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Abstract

Model extraction attacks have renewed interest in the classic problem of learning neural
networks from queries. This work gives the first polynomial-time algorithm for learning one
hidden layer neural networks provided black-box access to the network. Formally, we show that
if F is an arbitrary one hidden layer neural network with ReLU activations, there is an algorithm
with query complexity and running time that is polynomial in all parameters that outputs a
network F ′ achieving low square loss relative to F with respect to the Gaussian measure. While
a number of works in the security literature have proposed and empirically demonstrated the
effectiveness of certain algorithms for this problem, ours is the first with fully polynomial-time
guarantees of efficiency for worst-case networks (in particular our algorithm succeeds in the
overparameterized setting).

1 Introduction

The problem of learning neural networks given random labeled examples continues to be a funda-
mental algorithmic challenge in machine learning theory. There has been a resurgence of interest in
developing algorithms for learning one hidden layer neural networks, namely functions of the form
F (x) =

∑k
i=1 siσ(〈wi, x〉− bi) where wi ∈ R

d, si ∈ {±1}, bi ∈ R are the unknown parameters. Here
we consider the ubiquitous setting where σ is the ReLU activation, the input distribution on x is
Gaussian, and the goal is to output a ReLU network F ′ with E[(F (x)− F ′(x))2] ≤ ǫ.

Despite much recent work on this problem [JSA15, ZSJ+17, GKM18, GLM18, GKLW18, ZYWG19,
BJW19, DKKZ20, CKM20, LMZ20], obtaining a polynomial-time algorithm remains open. All
known works take additional assumptions on the unknown weights and coefficients or do not run in
polynomial-time in all the important parameters. In fact, there are a number of lower bounds, both
for restricted models of computation like correlational statistical queries [GGJ+20, DKKZ20] as well
as under various average-case assumptions [DV20, DV21], that suggest that a truly polynomial-time
algorithm may be impossible to achieve.

In this work, we strengthen the learner by allowing it query access to the unknown network.
That is, the learner may select an input x of its choosing and receive the output value of the
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unknown network F (x). Our main result is the first polynomial-time algorithm for learning one
hidden layer ReLU networks with respect to Gaussian inputs when the learner is given query access:

Theorem 1.1. Let F (x) =
∑k

i=1 siσ(〈wi, x〉 − bi) with ‖wi‖2 ≤ R, si ∈ {±1}, and bi ≤ B. Given
black-box access to F , there exists a (randomized) algorithm that will output with probability at least
1− δ, a one hidden layer network F ′ such that Ex∼N (0,Id)[(F (x)−F ′(x))2] ≤ ǫ. The algorithm has
query complexity and running time that is polynomial in d,B,R, k, 1/ǫ, and log(1/δ).

In light of the aforementioned lower bounds [GGJ+20, DKKZ20, DV20, DV21], Theorem 1.1
suggests there is a separation between learning from random samples and learning from queries in
the context of neural networks.

In addition to being a naturally motivated challenge in computational learning theory, the
question of learning neural networks from queries has also received strong interest from the security
and privacy communities in light of so-called model extraction attacks [TJ+16, MSDH19, PMG+17,
JCB+20, RK20, JWZ20]. These attacks attempt to reverse-engineer neural networks found in
publicly deployed real-world systems. Since the target network is publicly available, an attacker
therefore obtains black-box query access to the network – exactly the learning model we are working
in. Of particular interest is the work of Carlini et al. [CJM20] (see also [JCB+20]), who gave several
heuristics for learning deep neural networks given black-box access (they also empirically verified
their results on networks trained on MNIST). Another relevant work is that of [MSDH19] which gave
theoretical guarantees for the problem we study under quite strong separation/linear independence
assumptions on the weight vectors; in fact they are able to exactly recover the network, but in
the absence of such strong assumptions this is impossible (see Section 1.2). A very recent follow-
up work [DG21] improved upon the results of [MSDH19] by giving a similar guarantee under a
somewhat milder assumption and notably also giving an algorithm for learning ReLU networks
with two hidden layers under such assumptions. Since these papers bear strong parallels with
our techniques, in Section 1.2 we provide a more detailed description of why these approaches
break down in our setting and highlight the subtleties that we address to achieve the guarantee of
Theorem 1.1.

1.1 Our Approach

Here we describe our approach at a high level. Fix an unknown one hidden-layer network F (x) =∑k
i=1 siσ(〈wi, x〉−bi) with weight vectors wi ∈ R

d, signs si ∈ {±1}, and bias terms bi ∈ R. Consider
a line L = {x0 + t · v}t∈R for x0, v ∈ R

d and the restriction F |L(t) , F (x0 + t · v) given by

F |L(t) =
k∑

i=1

siσ (〈wi, x0〉 − bi + t〈wi, v〉) .

Note that as a univariate function, F |L(t) is a piecewise-linear function. We call a point t ∈ R

a critical point of F |L if the slope of the piecewise-linear function changes at t. Our starting point
is that if we can identify the critical points of F |L, then we can use estimates of the gradient of F
at those critical points to estimate the weights of the hidden units in F . More concretely, suppose
we have identified a critical point ti of F |L for a line L. Now, back in the d-dimensional space, if
we look at a sufficiently small neighborhood of the point x′ = x0 + ti · v, then the set of activated
units around x′ changes by exactly one (in fact, by this reasoning, for a random L, F |L will have
one unique critical point for each neuron in F , provided no two neurons are exact multiples of
each other). We can exploit this to retrieve the wi’s and bi’s by finite differencing: for each such
x′, compute (F (x′ + δ) − F (x′))/‖δ‖, for several sufficiently small perturbations δ ∈ R

d, and this
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will recover siwi (see Algorithm 2 and 4.9 below for the details). We can recover sibi in a similar
fashion (see Algorithm 1). We remark that the approach we have described appears to be quite
similar to that of [CJM20, JCB+20, MSDH19].

However, the above description leaves out the following key interrelated challenges for getting
provable guarantees for arbitrary networks:

1. How do we identify the critical points of F |L for a given line L?

2. If we make no assumptions on how well-separated the weight vectors are, it is actually impossible
to recover all of the weight vectors and biases in a bounded number of queries. Using the neurons
that we do approximately recover, is it possible to piece them together to approximate F?

A rigorous solution to these issues turns out to be quite tricky and technically involved. For
instance, what if some critical points are arbitrarily close to each other (imagine the piecewise linear
function being a tiny peak of exponentially small in d width on the real line) on the line F |L. In this
case, identifying them would not be possible efficiently. We develop several structural results about
cancellations in ReLU networks (culminating in Lemma 3.21) that show that such a situation only
arises in degenerate cases where some sub-network of F contains a cluster of many similar neurons
(we formalize the notion of similarity in Definition 3.7). We show in Section 3 that much smaller
networks can approximate these sub-networks. On the other hand, for pairs of neurons which are
sufficiently far from each other, the critical points on a random line L will be well-separated.

With the structural results in hand, roughly speaking it suffices to identify one “representative”
neuron for every cluster of similar neurons in F . To do this, we discretize L into intervals of equal
length and look at differences between gradients/biases of F at the midpoints of these intervals.
The key result leveraging our structural results is Theorem 4.8 which shows that the set of all
such differences comprises a rich enough collection of neurons that we can assemble some linear
combination of them that approximates F . To find a suitable linear combination, we run linear
regression on the features computed by these neurons (see Section 4.4).

1.2 Comparison to Previous Approaches

Our general approach of looking for critical lines along random restrictions of F |L is also the
approach taken in the empirical works of [CJM20, JCB+20] and in the theoretical work of [MSDH19,
DG21], but we emphasize that there are a variety of subtleties that arise because we are interested
in learning worst-case networks from queries. In contrast, the empirical works consider trained
networks arising in practice, while [MSDH19] makes a strong assumption that the weight vectors
wi are linearly independent and that they are angularly separated. Note that such assumptions
cannot hold in the practically relevant setting where F is overparameterized. The recent work of
[DG21] likewise makes non-degeneracy assumptions that allow them to avoid dealing with closely
spaced critical points, arguably the central technical challenge in the present work. Indeed, these
sorts of assumptions are powerful enough that [MSDH19, DG21] are able to exactly recover the
parameters of the network in a finite number of samples, whereas at the level of generality of the
present work, this is clearly impossible.

To give a sense for the issues that these existing techniques run up against when it comes
to worst-case networks, imagine that the one-dimensional piecewise linear function given by the
restriction F |L were simply a “bump,” that is, it is zero over most of the line except in a small
interval [a, a+ δ]. For instance, this would arise in the following example:

Example 1.2. Consider the one-dimensional one hidden layer network F : R → R given by
F (x) = σ(x− a) + σ(x− a− δ)− σ(2x− 2a− δ). This function looks like the zero function except
over the interval [a, a+ δ], where it looks like a small “bump.”
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The proposal in the works mentioned above is to run a binary search to find a critical point.
Namely, they initialize to some large enough interval [−τ, τ ] in L and check whether the gradient
at the left or right endpoint differs from the gradient at the midpoint tmid = 0. If the former, then
they restrict the search to [−τ, tmid] and recurse until they end up with a sufficiently small interval,
at which point they return the midpoint of that interval as an approximation to a critical point.
The intuition is that n steps of binary search suffice to identify a critical point up to n bits of
precision.1

It is clear, however, from the “bump” example that such a binary search procedure is doomed
to fail: if the bump does not occur in the middle of the starting interval [−τ, τ ], then at the outset,
we don’t know which half to recurse on because the gradients at the endpoints and the gradient at
the midpoint are all zero! Indeed, to locate the bump, it is clear that we need to query a number
of points which is at least inverse in the width of the bump to even find an input to the network
with nonzero output.

