but important observation is that for any choice of 1, all
vectors orthogonal to the true subspace V' are in the kernel of My,. A natural idea for identifying
the true subspace then is to look at the nonzero singular vectors of M, for a suitable 1. If we
could show that My, has k nonzero singular values all bounded away from 0 by some dimension-
independent margin ¢(1)), then we could hope to approximately recover V' by empirically estimating
My, using O(d/c(1)?), invoking standard matrix concentration, and computing its top-k singular
subspace. So the main hurdle is to identify an appropriate 1 for which this is the case.

What should the 1) be? For instance if v is the identity function, then the matrix M, could
be identically zero. This is an essential difference between our setting and the setting studied in
previous works [DKKZ20, GLM18] (in the L = 0 case) where the output layer’s coefficients are all
positive, for which this choice of ¥ would suffice to recover the relevant subspace.

Note that this is consistent with the CSQ lower bounds of [GGJ 20, DKKZ20], as any algorithm
that just tries to use the spectrum of M, for ¢) being the identity function would be a CSQ

4For readers familiar with the approach there, we explain in Remark 5.15 why a straightforward application of
the algorithm there cannot work.



algorithm. Indeed, for any of the ‘hard’ functions F' from those works which are ReL U networks
with L = 0 we would have M,, = 0 if ¢ is the identity function.

We will choose ¥ not equal to the identity, and in this way our algorithm will be non-CSQ and
evade the aforementioned CSQ lower bounds.

Threshold Filter. Motivated by [CM20], our starting point in the present work is to consider
1 given by a univariate threshold, that is, ¥(z) = 1[|z| > 7] for suitable 7. For brevity, for 7 € R
define M, = E, ,[1[|y| > 7](x2T —1d)]. Then we have that

(v, M) = E [1]ly] > 7]- ([Tv)® — k).

In particular, if one could choose 7 for which |F(z)| > 7 only if ||IIyz||* > 2k °, then we would
conclude that (ITy,, M) > k- P[ly| > 7], so some singular value of M is at least P[ly| > 7|. If
F is A-Lipschitz, we can simply choose 7 to be v/2k - A, and provided P[|y| > 7] is reasonably
large, then we conclude that IV has some reasonably large singular value. Finally, to lower bound
P[ly| > 7], we prove an anti-concentration result for piecewise linear functions over Gaussian space
(Lemma 5.4).

In other words, if one conditions on the samples (x,y) whose responses y are sufficiently large
in magnitude, then we show that the resulting distribution is noticeably non-Gaussian in some
direction, and by taking the top singular vector of the conditional covariance, we can approximately
recover some direction inside the relevant subspace V.5

Unfortunately, all that the above analysis tells us is that the trace of M., is non-negligible
which in turn helps us guarantee that we identify at least one direction in V. It is not at all
clear whether the above threshold approach is enough to identify more than just one vector in the
relevant subspace. Indeed, recovering the full relevant subspace turns out to be significantly more
challenging, and the core technical contribution of this work is to show how to do this.

Remark 2.1 (Relation to Sliced Inverse Regression). The trick of conditioning only on (z,y) for
which |y| is sufficiently large is reminiscent of the technique of slicing originally introduced by [Li91]
in the context of learning multi-index models. The high-level idea of slicing is that for any fixed
value of y, the conditional law of z|F(z) = y is likely to be non-Gaussian in most directions v € V/,
so in particular, E[zz" — Id | F(z) = ] should be nonzero, and its singular vectors will lie in V.
This can be thought of as filtered PCA with the choice of function 1(z) = 1[z = y]. The first issue
with using such an approach to get an actual learning algorithm is that P,[F(z) = y] = 0 for any y,
and the workaround in non-asymptotic analyses of sliced inverse regression [BB 18] is to estimate
something like E,[E[zz" —Id | F(z) = y]] instead. While finite sample estimators for such objects
are known, the conditions under which this approach can provably recover the relevant subspace
are quite strong and not applicable to our setting.

Learning the Full Subspace: What Doesn’t Work One might hope that a more refined
analysis shows that for a suitable 7, the spectrum of M, can identify the entire subspace V. Given

5The choice of 2k here is for exposition; any bound noticeably more than k, e.g., k + 1 will do.

®Note that while the goal is to reweight the distribution over z to look non-Gaussian in some relevant direction,
the main challenge once we’ve fixed a reweighting is not to identify that non-Gaussian subspace, which in our setting
is trivial and does not require any of the more sophisticated techniques in the non-Gaussian component analysis
literature (e.g. [Verl0, GS19]), but to argue that the new distribution is indeed non-Gaussian in some direction in
V. In a similar vein, while the work [VX11] gives some moment-based conditions under which it is possible to learn
multi-index models over Gaussian inputs, it seems highly nontrivial to verify whether such conditions actually hold
for ReLU networks, and in addition their results seem tailored to {0, 1}-valued functions.



that we can already learn some w € V with the threshold approach above, a first step would be to
try to find a direction in V orthogonal to w, by lower bounding the contribution to the Frobenius
norm of M from vectors orthogonal to w. Concretely, letting Iy~ () denote the projector to the
orthogonal complement of w in V', we have that

(v pup M2) = B [lly] > 7] ([T gyl = (k= 1)

As before, if one could choose 7 for which |F(z)| > 7 only if |’HV\{w}$H2 > k, and if we could
lower bound P[|y| > 7], then we would conclude that (Ily ), M7) > P[|y| > 7], so M has some
other singular vector, orthogonal to w, with non-negligible singular value. The issue is that such a
T typically does not exist! For z satisfying HHV\{U,}:E||2 < k, F(x) can be arbitrarily large, because
|IL,z|| can be arbitrarily large.

It may be possible to lower bound the quantity in (3.17) using a more refined argument, but
for general deep ReLLU networks or piecewise linear functions, this seems very challenging. At the
very least, one must be careful not to prove something too strong, like showing that v' M, v is
non-negligible for any unit vector v € V. For instance, even when L = 0, it could be that all
but one of the rows of Wy lie in a proper subspace W C V', and for the remaining row u of Wy,
[Thy\wull/[[u]| is arbitrarily small. In this case, for v in the direction of Ily\y u, the quadratic
form v M., is arbitrarily small, and it would be impossible to recover all of V from a reasonable
number of samples.

More generally, any proposed algorithm for learning all of V' had better be consistent with the
fact that it is impossible to recover the full subspace V within a reasonable number of samples if
almost all of the variance of F' is explained by some proper subspace W C V', or equivalently, if the
“leftover variance” E.[(F(x) — F(Ilyyx))?] is negligible. We emphasize that this is a key subtlety
that does not manifest in previous works that consider full-rank, well-conditioned weight matrices.

Learning the Full Subspace: Our Approach We now explain our approach. At a high level,
we try to learn orthogonal directions inside the relevant subspace in an iterative fashion. The
threshold filter approach above already gives us a single direction in V. Suppose inductively that
we’ve learned some orthogonal vectors wi,...,wpy € V spanning a subspace W C V and want to
learn another (note that technically we can only guarantee wi, ..., wy are approximately within V|
but let us temporarily ignore this for the sake of exposition). Motivated by the above consideration
regarding “leftover variance,” we proceed by a win-win argument: either the leftover variance
already satisfies E,[(F(z) — F(Ilyyx))?] < ¢ in which case we are already done, or we can learn a
new direction via the following crucial modification of the threshold filter.
First, as a thought experiment, consider the following matrix

MY £ Ty. E [1ly — F(Mwa)| > 7] - (ez" - Id)]HWL.
T,y

Note the critical fact that we threshold on y — F(Ilyyz) as opposed to just on y. As before, it
is not hard to show that if this matrix is nonzero, then its singular vectors with nonzero singular
value must lie in Wq and be orthogonal to W; thus giving us a new direction in Wy. We claim
that if the leftover variance is non-negligible, then the above matrix will give us a new direction in
w.

The intuition behind the above matrix is as follows. Let V\W denote the subspace of V
orthogonal to W. We can write F'(z) = F/(Ilyx) = F(Ilwz + Ily\wz). Now, as F is Lipschitz, we
can bound G(z) = y — F(lwx) = F(wx + I\ ) — F(Ilyz) as |G(x)| < AllILwz|?, where
A is the Lipschitz constant of F. In other words, G(x) is bounded over z for which [[TIy\p -z is

7



bounded. Recall that the fact that F(x) is not bounded over such z was the key obstacle to using
the original threshold filter approach to learn the full subspace.

The upshot is that for a suitably large 7, the only contribution to the matrix MY should
be from inputs x that have large projection in V' \ W. We are now in a position to adapt the
analysis lower bounding (IIy, M) to lower bounding (HV\W,MKV ). In particular, we can apply
the aforementioned anti-concentration for piecewise linear functions to the function G and argue
that, provided the leftover variance E,[(F(z) — F(Ilyx))?] = E.[G(x)?] is non-negligible, the top
singular vector of MY will give us a new vector in V'\ W.

That being said, an obvious obstacle in implementing the above is that along with not knowing
the true subspace Wy, we also don’t know the true function F. This precludes us from forming
the matrix MY as defined above.

To get around this, we will enumerate over a sufficiently fine net of ReLU networks F with
relevant subspace W, one of which will be close to the ReLLU network F'(IIyyx). For each F , we will
form the matrix s

MY 210, 1]y — F(lya)| > 7] - (e — Id)]HWL. (1)
.y

and output the top singular vector as our new direction only if it has non-negligible singular value.

Arguing soundness, i.e. that this procedure doesn’t yield a “false positive” in the form of an
erroneous direction lying far from V, is not too hard. However, analyzing completeness, i.e. that
this procedure will find some new direction, is surprisingly subtle (see Lemma 5.13). Formally, we
need to argue that if we have an approximation F to the true F (under some suitable metric), then
the corresponding matrix MZV is close to the matrix M. This is further complicated by the fact
that ultimately, we will only have access to a subspace W which is approrimately in V', as every
direction we find in our iterative procedure is only guaranteed to mostly lie within V.

Our key step in proving this is showing a new stability property of affine thresholds of piecewise
linear functions and makes an intriguing connection to lattice polynomials in tropical geometry.

Stability of Piecewise Linear Functions Following the above discussions, to complete our
analysis we need to show stability of affine thresholds of ReLU networks in the following sense: if
F,F : RY - R are two RELU networks that are close in some structural sense (i.e., under some
parametrization), then E[1[|F(z)| > 7](zzT — Id)] ~ E[1 [|~F($)| > 7)(z2” — Id)]. A natural way
to approach the above is to upper bound P[|F(z)| > 7 A |F(x)| < 7]. That is, affine thresholds of
ReLU networks that are structurally close disagree with low probability.

A natural way to parametrize closeness is to require the weight matrices of the two networks
F,F to be close to each other. While such a statement is not too difficult to show for depth two
networks (by a union bound over pairs of ReLUs), proving such a statement for general ReLLU
networks using a direct approach seems quite challenging. We instead look at proving such a
statement for a more general class of functions - continuous piecewise-linear functions which allows
us to do a certain kind of hybrid argument more naturally.

