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Abstract

We study the power of quantum memory for learning properties of quantum systems and
dynamics, which is of great importance in physics and chemistry. Many state-of-the-art learning
algorithms require access to an additional external quantum memory. While such a quantum
memory is not required a priori, in many cases, algorithms that do not utilize quantum memory
require much more data than those which do. We show that this trade-off is inherent in a wide
range of learning problems. Our results include the following:

e We show that to perform shadow tomography on an n-qubit state p with M observables,
any algorithm without quantum memory requires Q(min(M,2")) samples of p in the worst
case. Up to logarithmic factors, this matches the upper bound of [HKP20], and completely
resolves an open question in [Aarl8, AR19].

e We establish exponential separations between algorithms with and without quantum mem-
ory for purity testing, distinguishing scrambling and depolarizing evolutions, as well as
uncovering symmetry in physical dynamics. Our separations improve and generalize prior
work of [ACQ21] by allowing for a broader class of algorithms without quantum memory.

e We give the first tradeoff between quantum memory and sample complexity. More pre-
cisely, we prove that to estimate absolute values of all n-qubit Pauli observables, algorithms
with k < n qubits of quantum memory require at least Q(Q("_k)/ 3) samples, but there is
an algorithm using n-qubit quantum memory which only requires O(n) samples.

The separations we show are sufficiently large and could already be evident, for instance, with
tens of qubits. This provides a concrete path towards demonstrating real-world advantage for
learning algorithms with quantum memory.
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1 Introduction

Learning properties of the physical world is at the heart of many scientific disciplines, including
physics, chemistry, and material science. The suite of emerging quantum technology, from quantum
sensors, quantum computers, to quantum memories for retrieving, processing, and storing quantum
information, provides the potential to significantly improve upon what we could achieve with exist-
ing technology. Because the physical world is quantum-mechanical, it is natural to expect quantum
information technology to provide an advantage in various tasks. Yet, the potential remains to be
justified both experimentally and theoretically.

In this work, we establish provable advantages in a wide range of tasks for predicting properties
of physical systems and dynamics. We consider learning algorithms with external quantum memory,
namely those that can retrieve quantum data from each experiment, store the data in quantum
memory, and compute on the quantum memory in an entangled fashion (see Definitions 4.16, 4.18,
and 4.20). This class of algorithms provides an abstract model for the potential experiments that
a scientist assisted by quantum information technology could perform in the future.

We also consider learning algorithms that do not use external quantum memory, namely those
that can only retrieve classical data by performing measurements after each experiment, store
the classical information in classical memory, and process the classical measurement data to learn
the properties (see Definitions 4.15 and 4.17). This class of algorithms is an abstract model that
encompasses conventional experiments that one could achieve with existing experimental platforms.

Tasks LB (no q. memory) UB (no q. memory) UB (w/ q. memory)
Shadow tomogr. Q (min (M, 2")) [Cor 5.7] | O (min(M,2")) [HKP20] | O(nlog(M)?) [BO20]
Shadow tomogr. (P) | ©Q(2") [Cor 5.9] O(n2™) [HKP20] O(n) [HKP21D]
Purity testing Q(2"/?) [Thm 5.11] O(2"/?) [Thm 5.13] O(1) [MdW13]
Depolar. vs unitary | ©(2"/3) [Thm 7.9] O(2™?) [Cor 7.25] O(1) [ACQ21]
Classify symmetry Q(27/3%) [Thm 7.27] O(2™) [Thm 7.28] O(1) [ACQ21]
Shadow tomogr. (P) Lower bound: Q(2("~F)/3)

w/ k-qubit memory See [Thm 1.4]

Table 1: A table of the upper and lower bounds on sample/query complexity for learning algorithms
with quantum memory (“w/ q. memory”) and without quantum memory (“no q. memory”). For shadow
tomography (“Shadow tomogr.”), we consider the sample complexity T needed to achieve a small constant
error for estimating expectation values of M observables. The € and O neglects contributions from log(M)
in the upper and lower bound without quantum memory. Similarly, we consider the sample complexity T’
for predicting all 4™ Pauli observables to a constant error, denoted by the task: “Shadow tomogr. (P)”. In
“Shadow tomogr. (P) w/ k-qubit memory”, we consider a simplified task of predicting absolute value for
the expectation of Pauli observables up to a constant error.

In this work, we provide a set of mathematical tools for proving exponential separations between
these two classes of learning algorithms. Recently, two independent works [HKP21b, ACQ21] have
established exponential separations for some quantum learning tasks. However, their techniques
are rather cumbersome and work in more restrictive settings. In this work, we design new, flexible
frameworks for proving lower bounds against learning algorithms without quantum memory that
strengthen and generalize those presented in [HKP21b, ACQ21]. By using these new ideas, we are
able to both significantly tighten their bounds, as well as derive novel bounds for more general and
realistic settings that previous techniques could not handle.

Towards quantum advantage with quantum memory. These quantitative and qualitative
improvements to the prior known separations have an important consequence for the near-term



goal of demonstrating a provable quantum advantage. As we will explain in more detail in the
following, our bounds demonstrate that there exist quantum learning problems on n-qubit states
for which there are copy-efficient and gate-efficient quantum algorithms that only require O(n) bits
of quantum memory, but at the same time, any algorithm without quantum memory unconditionally
requires §2(2") copies.

The lower bounds derived in this work are sufficiently tight that this gap is already noticeable
at the scale of tens of qubits. In addition, our results guarantee that any protocol with quantum
memory of insufficient size must require an exponentially increasing sample complexity; see the
last row in Table 1. Together, these results imply that quantum computers with less than a
hundred qubits could already assist experimentalists in extracting properties of physical systems
and dynamics beyond conventional experiments that do not utilize quantum memory. We believe
the implementation of such protocols is an important open experimental question that may be
within reach in the coming years. To achieve that, we would need a better understanding on how
the presence of noise in the quantum computers affect the advantage studied in this work.

1.1 Our Results

We now informally describe the problems we will consider throughout this paper, as well as our
results; we will include pointers to the appropriate sections for the formal theorem statements.

1.1.1 Learning physical systems

We first consider the setting in which there is a physical source that generates copies of an unknown
n-qubit state p one at a time. The goal is to learn the physical system (or some properties thereof)
from as few copies of it as possible. A learning algorithm with quantum memory can store many
copies of the quantum state, and perform joint quantum processing on the product state, followed
by an entangled measurement on the quantum memory. On the other hand, a learning algorithm
without quantum memory can only perform measurements on each copy of the quantum state, and
learn from the resulting classical measurement data. However, note that the choice of measurement
applied to the i-th copy could depend on all previous measurement outcomes.