We remark that this is in stark contrast to related active learning settings where the ability
to query the function can sometimes yield exponential savings on the dependence on 1/ǫ (see e.g.
[Han09]). Indeed, if we took the width of the bump to be of size poly(ǫ) to make it ǫ-far in square
distance from the zero function, we would still need poly(1/ǫ), rather than log(1/ǫ), queries to
locate the bump and distinguish the funcction from the zero function.

The core reason binary search fails for arbitrary networks is that there can be many disjoint
linear pieces of F |L which all have the same slope. Indeed, because the gradient of F at a given
point is some linear combination of the weight vectors, if F is overparameterized so that there
are many linear dependencies among the weight vectors, it is not hard to design examples like
Example 1.2 where there may be many repeated slopes on any given random restriction of F to a
line.

Apart from these technical issues that arise in the worst-case setting we consider and not in
previous empirical or theoretical works on model extraction, we also emphasize that our results
are the first theoretical guarantees for learning general one hidden-layer ReLU networks with bias
terms in any learning model, including PAC learning from samples. As will quickly become evident
in the sequel, biases introduce many technical hurdles in their own right. To our knowledge, the
only other theoretical guarantees for learning networks with biases are the work of [JSA15] which
considers certain activations with nonzero second/third-order derivatives, precluding the ReLU,
and the recent work of [ATV21] which considers ReLU networks whose weight vectors are well-
conditioned.

Remark 1.3. As discussed above, the “bump” construction in Example 1.2 shows that unlike in
related active learning contexts, poly(1/ǫ) dependence is necessary in our setting. In fact this
example also tells us another somewhat counterintuitive fact about our setting. Naively, one might
hope to upgrade Theorem 1.1 by replacing the dependence on the scaling parameters R,B with one
solely on the L2 norm of the function. To see why this is impossible, consider scaling the function
in Example 1.2 by a factor of δ−3/2 to have unit L2 norm. To learn F , we have to figure out the
location of the bump, but this requires Ω(1/δ) queries, and δ can be taken to be arbitrarily small.

Limitations and Societal Impact The line of work on learning neural networks from black-
box access does pose a risk, for instance, that proprietary models offered via publicly-hosted APIs
may be stolen by attackers who are only able to interact with the models through queries. The
attackers might then use the extracted parameters of the model to learn sensitive information about

1We remark that the refinement of binary search given in [CJM20, JCB+20] can speed this up to O(1) steps for
networks that arise in practice, but the issue that we describe poses a challenge for their technique as well.
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the data the model was trained on, or perhaps to construct adversarial examples. That being said,
understanding why this query learning problem can be easy for theorists is the first step towards
building provable safeguards to ensure that it is hard for actual attackers. For instance, it is
conceivable that one can prove information-theoretic or computational hardness for such problems
if appropriate levels and kinds of noise are injected into the responses to the queries. Furthermore,
query complexity lower bounds can inform how many accesses an API should allow any given user.

2 Preliminaries

Notation We let S
d−1 denote the unit sphere in R

d. Let ej denote the j-th standard basis

vector in R
d. Given vectors u, v, let ∠(u, v) , arccos

(
〈u,v〉

‖u‖‖v‖

)
. Given a matrix M , let ‖M‖op and

‖M‖F denote the operator and Frobenius norms respectively. Given a function h which is square-
integrable with respect to the Gaussian measure, we will use ‖h‖ to denote Ex∼N (0,Id)[h(x)

2]1/2.
Given a collection of indices S ⊆ Z, we say that i, j ∈ S are neighboring if there does not exist
i < ℓ < j for which ℓ ∈ S.

The following elementary fact will be useful:

Fact 2.1. |sin(x+ y)| = |sin(x) cos(y) + sin(y) cos(x)| ≤ |sin(x)|+ |sin(y)| for any x, y ∈ R

2.1 Neural Networks, Restrictions, and Critical Points

Definition 2.2. A neuron is a pair (v, b) where v ∈ R
d and b ∈ R; it corresponds to the function

x 7→ σ(〈v, x〉 − b), which we sometimes denote by σ(〈v, ·〉 − b).

As mentioned in the overview, we will be taking random restrictions of the underlying network
F , for which we use the following notation:

Definition 2.3. Given a line L ⊂ R
d parametrized by L = {x0+ t ·v}t∈R, and a function F : Rd →

R, define the restriction of F to L by F |L(t) , F (x0 + t · v).

Definition 2.4. Given a line L ⊂ R
d and a restriction F |L of a piecewise linear function F : Rd →

R to that line, the critical points of F |L are the points t ∈ R at which the slope of F |L changes.

2.2 Concentration and Anti-Concentration

We will need the following standard tail bounds and anti-concentration bounds:

Fact 2.5 (Concentration of norm of Gaussian vector). Given Gaussian vector h ∼ N (0,Σ),

Pr
[
‖h‖ ≥ O(‖Σ1/2‖op(

√
r +

√
log(1/δ)))

]
≤ δ, where r is the rank of Σ.

Fact 2.6 (Uniform bound on entries of Gaussian vector). For covariance matrix Σ ∈ R
m×m, given

h ∼ N (0,Σ) we have that |hi| ≤ O
(√

Σi,i

√
log(m/δ)

)
for all i ∈ [m] with probability at least 1−δ.

Proof. For every i ∈ [m], hi ∼ N (0,Σi,i), so |hi| ≤ O(Σ
1/2
i,i

√
log(m/δ)) with probability at least

1 − δ/m, from which the claim follows by a union bound and the fact that the largest diagonal
entry of a psd matrix is the largest entry of that matrix.

Fact 2.7 (Carbery-Wright [CW01]). There is an absolute constant C > 0 such that for any ν > 0
and quadratic polynomial p : Rd → R, Prg∼N (0,Id)[|p(g)| ≤ ν · V[p(g)]1/2] ≤ C

√
ν.
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Lemma 2.8 (Anti-concentration of norm of Gaussian vector). There is an absolute constant C > 0

such that given any Gaussian vector h ∼ N (µ,Σ), Pr
[
‖h‖ ≥ √

ν‖Σ‖1/2F

]
≥ 1− C

√
ν.

Proof. Define the polynomial p(g) , (g + µ)⊤Σ(g + µ). Note that for g ∼ N (0, Id), p(g) is
distributed as ‖h‖2 for h ∼ N (µ,Σ). We have Eg∼N (0,Id)[p(g)] = Tr(Σ) + µ⊤Σµ, so

V[p(g)] = E[(g
⊤Σg + 2g⊤Σµ− Tr(Σ))2]

= E[(g
⊤Σg)2] + E[(2g

⊤Σµ− Tr(Σ))2] + 2E[(g
⊤Σg)(2g⊤Σµ− Tr(Σ))]

=
(
2Tr(Σ2) + Tr(Σ)2

)
+

(
4Tr(Σµµ⊤Σ) + Tr(Σ)2

)
− 2Tr(Σ)2

= 2
〈
Σ2, Id+2µµ⊤

〉
≥ ‖Σ‖2F ,

so by Fact 2.7 we conclude that Pr[p(g) ≤ ν‖Σ‖F ] ≤ C
√
ν.

Lemma 2.9 (Anti-concentration for random unit vectors). For random v ∈ S
d−1, Pr

[
|v1| < δ

2
√
d+O(

√
log(1/δ))

]
≤

δ.

Proof. For g ∼ N (0, Id), g/‖g‖ is identical in distribution to v. ‖g‖ ≤
√
d + O(

√
log(1/δ)) with

probability at least 1− δ/2 for absolute constant c > 0, and furthermore Prγ∼N (0,1)[|g| > t] ≥ 1− t
for any t > 0, from which the claim follows by a union bound.

3 ReLU Networks with Cancellations

In the following section we prove several general results about approximating one hidden-layer
networks with many “similar” neurons by much smaller networks.

3.1 Stability Bounds for ReLUs

The main result of this subsection will be the following stability bound for (non-homogeneous)
ReLUs with the same bias.

Lemma 3.1. Fix any ∆ < 1. For orthogonal v, v′ ∈ R
d for which ‖v− v′‖ ≤ ∆‖v‖, and b ∈ R, we

have

E[(σ(〈v, x〉 − b)− σ(〈v′, x〉 − b))2] ≤ O
(
∆2/5‖v‖2

)

To prove this, we will need to collect some standard facts about stability of homogeneous ReLUs
and affine threshold functions, given in Fact 3.2, Lemma 3.3, Lemma 3.4, and Lemma 3.5.

The following formula is standard [CS09]:

Fact 3.2. E[σ(〈v, x〉)σ(〈v′ , x〉)] = 1
2π‖v‖‖v′‖ (sin∠(v, v′) + (π − ∠(v, v′)) cos∠(v, v′)). For 〈v, v′〉 ≥

0, note that this is at least 1
6‖v‖‖v′‖+ 1

3〈v, v′〉.

As a consequence, we obtain the following stability result for homogeneous ReLUs:

Lemma 3.3. For any v, v′ ∈ R
d for which 〈v, v′〉 ≥ 0, we have

E[(σ(〈v, x〉) − σ(〈v′, x〉))2] ≤ 1

2
‖v − v′‖2 + 2

3
‖v‖‖v′‖(1 − cos∠(v, v′))
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Proof. We can expand the expectation and apply Fact 3.2 to get

E[(σ(〈v, x〉) − σ(〈v′, x〉))2] = E[σ(〈v, x〉)2] + E[σ(〈v′, x〉)2]− 2E[σ(〈v, x〉)σ(〈v′ , x〉)]

≤ 1

2
‖v‖2 + 1

2
‖v′‖2 − 2

(
1

6
‖v‖‖v′‖+ 1

3
〈v, v′〉

)

=
1

2
‖v − v′‖2 + 2

3
(‖v‖‖v′‖ − 〈v, v′〉)

=
1

2
‖v − v′‖2 + 2

3
‖v‖‖v′‖(1− cos∠(v, v′))

as claimed.