Concretely, we show that affine thresholds of piecewise-linear functions that are close in some
appropriate structural sense disagree with low probability over Gaussian space. We will elaborate
upon the notion of structural closeness we consider momentarily, but for now it is helpful to keep
in mind that it specializes to Lo distance for linear functions.

Lemma 2.2 (Informal, see Lemma 5.6). Let F,ﬁ : R? — R be piecewise-linear functions, both
consisting of at most m linear pieces, which are “(m,n)-structurally-close” (see Definition 4.10).
For any 7 > 0,

P ||[F(z)| > 7 A|F(2)| < 7| < O(nm?/7). (2)
z~N(0,1d)



To get a sense for this, suppose F, F were even close in the sense that the polyhedral regions
over which F is linear are identical to those over which F is linear, and furthermore E[(F(z) —
ﬁ(az))z]l/2 < 7. Then if we take for granted that Lemma 2.2 holds when m = 1, i.e. when F,F
are linear (see Lemma 5.7), it is not hard to show an O((nm/7)¢) upper bound in (2) under this
very strong notion of closeness for some ¢ < 1. Because F' and F are Lo-close as functions, for
any ¢t > 0 we have that with probability 1 — O(n?/t?) the input z ~ A(0,Id) lies in a polyhedral
region for which the corresponding linear functions for F' and F are t-close. By the m = 1 case
of Lemma 2.2, over any one of these at most m regions, the affine thresholds 1[|F(z)| > 7| and
1[|F(z)| > 7] disagree with probability O(t/7). Union bounding over these regions as well as the
event of probability 72/t? that x does not fall in such a polyhedral region, we can upper-bound
the left-hand side of (2) by O(n?/t? + mt/7), and by taking t = (n?7/m)'/3, we get a bound of
(ym? /7).

The issues with this are twofold. First, recall the function F that we want to apply Lemma 5.6
to is obtained from some enumeration over a fine net of ReLLU networks. As such there is no way
to guarantee that the polyhedral regions defining F' and F are exactly the same, making adapting
the above argument far more difficult, especially for general ReLLU networks.

Second, we stress that the linear scaling in O(n) in (2.2) is essential. If one suffered any
polynomial loss in this bound as in the above argument, then upon applying Lemma 2.2 k times over
the course of our iterative algorithm for recovering V', we would incur time and sample complexity
doubly exponential in k. The reason is as follows.

Recall that in the final argument we can only ensure that the directions wy, .. . , wy we have found
so far are approzimately within V', and the parameter 7 will end up scaling with an appropriate
notion of subspace distance between W and the true space V. On the other hand, the bound
we can show on how far MY deviates from MY in spectral norm will essentially scale with the
right-hand side of (2.2). So if we could only ensure ]\Aﬂ/v and MW are O(n°)-close in spectral norm
for ¢ < 1, then if we append the top eigenvector of ]\77W to the list of directions w1, ..., wy we have
found so far, the resulting span will only be O(n°)-close in subspace distance. Iterating, we would
conclude that for the final output of the algorithm to be sufficiently accurate, we would need the
error incurred by the very first direction w; found to be doubly exponentially small in k!

Lattice Polynomials It turns out that there is a clean workaround to both issues: passing to
the lattice polynomial representation for piecewise-linear functions. Specifically, we exploit the
following powerful tool:

Theorem 2.3 ([Ovc02], Theorem 4.1; see Theorem 4.9 below). If F is continuous piecewise-linear,
there exist linear functions {gi};c(py and subsets T, ..., I, C [M] for which

ﬂ@—g%ggﬂ@- (3)

In fact, our notion of “structural closeness” will be built around this structural result. Roughly
speaking, we say two piecewise linear functions are structurally close if they have lattice polynomial
representations of the form (3) with the same set of clauses and whose corresponding linear functions
are pairwise close in L (see Definition 4.10).

At a high level, Theorem 2.3 will then allow us to implement a hybrid argument in the proof
of Lemma 2.2 and carefully track how the affine threshold computed by a piecewise-linear function
changes as we interpolate between F' and F. In this way, we end up with the desired linear
dependence on 7 in (2.2).



With Lemma 2.2 in hand, we can argue that even with only access to a subspace W approxi-
mately within V' and with only a function F that approximates F'(Ilyyx), the top singular vector
of (1) mostly lies within V', and we can make progress.

Finally, we remark that as an added bonus, Theorem 4.9 also gives us a way to enumerate over
general continuous piecewise-linear functions! In this way, we can adapt our algorithm for learning
ReLU networks to learning arbitrary piecewise-linear functions, with some additional computational
overhead (see Theorem 5.1).

Enumerating Over Piecewise-Linear Functions and ReLU Networks There is in fact
one more subtlety to implementing the above approach for ReLU networks and getting singly
exponential dependence on k.

First note that whereas one can always enumerate over functions computed by lattice polyno-
mials of the form (3) in time exp(poly(M)) (see Lemma 4.14), for ReLU networks of size S this can
be as large as doubly exponential in S. Instead, we enumerate over ReLLU networks in the naive
way, that is, enumerating over the exp(O(S)) many possible architectures and netting over weight
matrices with respect to spectral norm, giving us only singly exponential dependence on S.

Here is the subtlety. Obviously two ReLU networks with the same architecture and whose
weight matrices are pairwise close in spectral norm will be close in Ly. But how do we ensure
that the corresponding lattice polynomials guaranteed by Theorem 2.3 are structurally close? In
particular, getting anything quantitative would be a nightmare if the clause structure of these
lattice polynomials depended in some sophisticated, possibly discontinuous fashion on the precise
entries of the weight matrices.

Our workaround is to open up the black box of Theorem 2.3 and give a proof for the special
case of ReLLU networks from scratch. In doing so, we will find out that there are lattice polynomial
representations for ReLU networks which only depend on the architecture and the signs of the
entries of the weight matrices (see Theorem 4.15). In this way, we can guarantee that a moderately
fine net will contain a network which is structurally close to the true network.

3 Technical Preliminaries

In this section we collect notation and technical tools that will be useful in the sequel.

3.1 Miscellaneous Notation and Definitions

We will use [|||,, to denote the L, norm of a vector or of a random variable. When the random
variable is given by a function over Gaussian space, e.g. F(x) for z ~ N(0,1d) and F : R¢ — R, we
use the short-hand ||F'[|, to denote E,n(0,1a) [F(:E)p]l/p. When p = 2, we will omit the subscript.
We use [|-[|,, and |||z to denote operator and Frobenius norms respectively. When we refer to a
function as A-Lipschitz, unless stated otherwise we mean with respect to Lo.

Given a subspace V' C R%, let IIyy denote the orthogonal projector to that subspace. Let
Sy € R? denote the set of vectors in V' of unit norm. When the ambient space R? is clear from
context, we let V1 denote the orthogonal complement of V. For a subspace W C V', we will denote
the orthogonal complement of W inside V' by V\W.

Given z € R, let N(0,1,2) denote the standard Gaussian density’s value at z. Let erfc(z) =
Pgn0,1)llg] > 2] (note that we eschew the usual normalization). Let x7, denote the chi-squared
distribution with m degrees of freedom.
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Recall that we denote the ReLU activation function by ¢(z) £ max(z,0). Additionally, for
n >0, let clip, : R — R denote the function given by

_ z if|z| <n
clip, (z) =
pn( ) {O otherwise

Overloading notation, given a vector v € R™, we will use clipn(v) to refer to the vector in R™
obtained by applying clip, entrywise.
We will use the following basic property of the clipping operation:

Fact 3.1. Suppose v,v' € R™ satisfy ||v — v'||, < n, and define v" £ clip,(v'). Then for any
i€ [m], v;vf >0.

Proof. If v > 0, then v] = v, > n and by triangle inequality, v; > 0. Similarly, if v/ < 0, then
vl = v} < —n and by triangle inequality, v; < 0. O

Lastly, we will use V and A to denote max and min respectively. The following class of functions
will be useful for us.

Definition 3.2. The set of lattice polynomials over the reals is the set of real-valued functions
defined inductively as follows: for any d > 1, any constant real-valued function R¢ — R is a
lattice polynomial, and any function A : R? — R which can be written as h(z) = f(x) V g(z) or
h(z) = f(x) A g(z) for two lattice polynomials f,g: R? — R is also a lattice polynomial.

3.2 Concentration and Anti-Concentration

Fact 3.3 (Elementary anticoncentration). If Z is a random wvariable for which |Z| < M almost
surely, and E[Z?] > o2, then P[|Z| > t] > 5z (0? — t2).

Proof. We have
o’ <E[Z%] =E[Z°||2| > t] -P[Z| > t] + E[ 2 | |Z| < t] - P[|Z]| < {]
< M?-P|Z| > 1] + %
from which the claimed bound follows upon rearranging. O

t'67t2/2

Fact 3.4. For any integer m > 1 and t > 0, erfe(z) > \/2/m - “5q—.

Fact 3.5. The function f:R>o — R given by f(z) = erfc(1/y/z) - z is convex over R>q.
Proof. We can explicitly compute

e—l/2z(1 + Z)

225/2\/2m

which is clearly nonnegative for any z > 0. U

f'(z) =

Lemma 3.6 ([Ver10]). Let f : R — [0,1] be any function. Let M = Eyar(0,1d,)Lf () - (zzT —1d)].
For any ,0 >0, if x1,...,xn ~ N(0,1dg) for N =Q (a%(d+ log 1/5)), then

P >e| <.

1
‘M ~ N El:f(xz) (wgz] —1d)

op
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Proof. This follows from standard sub-Gaussian concentration; see e.g. Remark 5.40 in [Ver10]. O

Fact 3.7 (Sub-exponential tail bounds, see e.g. [Ver10], Proposition 5.16). If Xi,..., Xy are i.i.d.
random variables with mean zero and sub-exponential norm’ K, then

p[% f zt] §2exp<—Q <JI\?22/\%>>. (4)

> Xi
i=1
In particular, for any § > 0, if we take N = © (I—t(; Vv %) -log 1/9, then (4) is at most 0.

Fact 3.8 (e.g. [Verl8], Corollary 4.2.13). For any € > 0, there is an e-net (in Lo norm) of size
(142/e)™ for the unit Ly ball in m dimensions.

Corollary 3.9. For any €,8 > 0, there is an e-net (in operator norm) for the set of my X mo
matrices of operator norm at most B of size at most (1 + 25/)™ ™2,

Proof. As operator norm is upper bounded by Frobenius norm, an e-net in Frobenius norm for the
set of mq X mo matrices of Frobenius norm at most 8 would contain the claimed e-net. The former
can be obtained from scaling an £/8-net in Frobenius norm for the set of m; x my matrices of unit
Frobenius norm, and such a net with size (1 4 2/3/¢)™™2 exists by Fact 3.8. O

3.3 Power Method, Subspace Distances, and Perturbation Bounds

Fact 3.10 (Power method, see [RST09]). Let M € R¥¥?  let k < d be a non-negative integer,
and let o1 > 09 > ...04 be the monzero singular values of M. For any k = 1,...,d — 1, let
gapy, = 0x/0k+1. Suppose there is a matrix-vector oracle which runs in time R, and which, given
v € RY, outputs Mv. Then, f0r any 1,0 > 0, there is an algorithm APPROXBLOCKSVD (M, 7, )
which runs in time O(k‘R log T gap ), and with probability at least 1 —§ outputs a matriz U € RY*
with orthonormal columns so that HU — Ugll2 < n, where Uy, is the matriz whose columns are the
top k right singular vectors of M.