The standard approach for learning physical systems is quantum state tomography [GLF* 10,
OW17, HHJ ™17, GKKT20a], where the goal is to learn a full representation of p up to e error
in trace distance. However, it is well known [OW17, HHJ"17] that quantum state tomography
requires exponentially many copies T' = 22" for learning algorithms with and without quantum
memory. Hence, such an approach is intrinsically inefficient.

Shadow tomography To circumvent the exponential scaling, beginning with the work of [Aar18],
many researchers [BKL 19, AR19, BO20, HKP20, CYZF20] have considered the task of predicting
many properties of the quantum state p from very few copies of the unknown state. This task is
known as shadow tomography or shadow estimation. Here, we are given M observables O1, ..., Oy
satisfying ||O;]|cc < 1, and the goal is to accurately estimate tr(O;p) to error ¢, for alli =1,..., M.
When M < 2" this can be solved using much fewer copies than is required for full state tomog-
raphy. In particular, there is a simple algorithm using O(M log M /£?) copies that simply measures
each observable independently. Notably, this estimator does not require quantum memory.
However, perhaps surprisingly, there are estimators which can solve this task with a sample
complexity which is sublinear in M. The most recent progress is due to [BO20], who showed
O(nlog(M)?/e*) copies suffice. This is somewhat unexpected, because the observables Oy, ..., O
can be highly incompatible, and due to Heisenberg’s uncertainty principle, one should not be able



to efficiently measure these observables simultaneously. Nevertheless, by performing quantum data
analysis on a few copies of p, we can circumvent this incompatibility.

These estimators crucially rely on fully entangled measurements on all copies of p, and hence
require a large quantum memory. An important research direction in shadow tomography is un-
derstanding how well a learning algorithm without quantum memory can perform. Indeed, this
was posed as an open question in the first paper introducing the problem of shadow tomogra-
phy [Aarl8], and has remained an important question in the field ever since. On the upper
bounds side, many papers have developed improved algorithms for special classes of observables
[PK19, HMR 19, HKP20]. See related work for a more in-depth review. However, when no as-
sumptions are made on the class of observables, O(M log M/e?) remains the best known sample
complexity. On the lower bounds side, a very recent work of [HKP21b] shows that any learn-
ing algorithm without quantum memory requires sample complexity at least Q(M'/6/<2) for this
problem. However, this still left a large gap between the known upper and lower bounds.

In this work, we completely resolve the sample complexity of shadow tomography without
quantum memory up to logarithmic factors, by providing a lower bound which (nearly) matches
the best known upper bound. In particular, we show:

Theorem 1.1 (General shadow tomography—informal, see Corollary 5.7 and Theorem 5.5). For
all M > 1, there exists a set of M observables so that any learning algorithm without quan-
tum memory that solves the shadow tomography problem for this set of observables requires T =
) (min(M,2")/e?) copies.!

We note that this bound is tight up to logarithmic factors: there is an algorithm with sample
complexity O (min(M log M, 2™ log M)/ 52)) [HKP20] that uses no quantum memory. At a high
level, this bound says that in general, algorithms without quantum memory cannot do much better
than directly measuring each observable. Up to these logarithmic factors, this fully answers the
question posed in [Aarl8].

Shadow Tomography with Pauli observables An important and well-studied special case of
shadow tomography is the case where the observables are the Pauli matrices, or a subset thereof.
This problem naturally arises in the study of quantum chemistry [MRBAG16, HMR 119, HKP21a].
Indeed, it is this instance which [HKP21b] used to prove their Q(M/6/2) lower bound. In particu-
lar, they show that if the observables are the set of M = O(4™) Pauli matrices, then any algorithm
which uses no quantum memory and solves the shadow tomography problem must use at least
Q(2"/ 3/e?) copies. In contrast, algorithms with quantum memory can solve this instance using
O(n) copies [HKP21b]. As before, the lower bound against algorithms without quantum memory
is not tight: in particular, the best known sample complexity upper bound for such algorithms is
O(2") [HKP20].

In this work, we provide a tight bound on the sample complexity of this problem without
quantum memory, up to lower order terms:

Theorem 1.2 (Pauli observables — informal, see Corollary 5.9 and Theorem 5.5). To predict the
expectation values of all Pauli observables in an unknown n-qubit state p, any learning algorithm
without quantum memory requires T = Q (2™) copies of p.

Given the previously developed machinery, the proof of this is almost shockingly simple. Indeed,
the entire calculation fits in roughly half a page. This serves as a demonstration of the power
of the techniques we develop in this paper; in contrast, the proof of the bound in [HKP21b] is
substantially more involved, not to mention much looser.

!Throughout the paper, we say g = ©(f) if g = O(flog® f) for some fixed ¢. We similarly define O and Q.



Purity testing We next apply our techniques to the slightly different setting of quantum property
testing. We are given copies of an n qubit state p, but rather than learn statistics of p, the goal is
to determine whether or not p satisfies some condition, or is far from satisfying it. Some examples
include mixedness testing (is p the maximally mixed state or far from it?) and its generalization
identity testing (is p = o for some given state o or far from it?). In this work, we consider the
well-studied problem of purity testing [EAOT02], where the goal is to distinguish if p is rank-1, or
if it is far from it.

This problem is natural in its own right, but it is of particular interest for us, because it
is a setting where there are exponential separations between algorithms that use O(n) qubits of
memory, and those that do not use quantum memory. In fact, this shows up even for the special
case of distinguishing whether p is a pure state or if p is the maximally mixed state. For this case,
there is a simple algorithm based on the SWAP test that uses 2-entangled measurements—that is,
measurements on p®2—and succeeds with O(1) samples. Note that this algorithm only requires n
qubits of additional quantum memory to store the single-copy from a previous experiment. Prior
work of [ACQ21] implied as a corollary that any such algorithm must use at least 9(22”/ ) samples,
but as with shadow tomography, this bound was not tight.

In this work, we completely resolve this question, up to constant factors. In Theorem 5.13, we
show that there is an algorithm that uses unentangled measurements with (’)(2"/ 2) samples. And,
we give the following matching lower bound:

Theorem 1.3 (Purity testing—informal, see Theorem 5.11). Any algorithm which can distinguish
between p being a pure state and p being the maximally mixed state without using external quantum
memory requires Q(2"/?) samples.