We will also need the following stability result for affine linear thresholds.

Lemma 3.4 (Lemma 5.7 in [CM20]). Given v, v′ ∈ R
d and b ∈ R,

Pr
[
〈v, x〉 > b ∧ 〈v′, x〉 ≤ b

]
≤ O(‖v − v′‖/b).

Lemma 3.5. For any v ∈ R
d and b ≤ b′,

E

[
(σ(〈v, x〉 − b)− σ(〈v, x〉 − b′))2

]
≤ (b′ − b)2

Proof. Note that 〈v, x〉 ∼ N (0, ‖v‖2), so it suffices to show that for the univariate function f(z) ,
σ(z − b)− σ(z − b′), Ez∼N (0,‖v‖2)[f(z)

2] ≤ (b′ − b)2. Observe that f(z) = b′ − b for z > b′, f(z) = 0
for z < b, and f(z) = z − b for z ∈ [b, b′]. In particular, |f(z)| ≤ b′ − b, from which the claim
follows.

The following basic lemma giving L2 bounds for Lipschitz functions which are bounded with
high probability will be useful throughout.

Lemma 3.6. Let ǫ(x) : Rd → R≥0 be any square-integrable function with respect to the Gaus-
sian measure. If f : Rd → R is an L-Lipschitz continuous piecewise linear function and satisfies
Prx∼N (0,Id)[|f(x)| ≤ ǫ(x)] ≥ 1 − ζ and |f(0)| ≤ M , then Ex∼N (0,Id)[f(x)

2] ≤ 2ζM2 + L2ζ1/2(d2 +

2d) + E[ǫ(x)4]1/2.

Proof. Because f is L-Lipschitz, f(x)2 ≤ (M + L‖x‖)2 ≤ 2M2 + L2‖x‖2. Then

E[f(x)
2] ≤ E[f(x)

2
1[f(x) > ǫ(x)]] + E[ǫ(x)

2
1[f(x) ≤ ǫ(x)]]

≤ 2ζM2 + L2
E[‖x‖21[f(x) > ρ‖x‖]] + E[ǫ(x)

4]1/2(1− ζ)1/2

≤ 2ζM2 + L2ζ1/2 E[‖x‖4] + E[ǫ(x)
4]1/2(1− ζ)1/2

= 2ζM2 + 3L2ζ1/2d2 + E[ǫ(x)
4]1/2,

as claimed.

Putting all of these ingredients together, we can now complete the proof of the main Lemma 3.1
of this subsection.

Proof. Suppose b ≥ ∆1/5‖v‖. By Lemma 3.4, sgn(〈v, x〉 − b) 6= sgn(〈v′, x〉 − b) with probability
at most O(∆‖v‖/b). So with probability at least 1 − O(∆‖v‖/b), the function (σ(〈v, x〉 − b) −
σ(〈v′, x〉 − b) is at most 〈v − v′, x〉 ≤ ∆‖v‖‖x‖. Furthermore, this function is L-Lipschitz for
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L = ‖v‖ + ‖v‖′ ≤ O(‖v‖). By Lemma 3.6 applied to the projection of f to the two-dimensional
subspace spanned by v, v′,

E[(σ(〈v, x〉 − b)− σ(〈v′, x〉 − b))2] . ‖v‖2
(√

∆‖v‖/b +∆2
)
. ∆2/5‖v‖2.

Now suppose b < ∆1/5‖v‖. Then ‖σ(〈v, ·〉 − b) − σ(〈v, ·〉)‖2 ≤ ∆2/5‖v‖2 and ‖σ(〈v′, ·〉 − b) −
σ(〈v′, ·〉)‖2 ≤ ∆2/5‖v′‖2. By triangle inequality, it suffices to bound ‖σ(〈v, ·〉) − σ(〈v′, ·〉)‖2. By
Lemma 3.3, we have

‖σ(〈v, ·〉) − σ(〈v′, ·〉)‖2 . ∆2‖v‖2 + ‖v‖2 · (1− cos∠(v, v′)) . ∆2‖v‖2,

where the last step follows by the fact that ‖v− v′‖ ≤ ∆‖v‖ implies that cos∠(v, v′) ≥
√
1−∆2 ≥

1−∆2.

3.2 (∆, α)-Closeness of Neurons

We now formalize a notion of geodesic closeness between two neurons and record some useful
properties. This notion is motivated by Lemma 4.4 in Section 4.1 where we study the critical
points of random restrictions of one hidden-layer networks.

Definition 3.7. Given v, v′ ∈ R
d and b, b′ ∈ R, we say that (v, b) and (v′, b′) are (∆, α)-close if the

following two conditions are satisfied:

1. |sin∠(v, v′)| ≤ ∆

2. ‖bv′ − b′v‖ ≤ α‖v‖‖v′‖.
Note that this is a measure of angular closeness between (v, b), (v′, b′) ∈ R

d+1. For instance, if
(v, b) = (λv∗, λb∗) and (v′, b′) = (λ′v∗, λ′b∗) for some (v∗, b∗), then (v, b) and (v′, b′) are (0, 0)-close.

We first collect some elementary consequences of closeness. The following intuitively says that
if we scale two (∆, α)-neurons to have similar norm, then their biases will be close.

Lemma 3.8. If (v, b) and (v′, b′) are (∆, α)-close, and v = γv′ + v⊥ for v⊥ orthogonal to v′, then
|γb′ − b| ≤ α‖v‖.
Proof. We know that ‖bv′ − b′v‖ ≤ α‖v‖‖v′‖. The left-hand side of this is ‖(b − γb′)v′ − b′v⊥‖ ≥
|b − γb′|‖v′‖, where the inequality follows from orthogonality of v, v′. Therefore, |γb′ − b| ≤ α‖v‖
as claimed.

Note that when two neurons are (∆, α)-close, their weight vectors are either extremely correlated
or extremely anti-correlated. In fact, given a collection of neurons that are all pairwise close, they
will exhibit the following “polarization” effect.

Lemma 3.9. Suppose ∆ <
√
2/2. If (v1, b1), . . . (vk, bk) are all pairwise (∆, α)-close for some

α > 0, then there is a partition [k] = S1 ⊔ S2 for which 〈vi, vj〉 ≥ 0 for any i ∈ S1, j ∈ S1 or
i ∈ S2, j ∈ S2, and for which 〈vi, vj〉 < 0 for any i ∈ S1, j ∈ S2 or i ∈ S2, j ∈ S1.

Proof. Let S1 be the set of i ∈ [k] for which 〈vi, v1〉 ≥ 0, and let S2 be the remaining indices. First
consider any i, j ∈ S1 and note that ∠(vi, vj) ≤ ∠(vi, v1) + ∠(vj , v1) ≤ 2 arcsin∆, and because
〈vi, v1〉, 〈vj , v1〉 ≥ 0, this is less than π/4 for ∆ <

√
2/2. By the same reasoning, we can show

that for any i, j ∈ S2, ∠(vi, vj) < π/2 if ∆ <
√
2/2. Finally, consider i ∈ S1 and j ∈ S2. We

have ∠(vi, vj) ≥ ∠(vj , v1) − ∠(vi, v1). If ∆ <
√
2/2, then ∠(vj, v1) > 3π/4 while ∠(vi, v1) < π/4,

concluding the proof.
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In the rest of the paper we will take ∆ to be small, so Lemma 3.9 will always apply. As such,
it will be useful to define the following terminology:

Definition 3.10. Given (v1, b1), . . . , (vk, bk) which are all pairwise-close, we will call the partition
S1 ⊔ S2 given in Lemma 3.9 the orientation induced by {(vi, bi)}.

We note that (∆, α)-closeness satisfies triangle inequality.

Lemma 3.11. If (v1, b1) and (v2, b2) are (∆, α)-close, and (v2, b2) and (v3, b3) are (∆′, α′)-close,
then (v1, b1) and (v3, b3) are (∆ +∆′, 2α+ 2α′)-close.

Proof. As ∠(v1, v3) ≤ ∠(v1, v2) + ∠(v2, v3), it is clear from Fact 2.1 that |sin∠(v1, v3)| ≤ ∆+∆′.
Now write the orthogonal decompositions v1 = γ1v2 + v⊥1 and v3 = γ3v2 + v⊥3 , noting that

γ1‖v2‖ ≤ ‖v1‖, γ3‖v2‖ ≤ ‖v3‖. We can write

b1v3 − b3v1 = (b1γ3 − b3γ1)v2 + (b1v
⊥
3 − b3v

⊥
1 ). (1)

We will handle these two terms separately. First note that (∆, α)-closeness of (v1, b1), (v2, b2)
and Lemma 3.8 imply |b2γ1 − b1| ≤ α‖v1‖, so in particular |b2γ1γ3 − b1γ3| ≤ αγ3‖v1‖. Similarly,
|b2γ1γ3 − b3γ1| ≤ α′γ1‖v3‖. This allows us to conclude by triangle inequality that

|b1γ3 − b3γ1| · ‖v2‖ ≤ αγ1‖v3‖+ α′γ3‖v1‖)‖v2‖ ≤ (α+ α′)‖v1‖‖v3‖. (2)

It remains to handle the second term on the right-hand side of (1). Note that Lemma 3.8 also tells
us that

‖b1v⊥3 −b3v
⊥
1 ‖ ≤ ‖b2γ1v⊥3 −b1v

⊥
3 ‖+‖b2γ3v⊥1 −b3v

⊥
1 ‖ ≤ α‖v1‖‖v⊥3 ‖+α′‖v3‖‖v⊥1 ‖ ≤ (α+α′)‖v1‖‖v3‖,

(3)
so by (1), (2), and (3), ‖b1v3 − b3v1‖ ≤ 2(α+ α′)‖v1‖‖v3‖.