Lemma 3.11 (Gap-free Wedin, see [AZL16] Lemma B.3). Let e,&, > 0. For symmetric matrices
A A € R for which |A — AH < e, if U is the matriz whose columns consist of the singular

vectors of A with singular value at least p, and U is the matriz whose columns consist of the
singular vectors of A with singular value at most p — &, then HUTUHOP <eg/€.

Corollary 3.12. Let A > 2¢ > 0. For symmetric matrices A, A € R¥>? for which ||A — AHOP <e

and HKHOP > XN—¢, if w € ST is the top singular vector of A, and V C R? is the orthogonal
complement of the kernel of A, then |Ilywl|,, > 1 — 4e2 /22

Proof. If we take £ = o = ||A| in Lemma 3.11, then the columns of U (resp. U) in Lemma 3.11
consist of an orthonormal basis B € R¥* for the kernel of A (resp. w and other singular vectors
of A, if any, with the same singular value), where k is the dimension of ker(A). We have that

€

Iy w) < [T U| <+

< &/|I1All

op —

"Here we define the sub-exponential norm of a random variable X to be SUp, > %E[|X|p]1/p
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from which we conclude that

9\ 1/2
[ yw] > (1— (;J ) > 1 - 462/)2

as claimed. 0

Definition 3.13 (Frames). A set of orthonormal vectors wy,...,wy is a frame. Given subspace
V C R?, we say that this frame is v-nearly within V' if ||[Ilyw;|| > 1 —v for all i. We will sometimes

refer to their span W as a frame v- nearly within to V', when the choice of orthonormal basis for 1%
is clear from context.

Definition 3.14 (Subspace distances). Given ¢-dimensional subspaces Uy, Uy C R?, let My, My €

R¥** denote any two matrices whose columns consists of basis vectors for Uj, Uy respectively. The
chordal distance dc(Uy,Us) between Uy and U; is defined by

1/2
dc(Uy,Us) = <5 - HM1TM2H%)

The Procrustes distance dp(Uy,Us) between U and Us is defined by

inf (|Uy— Uy - O,
Oé%(r)ll > —U1-Olp

where O(r) denotes the group of r x r orthogonal matrices.

Fact 3.15 (See e.g. [CM20], Lemma 3.26). Given (-dimensional subspaces Uy,Us C R?,
dp(Ur,Us) < V2de(Uy, Us).

Lemma 3.16. Let v < O(1/¢?). If I is an orthogonal projector to a subspace V. C R?, and
Wy, ..., Wy are a frame v-nearly within V', then there exists an orthonormal set of vectors wy, ..., wy
spanning W C V. for which de(W, W) < V2v - € and ||w; — @;|| < 2v/v - € for all i € [€].

Proof. Let W be the subspace spanned by wi,...,wy, and let W be the subspace spanned by
IIywq, ..., IIyw,. First note that because v < ﬁ, W and W have the same dimension, that is,
[y ..., [Ty w, are linearly independent. Indeed, we have that (w;, ITyw;) > (1 —v)? > 1 — 2v,
while (w;, Iy w;) = (w;, Iy, 1w;) < (1—(1—-v) )1/2 V2v for i # j, so the Gram matrix of these
vectors is diagonally dominant provided v < O(1/£2).

Overloading notation, let W (resp. W) also denote the d x ¢ matrices whose columns consist of
some orthonormal basis vectors for W (resp. the vectors wy, ..., wy). The chordal distance de (W, W)

satisfies s .
de(W,W)? =L — [[WTW5 == |y a||> <€ £-(1—v)* <200

Letting O* £ arginfoeo ) ||W — OWHF in the definition of dp(W, W), we can take wy, ..., wy in the

lemma statement to be the columns of OW. Then we have that dp (W, W) =S |lw; —wi||* < 4v-4
by Fact 3.15, from which the lemma follows. O

Lemma 3.17. For any M € R¥? and a frame W € R which is v-nearly within an £-dimensional
subspace W, we have that

[T s M, — Ty Mgy ||, < V2 M, - de (W, W).

Op—
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Proof. We bound ||(Ilj;, — Iy 0 )MII, ||, and ||y e M1, — Iy 1), and apply triangle

inequality. By sub-multiplicativity of the operator norm and the fact that projections have operator

norm 1, [|(Tl, — Iy )My (|, < M0 — il - (M|, Finally, note that

M, — Mo |3 < 1M, — My |7 = | — w17 = 2(¢ — (g, ) = 2de (W, W)?,

from which the claim follows. ]

4 Continuous Piecewise-Linear Functions and Lattice Polynomials

In this section, we introduce tools for reasoning about continuous piecewise-linear functions, cul-
minating in a structural result (Theorem 4.15) giving an explicit representation of arbitrary ReLLU
networks as lattice polynomials (see Definition 3.2).

4.1 Basic Notions
We will work with functions which only depend on some low-dimensional projection of the input.

Definition 4.1 (Subspace juntas). A function F : R? — R is a subspace junta if there exist
V1, .y U € ST and a function h : RF — R for which F(x) = h({vy,z), ..., (v, x)) for all z € R?.
We will refer to V' = span(vy,...,v;) as the relevant subspace of F, to vi,...,v), as the relevant
directions of F', and to h as the link function of F.

Definition 4.2 (Piecewise Linear Functions). Given vector space W, a function h : W — R is
said to be piecewise-linear (resp. piecewise-affine-linear) if there exist finitely many linear (resp.
affine linear) functions {g; : W — R}ie[ M and a partition of W into finitely many polyhedral cones
{Si};cz such that G(z) = >, [z € Si|gi(x). We will say that h is realized by M pieces {(g;, S:)}
(note that h can have infinitely many realizations). If each g; is given by g¢;(z) = (u;,z) + b; for
some u; € W, b; € R, then we will also refer to the pieces of h by {({u;, ) + b;,5;)}.

We are now ready to define the concept class we will work with in this paper.

Definition 4.3 (“Kickers”). We call a subspace junta F with link function h a kicker if h is
continuous piecewise-linear. Note that a kicker is itself a continuous piecewise-linear function, and
for any realization of its link function by M pieces, there is a realization of F' by M pieces.

Henceforth, fix a subspace junta F' : R — R with link function h and relevant directions
1, ..., U Spanning relevant subspace V C R%.

Example 4.4 (ReLU Networks). Feedforward ReLU networks as defined in Definition 1.1 are
kickers with relevant subspace of dimension at most k, where k is the row span of the weight matriz
Wy, the link function is defined by

h(z) = Wrp1o(Wro(--- Wig(z)---)),

and the pieces in one possible realization of h correspond to the different possible sign patterns that
the activations could take on, that is the different possible values of the vector

L
{(Wad(Warr (- Wi (2) - )}ocasy € [ [{EL}*
a=0
as z ranges over RF.
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Lemma 4.5. If F is a A-Lipschitz kicker, then for any realization of its link function h by pieces
{({(w;, ), Si)}, there is a realization by pieces {((w},-),S;)} for which max;||g;|| < L..

Proof. Consider any piece ((w;,-),S;). If there is some x € S; for which there exists a ball of
nonzero radius r around x contained in S;, then clearly L > ||w;|: take x and = + r - w; and note
that

p> Fatrw)—F@) rl|will*
(@ + 7 - w;) — r{lwill

[[will-

If no such z and ball exist, then .S; is not full-dimensional and therefore contained in a hyperplane
W C V. Then if we replace ((w;,-),S;) in the realization of h with ((Ilyyw;,-),S;), this is still a
realization of h. Again, it would suffice for there to exist a ball, now in the subspace W, of nonzero
radius around some point in .S;. If this is not the case, then S; is not a full-dimensional subset of
W and thus lies in a codimension 1 subspace of W. Continuing thus, we eventually obtain some
(possibly zero) vector w) for which replacing ((w;, -),.S;) in the realization of h with ((w?,-),S;) still
gives a realization of h, and furthermore ||w}| < L. O

Definition 4.6 (Restrictions). Given any nonzero linear subspace W C V', let Flyw : W — R
denote the restriction of F' to the subspace W. By abuse of notation, we will sometimes also regard
F|w as a function over R? given by Fly () = F(ITyyz).

One of the main properties of kickers that we exploit is positive homogeneity:
Fact 4.7 (Positive homogeneity). For any A > 0 and x € R¥, F(\-z) = A\F ().
The following property of restrictions of Lipschitz functions will be important.

Lemma 4.8. For any nonzero linear subspace W C V', and A-Lipschitz function F : R — R,

sup  |F(x) — F(Ilyz)| < A.
o[y \wa| <1

Proof. Because F(x) = F(Ilyz) and F(Iyx) = F(IyIlyz), we may assume without loss of
generality that z € V. For any z € V for which |[IIy\y x| < 1, we have that

|F(2) — F(llwa)| < Alle — Mzl = Azl <A,

as claimed. 0

4.2 A Generic Lattice Polynomial Representation

Essential to our analysis is the following structural result from [Ovc02] which says that, perhaps
surprisingly, any piecewise linear function can be expressed as a relatively simple lattice polynomial.

Theorem 4.9 ([Ovc02], Theorem 4.1). If h : R™ — R is a continuous piecewise-linear function

which has a realization by pieces {(g;, S,-)}Z-E[M}, there exists a collection of clauses 71, ...,Z,, C [M]
for which

h(xr) = max min g;(x )

(x) = ma min i) )

We will work with the following notion of approximation for such lattice polynomials:
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Definition 4.10. Two continuous piecewise-linear functions G, G :R? - R are (M, n)-structurally-
close if there exist linear functions g1, ..., gy and g1, ..., gy and subsets 7y, ..., Z,,, € [M] for which

G(x) = in g; G(z) = in g;
(z) ;2%52{29(@ (2) ]I_g%gggg@)

and ||g; — gi|]| < n for all i.

Structural closeness of continuous piecewise-linear functions in the above sense is stronger than
Lo-closeness.

Lemma 4.11. Take continuous piecewise-linear functions G,é : R™ — R which are (M,n)-
structurally-close. Then |G — G|| < ny/m. In particular, if G is a piecewise-linear function which
is realized by pieces {((u;,-),S;)} satisfying ||u;|| <, then |G| < ny/m.