1.1.2 Smooth tradeoffs for learning with quantum memory

In Section 6 we revisit the problem of shadow tomography with Pauli observables. While our
previously established bounds demonstrate exponential separations when the algorithm is given no
quantum memory, it is natural to ask whether any algorithm that achieves exponentially better
sample complexities must be using a large amount of quantum memory. In particular, is it possible
that there is an algorithm that only uses a constant number of qubits of external quantum memory,
but which still achieves O(1) sample complexity? We demonstrate that this is impossible, by
demonstrating a lower bound which scales with the number of qubits of quantum memory. Formally,
we show the following lower bound even for the simpler task of predicting the absolute value of the
expectations of the Pauli observables:

Theorem 1.4 (Shadow tomography with bounded quantum memory). Any learning algorithm
with k qubits of quantum memory requires T > £ (2(”_k)/3) copies of p to predict |tr(Pp)| for all
n-qubit Pauli observables P with at least probability 2/3.

This bound is meaningful for k¥ < n, and we complement this with a simple upper bound which
uses 2-entangled measurements (and thus n qubits of additional quantum memory to store a single-
copy of p from the previous experiment) that solves this problem with O(n) copies. We remark
that this still leaves a large part of the landscape open, and we believe it is an interesting open
question to fully characterize the sample complexity of this problem as a function of k. However,
this result is the first step towards understanding the tradeoffs between sample complexity and
quantum memory in a more fine-grained fashion.



1.1.3 Learning quantum dynamics

We now turn our attention to the problem of learning the dynamics of a quantum system. Here, we
consider an unknown physical process whose properties we wish to understand. We may perform
experiments by interacting with this physical process, and the goal is to learn the desired property
of the process with as few experiments as possible. More formally, there is an unknown quantum
channel C over n qubit states. We interact with this channel by passing a quantum state through
it and measuring the resulting state. Algorithms with quantum memory may store some quan-
tum information about the result, and subsequent interactions may be entangled with previous
outcomes. In contrast, algorithms without quantum memory can only store classical information
about the output, although as before, interactions can be chosen adaptively based on the outcomes
of previous experiments. In both settings, the goal is to learn some property of C while minimizing
the number of experiments.

A very similar setting was considered in [ACQ21], however, with one key qualitative difference:
in [ACQ21], they only consider algorithms without quantum memory that prepare n-qubit states
p, pass them through the channel C, and measure the resulting state. For this restricted class of
algorithms, they prove exponential separations between the power of algorithms with and without
quantum memory.

In general however, an algorithm (even without quantum memory) could also prepare a state
with m > n qubits, pass part of it through C, and perform some arbitrary measurement on the
result. Unfortunately, the proof technique in [ACQ21] breaks down even when m = n + 1. In
particular, the addition of one extra ancilla causes the bound to grow exponentially in the number of
experiments. In this work, we generalize and strengthen the lower bounds of [ACQ21] by removing
this restriction on ancilla qubits, as well as quantitatively improving some of their bounds. As a
result, we demonstrate the first exponential separations for these tasks between general algorithms
with and without quantum memory.

Distinguishing the completely depolarizing channel The first task we consider is testing
whether or not C is the completely depolarizing channel, that is, the channel which sends every state
to the maximally mixed state. Understanding the depolarization of a given quantum channel is a
well-studied problem, and is an important component of quantum error mitigation, see e.g. [TBG17]
and references within.

We consider the following simple case, previously studied in [BCHJ 21, ACQ21]: distinguish
between the case where C is the completely depolarizing channel, and the case where C is a random
unitary channel, that is, C[p] = UpU t for some Haar random unitary matrix U. Even for this very
simple case, we demonstrate that algorithms without quantum memory require exponentially more
copies of C than those with quantum memory. Specifically, we show:

Theorem 1.5 (Depolarizing vs. unitary channel—informal, see Theorem 7.9). Any algorithm
without quantum memory that can distinguish between C being the completely depolarizing channel
and C being a Haar random unitary channel requires 9(2”/3) experiments.

As mentioned earlier, this quantitatively improves the lower bound given in [ACQ21], and also
applies against all algorithms without quantum memory; in contrast, the lower bound of [ACQ21]
only applied to algorithms that did not use ancilla qubits. Combining this bound with the upper
bound in [ACQ21], who demonstrated an algorithm that uses quantum memory that only requires
O(1) interactions with C, yields the claimed exponential separation.



Distinguishing time-reversal symmetries We next turn our attention to the problem of dis-
tinguishing between different types of symmetries in a physical evolution. Determining symmetries
is one of the most fundamental problems in experimental physics. We will focus on the case of
global symmetries, and in particular time-reversal symmetries. Our question will be: does a unitary
manifest time-reversal symmetry, and if so what kind?

More precisely, suppose we are given a quantum channel C, and we are promised it is of the
form C[p] = ApAT, where A is drawn from the Haar measure of either the class of unitary matrices,
orthogonal matrices, or symplectic matrices. Ordinary unitary matrices do not possess time-reversal
symmetry, whereas orthogonal matrices and symplectic matrices realize distinct manifestations of
time-reversal symmetry (i.e., orthogonal matrices are equal to their own transpose, and symplectic
matrices are equal to their own symplectic transpose). The goal is to distinguish which case we are
in, with as few experiments as possible. For this problem, there is an algorithm that uses quantum
memory that succeeds with O(1) experiments, however, [ACQ21] previously showed that for the
restricted class of algorithms without quantum memory they considered, 9(22”/ ) experiments were
necessary. We generalize this bound to the class of all algorithms without quantum memory:

Theorem 1.6 (Distinguishing time-reversal symmetries—informal, see Theorems 7.9, 7.10, and 7.11).
Any algorithm without quantum memory that can distinguish between time-reversal symmetries with
high probability requires Q(2%*/7) experiments.

2 Technical Overview

As is common in the property testing literature, the starting point for our lower bounds is Le
Cam’s two-point method (see Lemma 5.3). We would like to exhibit a simple “null hypothesis”
and a “mixture of alternatives” and argue that distinguishing between these two scenarios with
nontrivial advantage requires a large number of quantum measurements.