3.3 Merging Neurons

In this section we begin to apply the tools we have developed in the preceding sections to show our
main results about approximating neural networks with many close neurons by smaller networks.
The goal of this subsection is to prove that a one hidden-layer network where all neurons are
(∆, α)-close to some neuron can be approximated by at most two neurons:

Lemma 3.12. Given F (x) =
∑k

i=1 siσ(〈wi, x〉 − bi) for si ∈ {±1} and (v∗, b∗) ∈ R
d ×R for which

(wi, bi) is (∆, α)-close to (v∗, b∗) for all i ∈ [k], there exist coefficients a+, a− ∈ R for which

E
x∼N (0,Id)

[(
F (x)− a+σ(〈v∗, x〉 − b∗)− a−σ(〈−v∗, x〉+ b∗)

)2] ≤ O(k2(∆2/5 + α2))‖v∗‖2. (4)

Furthermore, we have that

|a+|‖v∗‖, |a−|‖v∗‖ ≤
∑

i

‖wi‖ and |a+b∗|, |a−b∗| ≤ α
∑

i

‖wi‖+
∑

i

|bi|. (5)

Our starting point for showing this is the following lemma which states that given two close
neurons whose weight vectors are correlated, we can merge them into a single neuron while incurring
small square loss.
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Lemma 3.13. Let 0 < ∆ ≤ 1. For v1, v2, v ∈ R
d, suppose we have v1 = γ1v+v⊥1 and v2 = γ2v+v⊥2

for 1 ≥ γ1 ≥ γ2 ≥ 0 and v⊥1 , v
⊥
2 orthogonal to v. Suppose additionally that (v1, b1) and (v2, b2) are

both (∆, α)-close to (v, b). For s ∈ {±1}, we have that

E
x∼N (0,Id)

[
(σ(〈v1, x〉 − b1) + sσ(〈v2, x〉 − b2)− (γ1 + sγ2)σ(〈v, x〉 − b))2

]
≤ O

(
∆2/5 + α2

)
‖v‖2

Proof. For i = 1, 2, because |sin∠(vi, v)| ≤ ∆, we find ‖v⊥i ‖ ≤ ∆‖vi‖ ≤ O(∆‖v‖) for ∆ sufficiently
small. From Lemma 3.1 we have ‖σ(〈vi, ·〉 − bi)− σ(〈γiv, ·〉 − bi)‖ ≤ O(∆1/5‖v‖). Note that

(γib− bi)‖v‖2 = b〈v, vi〉 − bi‖v‖2 ≤ ‖v‖‖bvi − biv‖ ≤ α‖v‖2‖vi‖,

i.e. γib− bi ≤ α‖vi‖. So by Lemma 3.5, ‖σ(〈γiv, ·〉 − bi) − σ(〈γiv, ·〉 − γib)‖ ≤ α‖vi‖. The lemma
follows by triangle inequality and the fact that ‖vi‖ ≤ ‖v‖

√
1 + ∆2 ≤ 2‖v‖.

Lemma 3.13 suggests the following binary operation.

Definition 3.14. Fix a vector v∗ ∈ R
d. Consider the set of all triples (s, v, b) for which s ∈ {±1},

b ∈ R, and v satisfies 0 ≤ 〈v, v∗〉 ≤ ‖v∗‖2. Define the binary operator ⊙v∗ as follows. Suppose
v1 = γ1v + v⊥1 and v2 = γ2v + v⊥2 as in Lemma 3.13, and define γ = |s1γ1 + s2γ2|. Then

(s1, v1, b1)⊙v∗ (s2, v2, b2) = (si, γv, γb) for i = argmax
j

γj

Note that si corresponds to the sign of s1γ1 + s2γ2, and siγ = s1γ1 + s2γ2.

In this notation we can restate Lemma 3.13 as follows:

Lemma 3.15. For v1, v2, b1, b2, v, satisfying the conditions of Lemma 3.13, if we define the tuple
(s′, v′, b′) by (s′, v′, b′) = (s1, v1, b1)⊙v (s2, v2, b2) we have that

E
x∼N (0,Id)

[(
s1σ(〈v1, x〉 − b1) + s2σ(〈v2, x〉 − b2)− s′σ(〈v′, x〉 − b′)

)2] ≤ O
(
∆2/5 + α2

)
‖v‖2

It will be useful to record some basic properties of this binary operation:

Fact 3.16. ⊙v∗ is associative and commutative. Moreover, if (s1, v1, b1)⊙v∗ · · · ⊙v∗ (sm, vm, bm) =
(s, γv, γb) for s given by the sign of

∑
i siγi, where vi = γiv

∗ + v⊥i for v⊥i orthogonal to v∗, then s
is the sign of

∑
siγi, and sγ =

∑
siγi.

Proof. That⊙v∗ is commutative is evident from the definition. For associativity, consider (s1, v1, b1),
(s2, v2, b2), (s3, v3, b3). Recall that if (s1, v1, b1) ⊙v∗ (s2, v2, b2) = (si, γ12v

∗, γ12b) for γ12 = |s1γ1 +
s2γ2|, then si corresponds to the sign of s1γ1 + s2γ2, so siγ = s1γ1 + s2γ2. We conclude that

((s1, v1, b1)⊙v∗ (s2, v2, b2))⊙v∗ (s3, v3, b3) = (si, γ12v
∗, γ12b)⊙v∗ (s3, v3, b3) = (si′ , γ123v

∗, γ123b)

for γ123 = |s1γ1+ s2γ2+ s3γ3| and si′ corresponding to the sign of s1γ1+ s2γ2+ s3γ3. It is therefore
evident that ⊙v∗ is associative. The last part of the claim follows by induction.

We show that merging many neurons which are all (∆, α) close to some given neuron σ(〈v∗, ·〉−
b∗) results in a neuron which is also close to σ(〈v∗, ·〉 − b∗).
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Lemma 3.17. Let m > 1. Given v1, . . . , vm, v∗ ∈ R
d and b1, . . . , bm, b∗ for which every (vi, bi) is

(∆, α)-close to (v∗, b∗) and satisfies 〈vi, v∗〉 ≥ 0, we have that for

(s, v, b) , (s1, v1, b1)⊙v∗ · · · ⊙v∗ (sm, vm, bm),

(v, b) is (0, 0)-close to (v∗, b∗) and satisfies 〈v, v∗〉 ≥ 0. Furthermore, ‖v‖ ≤ ∑
i‖vi‖ and |b| ≤

α
∑

i‖vi‖+
∑

i |bi|.

Proof. Suppose first that m = 2. As usual, let Πv∗vi = γiv
∗. Recall that v = γv∗ and b = γb∗ for

γ = |s1γ1 + s2γ2|. As a result, we clearly have that 〈v, v∗〉 ≥ 0. Furthermore,

‖bv∗ − b∗v‖ = ‖γb∗v∗ − γb∗v∗‖ = 0.

The first part of the claim then follows by induction. For the norm bound, note that ‖v‖ = |∑i γi| ·
‖v∗‖ ≤ ∑

i‖vi‖. For the bound on |b|, recall from Lemma 3.8 that for every i, ‖γib∗ − bi‖ ≤ α‖vi‖.
So |b| = |∑i γib

∗| ≤ ∑
i(|bi|+ α‖vi‖) as claimed.

Putting everything from this subsection together, we are now ready to prove Lemma 3.12:

Proof of Lemma 3.12. Denote ⊙v∗ by ⊙. Let S+ denote the set of i ∈ [k] for which 〈v∗, vi〉 ≥ 0,
and let S− denote the remaining indices i ∈ [k]. Define F+(x) ,

∑
i∈S+ σ(〈wi, x〉 − bi) and

F−(x) ,
∑

i∈S− σ(〈wi, x〉 − bi). By Lemma 3.13, Lemma 3.17, and triangle inequality, we have

that for (s+, w+, b+) ,
⊙

i∈S+(si, wi, bi) and (s−, w−, b−) ,
⊙

i∈S−(si, wi, bi),

‖F+ − s+σ(〈w+, ·〉 − b+)‖2, ‖F− − s−σ(〈w−, ·〉 − b−)‖2 ≤ O(k2(∆2/5 + α2))‖v∗‖2.

Recalling that (w+, b+) = (γ+v∗, γ+b∗) and (w−, b−) = (γ−v∗, γ−b∗), we conclude the proof of (4)
with one more application of triangle inequality. For the bounds in (5), we simply apply the last
part of Lemma 3.17.

3.4 Constructing a Close Neuron

Note that Lemma 3.12 requires the existence of a neuron (v∗, b∗) which is close to all neurons
{(vi, bi)}. In our algorithm, we will not have access to (v∗, b∗) but rather to some linear combination
of the neurons {(vi, bi)}. We first show that provided this linear combination is not too small in
norm, it will also be close to all the neurons {(vi, bi)}.

Lemma 3.18. Suppose we have vectors v1, . . . , vm, v∗ ∈ R
d, biases b1, . . . , bm, b∗ ∈ R for which

every (vi, bi) is (∆, α)-close to (v∗, b∗). Then for any s1, . . . , sm ∈ {±1}, if we define v ,
∑m

i=1 sivi
and b ,

∑m
i=1 sibi, then (v, b) is (∆m,α

∑
i‖vi‖/‖v‖)-close to (v∗, b∗).