To show this, we need the following helper lemma:
Lemma 4.12. If {gi}iE[M} and {ﬁ,-}ie[M] are two collections of linear functions, then for any x,

|max min g;(x) — max min g;(x)| < max|g;(z) — g;(x)|
JE[m] i€Z; JE[m] i€Z; i

Proof. This simply follows by induction using the fact that if fq, fo : R* — R are both 1-Lipschitz
with respect to Lo, then fi1 V fo and fi A fo are as well. O

Proof of Lemma 4.11. Let {((ui, "), Si)}iepar and {((@i, -), i) }iepar) be the realizations of G, G for
which ||u; — @;|| < n. By Lemma 4.12 applied to these pieces, together with Cauchy-Schwarz, for
any z we have that |G(z) — G(z)| < nlz|. So |G — G| < n-E[|z|]*? = nym. O

As discussed in Section 2, for our application to learning general kickers, we will leverage the
lattice polynomial representation in Theorem 4.9 to grid over piecewise-linear functions. Note that
a priori, even if we knew exactly the set of linear functions {gi}ie[ M in a realization of a piecewise-
linear function, enumerating over all lattice polynomials of the form (5) would require time doubly
exponential in M, as there are 2M possible clauses Z; and 22" possible sets of clauses {Z;}.

By being slightly more careful, we can enumerate over piecewise linear functions in time
exp(poly(M)).

Definition 4.13. An order type on n elements is specified by a function w : [n] — [n] for which
every element from 1 to max;w(i) is present. We say that a set of n real numbers z1, ..., z, has
order type w (denoted {z1,...,2,} F w if z; = 2; (vesp. z; > z;, z; < z;) if and only if w(i) = w(y)
(resp. w(i) > w(j), w(i) < w(j)). Denote the set of order types on n elements by 2,. Note that
any set of real numbers has exactly one order type.

Lemma 4.14. If F has a realization by pieces {(g;, Si)}ie[M}’ then there is a function A : Qpp — [M]
such that for any x,

F(z) = Z ]l[{gi(x)}ie[M] + w] “ GAw) ().

we N

Proof. Let F(z) = MAaX;¢|;] Milier; gi(xz) be the max-min representation guaranteed by Theo-
rem 4.9. This representation implies that for a fixed order type w, there is some index i € [M] for
which F(z) = gi(z) for all = satisfying {gi(2)};cpy) - w. This gives the desired mapping A. O

Note that the set of functions A : Qy; — [M] is only of size (M!)M < MMZ, so by Lemma 4.14,
to enumerate over piecewise-linear functions with M pieces we can simply enumerate over linear
functions {g;} together with all possible functions A (see Algorithm 1 below).

16



4.3 Lattice Polynomials for ReLU Networks

Here we give an explicit proof of Theorem 4.9 in the special case of ReLU networks. We emphasize
that the specific nature of the construction exhibited in this theorem will be important in the
proof of our main result for learning ReLLU networks, and that simply applying Theorem 4.9 in a
black-box fashion will not suffice for our purposes.

Theorem 4.15. If F € Cg is a ReL U network with weight matrices Wy € RFoxd W ¢ Rfixko W, ¢
RFzxkr—1 W € RY™FL and if F' is a ReLU network with the same architecture as F, with weight
matrices Wy, ..., W' |, such that

(Wa)ij- (Wo)ij 20 V0<a<L+1,(,)) € [ka] x [ka-1],
then there exist vectors vi, ..., var, VY, ..., v, and clauses Iy, ..., I, C [M], where M = 25 for which

F(z) = max min(v;, z)

]E[m} iEIj
Fl(z) = in(v}, ).
(x) max ?enzz;m, z)
Specifically, vy, ...,vpr consist of all vectors of the form W 1 X WXy q------ oWy for diagonal

matrices ; € {0, 1}ki*ki - and o, ...,v), are defined analogously.

We prove Theorem 4.15 by induction by exhibiting max-min representations for ReL.Us, scalings,
and sums of max-min formulas. Let G : R? — R be a piecewise-linear function given by G(x) £
mMaxX e[y, Minez, (u;, ) for some subsets {Z1, ..., I, } of [M] and vectors {u1,...,ups} in R%

Lemma 4.16. Let upy4q1 =0 and let Zy,p1 = {M + 1}. Then for all x € R?,

G(z)) = in(u;, ).
(G (z)) jggfuggj}(u )

Proof. This is immediate from the definition of ¢. O

Lemma 4.17. For any A € R, there exist subsets {J1, ..., T} of [M] such that for all x € R?,

AG(x) = max min(Au;, x).
jE[M]i€eT;
Furthermore, these subsets only depend on Iy, ....,ZI,, and the sign of A.

Proof. For A > 0, we have J; = Z; for all j. So it remains to show the claim for A = —1.
We can write —G(z) as min¢[y, max;ez, (u;, ). This is a lattice polynomial over the reals, and
any lattice polynomial over a distributive lattice can be written in disjunctive normal form as
mMax;e(m,/| Minge s, (ui, ) for some subsets {J;} (see e.g. [Bir40, Section II.5, Lemma 3]), from
which the claim follows. O

Lemma 4.18. For any k' € N and b € [K'], let Gy(x) = max;e[y,] min;czo (ul, ) for some subsets
J
{I]l-’} of [My) and vectors {u?} in Re. For all z € R,

kl
Z Gp(x) = ( max min (uj, + -+ ul |z (6)
b=1

. . . . T
yl,...,yk/)e[ml]><---><[mk,] (Zl,...,lk/)EZjl><~~~><ij, k!
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Proof. Take any x € R?, and for b € [k'] suppose that Gy(z) = <u§’z,x> for some index i} € [M].

Note that for any Ijll, e ,I;“ , containing 47, ..., 1y, respectively,
. 1 % K %
min (wiy + -+ g, x) = (e, + - +ugs ).

. . 1 o Tk
(Zl,...,lk/)EZjl X ijk’

This shows that the right-hand side of (6) is lower bounded by the left-hand side.
We now show the other direction. For any #},...,4}, for which (ull,1 +...+ uf,/ ,x) > Gi(x) +
1’

-+ + Gy (), we must have (ul o x) > Gy(z) for some b € [K']. In this case, we know that for every

clause Ib in G} which contams iy, there is some 7 € Ib for which (u?,z) < (uf,z). So for any
b

Ijll, . ,Ifk/ containing i, ...}, respectively, the corresponding clause on the right-hand side of
(6) satisfies min(’il,---,iL/)EIJllX"'XIJL// (uj, +--- + uZ ,T) < (ull,l NI uiL,L’,,x>. This concludes the
proof that the left-hand side of (6) is upper bounded by the left-hand side. O

We can now prove Theorem 4.15:

Proof. The claim is trivially true for L = —1. Suppose inductively that for some layer 0 < a < L,
we have that for all b € [k,], if we denote

Who (W a1¢<'-'¢<wox>>>
ab—W’%( 19 (- ¢ (Woz)))

where Wb denotes the b-th row of W, then Fj,; and F, (; , can be expressed as max-min formulas

/ab

a,b a,b
MaXe[p, ,] Min v; "y +) and maXe(y, ,) min v; ") for some clauses {Z;"} and vectors

€T (v} €T o

v} b, vga b comprised respectively of vectors of the form WX, ; --- ZgWj, and W?X,_; - - oW,
for all possible diagonal matrices X; € {0 l}k'Xk". Then for any b € [kq41], note that F,1qp =

a+1¢( a1 Fop,) and F! atlh = +1¢( a1 ...,F[;ka). By Lemma 4.16 and Lemma 4.17, if
the entries of W2 and W are wy, ..., wy, , .
if wy - wj, > 0, then there exist max-min representations for wy ¢(Fg ) and wy,¢(F, ) with the
same set of clauses.

Finally, by Lemma 4.18, there exist max-min representations for the scalar-valued functions
Fot1p = Zlgf‘zl wy ¢(Fop) and F 4, = Zb,  wyd(F, ;) with the same set of clauses. And the
vectors in this max-min representation consist of all vectors of the form W% 3, -+ oWy and

WO Sy 3 oW, respectively for X, € {0, l}kiXk". This completes the inductive step. O

and w}, ..., wj,  respectively, then for every b’ € [kq],

5 Filtered PCA

In this section we prove our main results on learning kickers and ReLLU networks. Throughout, we
will make the followingbase assumption about the function F'.

Assumption 1. F' is a kicker which is A-Lipschitz for some A > 1 and has at most M pieces.

While our techniques are general enough to work under just this assumption, for our main
application to learning ReL U networks (Definition 1.1), we can obtain improved runtime guarantees
by making the following additional assumption on F.
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Assumption 2. F is computed by a size-S ReLU network® with depth L + 2 and weight matrices
Wy € RRoxd W € RFexke—1 Wi € RIFL satisfying |W;|| < B for all0 <i < L+1, for
some B> 1.7

op —

In this section, unless stated otherwise, we will only assume F' satisfies Assumption 1, but in
certain parts of the proof (e.g. Section 5.5), we will get better bounds by additionally making
Assumption 2. Formally, our main results are the following:

Theorem 5.1. Given access to samples from the distribution D corresponding to kicker F' satisfying
Assumption 1, FILTEREDPCA (D,e,0) outputs a kicker F for which E[(y — F(z))?] < €2 with
probability at least 1 — §. Furthermore, FILTEREDPCA has sample complexity

dlog(1/) - poly (exp (k3A%/€?) ,Mk>

and runtime B , ,
O(d?1og(1/68)) - M™M™ . poly (exp (k'A% /e?) , M* ) .

Theorem 5.2. Given access to samples from the distribution D corresponding to feedforward ReL U
network F satisfying Assumption 2, FILTEREDPCA (D, ¢e,d) outputs a ReLU network F for which
El(y — F(z))?] < 2 with probability at least 1 — 8. Furthermore, FILTEREDPCA has sample
complexity

dlog(1/d)poly <exp (k3A2/g2) kS (B(L+2)/A>k>

and runtime B L5
O(d*log(1/6)) - poly (exp (k3S2A%/e?) | 2kS% (BEF2/A) ) .

Remark 5.3 (Scale Invariance). Often, guarantees for PAC learning ReLU networks are stated
scale-invariantly in terms of the relative error E[(y — F(x))?]/ E[y?*], or equivalently the absolute
error E[(y — F(x))?] for the true F satisfying E[y?] =

In our general setting, recall from Example 1.4 that some dependence on the Lipschitz constant
of F' is needed. One standard way to achieve this is to normalize the weight matrices of the true
underlying network F' to have operator norm at most B, in which case the Lipschitz constant of F’
is at most B2 and, with our techniques, we can obtain guarantees depending just on B by using
Theorem 5.1. To obtain improved guarantees, we can additionally assume a better bound of A on
the Lipschitz constant, and this gives rise to Theorem 5.2 above.

Under this normalization in terms of A and B, note that the sample complexity and runtime
in Theorem 5.2 are scale invariant as the quantities A/e and BX*2/A are invariant under arbitrary
rescalings of the L+ 2 weight matrices of F'. Also note that A can be any upper bound on the actual
Lipschitz constant of F', that is, the runtime guarantee in Theorem 5.2 does not degrade with the
actual Lipschitz constant of F'.