As a first running example, consider the task of shadow tomography with Pauli observables,
where the goal is to estimate the expectation value of all Pauli observables to e-error. The corre-
sponding distinguishing task will be to decide whether the unknown state is the maximally mixed
state pmm or otherwise equal to pp = 2in(]l + eP) for a uniformly random signed Pauli matrix
P # 1. Given a learning algorithm that makes 7" measurements, let ¢o and ¢ = Ep [q{D | denote
the (classical) distributions over measurement outcomes induced by the algorithm in these two
situations, where ¢/’ denotes the distribution over outcomes when the unknown state is pp. To
prove the T = Q(2"/£?) lower bound in Theorem 1.2, it suffices to show that for T = o(2"/&?),
drv(qo, Eplgl]) = o(1) (see Section 4.3).

We emphasize that while this general approach of proving statistical lower bounds by showing
estimates on the total variation between a single “simple” distribution and a mixture is standard,
the general technique we use for proving these estimates is a departure from standard approaches.
Indeed, whereas the latter typically first pass to chi-squared or KL divergence [Pan08, ACBFS02,
BG18, BCL20, IS12], we work directly with total variation. We remark that this is in some sense
necessary: for our Pauli observables lower bound for instance, passing to chi-squared divergence in
the first step will result in a lower bound of at most 7' = Q(poly(n, 1/¢)).

One of the general techniques that we employ to bound total variation is to reduce to showing
one-sided likelihood ratio bounds, that is, to go through the following elementary fact (see
also Lemma 5.4).

Fact 2.1. Let 0 < ¢ < 1. Given probability distributions p,q on a finite domain Q, if p(x)/q(z) >
1 =0 for all x € Q, then dry(p,q) < 9.
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Figure 1: Illustration of the tree representation for learning algorithms without quantum memory.
When the unknown physical system (or physical process) is different, the probability to traverse
each edge will be different. Learning succeeds if for distinct physical systems, the distributions over
leaf nodes are sufficiently different.

Fact 2.1 tells us that to bound drv(qo, Ep[qf]), it suffices to show a uniform lower bound on
the likelihood ratio

Elaf (2))/a0(a). (1

In words, it suffices to show that no sequence of measurement outcomes from applying the learning
algorithm to samples from the mixture of alternatives is too unlikely compared to applying it to
samples from the null hypothesis. While such an estimate need not hold in general, e.g. for our
channel learning and bounded memory lower bounds which call for more involved techniques, it
turns out to hold for all of our lower bounds on learning quantum states. Furthermore, our lower
bounds on learning quantum states all match known upper bounds up to a logarithmic factor.
Indeed, the fact that such an approach can yield tight or nearly tight lower bounds for these
problems is quite surprising.

2.1 Tree representation

A primary technical hurdle to overcome which does not manifest in analogous classical settings is
the fact that the quantum experiments that the learner runs may be chosen adaptively based on
the outcomes of earlier experiments. Such algorithms are naturally represented as a tree [BCL20,
ACQ21, HKP21b]. Formally, we associate to any such algorithm a rooted tree 7 in the following
way. The root r of the tree corresponds to the initial state of the algorithm. At any node u, the
algorithm performs an experiment. Concretely, if the goal is to learn a quantum state, it makes a
POVM measurement on a fresh copy of the state; alternatively, if the goal is to learn a quantum
channel, it prepares an input quantum state, passes it through the channel, and makes a POVM
measurement on the output. After the experiment, the state of the algorithm moves to a child
node of u depending on the experimental outcome. In this way, each node encodes all experimental
outcomes that have been seen so far; correspondingly, the T-th layer of the rooted tree corresponds
to all possible states of the algorithm after T" experiments.
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Figure 2: Illustration of edge-based and path-based analysis proving lower bounds for learning
algorithms without quantum memory. Edge-based analysis works when the probability to traverse
every edge does not differ too much across different unknown physical system (or process). Path-
based analysis works when we have an adequate characterization for the higher moments for the
distribution over unknown physical system (or process).

The tree structure naturally encodes the adaptivity of the learning algorithm, as the choice
of experiment that the algorithm performs at a given node can depend on all prior experimental
outcomes. Bounding the aforementioned total variation distance thus amounts to bounding the
total variation distance between the induced distribution on leaves under the null hypothesis versus
under the mixture of alternatives.

With this tree formalism in place, we can now describe our different techniques for bounding
total variation, which roughly fall into two categories:

1. Edge-based: Bound the information the learner can gain from traversing any edge in the tree.

2. Path-based: Utilize multi-linear structure in the tree and high-order moments of the unknown
states or channels to bound the information gain for traversing an entire path jointly.

2.2 Edge-based analysis

We formalize the notion of “information” gained from any given edge as follows. As an example,
consider again the task of shadow tomography for Pauli observables, and suppose for simplicity of
exposition that at every node u, the algorithm performs some projective measurement {|y¥}¢¥|}s,
where every s corresponds to a child of u.? For each edge €u,s; we can consider the following notion
of average discrepancy along an edge, namely the squared difference between the probability of
traversing e, s when the underlying state is pmm versus when it is pp, averaged over the mixture
of alternatives P:

E[({Y5] prmum [105) — (¥5] pp )], (2)

2As we will show, the proceeding discussion extends to general POVMs.



where (¢§| p(.) [1¥) is the probability for traversing edge e, s when the unknown state is p(.).

Given bounds on the average discrepancy in Eq. (2), we can leverage a convexity argument to
obtain a one-sided likelihood ratio bound (see the calculation beginning at Eq. ). The one-sided
likelihood ratio bound would then give us the lower bound on T through Fact 2.1. A similar
convexity argument appeared implicitly in [BCL20]. We generalize this argument, and in doing
so, elucidate a new quantity §(O1,...,0nr) (ses Eq. (79)) for a collection of any M observables
O1,...,0)s that, loosely speaking, measures how much information an algorithm without quantum
memory can learn from a single measurement. For instance, in the Pauli setting, we can upper
bound § by O(1/2") (see Lemma 5.8), yielding our near-optimal lower bound against algorithms
without quantum memory for shadow tomography with Pauli observables. For shadow tomography
with general observables, we obtain an analogous result, by applying the bound to a collection of
Haar-random observables.