Proof. Note that ∠(
∑

i sivi, v) ≤
∑

i∠(vi, v). By Fact 2.1, we have that sin∠(
∑

i sivi, v) ≤ ∆m.
The lemma then follows from noting that

‖b∗v − bv∗‖ =

∥∥∥∥∥
∑

i

si(biv
∗ − b∗vi)

∥∥∥∥∥ ≤ α‖v∗‖ ·
∑

i

‖vi‖ = α‖v‖‖v∗‖ ·
∑

i

‖vi‖/‖v‖.
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3.5 A Corner Case

This presents an issue: what if the linear combination of neurons that we get access to in our
eventual algorithm has small norm, in which case Lemma 3.18 is not helpful? It turns out this
linear combination takes a very specific form (see the vector in (6)), and we argue in this section
that if it is indeed small, then the underlying network we are trying to approximate will be close
to a linear function! The main result of this subsection is to show:

Lemma 3.19. Suppose (v1, b1), . . . , (vm, bm) are pairwise (∆, α)-close, and let [m] = S1⊔S2 denote
the orientation induced by them (see Definition 3.10). If signs s1, . . . , sm ∈ {±1} satisfy

‖
∑

i∈S1

sivi −
∑

i∈S2

sivi‖ ≤ (∆R)2/9, (6)

then for the network F (x) ,
∑

i siσ(〈vi, x〉−bi), there exists an affine linear function ℓ(x) : Rd → R

for which

E
x∼N (0,Id)

[
(F (x)− ℓ(x))2

]
≤ poly(k,R,B) · (α1/2 +∆2/9) (7)

where B , maxi‖bi‖ and R , maxi‖vi‖, and ℓ , 〈w∗, ·〉 − b∗ satisfying

‖w∗‖ ≤
∑

i

‖vi‖ and |b∗| ≤
∑

i

‖bi‖. (8)

Before proceeding to the proof, we will need the following stability result for affine linear thresh-
old functions with possibly different thresholds.

Lemma 3.20. Suppose (v, b) and (v′, b′) are (∆, α)-close and ‖v‖ ≥ ‖v′‖. If 〈v, v′〉 ≥ 0 then

Pr
[
〈v, x〉 > b ∧ 〈v′, x〉 < b′

]
≤ O

(
α+

√
∆‖v‖/‖v′‖

)
. (9)

Otherwise, if 〈v, v′〉 < 0, then

Pr
[
〈v, x〉 > b ∧ 〈v′, x〉 > b′

]
≤ O

(
α+

√
∆‖v‖/‖v′‖

)
.

Proof. Clearly it suffices to prove (9). Suppose ‖v′‖ ≤ ‖v‖ and write v′ = γv+v⊥ for v⊥ orthogonal
to v. Note that ‖v⊥‖ ≤ ∆‖v′‖ and that ‖v⊥‖ ≤ γ‖v‖ · tan∠(v, v′) ≤ O(γ∆‖v‖) for ∆ sufficiently
small.

Note that

Pr
[
sgn(〈v′, x〉 − γb) 6= sgn(〈v′, x〉 − b′)

]
≤ Pr

g∼N (0,‖v′‖2)
[g ∈ [γb ∧ b′, γb ∨ b′]] ≤ |b′ − γb|

2‖v′‖ . (10)

Because ‖bv′ − b′v‖ = ‖(bγ − b′)v + bv⊥‖ ≤ α‖v‖‖v′‖, we have that |bγ − b′| ≤ α‖v′‖. We conclude
that Pr[sgn(〈v′, x〉 − γb) 6= sgn(〈v′, x〉 − b′)] ≤ α/2.

So by a union bound it suffices to bound Pr[〈γv, x〉 > γb ∧ 〈v′, x〉 < γb]. By Lemma 3.4, this is

at most ‖v′−γv‖
γb = 1

γb‖v⊥‖ ≤ O(∆‖v‖
b ).

We can also bound this in a different way. By a similar calculation to (10), we have Pr[sgn(〈γv, x〉−
γb) 6= sgn(〈γv, x〉)] ≤ b

2‖v‖ and Pr[sgn(〈v′, x〉 − b) 6= sgn(〈v′, x〉)] ≤ b
2‖v′‖ . And by Sheppard’s for-

mula, Pr[sgn(〈v, x〉) 6= sgn(〈v′, x〉)] ≤ ∠(v,v′)
π ≤ O(∆) for ∆ sufficiently small.

We conclude that

Pr[〈γv, x〉 > γb ∧ 〈v′, x〉 < γb] .
∆‖v‖
b

∧
(

b

‖v′‖ +∆

)
.

√
∆‖v‖/‖v′‖,

from which the claim follows.
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We can now prove Lemma 3.19.

Proof of Lemma 3.19. Define ω , ‖∑i∈S1
sivi −

∑
i∈S2

sivi‖. Let S0 ⊆ [m] denote the set of i for

which ‖vi‖ ≤ (∆R)1/9. For i ∈ S0, note that by Lipschitz-ness of the ReLU function,

‖σ(〈vi, ·〉 − bi)− σ(−bi)‖2 ≤ ‖〈vi, ·〉‖2 = ‖vi‖2 ≤ ∆2/9R2/9.

So by triangle inequality it suffices to show that
∑

i6∈S0
siσ(〈vi, x〉 − bi) is well-approximated by

some affine linear function. We will thus assume without loss of generality that S0 = ∅.
By Lemma 3.20 and a union bound over all pairs i, j ∈ [m], we have that with probability at

least 1−O(m2α+m2∆4/9R4/9) over x ∼ N (0, Id), sgn(〈vi, x〉 − bi) = sgn(〈vj , x〉 − bj) is the same
for all i, j ∈ S1 and for all i, j ∈ S2, and sgn(〈vi, x〉 − bi) 6= sgn(〈vj , x〉 − bj) for all i ∈ S1, j ∈ S2.
Let 1[x ∈ E ] denote the indicator for this event. In other words, with high probability all of the
neurons in S1 are activated and none in S2 are, or vice versa; denote these two events by E1 and
E2 respectively.

For j = 1, 2, note that when x ∈ Ej , F (x) =
〈∑

i∈Sj
sivi, x

〉
− ∑

i∈Sj
sibi. Define ℓ(x) =

〈∑
i∈S1

sivi, x
〉
−∑

i∈S1
sibi. Obviously when x ∈ S1, F (x) = ℓ(x). To handle x ∈ S2, we need to

bound δ ,
∣∣∑

i∈S1
sibi −

∑
i∈S2

sibi
∣∣. Let (v, b) = (v1, b1) and note that because (vi, bi) is (∆, α)-

close to (v, b) for all i,

α‖v‖
∑

i

‖vi‖ ≥

∥∥∥∥∥∥


∑

i∈S1

sibi −
∑

i∈S2

sibi


 v − b


∑

i∈S1

sivi −
∑

i∈S2

sivi



∥∥∥∥∥∥
≥ δ‖v‖ − |b|ω.

In particular, δ ≤ α
∑

i‖vi‖+ |b|ω/‖v‖ ≤ αR+Bω/(∆R)1/9.
We would like to apply Lemma 3.6 to F (x)−ℓ(x) (projected to the span of {vi}). In that lemma,

we can take ǫ(x) ≤
∣∣〈∑

i∈S1
sivi −

∑
i∈S2

sivi, x
〉∣∣+ δ, for which we have E[ǫ(x)4]1/2 ≤ O(δ2 + ω2).

Additionally we can naively bound F (0)− ℓ(0) ≤ 2
∑

i |bi| and therefore take M in that lemma to
be 2

∑
i |bi| ≤ 2mB. In addition, we can take ζ = O(m2α+m2∆4/9R4/9), L = 2mR, and d =,.

We conclude that

E[(F (x) − ℓ(x))2] = E[(F (x) − ℓ(x))21[x ∈ E2]] + E[(F (x)− ℓ(x))21[x 6∈ E ]]
. (mα1/2 +m∆2/9R2/9) · (m2B2 +m4R2) + α2R2 +B2ω2/(∆R)2/9 + ω2.

Recalling that we paid an additional m2(∆R)2/9 in square loss in reducing to the case where S0 = ∅,
we obtain the desired bound in (7). The bounds in (8) follow immediately from the definition of ℓ
above.

3.6 Putting Everything Together

Putting Lemmas 3.12, 3.18, and 3.19 together, we conclude that networks whose hidden units are
pairwise (∆, α)-close can either be approximated by a particular size-two network, or by some affine
linear function:

Lemma 3.21. Suppose (v1, b1), . . . , (vk, bk) are pairwise (∆, α)-close, and let [k] = S1 ⊔ S2 denote
the orientation induced by them (see Definition 3.10). Define B , maxi‖bi‖ and R , maxi‖vi‖.
Let s1, . . . , sm ∈ {±1}.

Define F (x) =
∑

i siσ(〈vi, x〉 − bi), v∗ =
∑

i∈S1
sivi −

∑
i∈S2

sivi, and b∗ =
∑

i∈S1
sibi −∑

i∈S2
sibi. At least one of the following holds:
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1. There is an affine linear function ℓ : Rd → R for which ‖F−ℓ‖2 ≤ poly(k,R,B)·(α1/2+∆2/9).

2. There exist coefficients a+, a− ∈ R for which G(x) , a+σ(〈v∗, x〉 − b∗)− a−σ(〈−v∗, x〉 + b∗)
satisfies ‖F −G‖2 ≤ poly(k,R,B) · (∆2/5 + α2∆−4/9).