In Section 5.1, we prove an anti-concentration result for piecewise-linear functions. We use this
in Section 5.2 to prove that in an idealized scenario where we had exact access to some /-dimensional
W C V as well as exact query access to F|y, we would be able to approximately recover a vector
in VAW by running one iteration of the main loop of FILTEREDPCA. In the remaining sections,
we show how to pass from this idealized scenario to the setting we actually care about, in which we

8Note that this implies M < 2.
9Recall from Definition 1.1 that we will refer to the rank of Wy as k to emphasize that F is a kicker with relevant
subspace V' of dimension k.
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only samples (z, F'(z)). In Section 5.3 we show that affine thresholds of piecewise-linear functions
are stable under small perturbations of the function. Then in Section 5.4, we show how to grid over
the set of kickers, and in Section 5.5 we show how to grid over ReLLU networks more efficiently and
formally state our algorithm. In Section 5.6 we combine these ingredients to argue that as long as
we have sufficiently good approximate access to W and F|yy, a single iteration of the main loop of
FILTEREDPCA will approximately recover a vector from V\W. Lastly, in Section 5.7 we conclude
the proofs of Theorem 5.1 and 5.2. At the very end, we discuss briefly why merely adapting the
approach of [CM20] does not work.

5.1 Anti-Concentration of Piecewise Linear Functions

In this section, we show that for any continuous piecewise-linear function with some variance, the
probability that it exceeds any given threshold is non-negligible.

Lemma 5.4. If G : R™ — R is continuous piecewise-linear and A-Lipschitz and E[G?] > o2, then

for any s > 0,
so

JmAZ

Proof. Let {(g:,S;)} be the pieces of some realization G, and for every i let u; € R™ be the vector
for which ¢;(-) = (u;, ). By Lemma 4.5, we can assume |Ju;|| < A for all i.
Take any ¢ and define

P[|G| > s] > Q(exp(—3ms?/d?)) -

2 A 2
of = E u;, )’ | x €.5;
P2 B ) |zes)
Note that if 4 is chosen with probability Pl € S;], then E;[0?] > 0. Because each S; is a polyhedral
cone, sampling 2 ~ A(0,1d) conditioned on z € S; is equivalent to sampling r ~ x2,, independently
sampling Z ~ S™~! conditioned on Z € S;, and outputting /2 - Z. It follows that
o? = E  [ru,2?|2€S]= E [/ E [(w,D’|T€S]=m E [(u,2)°|7¢cS)

P, =1 o, Bt Fngmt

By Fact 3.3, P[|{u;, Z)| > 0;/vV2m | T € S;] >

We conclude that for any s > 0,

— 2m ||u TR
o2
Pl[{u;,x)| > s|xz € Si]> P [7‘ > 2m32/ai2] P
rexZ, 2m||ui|

o?
> erfe(sv/2m/o;) - 5 A2 (7)

By Fact 3.5, the right-hand side of (7) is convex as a function of o2, so

o2

PG| > o] 2 B erfe(sv/am/em) - 570
1/2 Ei[aiz]
>erfc(8\/_/E[ ARE A2

> erfe(sv/2m/o) - T A2

> \/2jx svV2m - exp(—ms?/o?) o2
-(2ms? /o2 + 1) 2mA?

> Q(exp<—3ms2/a ) ﬁ
where the second step follows by Jensen’s and the fourth step follows by Fact 3.4. O
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5.2 An Idealized Calculation

Suppose we had access to an orthonormal collection of vectors wi,...,wy that are exactly in V.
Let W denote their span. Suppose further that we had access to the matrix

MY 210, E 1]y — F(ya)| > 7] - (x| — Id)]HWL.
z,y

When the threshold 7 is clear from context, we will just refer to this matrix as M".

As we will see, if this matrix is nonzero, then its singular vectors with nonzero singular value
must lie in V and be orthogonal to wi, ..., wy. The main challenge will be to show that this matrix
is nonzero. The following proof also applies to the case of ¢ = 0, in which case F(Ilyyx) specializes
to the zero function and (8) specializes to

M2 E [1lly] > 7] (e2” ~19)]. (8)
In particular, (8) is a matrix we actually have access to at the beginning of the algorithm, and one
consequence of the warmup argument below is an algorithm for finding a single vector in V.

We first show that for appropriately chosen 7, either the top singular value of MKV is non-
negligible, or E[(F(x) — F(Iy x)?] is small, that is, F is already sufficiently well-approximated by
the function F|yy .

Lemma 5.5. Suppose Egnr(0,1d)[(F () — F(Ilyx))?] > p? for some p > 0. For any T > 0, if a
vector is not in the kernel of MY | then it must lie in V\W. For 7 > \/2(k —{) - A,

(k—=0Op
VEAZ

In particular, for this choice of T, the top singular vector of MW lies in V\W and has singular

0 2 —3kr2/p2\ . _7p
value at least \y’ = Q) <e /P ) NIk

Proof. The first part just follows from the fact that any u € Iy is clearly in the kernel, and for
any u € S orthogonal to V, (u,z) and F(z) are independent, so

(MY Thnw) > Q <e_3'”2/”2) : 9)

w'MYu= E [¢®-1] -E[L]F(z)— F(IIyv)| > 7]] = 0.
g~N(0,1) @

For (9), we would like to apply Lemmas 4.8 and 5.4 to the continuous piecewise-linear function
A

G(z) 2 F(z) — F(Ilyyz). Pick an orthonormal basis wyy1,...,wy for V\W. For any = for which
[Ty \wz| <1, Lemma 4.8 implies |G(z)| < A. So by positive homogeneity (see Fact 4.7) of G(x)
and the definition of 7, |G(z)| > 7 only if HHV\WJJH2 > 2(k—1¥), so

5wl MY, — E[116) > 1+ (Il - (- 0)
i=0+1

> (k—1) ];;’[G(:z:) > 7).

(9) then follows from Lemma 5.4 applied to G.
The final statement in Lemma 5.5 follows by averaging. O
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If ¢ is the target Ly error to which we want to learn F', we will only ever work with p > Q(e).
In the sequel, we will take

r=cVk-A (10)

for sufficiently large absolute constant ¢ > 0. As a result, we have that

)\‘(FZ) 2 Q (e—o(k2A2/52)) . (€/A) é A (11)

5.3 Stability of Piecewise Linear Threshold Functions

To get an iterative algorithm for finding all relevant directions of F', we need to show an analogue
of Lemma 9 in the setting when we only have access to directions w1, ..., wy which are close to the
span of V', and when we only have access to an approzimation of the function F|yy .

In this section, we show the following stability result for affine thresholds of piecewise-linear
functions:

Lemma 5.6. Let f,9,d : RY — R be piecewise-linear functions. For any T > 0, if ¢g,¢' are
(m,n)-structurally-close and f has a realization with at most m pieces, then

b 9@) = @) > 7 Mg (@) = f@)] < 7] < 9gm?/7 (1)

An important building block of the proof is the special case where f = 0 and g, ¢’ are linear:

Lemma 5.7. For 7 > 0 and vectors v,v' € Rd,

o
P [a)>7A{2) <7 <0 <M> (13)
z~N(0,Id) -

Proof. First note that without loss of generality, we may assume that ||v]| > ||v'[|; if not, then the
random variable 1[(v,z) > 7 A (v/, z) < 7] is stochastically dominated by 1[(v,z) > 7 A{({v', z) < 7]
for ¢ = ||v||/||v'||, and furthermore |[v — (v'|| < |[v — v'|| by the Pythagorean theorem.

Also note that we may assume [[v'|| > |Jv —¢/||. Otherwise, we would have ||v|| < 2||v —2'||. But
then we could upper bound the left-hand side of (13) by

7_2
Pl(v,2) > 7] < e /2N < ¢TI < 20 — |/

Now define ¥ = v/||v|| and o/ = v//||¢/|| so that (13) equals P[(¥,z) > TA (v, z) < 7] for 7 2 7/||v||
and 7 £ 7/||v'||. Write ¥ = a® + v/1 — a2vt for v! orthogonal to U, and denote the random
variables (0, z) and (v',z) by v and 7/ respectively (these are a-correlated standard Gaussians).

Note that by the assumption that |[v|| > ||| > ||[v — ¢'||, the angle between v and v’ is at most
m/3, 50 a > 1/2.

We are now ready to upper bound (13). We will split into two cases, either v > 7" /o or 7 < v <
7/, and upper bound the contribution of either case to the probability in (13) by O(|jv —v'||/7),
from which the lemma will follow.
Case 1: 7> 7'/a.

The density of 4/ relative to v is given by

7 —ay

V1o 1 -7 1
e N(0,1,z)dx = ierfc <u> <

—00




We have that

AV
E 1exp _lay=7T) Ay > 7 :1\/1—a2-exp(—7”’2/2 erfe(7'V/1 — a?/a)
Y12 201 — a2) 4
< %\/ 1—a2-exp(—72/202)

o=l [alVE _ [l
A2l T T A

where the first step is standard Gaussian integration, the second step uses the inequality erfc(z) <
2 .
e~*"/2 for all z > 0, and the third step uses the fact that exp(—z) < 1/z for all z > 0 and the fact

— 2 L o =21l
that v1 — « \/inu I < VAl
Case 2: T <y <7'/a.
We can naively upper bound the probability 7 < v < 7//a and 4/ < 7/ by the probability
7 <~ <7 /a, which is at most e™7 /2 - (7' /oo — 7). Note that

~ ~ 1 1 1-— ! — 3 -
Y £ S L IS . R
[ ol + o =1~ [/ 2al|v]|
where in the last step we have used that 1 —a = [0 — 7| < ”;)”UI,)””
Suppose to the contrary that e=7 /2. (7/ /o — 7) > M so that by (14),
2
e (15)

Galv'|?

Recall that we may assume that [[v'|| > ||[v — V||, so T > s> and that o > 1/2. From this,
72

(15) would imply that eSVT? <

3||j||2’ and such an inequality cannot hold. 0

We are now ready to prove Lemma 5.6.