At this juncture, it is instructive to underscore how crucial it is that one-sided bounds on the
likelihood ratio suffice to bound total variation. Indeed, even though a bound on (2) implies that
traversing any given edge is roughly equally likely on average under the null hypothesis as it is
under the mixture of alternatives, it does not imply that traversing any given path from root to leaf
¢ is roughly equally likely. That is, the likelihood ratio Ep[p? (£)]/p”™ (£) could be quite large; in
fact it could be much larger than 1, because the discrepancies introduced by the individual edges
along the path could easily compound. For instance, if in every experiment the learner simply
measured in the computational basis, then for the root-to-leaf path corresponding to observing |0)
after every measurement, (1) would be of order (1+¢)?. If we simply upper bounded total variation
by the average absolute difference between (1) and 1, we would at best obtain a 7' = Q(n/e) sample
complexity lower bound.

Shadow tomography with k-qubit memory. For proving lower bounds against learning al-
gorithms with k£ qubits of memory, we can employ a similar idea. Whereas previously, we merely
associated to each node the probability of reaching it, we now associate to it a 2% x 2F positive-
semidefinite (PSD) matrix representing the unnormalized quantum state of the k-qubit memory.
Each edge can then be regarded as a completely-positive linear map on PSD matrices. We can define
and upper bound a notion of average discrepancy along an edge generalizing (2) (see Lemma 6.3).

The main difference is that the aforementioned convexity argument for passing from an average
discrepancy bound to a likelihood ratio bound no longer applies to give a uniform lower bound
on the likelihood ratio. Instead, we utilize a pruning argument. By Markov’s, a bound on
the average discrepancy along an edge implies that the discrepancy for a random Pauli P along
that edge is small with high probability over the choice of P (see Definition 6.4 and Fact 6.5).
In particular, for any leaf £ in the tree, the fraction of Paulis for which the discrepancy is small
for every edge in the path from root to ¢ is also large by a union bound. So for any leaf ¢, if we
decompose the likelihood ratio (1) into the contribution from the Paulis with small discrepancy
and large discrepancy. Those of the latter type are few enough that we can naively prune them
from consideration (Lemma 6.6). The contribution from those of the former type, averaged across
leaves, can be related to the total variation distance at depth 7' — 1. Proceeding by induction we
can obtain the desired sample complexity lower bound.

2.3 Path-based analysis

From average discrepancy to multi-linear structure. The edge-based analysis fails when
there is an extensive number of edges where the average discrepancy is sizable. As a warmup exam-
ple, consider the problem of purity testing, where the null hypothesis is that p is maximally mixed,



and the mixture of alternatives is that p is a random pure state. As above, suppose for simplic-
ity of exposition that the quantum experiments the learner runs are all projective measurements
{94 w21}5. Then for all edges e, the average discrepancy Ejg[((¥2] pam [162) — (42] |6X0] [12)?]
between the completely mixed state pym and a random pure state |} | is of order O(1/227). Using
the aforementioned convexity argument, this would only yield a trivial lower bound of Q(1).

In order to establish a nontrivial lower bound, we consider an analysis that better utilize
structure in the tree representation of the learning algorithm. The central idea is to exploit the
multi-linear structure inherent in the tree representation. We illustrate this idea using the
purity testing problem. For a given leaf ¢, suppose the edges on the path from root to £ are
Cuo=r,50> Cut,s1s -+ -2 Cup_1,57_1, Where €y, | ¢ connects ur_1 and £. The probability associated
with the leaf £ under an unknown quantum state p is given by

T-1 T—1
P’(0) = [[ (Wl plei)) = tr ((@Iwé‘%ﬁ:l) p®T) : (3)
t=0

t=0

Under the tree representation, the measurement outcomes along the path yield a tensor product
of pure states ®tT:‘01|¢g; X1it| that depends on the learning algorithm. The key point is that the
probability (3) of traversing this path is linear in | )(¢)¥| for every edge e, s on the path, and also
linear in p®7.

How does p?(¢) behave under averaging of p across a mixture of alternatives? In our purity
testing and channel learning lower bounds, the mixture of alternatives is an average over the Haar
measure of some Lie group, so we can readily compute E,[p”(¢)] by computing the high-order
moment E,[p®7].

Purity testing. We first instantiate this for purity testing. When p is a random pure state
|p) |, then it is well-known [Chr06, Har13] that E[p®7] is proportional to the projector II onto the
symmetric subspace in (C?"*2")®T (see Lemma 4.12). Specifically, the probability for a leaf ¢ is

exactly HtT;()l (1—t/27)" tr (H ®tT;01|¢g; g |> The key inequality we show is that

T—1
tr (H R z:><ws:> > 1, (4)
t=0

i.e. the squared norm of the projection of ®;‘F:_01 o Xet| onto the symmetric subspace, is always
at least 1 (see Lemma 5.12). The upshot is that we obtain a uniform one-sided lower bound on the
likelihood ratio of HtT:_Ol (1 —¢/2")71, and for T = 0(2"/2) this quantity is 1 — o(1) as desired.

To get intuition for this one-sided lower bound, imagine the projective measurements {|¢¥)}¢¥|}
were all in the same basis. Then the sequence of outcomes which would be most unlikely for
the mixture of alternatives (random pure state) relative to the null hypothesis (maximally mixed
state) would be one in which all [¢)¥) along the path were mutually orthogonal. Note that in such
a case, we actually have tr (H ®f:51|¢g;><q/)g;y) = 1. Moreover, the quantity HtT;OI (1—1t/2™) is
the probability that all T' outcomes from measuring p = pmm are distinct. Equivalently, this is
the probability of seeing a collision among 7' draws from the uniform distribution [2"], and this
is exactly why we obtain an €(2"%/2) lower bound for purity testing. We remark that extending
this intuition to a formal proof of Eq. (4) is nontrivial and requires a careful tensor analysis that
crucially exploits the multi-linear structure afforded by the tree representation.
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Extending to channel learning. The multi-linear structure also plays a crucial role for es-
tablishing lower bounds for channel learning tasks. Consider the task of distinguishing between
whether the unknown channel C is a completely depolarizing channel D or a random channel from
some distribution. Each edge e, s in the tree representation of an algorithm (without quantum
memory) for learning quantum channels is characterized by an (n + n')-qubit input state |¢*) and
an (n + n’)-qubit measurement outcome |¢¥). Again for simplicity, we only consider projective
measurements in the technical overview.