Proof. By assumption, every (vi, bi) is (∆, α)-close to (v1, b1). By Lemma 3.18 we get that for
(v∗, b∗) defined in the lemma statement, (v1, b1) is (∆k, αmR/‖v∗‖)-close to (v∗, b∗).

If ‖v∗‖ ≥ (∆R)2/9, then we conclude that (v1, b1) is (∆k, αm∆−2/9R7/9)-close to (v∗, b∗), and
by Lemma 3.12 we find that there is a choice of a+, a− for which the function G defined in the
lemma statement satisfies ‖F − G‖2 ≤ O(k4R2(∆2/5k2/5 + α2m2∆−4/9R14/9)) (note that we used
‖v∗‖ ≤ ∑

i‖vi‖ ≤ kR).
If ‖v∗‖ ≤ (∆R)2/9, then by Lemma 3.19 we find that there is an affine linear ℓ for which

‖F − ℓ‖2 ≤ poly(k,R,B) · (α1/2 +∆2/9).

4 Algorithm for Learning from Queries

In this section we give our algorithm for learning neural networks from queries. Throughout, we
will suppose we have black-box query access to some unknown one-hidden layer neural network

F (x) ,
k∑

i=1

siσ(〈wi, x〉 − bi), (11)

where si ∈ {±1}, wi ∈ R
d, bi ∈ R. Define the quantities R , maxi‖wi‖ and B , maxi |bi|; our

bounds will be polynomial in these quantities, among others.
In Section 4.1, we give bounds on the separation among critical points of random restrictions of

F . In Section 4.2 we prove our main existence theorem showing that by carefully searching along
a random restriction of F , we are able to recover a collection of neurons that can be combined
to approximate F . In Section 4.3 we show how to implement certain key steps in GetNeurons

involving querying the gradient and bias of F at certain points. Finally, in Section 4.4 we show to
find an appropriate combination of these neurons.

4.1 Critical Points of One-Hidden Layer Networks

In this section, we compute the critical points of restrictions of F and argue that they are far apart
along random restrictions unless if the corresponding neurons were close to begin with (in the sense
of Definition 3.7).

First, we formalize the notion of a random restriction:

Definition 4.1. A Gaussian line L is a random line in R
d formed as follows: sample x0 ∼ N (0, Id)

and Haar-random v ∈ S
d−1 and form the line L , {x0 + t · v}t∈R.

Here we compute the critical points along a restriction of F .

Proposition 4.2. Given a line L = {x0 + t · v}t∈R, the restriction F |L(t) , F (x0 + t · v) is given
by

F |L(t) =
k∑

i=1

siσ (〈wi, x0〉 − bi + t〈wi, v〉) .

This function has k critical points, namely t = − 〈wi,x0〉−bi
〈wi,v〉 for every i ∈ [k].
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Proof. The critical points of F |L are precisely the points t at which a neuron changes sign. So the
critical point associated to the i-th neuron is the t for which 〈wi, x0〉− bi+ t〈wi, v〉 = 0, from which
the claim follows.

We can show that these critical points are not too large, unless the norm of the corresponding
weight vector is small. The reason for the latter caveat is that, e.g., if one took the one-dimensional
neuron σ(ǫz − b) for b fixed and ǫ → 0, the z at which it changes sign tends to ∞).

Lemma 4.3. With probability at least 1− δ over the randomness of Gaussian line L, we have that

|ti| . k(
√
d+

√
log(1/δ))

δ‖wi‖ + k
(√

d+
√

log(1/δ)
)√

log(k/δ) for every critical point ti of F |L.

Proof. By Lemma 2.9, with probability 1− δ we have that |〈wi, v〉| & δ‖wi‖
k(
√
d+

√
log(1/δ))

for all i ∈ [k].

Also note that |〈wi, x0〉| ≤ ‖wi‖ ·
√

log(k/δ) for all i ∈ [k] by Fact 2.6. By Proposition 4.2, the
critical point corresponding to the i-th hidden unit satisfies

|t| =
∣∣∣∣
〈wi, x0〉 − bi

〈wi, v〉

∣∣∣∣ .
k(
√
d+

√
log(1/δ))

δ‖wi‖
(
B + ‖wi‖

√
log(k/δ)

)

≤ k(
√
d+

√
log(1/δ))

δ‖wi‖
+ k

(√
d+

√
log(1/δ)

)√
log(k/δ).

Fix a separation parameter ∆ > 0 which we will tune in the sequel. We show that along
Gaussian lines L, F |L’s critical points are well-separated except for those corresponding to neurons
which are (∆, α)-close.

Lemma 4.4. There is an absolute constant c > 0 for which the following holds. Given Gaussian
line L, with probability at least 1− δ we have: for any pair of i, j for which (wi, bi) and (wj , bj) are

not (∆, c∆
√

log(k/δ))-close, the corresponding critical points are at least Ω

(
∆δ2

k4
(√

d+
√

log(k/δ)
)

)
-

apart.

Proof. For every i ∈ [k], let ti , − 〈wi,x0〉−bi
〈wi,v〉 denote the location of the critical point corresponding

to neuron i. For any i, j ∈ [k],

|tj − ti| =
∣∣∣∣
〈wj , v〉(〈wi, x0〉 − bi)− 〈wi, v〉(〈wj , x0〉 − bj)

〈wi, v〉〈wj , v〉

∣∣∣∣

≥ |〈(〈wi, x0〉wj − 〈wj , x0〉wi)− (biwj − bjwi) , v〉|
‖wi‖‖wj‖

, |〈zij , v〉|.

Note that (〈wi, x0〉wj − 〈wj , x0〉wi)− (biwj − bjwi) is distributed as N (µ,Σ) for µ = −biwj + bjwi

and Σ1/2 = wjw
⊤
i − wiw

⊤
j . One can verify that

‖Σ‖1/2F = 21/4
(
‖wi‖2‖wj‖2 − 〈wi, wj〉2

)1/2
= 21/4‖wi‖‖wj‖|sin∠(wi, wj)|

For the first part of the lemma, suppose |sin∠(wi, wj)| ≥ ∆ so that ‖Σ‖1/2F ≥ Ω(∆‖wi‖‖wj‖).
Then by Lemma 2.8 we conclude that ‖zij‖ ≥ Ω(∆δ/k2) with probability at least 1− δ/k2. Recall
that v is a random unit vector drawn independently of x0, so the lemma follows by applying
Lemma 2.9 and a union bound over all pairs i, j.
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On the other hand, suppose |sin∠(wi, wj)| ≤ ∆ but ‖µ‖ ≥ c∆
√

log(k/δ)‖wi‖‖wj‖ for c > 0
sufficiently large. Note that Σ has rank 2, so by Fact 2.5, the norm of a sample from N (0,Σ) has
norm at most O(‖Σ1/2‖op(

√
2+

√
log(k/δ))) = O(∆‖wi‖‖wj‖

√
log(k/δ)) with probability at least

1−δ/k2. So if we take c large enough that this is at least Ω
(

∆δ2

k4
√
d

)
less than c∆‖wi‖‖wj‖

√
log(k/δ),

we conclude that ‖zij‖ ≥ Ω(∆δ/k2) with probability at least 1− δ/k2.

4.2 Line Search and Existence Theorem

At a high level, our algorithm works by searching along F |L, partitioning L into small intervals,
and computing differences between the gradients/biases of F at the midpoints of these intervals.
The primary structural result we must show is that there exists enough information in this set of
differences to reconstruct F up to small error.

As we will be working with partitions of lines, it will be convenient to define the following
notation:

Definition 4.5. Given line L ⊂ R
d and finite interval I ⊆ R corresponding to a segment I ⊂ L,

let ∇L(I) denote the gradient of F at the midpoint of I. For tmid ∈ R the midpoint of I, define
bL(I) , F |L(tmid)− (F |L)′(tmid) · tmid. Intuitively, this is the “y-intercept” of the linear piece of F |L
that contains tmid. When L is clear from context, we will drop subscripts and denote these objects
by ∇(I) and b(I).

Definition 4.6. Given line L ⊂ R
d and length s > 0, let {ti} denote the critical points of F |L,

and let G+
L (s) ⊆ [k] (resp. G−

L (s)) denote the set of indices a ≤ i ≤ b for which ti+1 − ti ≥ s (resp.
ti − ti−1 ≥ s). Let G∗

L(r) , G+
L (r) ∩G−

L (r).

The following observation motivates Definition 4.6:

Observation 4.7. Given line L ⊂ Rd, let {ti} denote the critical points of F |L. Let I1, . . . , Im be
a partition of some interval I into pieces of length r, and for ti ∈ I let ℓ(i) denote the index of the
interval containing I.

Then for any i ∈ G+
L (2r) (resp. i ∈ G−

L (2r)), Iℓ(i)+1 is entirely contained within [ti, ti+1] (resp.
Iℓ(i)−1 is entirely contained within [ti−1, ti]). In particular, Iℓ(i)−1 and Iℓ(i)+1 are linear pieces of
F |L.

The following is the main result of this section. At a high level, it says if we partition a random
line in R

d into sufficiently small intervals and can compute the gradient of F at the midpoint of
each interval, then we can produce a collection of neurons which can be used to approximate F .