Proof of Lemma 5.6. The left-hand side of (12) is at most

P [g(z)—f(x) >7Ag'(x)—f(z) <7]+ P [g(z)—f(z) < —TAg'(x)—f(z) > 7], (16)
x~N(0,1d) x~N(0,Id)

and by symmetry it suffices to upper bound the former probability on the right-hand side of (16)
by O(nm? /7).
By definition of (m,n)-structural-closeness, we can express g and g’ as max; min;ez, (u;, -) and

max; minez, (u;, -) respectively, for vectors {u;};c(,, and {u;};¢,, for which [[u; —uj|| < # for all 4.
We proceed via a hybrid argument. Take any 0 < i < m. Let ugi), . ,ul(-i_)l be uy,...,u;_1, and
let ugz), . ,us,? be the vectors u,...,u,,. Define the function g(i) = max, Minpe7, <ul(-l), x) so that

99 (z) = max, minyez, (uj, r) and g™ () = max, minyez, (up, ).
We claim that for any z, g~ (z) and ¢ (z) are sandwiched between (u}, ) and (u;, x), in the
sense that

(uf,z) > g V(@) 2 ¢V (2) = (uiyz)  or  (uf,z) < g0V (@) < gV (@) < (uiyz).  (17)
This would imply

Plg" (@) — f() > 7 A gD (@) - f(x) < 7] < Pl(ws, @) — f(2) > 7 A (uf,2) — fz) < 7] (18)
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because either the left-hand side of (18) is zero, or or the event on the left-hand side immediately
implies the one on the right-hand side.
Denote by {((wi, "), 5i)};e)m the pieces of some realization of f. We would then have

Plg(z) — f(z) > T A g'(z) — f(z) < 7]

Pl(ui, @) — f(2) > 7 A (uj, @) — f(2) < 7]

I

@
Il
—

I
NE
NE

Plz € Se A (u; — wp, ) > 7 A {uf — wp, z) < 7]

~
Il
—
-
Il
—_

NE
NE

P[{u; — we, ) > 7 A (), —wp,x) < 7] <O (nmz/T) ,

~
Il
A
Il
,_.

7

where the first step follows by triangle inequality and (18), and the last step follows by Lemma 5.7.

To complete the proof, we now turn to proving that the quantities g(i) (z) and g(i_l)(az) are
sandwiched between (u},z) and (u;, x), which will imply (18). Suppose that ¢@~1(z) = <u§-l_1),:17>
for some index j.

Case 1: (u},z) > (ugi_l),@.

In this case mingez, <ul(f_1),:17> < (uj,x) for all a. If (u;,x) > (u},z), then changing u; to
u; will not change the values of any of the clauses. So suppose (u;, x) < (u;-,x>, in which case
the value of the function cannot increase. Then if index ¢ appears in any clause Z, for which
mingez, <ul(f_1),:17> = (ug-l_l),a:), then ¢ (x) > (u;,2). Otherwise, the value of the function stays
the same. We conclude that the first inequality in (17) holds.
Case 2: (u},z) < (ug-l_l),@.

In this case there is some Z, for which <u§-l_1),$> = minye7, (ul(f_l), x) and in which index i does
not appear. If (u;,z) < (ul,z), then changing u} to u; will not change the value of this Z, clause,
and the values of the other clauses will not increase, so the value of the function will not change.
So suppose (u;, ) > (u;, z). Changing v} to u; will not affect any clause Z, not containing ¢ or for
which miner, (ul(f_l), z) < u}. For all other clauses, their value will either stay the same or increase

to u;, in which case ¢ (z) < (u;, ). We conclude that the second inequality in (17) holds. O

5.4 Netting Over Piecewise Linear Functions

Suppose we have recovered an ¢-dimensional subspace W that approximately lies within V. In this
section we show how to produce a finite list of candidate kickers with relevant subspace W, one of
which is guaranteed to approximate F' restricted to some ¢-dimensional subspace W. Ignoring the
finiteness of this list for now, we first show that as long as W is sufficiently close to lying within V/,
there exists some kicker close to some restriction F|yy .

Lemma 5.8. Let wy,...,wy be a frame v-nearly within V', with span w. There exist an (-
dimensional subspace W C V and a A-Lipschitz kicker F* with relevant subspace W which is
(M, 2+/v - LA)-structurally-close to F|y .

Proof of Lemma 5.8. By Lemma 3.16, there exist orthonormal vectors wy, ..., wy for which |jw; —
W;|| < 2V/vl. Let W be their span.

The function Fly is a continuous piecewise-linear function with at most M pieces, so by The-
orem 4.9 and Lemma 4.5, there exist vectors ui,...,up; € W and subsets Zy,...,Z,, C [M]
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for which F(x) = max;cp, minez, (u;,z) and [u;l| < A for all i. For any i € [M], write

u; = Zi'e[é] ;. ywyr. Define U £ Zi'e[é} a; ywy and define the kicker F* with relevant subspace W
by F*(x) & maX e[, Minjez; (U7, ).

Note that for any i,

@ —will = > il — wil| < 2Vve- Zlau | <2V Llluil] < 2v/v - LA,

el

where the penultimate step is by Cauchy-Schwarz, so F* is (M, 2+/v - LA)-structurally-close to F|y
as claimed. Lastly, note that ||a}| = ||ui|| < A, so F™* is indeed A-Lipschitz. O

We now show that the existential guarantee of Lemma 4.14 implies that if we enumerate over
a fine enough net of kickers, then we can recover an approximation to F* from Lemma 5.8 in time
singly exponential in poly(M).

Algorithm 1: ENUMERATEKICKERS(W, ¢')

Input: Subspace 1% spanned by orthonormal vectors wy, ..., wy, granularity e >0
Output: List of kickers F with relevant subspace W

L+ 0.

Let A be an &’A-net over the set of vectors in W with norm at most A.

for uy,...,up €N do

for functions A : Qpy — [M] do
Let F' be the kicker given by

[SA T I

Fla)= 3 1 [{(@2)}iepn b @] - (@) ).

OJEQA{

Append F to L.

6 return L.

Lemma 5.9. Take any e > 0. Given a frame wy,...,w, with span W for any A-Lipschitz
kicker F* with relevant subspace W there exists a kicker F with relevant subspace W in the output
L of ENUMERATEKICKERS(T/V7 ') which is (M,e'N)-structurally-close to F. Furthermore, |L| <
MM? (14 2/")

In particular, if wy,...,w, is a frame v-nearly within V, then for ¢ = 2/v - £, L contains
a kicker F which is (M, C’piecewiseﬁ)-structumlly-close to Flw for some {-dimensional subspace
W CV, where

Cpiecewise £ 4EA.

Furthermore, |£] < MM?O(1/\/v)¢ in this case.

Proof. By Lemma 4.14, the function F* in the hypothesis can be written in the form ﬁ*(z) =
> weay 1 [{(ﬂj,@}ie[m Fwl - (ﬂz(w),@ for some vectors {u; }¢(y) and function A : Qp — [M].

Because N in Step 2 of ENUMERATEKICKERS is an € A-net over the set of vectors in W with
norm at most A, there exist vectors @y, ...,up € N for which ||u; — uf|| < &’A. If we define F by
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F(z) = > wean LU @) biepy P w| - (Waq), @), then by design, F is (M, &' A)-structurally-close
to F.

It remains to bound the size of £. For any &’ > 0 there is an ¢’-net NV, for the Lo unit ball in
W of size at most (1+2/¢')¢. Define N 2 A-A7,. Furthermore, there are [Qy|™ < MM* functions
A : Qpr — [M]. This yields the desired bound on |L].

The final part of the lemma follows by invoking Lemma 5.8 and noting that the lattice polyno-
mial representation of F* and that of F |w are identical in the proof of Lemma 5.8, so the structural
closeness of F to F lw follows by triangle inequality. O

5.5 Netting Over Neural Networks

Enumerating over arbitrary kickers with M pieces requires runtime scaling exponentially in poly (M).
For ReLU networks of size S, M could be as large as exp(.5), so naively using ENUMERATEKICKERS
in our application to learning ReLU networks would incur doubly exponential dependence on k in
the runtime. In this section we show how to enumerate over ReLLU networks more efficiently. We
first prove the analogue of Lemma 5.8 for ReLU networks.

Lemma 5.10. Suppose F' additionally satisfies Assumption 2. Let wy,...,wy be a frame v-nearly
within V', with span W. There exist an (-dimensional subspace W C V' and weight matriz W{ €
RFoxd with rows in W for which

IWollw — Wgll,, <2vv-Vk- B (19)
and for which ||[Wgll,, < B.

Proof. As in the proof of Lemma 5.8, Lemma 3.16 yields orthonormal vectors w1, ..., w, for which
|lw; — w;]| < 2v/ve. Let W be their span.

If F has weight matrices W € RFoxd W, ¢ RFxko W, . € RIFL then F|y is a ReLU
network with weight matrices Wolly, W1, ..., Wr,,. Denoting the rows of WoIly, € RFoxd a5
U, ..., Uk, we may write them as u; = Zi’e[ﬂ] a; ywy for i € [ko).

Define u} £ Zi'e[é] a; #Wy. As in the proof of Lemma 5.8, we have that
@7 = will < 2v/v - Cuil| < 2V - B,

where in the last step we have used the fact that the maximum norm of any row of Wyllyy is at
most the maximum norm of any row of Wy, which is upper bounded by |[Wo||,, < B.

Let WS denote the matrix whose rows consist of uj, ... ,ﬂ,’go. We have that
[Wolly — Wi, < [Wolly — Wil < 2v - Vk- B

as claimed. Finally, the bound on [[Wgl|,, follows from the fact that Wi = Wy - O - IIyy for an
orthogonal matrix O mapping the frame {ws, ...,wy} to {wy, ..., wy}. O

We can now show the analogue of Lemma 5.9 for ReLU networks.

Lemma 5.11. Take any 0 < ¢ < B and_any frame wy,. .., wy with span W. For any ReLU
network F* of size S with relevant subspace W and depth L+2 whose weight matrices have operator
norm at most B, there exists a ReLU network F with relevant subspace W in the output L of
ENUMERATENETWORKS (W, &' ) which is (25,200 BE+1e!) -structurally-close (as a piecewise-linear
function) to F. Furthermore, |£]| < 2005 . (1 4+ 4B/e/)0(5%).
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Algorithm 2: ENUMERATENETWORKS (W, ¢)

Input: Subspace W spanned by orthonormal vectors wy, ..., wy, granularity e >0
Output: List of size-S ReLU networks F' with relevant subspace W

L« 0.

for tuples (ko,....,kr+1) € Zigz satisfying ziL:JE]l k; =5 do

3 For every 0 < i < L+ 1, let NV; be an &'-net (in operator norm) over the set of matrices

N =

in RExki1 with operator norm at most B + ¢’.
4 for WO GN(],...,WL+1 GNL.H do

Define the ReLU network F with weight matrices clip./(Wo), ..., clipes (Wir41).
L Append F to L.

7 return L.

In particular, if wy, ...,wy is a frame v-nearly within V', then for e =2/v- k- B, L contains
a ReLU network F which is (M, Chetwork VV)-structurally-close to F|y for some (-dimensional

subspace W C V', where
C'network = 2O(L)BL+2k3/2

Furthermore, |£] < O(1/y/v)°5%) in, this case.