Similar to purity testing, we consider a sequence of edges {ey, s, } on a path from root to leaf .
The probability that we end up at ¢ when we employ the learning algorithm on an unknown
quantum channel C can be shown to be

T-1 T—1 T-1
P = T Wil €@ 1)(j¢ )Xo |) [vs) = tr ((@wszxwm) ((X)(C ® 1)(!¢“t><¢“f|)>> - (5)
t=0

t=0 t=0

Hence, the average probability Ec[p€(¢)] would be a multi-linear function in E¢|[ (C ® 1)], the
T-th moment of the unknown quantum channel C, and elements |¢%) , [¢)¥) in the algonthm

The main complication in channel learning tasks is that it becomes much more challenging to
obtain a uniform one-sided likelihood ratio bound. Instead, we explicitly expand the T-th moment
of the unknown quantum channel C into a linear combination of basic tensors, e.g. permutation
operators, that arise from a suitable Weingarten expansion of the integral over C. The total variation
distance can be upper bounded by a sum over absolute values of multi-linear functions,

T—1
<A® 64| & Yo |>> | (6)
t=0

Multi-linear function

> P *Ig[pc(f)]l <

£:leaves

{ut, St}t

The sum over A depends on the T-th moment of the unknown channel E¢[(C ® 1)®7]. For each
multi-linear function, the interactions between the tensor components |¢"t),|¢§f) can be rather
complex. Hence a central tool in our analysis is to utilize tensor network diagrams [Oril9] to
bound and disentangle the relations between each components.

The goal of the tensor network manipulation is to upper bound the total variation distance by

a sum over multi-linear functions without the absolute values,

T—1
> Ztr( R[N | @ [t N, r>>. (7)

{ug, s}, t=0

Then we can utilize the resolution of identity > |¢¥) v¢| = 1 at the bottom layer of the tree to
collapse the summation over all leaves (nodes at depth 7") to summation over nodes at depth 7'— 1.
In other words, we will upper bound tr(B (X @ |p"7-1(¢"T-1| @ 1)) < tr(B’'X) for some tensor 5,
which lets us upper bound (7) by

T—2
> Ztr< "R K™ | @ [ W \)). (8)

{ut, st}t 2B t=0

We inductively perform this collapsing procedure to reduce the summation over all paths on the
tree to a single value and conclude the lower bound proof.
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3 Related Work

The field of learning and testing properties of quantum systems is broad and a full review of the
literature is out of scope for this paper. For conciseness, here we only review the most relevant
lines of work. See e.g. [MdW13] for a more complete survey.

Learning properties of quantum states When it comes to learning properties of quantum
states, arguably the most canonical problem is quantum tomography, which is the problem of
learning the unknown quantum state p to high accuracy, usually in trace norm or fidelity. See
e.g. [Hra97, GLF*10, BK10, BCG13] and references within. It was not until recently that the
sample complexity of this problem was fully characterized [HHJ 17, OW16]. These papers demon-
strated that ©(22") samples are necessary and sufficient for this problem. In particular, the sample
complexity is exponential in 7.

As a way around this barrier, [Aarl8] proposed the shadow tomography problem. Ever since,
there has been an active line of work improving the sample complexity upper bounds for this
problem [BKL 19, AR19, HKP20, BO20, HKP21b]. However, the algorithms presented in these
papers largely require heavily entangled measurements, and thus a great deal of quantum memory.
Some notable exceptions are [HKP20, HKP21b], who gave algorithms for shadow tomography that
do not use quantum memory that match the lower bound we achieve in the general case, and
improved algorithms for shadow tomography in special cases. The special case that we consider in
this paper where the observables are Pauli matrices is also of independent interest, as it is a useful
subroutine in many quantum computing applications, see discussions in [MRBAG16, KMT 17,
PK19, YVI19, GAD"19, HMR*19, CW20, CvSW*20, HKP21a, HKT*21].

In quantum property testing, besides purity testing, there have been a number of well-studied
problems, including quantum state discrimination [Che00, ANSV08, BC09], mixedness testing [OW15,
BCL20] and more generally spectrum testing [OW15] and state certification [BOW19, CLO21].
However, for these problems, while in some settings there are separations between the power of
algorithms with and without quantum memory, these settings inherently limit the separations to
be at most polynomial, rather than exponential.

Quantum memory tradeoffs for learning Understanding the power of algorithms without
quantum memory has been posed as an open question in a number of learning theoretic set-
tings, such as shadow tomography [Aarl8], as well as spectrum testing and general state tomog-
raphy [Wril6]. However, until recently, lower bounds against the power of algorithms without
quantum memory usually only applied to the non-adaptive setting, where the algorithm had to
commit to the set of measurements ahead of time, see e.g. [HHJ 17, CLO21]. The first work which
demonstrated a separation against general algorithms was [BCL20], who showed a polynomial
gap for mixedness testing and quantum identity testing. Subsequently, the aforementioned works
of [HKP20, ACQ21] demonstrated exponential separations for shadow tomography and channel
learning. In many ways this work can be thought of as a synthesis of the ideas in [BCL20] with
the ones developed in [HKP20, ACQ21] to both tighten and generalize the bounds obtained by
the latter. We also note that memory tradeoffs have also been demonstrated for classical learning
problems, e.g. [SVW16, Raz18, Raz17, KRT17a, MM17, MM18, SSV19]. It would be interesting
to see if there are any technical connections between these two lines of inquiry.

Learning quantum dynamics Similar to learning quantum states, the task of learning a full
description of a quantum process/channel is known as quantum process tomography [MRLOS].
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Due to the exceedingly high sample complexity, most of the recent works have focused on learning
restricted classes of dynamics. A large class of algorithms assume the dynamics to be governed
by a time-independent Hamiltonian and the goal is to reconstruct the Hamiltonian [WGFC14,
WPS*17, EHF19]. Another class of quantum channels that have been subject to active study
is Pauli channels [HFW20, FW20, FO21], which are useful for characterizing noise in a quantum
device. More recently, [HKP21b, ACQ21, RYCS21, CZSJ21] studied the task of learning properties
of quantum channels using information-theoretic bounds.

4 Preliminaries

Given a (possibly unnormalized) state o on m > k qubits, let tr-; (o) denote the state on k qubits
obtained by tracing out the last m — k qubits. We denote the maximally mixed state on n qubits
by pmm € C¥*2". Given signed Pauli matrix P € C2"*%"  define pp = (1 + P)/2". We will
also use the small-o notation f(n) = o(g(n)) if for all ¢ > 0 there exists a & > 0, such that
0< f(n) <cg(n),Vn > k. A fact we will often use in the proof is the following: if g(n) = o(h(n))
implies f(n) = o(1), then f(n) = Q(1) implies g(n) = Q(h(n)). Given a matrix M, we will use M7
to denote conjugate transpose and M! to denote transpose. Given probability distributions p, ¢
over some domain €, define the total variation distance drv(p,q) = supgcq p(S) — q(S).