Theorem 4.8. For any ǫ, δ > 0, define

r , O


 ∆δ2

k4
(√

d+
√

log(k/δ)
)


 (12)

τ , kr +Θ

(
k(
√
d+

√
log(1/δ))

δ‖wi‖
+ k

(√
d+

√
log(1/δ)

)√
log(k/δ)

)
. (13)

Partition the interval [−τ, τ ] into intervals I1, . . . , Im of length r.
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Let L be a Gaussian line, and let S denote the set of all m(m − 1) pairs (w, b) obtained by
taking distinct i, j ∈ [k] and forming (∇L(Ii) − ∇L(Ij), bL(Ii) − bL(Ij)). There exist {±1}-valued
coefficients {aw,b}(w,b)∈S , vector w∗, and b∗ ∈ R for which

∥∥∥∥∥∥
F −

∑

(w,b)∈S
aw,b · σ(〈w, ·〉 − b)− 〈w∗, ·〉 − b∗

∥∥∥∥∥∥
≤ ǫ+Pk,R,B,log(1/δ) ·∆2/9.

for Pk,R,B,log(1/δ) some absolute constant that is polynomially large in k,R,B, log(1/δ). Further-
more, we have that

‖aw,b · w‖ ≤ kR and |aw,b · b| ≤ c∆k2R
√

log(k/δ) + kB (14)

‖w∗‖ ≤ kR and |b∗| ≤ kB (15)

Proof. Condition on the outcomes of Lemma 4.4 and Lemma 4.3 holding for L. Let t1, . . . , tk denote
the critical points associated to neurons w1, . . . , wk, and for convenience we assume without loss of
generality that t1 ≤ · · · ≤ tk. Let a, b ∈ [k] denote the indices for which |ti| ≤ τ for i ∈ [a, b]. By
Lemma 4.3 and the definition of τ , we have that for i 6∈ [a, b], ‖wi‖ ≤ ǫ/k.

By Lipschitzness of the ReLU function,

∥∥∥∥∥∥

∑

i6∈[a,b]
siσ(〈wi, ·〉 − bi)−

∑

i6∈[a,b]
siσ(−bi)

∥∥∥∥∥∥
≤

∑

i6∈[a,b]
‖σ(〈wi, ·〉 − bi)− σ(−bi)‖

≤
∑

i6∈[a,b]
‖wi‖ ≤ (b− a+ 1)ǫ/k. (16)

Next, we handle the critical points i ∈ [a, b]. Given critical point ti, let ℓ(i) ∈ [m] denote
the index for which ti ∈ Iℓ(i). For convenience, denote G+

L (2r), G
−
L (2r), G

∗
L(2r) by G+, G−, G∗.

By Observation 4.7, we know that for i ∈ G∗, the linear piece of F |L immediately preceding
critical point ti contains Iℓ(i)−1, and the one immediately proceeding ti contains Iℓ(i)+1. Therefore,
∇(Iℓ(i)+1) − ∇(Iℓ(i)−1) and b(Iℓ(i)−1) − b(Iℓ(i)+1) are equal to wi and bi up to a sign, so S must
contain the neurons (wi, bi) and (−wi,−bi).

Now consider any neighboring i1 < i2 in G+∆G− for which i2 − i1 > 1; note that the latter
condition implies that i1 ∈ G−\G+ and i2 ∈ G+\G−, or else we would have a violation of the fact
that i1 and i2 are neighboring. Furthermore, because i1, i2 are neighboring, for all i1 ≤ i ≤ i2 we
have that ti+1− ti ≤ 2r. By taking ∆ in (the contrapositive of) Lemma 4.4 to be ∆ ·k, we conclude
that for any i1 ≤ i < j ≤ i2, (wi, bi) and (wj , bj) are (∆k, c∆k

√
log(k/δ))-close for all such i.

Let {i1, . . . , i2} = S1 ⊔ S2 denote the orientation induced by (wi1 , bi1), . . . (wi2 , bi2). We would
like to apply Lemma 3.21 to the subnetwork F̃ (x) ,

∑i2
j=i1

sjσ(〈wj , x〉−bj). By another application
of Observation 4.7, we know that ∇(Iℓ(i2))−∇(Iℓ(i1)) and b(Iℓ(i1))− b(Iℓ(i2)) are, up to a common
sign, precisely the vector v∗ and bias b∗ defined in Lemma 3.21, so we conclude that either there
exists a network G consisting of neurons σ(〈v∗, x〉− b∗) and σ(〈−v∗, x〉+ b∗) for which ‖F̃ −G‖2 ≤
poly(k,R,B) · (∆2/5k2/5 + c2∆14/9k2 log(k/δ)) ≤ poly(k,R,B)∆2/5 log(1/δ), or there is an affine
linear function ℓ for which ‖F̃ − ℓ‖2 ≤ poly(k,R,B) · (c1/2∆1/2 log(1/δ)1/2 +∆2/9) ≤ poly(k,R,B) ·
∆2/9 log(1/δ)1/2 . Furthermore, the bounds in (14) and (15) follow from (5) in Lemma 3.12 (for
α = c∆k

√
log(k/δ)) and (8) in Lemma 3.19 respectively.

We have accounted for all critical points, except in the case where the smallest index a′ in
G− is not a, or the largest index b′ in G+ is not b. In the former (resp. latter) case, note that
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ta ≤ · · · ≤ ta′−1 ≤ −τ + kr, (resp. tb ≥ · · · ≥ tb′+1 ≥ τ − kr), so by Lemma 4.3, this implies that
‖wa′−1‖, . . . , ‖wa‖ ≤ ǫ/k (resp. ‖wb′+1‖, . . . , ‖wb‖ ≤ ǫ/k). By Lipschitzness of the ReLU function,
we can approximate these neurons by constants at a total cost of at most (a′ − a+ b− b′)ǫ/k in L2

using the same reasoning as (16).

4.3 Gradient and Bias Oracles

It remains to implement oracles to compute bL(I) and ∇L(I) for prescribed line L and interval
I. It is not clear how to do this for arbitrarily small intervals because for general networks there
can be many arbitrarily close critical points, but we will only need to do so for certain “nice” I as
suggested by Theorem 4.8.

To that end, first note that it is straightforward to form the quantities bL(I) for intervals I
entirely contained within linear pieces of F |L; we formalize this in Algorithm 1.

Algorithm 1: GetBias(L, I)

Input: Line L ⊂ R
d, interval I = [a, b] ⊂ R

Output: bL(I) if I is entirely contained within a linear piece of F |L
1 tmid ← midpoint of I.
2 y0 ← F |L(tmid).

3 s ← F |L(b)−F |L(a)
b−a .

4 return y0 − s · tmid

It remains to demonstrate how to construct ∇L(I). Intuitively one can accomplish this via
“finite differencing,” i.e. the gradient of a piecewise linear function F at a point x can be computed
from queries by computing F (x+δ)−F (x)

δ several sufficiently small perturbations δ ∈ R
d and solving

the linear system.
With a priori precision estimates, we can similarly implement a gradient oracle, as formalized

in Algorithm 2 and Lemma 4.9.

Algorithm 2: GetGradient(x, α)

Input: x ∈ Rd, α > 0 for which (17) holds
Output: ∇F (x) ∈ R

d

1 for j ∈ [d] do
2 Sample random unit vector zj ∈ S

d−1.
3 vj ← (F (x+ αzj)− F (x))/α.

4 Let w be the solution to the linear system {〈w, zj〉 = vj}j∈[d].
5 return w

Lemma 4.9. For any α > 0 and any x ∈ R
d for which

|〈wi, x〉 − bi| ≥ α‖wi‖ ∀ i ∈ [k], (17)

GetGradient(x, α) makes d queries to F and outputs ∇F (x).

Proof. For any z ∈ S
d−1, note that

〈wi, x+ αz〉 − bi = (〈wi, x〉 − bi) + α〈wi, z〉,
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and α|〈wi, z〉| ≤ α · ‖wi‖, so 〈wi, x + αz〉 − bi and 〈wi, x〉 + bi have the same sign. As a result, if
S ⊆ [k] denotes the indices i for which 〈wi, x〉 − bi > 0, then

F (x+ αz)− F (x)

α
=

〈
∑

i∈S
siwi, z

〉
= 〈∇F (x), z〉.

If {z1, . . . , zj} are a collection of Haar-random unit vectors, they are linearly independent almost
surely, in which case the linear system in Step 4 of GetGradient has a unique solution, namely
∇F (x).

In order to use GetGradient to construct the vectors ∇L(I), we require estimates for α in
Lemma 4.9. In the following lemma we show that with high probability over the randomness of L,
if an interval I completely lies within a linear piece of F |L, then we can bound how small we must
take α to query the gradient of F at the midpoint of that interval.

Lemma 4.10. 4.10 Let L be a Gaussian line. With probability at least 1− δ over the randomness
of L, the following holds: in the partition [−τ, τ ] = I1 ∪ · · · ∪ Im in Theorem 4.8, for any Iℓ
which entirely lies within a linear piece of F |L, GetGradient(tmid, α) correctly outputs ∇L(Iℓ),
where xmid is the midpoint of the interval Iℓ ⊂ L that corresponds to interval Iℓ ⊂ R and α =

δ·r
4k

√
d+O(k

√
log(k/δ))

(where r is defined in (12)).

Proof. Denote L = {x0 + t · v}t∈R. Let tmid ∈ R denote the value corresponding to xmid ∈ R
d on

the line L. By Lemma 2.9 and a union bound over [k], we have that

|〈wi, v〉| ≥
δ‖wi‖

2k
√
d+O(k

√
log(k/δ))

for all i ∈ [k]

with probability at least 1 − δ over the randomness of v ∈ S
d−1. Now take any interval Iℓ which

entirely lies within a linear piece of F |L. Because tmid is the midpoint of Iℓ, it is at least r/2
away from any critical point of F |L. In particular, |〈wi, xmid〉 − b| ≥ (r/2) · |〈wi, v〉| ≥ (r/2) ·

δ‖wi‖
2k

√
d+O(k

√
log(k/δ))

, so we can take α = δ·r
4k

√
d+O(k

√
log(k/δ))

and invoke Lemma 4.9.