Proof. Let W{, € RFoxd W, € Rk denote the weight matrices of F*. Consider the
iteration of the outer loop of ENUMERATENETWORKS in which the architecture of F* is guessed
correctly, that is, for which %Z =k for all 0 < i < L+ 1. By the choice of nets, there is some
iteration of the inner loop of the algorithm for which the weight matrices {WZ} satisfy

W) = Will,, <& VO<i<L+1. (20)

Define the ReLU network F with relevant subspace W to have weight matrices Wo, Wl, . ,W L+1-
By the fact that operator norm closeness implies entrywise closeness, together with Fact 3.1 and
Theorem 4.15, there are lattice polynomial representations for F* and F' with identical clauses, and
for which the vectors at the leaves consist of W | X W/ - ZoWilly and Wi 1 3 W --- ZgW

ki <k,

respectively for all possible diagonal matrices 3; € {0,1} . For any such choice of matrices {3;},

note that

< (Whpy = Wi ) B W W o+ [ Wi B W (Wh = Wo)|

L L+1
< Wi = Weal TTIWillo, + - + TTIWillop W5 — Woll,,
i=0 =1
<(L+2)-(B+e)Et. ¢
< 20 gL+1 ¢/, (21)

where in the last step we used the assumption that ¢’ < B. This implies the claim about structural
closeness.
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We next bound the size of |£|. For any choice of ko, ...,ELH, note that by Corollary 3.9,
_/\/~ X o0 X N~ < (1 + 4B/€’)LEO+EOE1+"'+ELEL+1+%L+1
ko kry1| —
< (1+4B/£)°E)
where in the penultimate step we used that
Lko+koki+- - +kpkpi1+kpp < (Ltko+- - +kper)(kot- - +kpi1+1) = (L+S)(S+1) < O(5?).

There are (Sz_ﬁd) = 209059 choices of (Eo, ... ,EL+1) in the outer loop of ENUMERATENETWORKS,
so |£] <2005 . (14 4B/£)95%) as claimed.

Finally, to obtain the last part of the lemma, we can take F* above _to have the same weight
matrices as F' except for the input layer, which we will take to be Wy, = W for the weight matrix
guaranteed by Lemma 5.10. By (19), this choice of W{ is close to Wyl for some subspace

W C V. Take ¢ = 2,/v- ¢k - B. For {WZ} satisfying (20), by triangle inequality (19) we get that
[Wolly — Woll,, < [Wolly — Wi, + [W5 — Wol,, < 2¢'.

Using this, by a calculation analogous to the one leading to (21), we find that F is (25, 200) BL+1g/).
structurally-close to F|y, from which the claim follows by our choice of ¢/ = 2,/v - vk - B. In this
case, we get that |£] < 2009)(1 +2/y/1)265") < O(1/v/7)°5”) as claimed. O

With subroutines for enumerating over ReLLU networks and kickers in hand, we can now formally
state our algorithm, FILTEREDPCA (see Algorithm 3 below). The algorithm as stated applies to
the case where F' is a neural network satisfying Assumptions 1 and 2, but we can easily modify
the algorithm to work in the case where F' is only a kicker satisfying Assumption 1 by replacing
the call to ENUMERATENETWORKS(W, 2\/7 - £k - B) in Line 9 with a call to ENUMERATEKICK-
ERS(W,2,/7% - £), the call to ENUMERATENETWORKS(W, B~L=12-%L) . ¢/\/k) in Line 18 with a
call to ENUMERATEKICKERS(W, £/(2vkA)), and the assignment N’ < poly(BX2, k. 1/¢)-log(1/6)
in Line 19 with the assignment N’ < poly(A, k,1/¢) - log(1/4)).

5.6 Perturbation Bounds

We now show how to leverage Lemma 5.6 to show that even with access to a subspace W which
is only approximately within V' as well as the restriction of F' to that subspace, we can recover
another vector orthogonal to W which mostly lies within V.

The first step is to show that in this approximate setting, the analogue of MY from Section 5.2
is spectrally close to MW, It is in showing this perturbation bound that we invoke the stability
result of Section 5.3.

Lemma 5.12. Suppose F' only satisfies Assumption 1 (resp. both Assumptions 1 and 2). Let

Wy, ..., W € S be a frame v-nearly within V, with span W. For x € {piecewise, network}, define
()20 |k <*7> V Vvk 23
&) T v 23)

and suppose N > Q({d Vv log(1/8)}/£2).
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Algorithm 3: FILTEREDPCA(D, ¢, §)

w N =

'™

© 0w N o o»m

10
11

12
13
14

15
16

17
18
19
20
21
22
23

Input: Sample access to D, target error €, failure probability §

Output: Size-S ReLU network F : RY — R for which ||F — F|| < O(e) with probability at
least 1 — &

W« 0.

7 cVk- A as in (10).

vo < poly(kF, 1/AF, M¥ A)~!, where ) is defined in (11).

£+ O (kz (vVok - M2/c)1_1/k> as in (23).

N «+ Q({d Vv log(2k/5)}/£?).

for 0</<k-1do

Draw samples (z1,y1),..., (zn,yn) ~ D.

W ={wy,...,we}, let W denote the span of these vectors.

L eENUMERATENETWORKS(W, 2y - Wk - B).

for F € £ do

Form the matrix

N
emp (Z 1 “yl HN‘T)’ >T (wlw;r - Id)) HWL (22)

=1

Run APPROXBLOCKSVD(M;VKP,A/lOOO, d/(2|L|k)) to obtain approximate top

singular vector w'*!.

) — (wZ+I)TMqupQ’DZ+1.
if A >9)\/16 then
L Append @t to W and exit out of this inner loop and increment .

if no W' was appended to W then

L return W.

Let W denote the span of the vectors in W.
£ +ENUMERATENETWORKS(W, B-L=12-90) . ¢ /\/k).
N’ + poly(B**+2 k,1/¢) - log(1/6).
for F € £ do
Form an empirical estimate € for ||ﬁ — F|| by drawing N’ samples.
if £ <3¢ then
L return F.
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Given subspace W C V' and F for which Flw and F are (M, Cpiecewise V) -structurally-close
(resp. (M, Cretwork /V)-structurally close), then we have that

W w
HM -M Hop S 35(”)

emp
with probability at least 1 — §.

Proof. For convenience denote M;VKP and MY by Memp and M respectively. Also, depending on

whether F only satisfies Assumption 1 or both Assumptions 1 and 2, define C, £ Chiecewise OT
C, 2 Chetwork respectively. It will also be convenient to define

M 2yt E (1]ly — Flw(x)| > 7] - (z27 — Id)]HWL
x7y
as well as the population version of Memp, that is, M 2 E(Il,yl),---7(Z‘N7yN)[Memp]'
We will upper bound
”Memp - MH < ”Memp - MHop + HM - M,Hop + ”M, - M”op’

op —
by upper bounding each of the summands on the right-hand side by &..
By Lemma 3.6 and our choice of N, |[Memp — M|, < &« with probability at least 1 — 4.

To upper bound HM — M/||,,, we can naively upper bound

op?

£ [1lly— Flw ()] > 7] @~ 10)]| <2

so by Lemma 3.17 and Lemma 3.16 we have
IM - M|, <2V2-de(W, W) <4Vv k<&

Finally, we upper bound [|[M’ —M|,. For any test vector v € S%1 orthogonal to W,

o (M= M) =E|(1lly ~ Flw(@)| > 7] = 1lly ~ (o) > 7]) - (v, 2)> = 1)

~ 1-1/k
< lsen(ly — Flw ()| = 7) # sen(ly - FlIga) = 1)] - O(k)

(B0 ) () )

where the second step follows by Holder’s and the fact that EgNN(o,l)[(92 — 1)*Y* < O(k), and

the third step follows by Lemma 5.6, which we may apply because F and F|y are (M, 4y/v - (A)-
structurally-close. O

IA

Finally, we use the above perturbation bound to show that in a single iteration of the main
outer loop of FILTEREDPCA,, if there is some variance unexplained by the subspace W found so far
(see (24)), then we will find another “good” direction orthogonal to W which is also approximately
within the span of V. Note that this claim has two components: completeness, i.e. in the list of
candidate functions we have enumerated, there is some function for which the top singular vector
of (22) is a good direction, and soundness, i.e. whatever direction is ultimately chosen in Step 14
of FILTEREDPCA is a good direction.
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Lemma 5.13. Suppose F only satisfies Assumption 1 (resp. both Assumptions 1 and 2). Suppose
v < e?/(4kC? ) (resp. v < e%/(4kC? )). For0</{<k, letwn,...,wy be a frame v-nearly

piecewise - network
within V', with span W. Define £ = &piecewise (V) (T€sp. & = &network(V)) according to (23), and
suppose N > Q({d Vv log(1/6)}/€2) and T = cVk - A.

Suppose £ < \/6, and suppose

:c~NIE(:0,Id)[(F($) o F(wa))2] > €2, (24)

Let L be the output of ENUMERATEKICKERS (W, 21/v - £) (resp. ENUMERATENETWORKS (W, 2,/7 -
¢k - B)). With probability at least 1 — |L| - § over the randomness of the N samples, the following
hold:

1. Completeness: There exists some F € L such that, if M?qu is defined according to (22), its
top singular value is at least A — 3€.

2. Soundness: For any F € L for which HM;VKPHOP > A—3&, the top singular vector w satisfies

Ty w| > 1 — d€2/X\? for some absolute constant ¢ > 0 and is orthogonal to w.

Proof. When the choice of F is clear from context, for convenience we will denote MW and Mmp
by M and Memp respectively.

By Lemma 5.9 (resp. Lemma 5.11) and our assumed bound on v, there exists F in the output
of ENUMERATEKICKERS (resp. ENUMERATENETWORKS) which is (M, e/2k)-structurally-close to
F|w for some ¢-dimensional subspace W C V.

By triangle inequality, Lemma 4.11, and (24), and our assumed bounds on v, we have that
|F'— Flw| > ¢€/2. So by Lemma 5.5 and (11), we know ||M| > A.

Because this F is (M, Cpiecewise VVV)-structurally-close (resp. (M, Cretwork v/V)-structurally close)
to F|w, Lemma 5.12 implies that with probability 1 — 4§, |M — Mempﬂop < 3¢, so Memp has top
singular value at least A —3¢. This proves completeness.

Now take any F for which [Memp | op = A — 3¢ The fact that the top singular vector w is
orthogonal to W is immediate. And by Lemma 5.12, with probability 1 — ¢ over the samples,
|IM — Memp”op < 3¢, So if we take )\,E,A,K in Corollary 3.12 to be A, 3§, M, and Memp
respectively, then because § < \/6, we get that the top singular vector w of Memp satisfies ||IIyw| >
1 — O(£2/)?%). This proves soundness, upon union bounding over all Fel. O

5.7 Putting Everything Together

To conclude the proof of Theorems 5.1 and 5.2, we first show that for the subspace W formed in
Step 17, if W is sufficiently close to the true relevant subspace V or if (24) is violated, then one can
run ENUMERATEKICKERS (resp. ENUMERATENETWORKS) one more time to produce a function
with small squared error relative to F'.

Lemma 5.14. Suppose F only satisfies Assumption 1 (resp. both Assumptions 1 and 2). Define
e* 2 ¢/(2VEkN) (resp. e* & B~L7197 D) . ¢ /\/k)

Let wy,...,wp be a frame with span w. If either 1) ¢ = k and this frame is 52/4k‘0§
nearly (resp. €?/4kC2., . -nearly) within V., or 2) inequality (24) is violated. Then the output L

iecewise ~
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of ENUMERATEKICKERS (W, %) (resp. ENUMERATENETWORKS (W, *)) contains a function F for
which ||F — F|| < O(e). Furthermore, |C| < M™* - O(A/e)* (resp. |£] < O(BL+220(1) /£)0(5%) ).