4.1 Tail bounds

We also recall the following properties for subexponential random variables. A mean-zero random
variable Z is A-subexponential if it satisfies the tail bound Pr[|Z| > t] < 2e~2/*.

Fact 4.1 (See e.g. Lemma 2.7.6 in [Verl8]). If X is sub-Gaussian with variance proxy o, then
7 & X? — E[X? is O(0?)-subexponential.

Fact 4.2 (Bernstein’s, see e.g. Corollary 2.8.3 in [Verl8]). If Zi,...,Z,, are independent, mean-
zero, A-subexponential random variables, then for Z & % > Zi and any t > 0,

Pr[|Z] > ] < exp (—’; <min (;22 ;))) . (9)

We will also use concentration of measure for the Haar measures on the orthogonal and unitary
groups:

Lemma 4.3 (See e.g. [AGZ09], Corollary 4.4.28). For G = O(d),U(d), let f : G — R be L-

Lipschitz with respect to the Frobenius norm. There is an absolute constant ¢ > 0 such that for x

sampled from the Haar measure on G, Pr[|f(x) — E[f(z)]| > ¢ Ly/log(1/0)/d] < 6.

4.2 Basic results in quantum information theory

In the following, we present several standard definitions in quantum information theory. We also
provide the basic lemmas that illustrate properties of these quantum objects.

Definition 4.4 (Quantum channel). A quantum channel C from n-qubit to m-qubit is a linear
operator from HZ"*2" to H2"*2" given by

C(X) =Y K, XK], (10)

where K; € H2"*2" satisfies > KJKZ = 1. When n = m, we let I denote the identity channel,
that is, the channel that acts trivially on H?"*?".
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Definition 4.5 (POVMs). A positive operator-valued measure (POVM) on n-qubit states is given
by positive-semidefinite matrices {Fs}s, where the set of matrices Fy € C2"*2" satisfies Y, Fs = 1.
The probability for obtaining classical outcome s when we measure the density matriz p € H2"*2"
is tr(Fgp).

In Section 6, we will need to reason about how states transform upon being measured; we
summarize the formalism for this in the following definition:

Definition 4.6 (Post-measurement states). Given a POVM on n-qubit states {Fs}s where each
POVM element has some Cholesky decomposition Fy = MJMS for My € (CQHmXQn, the post-

measurement quantum state upon measuring p with this POVM and observing outcome s is given
by
M,pM] b 5 gt
=l L (11)
tr(Ms Msp)

We also define a restricted version of POVM where each POVM element is a rank-1 matrix.

Definition 4.7 (Rank-1 POVM). A rank-1 positive operator-valued measure (POVM) on n-qubit
state is given by {V/ws2"™|YsXs|}s, where ws > 0,ws € R and pure states {|1)s)}s satisfy

Zws2n‘ws><ws| =1 (12)

The above normalization condition implies Y ws = 1. The probability for obtaining the classical
outcome s when we measure the density matriz p € H2"*2" is ws2™ (3| p|tbs). And the post-
measurement quantum state is given by |1sX1s|.

A nice property of rank-1 POVM is that it can be used to simulate arbitrary POVM. Hence,
rank-1 POVM is as powerful as any POVM from an information-theoretic perspective. The follow-
ing folklore lemma illustrates this fact. We provide a proof of this lemma for completeness.

Lemma 4.8 (Simulating POVM with Rank-1 POVM). When we only consider the classical out-
come of the POVM measurement and neglect the post-measurement quantum state, then an POVM
{Fs}s on n-qubit states can be simulated by a rank-1 POVM on n-qubit states with some post-
processing.

Proof. Let Fy have Cholesky decomposition M. M s. Consider the diagonalization

M My = Z wsp|¢sp 1/’8p| Z w8p2n‘w8p><¢8p| (13)

where wg, = Wsy/2". Because ]\ﬂMS is positive-semidefinite, we have wg, > 0. {\/wep2" |15 Vspl| }sp
forms a rank-1 POVM because > wsp2" [Ysp)tsp| = D, MIM, = 1. To simulate the POVM
{Fs}s, we measure the rank-1 POVM on p, which gives the classical outcome sp with probability

Wep2" <w8p| p |¢sp> = tr(wsp2n|¢sp><wsp|p)’ (14)
then output s. Hence, we output classical outcome s with probability
D tr(wsp2" [spXtbsplp) = tr(MIM;p). (15)
p
Thus the rank-1 POVM with some post-processing simulates the POVM {M;}s. O
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Definition 4.9 (Pauli observables). We define an n-qubit Pauli observable P to be a tensor product

10 01 0 —i 1 0
of n opemtorsfmmtheset{l—<0 1>,X—<1 ())’Y_(i 0>,Z—<0 _1>}-

Lemma 4.10. The sum of the tensor product of two Pauli observables is given by

> P® P =2"SWAP,, (16)
Pe{l,X)Y,Z}®"

where SWAP,, is the swap operator on two copies of n-qubit state.
Proof. 1t is easy to check the following equality,

IQI+XX+YRY+2ZRZ= = 2SWAP;. (17)

S O O N
o N O O
o O N O
N O OO

Xn
Then note that 3 pe; yy.zyen P ® P = (Za — a) — 9ISWAP®" — 27SWAP,. [

In the following, we give basic definition for permutation operators over a tensor product space.
In particular, we will use the same notation 7 for an element in the symmetric group as well as the
permutation operator over the tensor product space.

Definition 4.11 (Permutation operators). For T > 0, we consider St to be the symmetric group
of degree T. For any permutation m € St, we consider the action of m on a tensor product of T
states to be given by the following

T([Y1) @ ... @ Y1) = [Yr-1(1)) @ .- @ [Yr-1(1)) , VY1, .., Y1 (18)
We linearly extend the action of m to any element in the tensor product space.

Lemma 4.12 (Haar integration over states, see e.g. [Harl3]). Consider the uniform (Haar) mea-
sure over n-qubit pure states |1)), then

n _ -1
By [l9)w|*"] = (2 +7:F 1) > (19)

TEST

where m is a permutation operator on a tensor product space of T n-qubit pure states and St is the
symmetric group of degree T .