Putting these ingredients together, we obtain the following algorithm, GetNeurons for pro-
ducing a collection of neurons that can be used to approximate F .

We prove correctness of GetNeurons in the following lemma:

Lemma 4.11. 4.11 For any ǫ, δ > 0, GetNeurons(ǫ, δ) makes poly(k, d,R,B, 1/ǫ, log(1/δ))
queries and outputs a list S of pairs (w, b) for which there exist {±1}-valued coefficients {aw,b}(w,b)∈S
as well as a vector w∗ and a scalar b∗ such that

∥∥∥∥∥∥
F − 〈w∗, ·〉 − b∗ −

∑

(w,b)∈S
aw,b · σ(〈w, ·〉 − b)

∥∥∥∥∥∥
≤ ǫ.

Proof. By Lemma 4.10, the choice of α inGetNeurons is sufficiently small that for xj the midpoint
of any interval which is entirely contained within a linear piece of F |L, GetGradient(xj, α)

succeeds by Lemma 4.9. So the estimates ∇̂ and b̂ are exactly correct for all intervals that are
entirely contained within a linear piece of F |L. By the proof of Theorem 4.8, these are the only
intervals for which we need∇L(I) and bL(I) in order for S to contain enough neurons to approximate
F by some linear combination to L2 error ǫ.
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Algorithm 3: GetNeurons(ǫ, δ)

Input: Accuracy ǫ > 0, confidence δ > 0
Output: List S of pairs (w, b) (see Theorem 4.8 for guarantee)

1 S ← ∅.
2 Sample Gaussian line L.

3 ∆ ← (ǫ/Pk,R,B,log(1/δ))
9/2. // Theorem 4.8

4 α ← δ·r
4k

√
d+O(k

√
log(k/δ))

. // Lemma 4.10

5 Define r, τ according to (12), (13).
6 Partition [−τ, τ ] into disjoint intervals I1, . . . , Im of length r.
7 for all j ∈ [m] do
8 xj ← midpoint of the interval Ij ⊂ L that corresponds to Ij ⊂ R.

9 ∇̂L(Ij) ← GetGradient(xj, α).

10 b̂L(Ij) ← GetBias(L, Ij).

11 for all pairs of distinct i, j ∈ [m] do

12 (vj , bj) ← (∇̂L(Ii)− ∇̂L(Ij), b̂L(Ii)− b̂L(Ij)).
13 if (vj , bj) satisfies the bounds in (14) then
14 Add (vj , bj) to S.

15 return S.

4.4 Linear Regression Over ReLU Features

It remains to show how to combine the neurons produced by GetNeurons to obtain a good
approximation to F . As Theorem 4.8 already ensures that some linear combination of them suffices,
we can simply draw many samples (x, F (x)) for x ∼ N (0, Id), form the feature vectors computed
by the neurons output by GetNeurons, and run linear regression on these feature vectors.

Formally, let S denote the set of pairs (w, b) guaranteed by Theorem 4.8. We will denote the
w’s by {ŵj} and the b’s by {b̂j}. Consider the following distribution over feature vectors computed
by the neurons in S:

Definition 4.12. Let D′ denote the distribution over R|S|+d+1×R of pairs (z, y) given by sampling
x ∼ N (0, Id) and forming the vector z whose entries consist of all σ(〈ŵj , x〉 − b̂j) as well as the
entries of x and the entry 1, and taking y to be F (x) for the ground truth network F defined in
(11).

We will also need to define a truncated version of D′: let D denote D′ conditioned on the norm
of the |S|+1 to |S|+d-th coordinates having norm at most M ,

√
d+O(

√
log(1/δ), which happens

with probability at least 1− δ over D′.

Our algorithm will be to sample sufficiently many pairs (z, y) from D′ (by querying F on random
Gaussian inputs) and run ordinary least squares. This is outlined in LearnFromQueries below.

To show that regression-based algorithm successfully outputs a network that achieves low pop-
ulation loss with respect to F , we will use the following standard results on generalization.

Theorem 4.13. For D a distribution over X × Y and ℓ : Y × Y → R a loss function that is
L-Lipschitz in its first argument and uniformly bounded above by c. Let F be a class of functions
X → Y such that for any f ∈ F and pairs (x1, y1), . . . , (xn, yn) drawn independently from D, with
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Algorithm 4: LearnFromQueries(ǫ, δ)

Input: Accuracy ǫ > 0, confidence δ > 0
Output: One hidden-layer network F̃ : Rd → R for which ‖F − F̃‖ ≤ O(ǫ)

1 S = {(ŵj , b̂j)} ← GetNeurons(ǫ, δ).
2 Draw samples (z1, y1), . . . , (zn, yn) from D // Definition 4.12

3 Let ṽ be the solution to the least-squares problem (19). Let b̃ denote the last entry of ṽ,
and let w̃ denote the vector given by the d entries of ṽ prior to the last.

4 Form the network F̃ (x) ,
∑

j ṽjσ(〈ŵj , x〉 − b̂j) + 〈w̃, ·〉 − b̃.

5 return F .

probability at least 1− δ,

E
(x,y)∼D

[ℓ(f(x), y)] ≤ 1

n

∑

i

ℓ(f(xi), yi) + 4L · Rn(F) + 2c ·
√

log(1/δ)

2n
,

where Rn(F) denotes the Rademacher complexity of F .

Theorem 4.14. If X is the set of x satisfying ‖x‖ ≤ X, and F is the set of linear functions 〈w, ·〉
for ‖w‖ ≤ W , then Rn(F) ≤ XW/

√
n.

As these apply to bounded loss functions and covariates, we must first pass from D′ to D and
quantify the error in going from one to the other:

Lemma 4.15. For f satisfying E(z,y)∼D′ [(f(z)− y)2] ≤ ǫ2, we have

∣∣∣∣∣ E
(z,y)∼D′

[(f(z)− y)2]− E
(x,y)∼D

[(f(z)− y)2]

∣∣∣∣∣ ≤ O(ǫ2). (18)

Proof. Let Z denote the probability that a random draw from D′ lies in the support of D so that
Z ≥ 1− δ; denote this event by E . Then we can write E(z,y)∼D[(f(z) − y)2] as 1

Z E(z,y)∼D′ [(f(z)−
y)2 · 1[z ∈ E ]] and rewrite the left-hand side of (18) as

∣∣∣∣∣

(
1− 1

Z

)
· E
(z,y)∼D′

[
(f(z)− y)2 · 1[z ∈ E ]

]
+ E

(z,y)∼D′

[
(f(z)− y)2 · 1[z 6∈ E ]

]
∣∣∣∣∣.

Note that |1− 1/Z| ≤ 2δ ≤ 1 for δ sufficiently small, from which the claim follows.

We are now ready to prove the main theorem of this section:

Theorem 4.16. 4.12 Let S denote the list of pairs (ŵj , b̂j) output by GetNeurons(ǫ, δ). Sample
(z1, y1), . . . , (zn, yn) from D for n = poly(k,R,B, 1/ǫ, d, log(1/δ)). With probability at least 1−O(δ)
over the randomness of GetNeurons and the samples, the following holds. Define

ṽ , arg min
‖v‖≤W

n∑

i=1

(〈v, zi〉 − yi)
2, for W ,

√
τ/r + k(R+B), (19)

let b̃ denote the last entry of ṽ, and let w̃ denote the vector given by the d entries of ṽ prior to
the last. Then the one hidden-layer network F̃ (x) ,

∑
j ṽjσ(〈ŵj , x〉 − b̂j) + 〈w̃, ·〉 − b̃ satisfies

‖F − F̃‖ ≤ O(ǫ).
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Proof. Note that over the support of D we have that the square loss ℓ : Y × Y → R is uniformly
bounded above by (MkR + kB)2 and is L = O(M · k · R + k · B)-Lipschitz. Finally, note that for
z in the support of D,

‖z‖2 = 1 +M2 + 2M2
∑

j

(‖ŵj‖2 + b̂2j)

. (M2τ/r) · (k2R2 +∆2k4R2 log(k/δ) + k2B2) , X2. (20)

where τ, r are defined in Theorem 4.8 and we used (14) and Step 14 in GetNeurons to bound
‖ŵj‖ and |̂bj|.

By the guarantee on GetNeurons given by Lemma 4.11, we know that there is a vector
v∗ ∈ {±1}|S| ×Bd(kR)× [−kB, kB] which achieves ǫ2 squared loss with respect to D′. Note that

‖v∗‖ ≤ |S|1/2 + k(R+B) =
√

τ/r + k(R +B) , W. (21)

By Lemma 4.15, v∗ achieves O(ǫ2) squared loss with respect to D. As the random variable (〈v∗, z〉−
y)2 for (z, y) ∼ D is bounded above by

(‖v∗‖‖z‖ + |y|)2 . poly(k,R,B, 1/ǫ,M),

for n ≥ poly(k,R,B, 1/ǫ,M) we have that the empirical loss of v∗ on (z1, y1), . . . (zn, yn) is O(ǫ2),
and therefore that of the predictor ṽ is O(ǫ2).

By applying Theorem 4.14 with (20) and (21), we find that the Rademacher complexity Rn(F)
of the family of linear predictors over ‖z‖ ≤ X and with norm bounded by W is C/

√
n for C which

is polynomial in k, R, B, 1/ǫ , d, log(1/δ), from which the theorem follows by Theorem 4.13.
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