In particular, if 1) or 2) holds for the subspace W at the end of running FILTEREDPCA, then
the output F of FILTEREDPCA satisfies |F — F|| < O(e).

Proof. We first show that if either 1) or 2) holds, then there exists F in £ for which ||[F—F|| < O(e).

Suppose 1) holds. If F only satisfies Assumption 1 (resp. Assumptions 1 and 2), then by
the final part of Lemma 5.9 (resp. Lemma 5.11), there is a function F in £ which is (M, e/2k)-
structurally-close (resp. (2°,¢/2k)-structurally-close) to F|y for /-dimensional subspace W C V.
Because ¢ = k when 1) holds, this subspace must be V, so in fact F|y = F and therefore F s
structurally-close to F. By Lemma 4.11, we conclude that |F — F|| < e.

Suppose 2) holds. If F' only satisfies Assumption 1 (resp. Assumptions 1 and 2), then we can
take F™* in the first part of Lemma 5.9 (resp. Lemma 5.11) to be the function z F(Ilx), which
is clearly also a A-Lipschitz kicker (resp. ReLU network of size S whose weight matrices have
operator norm at most B) with relevant subspace W. Tt follows that £ contains some function F
which is (M, e/(2Vk))- (resp. (25,¢/(2Vk))-structurally-close to F*. By Lemma 4.11, we conclude
that ||F — F|| < 3¢/2.

For the last part of the lemma, note that by Lemma A.1 in Appendix A.1 that for any function
F for which ||F — F||? < p, we can estimate || F— F||? to error O(£2) from O((u+ A%k) log(1/6)/e*)
samples (resp. O((u + B*14k)log(1/6)/e?)). Note that for any F € L, by the second part of
Lemma 4.11 we have that |F — F|| < O(AVk) (resp. ||F — F|| < O(BL+2\/_)) O

We can now conclude the proof of correctness for FILTEREDPCA.

Proof of Theorem 5.1. First note that the only randomness in FILTEREDPCA comes from calling
APPROXBLOCKSVD and drawing samples, so henceforth we will condition on the event that the
former always succeeds and on the success of Lemma 3.6 for every batch of samples drawn in Step 7
of FILTEREDPCA. By our choice of parameters in FILTEREDPCA and a union bound, this event
happens with probability at least 1 — 6.

If F satisfies Assumption 1 only (resp. both Assumptions 1 and 2), let £(v) = &piecewise (V) and
Cy = Chiecewise (resp. £(V) = &network (V) and Cy = Chetwork ), recalling the definition from (23).

Call v > 0 admissible if v < £2/4kC? and £(v) < A\/6. Let t : R — R be the function given by
L(v) = d€(v)? /A2, where ¢ is the absolute constant in Lemma 5.13. Note that if we define

5 Camty
52(6/&2)'0<k‘2'<c2m2> )

then o(v) = (8- v VF) v (kv).
Because we are conditioning on every invocation of APPROXBLOCKSVD succeeding, the quan-

tity A computed in Step 12 is certainly &(v)/2-close to the true top singular value of MY. So
Lemma 5.13 tells us that in any iteration ¢ of the main loop in FILTEREDPCA, if {wq,...,wy} is
a frame v-nearly within V' for admissible v, then either 1) we reach Line 14 in the inner loop and
append some wyy for which {wy,... w1} is a frame ((v)-nearly within V', or 2) (24) is violated,
in which case condition 2) of Lemma .14 implies that FILTEREDPCA would output a function a
for which ||[F — F|| < O(e).

So all we need to verify is that there is a choice of vy for which the k& numbers

Vo, L(10), -y t(e(- - t(vg) -+ +)) (25)

k—1
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are all admissible, after which we can invoke condition 1) of Lemma 5.14 to conclude that FIL-
TEREDPCA outputs a function F for which |[F — F|| < O(e). It is clear that for v sufficiently
small, ¢ is increasing in v. So it suffices to choose 1 sufficiently small that the last number in the
sequence (25) is admissible.

Then the last number in (25) is at most

(BZ=0 07 Y v (k) < (8% 1) v (KEwo).
If F satisfies Assumption 1 only and we take C\ = Chiecewise, then
BE = (/A2 . 0 <k2k ) (k,M4/C2)k—1> 7
so for

v = poly(k‘k, 1/Ak, ]\4’1‘3,1&/&?)_1 = poly(ekgAQ/sz, Mk)_1

sufficiently small, we have that (3% - Vé/ VYV (kFvg) is admissible.

And because in each of the at most k iterations of the main loop of FILTEREDPCA,
N = O({d v log(MFk/8)} /&(v0)*) < dlog(1/8)poly (¥ /=", M¥)

samples are drawn, the final sample complexity is dlog(1 /5)poly(ek3A2/ 52,M k) as claimed. The
runtime is dominated by the at most MM2O(1/\/V_0)Z = MM* . poly(e¥A*/e* M) calls to Ap-
PROXBLOCKSVD, one for each element of £ output by ENUMERATEKICKERS, (note that the run-
time and sample complexity cost of running ENUMERATEKICKERS at the very end is of much lower
order). As there is a matrix-vector oracle for the matrices on which we run APPROXBLOCKSVD
which takes time O(d?), by Fact 3.10 each of these calls takes, up to lower order factors that will
be absorbed elsewhere, O(d?log(1/6)) time, so we conclude that FILTEREDPCA runs in time

O(d?log(1/8)) - MM - poly(eF"A/=* A+

as claimed.
If F satisfies Assumptions 1 and 2 and we take Cy = Chetwork, then

9O(L) g2L+4},948 ) k=1

c2A\2

,Bk:(C,/A2)k’O k2k<

where we have used that M < 2° for size-S ReL.U networks. So for
Vo 2 poly(k¥, 1/XF, 285 (BE+2 /A A Je)~L = poly(ek3A2/€2, 2kS (BLF2/A)k)
sufficiently small, we have that (8 - I/é/ YV (k*1p) is admissible.
And because in each of the at most k iteration of the main loop of FILTEREDPCA,
N = O({d V10g(2°k/8)} /£(1)?) < dlog(1/8)poly(eF"N/=% kS BL+2)k /\k)

samples are drawn, the final sample complexity is dlog(l/é)poly(ek3A2/52,2kS,B(LJf2)k/Ak) as
claimed. The runtime is dominated by the at most 0(1/\/70)0(52) = poly(eF*S*A?/e* okS® B(L+2)kS? j \kS?)
calls to APPROXBLOCKSVD, one for each element of £ output by ENUMERATENETWORKS (note

that the runtime and sample complexity cost of running ENUMERATENETWORKS at the very end

is of much lower order). Each of these calls takes, up to lower order factors that will be absorbed
elsewhere, O(d?log(1/6)) time, so we conclude that FILTEREDPCA runs in time

O(d*10g(1/5)) - poly(eF S A%/" ohs® (pLt2/p)ks?)

as claimed. 0
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Remark 5.15 (Comparison to [CM20]). Here we briefly discuss what goes wrong if one simply
tries mimicking the approach of [CM20]. Provided one has already recovered some (orthonormal)
directions w1, ..., wy spanning a subspace W C V', one would consider the matrix

MEVM 2 Ty 1Ey []l[|y| >TA ||HWxH2 <a- (mmT — Id):|HwJ_

for some «, 7 > 0. The motivation for conditioning on HHWJJH2 < « is that we now have
2 2
My, MEy) = E [1lls] > 7 A [Twal® < o] - (Tyywel® — (k= 0)].

and if one could choose 7 strictly greater than the supremum of |F(z)| over all z for which ||[IIyyz||* <
a and HHV\WJJH2 < 2(k — ¢), then we would conclude that

(M, M) = (k=€) - Pllyl > 7 A |[Twz] < of (26)

and it would suffice to lower bound the probability on the right-hand side of (26). This is precisely
the route taken by [CM20] for learning low-degree polynomials, but in the case of ReLU networks,
it is not hard to devise functions F' for which the probability on the right-hand side of (26) is zero
for such choices of 7, e.g. if d=k =2, =1, v1 =1, and

F(z) £ ¢(x/a+y) — p(—x/a+y).
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A Deferred Proofs

A.1 Concentration for Piecewise Linear Functions

Lemma A.1. For any § > 0 and any t < A%k, the following holds. Let F : R* — R be a A-
Lipschitz kicker with relevant subspace V' of dimension k. Then for samples x1,...,xn ~ N(0,1d),
where N = © (1 + A%k)?log(1/6)/t?), the empirical estimate 5> = + 3", F(x;)* satisfies

with probability at least 1 — 6.

Proof. As F'is A-Lipschitz and continuous piecewise-linear, by Theorem 4.9 and Lemma 4.5 it has

a lattice polynomial representation max ey, min;ez; (u;,-) for some clauses {Z;} and vectors {u;}

for which ||u;|| < A. In particular, by Cauchy-Schwarz, |F(z)| < A|lz|| for all z. Now define the
A

function G(z) £ F(x)? — pu where 1 £ Eypro,1a)[F(2)?]. We can therefore naively upper bound
the moments of G by

E[GIY < p+EFY <pu+A2 B [z < u+ O(A%) - (¢ - 1)
x~N(0,ITy)

for all t > 2, where the last step follows by standard hypercontractivity. Furthermore, E[|G|] <
2u. For  ~ N(0,1d), G(x) is therefore a sub-exponential, mean-zero random variable with sub-
exponential norm K £ O(p + A%k), so by Fact 3.7 and the bound on t in the hypothesis, for
N = O(K?log(1/6)/t?), the claim follows. O

A.2 Representing Boolean Functions as ReLU Networks

Lemma A.2. For any function F : {£1}" — {£1}, there exists a set of weight matrices Wy, ..., W,,_1
for which F(x) = W,_10(Wp,_2¢(- - ¢(Woz)--+)) for all x € {£1}".

Proof. From the Fourier expansion of F'as F((xz) =) ¢ F[S] [Licg =i, we see that it suffices to show
how to represent any Fourier basis function [[; g 2; with a ReLU network with depth n. We first
show how to represent the function xjz5. Observe that for any x1,x9 € {1}, we have that

Ty -3 = ¢(x1 + 32) + ¢(—21 — 12) — P(22) — (—x2), (27)

which is a two-layer neural network. Suppose inductively that for some 1 < m < n, there exist
weight matrices Wg,..., W/ _, for which [}, z; = W/,,_;6(W,,_o0(--- ¢(W(zx)---)) for all
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x € {+1}". Then to compute [[7" z;, we can use (27) to conclude that

m+1 m m
[[zi=2¢ (H i + $m+1> +¢ (— IE wm+1> — O(@mi1) = A(—Tm1)-
i-1 i=1

i=1

It is clear that this can be represented as a ReLLU network with depth m + 1.
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