4.3 Primer on information-theoretic lower bounds

In this section, we give a brief overview for how to prove information-theoretic lower bounds like
the ones in this work.

As discussed in Section 2, we are interested in distinguishing tasks. Informally, we have the
ability to make some number N of measurements of an unknown object z which is promised to lie
in one of two possible sets Sy and S;. Based on the sequence of measurement outcomes we obtain,
we must decide whether the object lies in Sg or S1. In this work we will focus on tasks where Sy s
a singleton set.

We will not formally define what it means to follow a particular “strategy” for measuring z, as
this will be clear in the body of this paper (see e.g. Definitions 5.1, 7.1, and 6.1). In any case, this
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is not important for the formalism in the present subsection; the only thing one needs to know here
is that any z and measurement strategy induce a probability distribution over transcripts, namely
sequences of measurement outcomes. And as we are interested in showing lower bounds against
arbitrary measurement strategies, in the rest of this subsection we may as well fix an arbitrary such
strategy.

Under this strategy, to any z is associated a distribution pS" over transcripts— when z is the
unique element of Sy, we will denote this by pgN. To show a lower bound for the distinguishing
task, formally we would like to argue that there exists no algorithm A mapping transcripts T' to
{0,1} for which PrTNngN[A(T) =1i]>2/3 for all z€ S; and i = 0,1 (the constant 2/3 is arbitrary
and we could consider any value greater than 1/2).

To show this, it suffices to consider the following average-case version of the original distinguish-
ing task. Let D be some distribution over S; that we are free to choose, and consider the hypothesis
testing problem of distinguishing whether a given transcript came from p§N or E,~p [pZSN ] The
following fact is an elementary but fundamental result in binary hypothesis testing:

Fact 4.13. Given distributions qo,q1 over a domain S, if drv(qo,q1) < 1/3, there is no algorithm
A:S —{0,1} for which Pryq,[A(z) =1i] > 2/3 for both i =0, 1.

Proof. Let 8" C S denote the set of elements x for which A(z) = 0. Then observe that

Pr [A(e) = 1]+ Pr [A() = 0] = 1= 0o(S) + (S (20)
xr~qo r~q1
>1— sup |qo(S") — q1(S")] (21)
S'CS
=1- dTV(q(b QI) > 2/37 (22)
so at least one of the terms on the left-hand side is at least 1/3. O

We can use this to show that, in order to prove a lower bound for the original distinguishing
task, it suffices to bound dTv(pOSN, E.~p[p=N)):

Lemma 4.14 (Le Cam’s two-point method). If there exists a distribution D over Si for which
dTV(p§N,EzND[pZ§N]) < 1/3, there is no algorithm A which maps transcripts of N measurement
outcomes to {0,1} for which PrTNpgw[.A(T) =1]>2/3 forany z € S; and i =0, 1.

Proof. Suppose to the contrary that there existed such an algorithm. Let plgN 2 E.~p[ps"]. Then

2/3< E Pr [A(T)=i]| = Pr [A(T)=1]. 23
3 B | P AT =] = P LAD) =i 23
But by Fact 4.13, this would contradict the fact that dTV(p§N,IEZND [p=N]) < 1/3. O

In the distinguishing tasks we consider, the choice of D will be fairly clear, so the primary
technical difficulty for us will be upper bounding the total variation distance between p%N and

EZN'D [pZSN] .

4.4 Learning with and without quantum memory

We begin with the simpler task of learning to predict properties in an unknown quantum system
p. We consider the setting where an algorithm has access to a physical source (an oracle) that
generates an unknown quantum state p. The goal is to learn to predict properties of p from as
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few accesses to the oracle as possible. We denote the number of oracle accesses to be T'. We give
definitions for learning algorithms that can utilize quantum memory and those that can not utilize
quantum memory throughout the experiments.

Definition 4.15 (Learning states without quantum memory). The algorithm can obtain classical
data from the oracle by performing arbitrary POVM measurements on p. For each access to the
oracle, the algorithm can select a POVM {Fs}s and obtain the classical outcome s with probability
tr(Fsp). The selection of the POVM can depend on all previous measurement outcomes. After T
oracle accesses, the algorithm predicts the properties of p.

Definition 4.16 (Learning states with quantum memory). The algorithm can obtain quantum
state p from the oracle and store in the quantum memory. After T oracle accesses, the algorithm
performs a POVM {F,}s on p®T to predict properties of p.

We now describe the general task of learning to predict properties in an unknown quantum
channel C. We consider the setting where an algorithm can access an unknown quantum-mechanical
process, given by the quantum channel C. The goal is to learn to predict properties of C from
minimum number of accesses to C. Similarly, we denote the number of oracle accesses by T. We
also give definitions for learning algorithms with and without quantum memory.

Definition 4.17 (Learning channels without quantum memory). The algorithm can obtain classical
data from the oracle by preparing an arbitrary initial state |Y)1|, evolve under C to yield the
output state (C @ I)(|Y)v|), and perform an arbitrary POVM measurement on the output state
(CRI)(|Y)Xv|). For each access to the oracle, the algorithm can select a POVM {Fs}s and obtain
the classical outcome s with probability tr(Fs(C @ Z)(|v)¢|)). The selection of the initial state
and the POVM can depend on all previous measurement outcomes. After T oracle accesses, the
algorithm predicts the properties of C.

Definition 4.18 (Learning channels with quantum memory). The algorithm can access the oracle
C as a quantum channel during the quantum computation. In particular, we consider a mized state
quantum computation. The resulting quantum memory after T oracle accesses can be written by

pF=Cr(CRI)...Co(COI)C1(C®I)(po), (24)

where po is the initial state of the quantum memory with arbitrary number of qubits, C; is a quantum
channel for allt = 1,...,T. After T oracle accesses, the algorithm performs a POVM {Fs}s on
the quantum memory pgp to predict properties of C.

Learning channels is more general than learning states. We can reduce to the definitions for
learning states by considering quantum channels C with 0-qubit input state and n-qubit output
state. Furthermore, for learning states or channels with/without quantum memory, we can restrict
the POVM to be rank-1 POVM because we never consider post-measurement quantum states in
the definitions.

Remark 4.19. In the definitions of learning states/channels with/without quantum memory, we
can replace each POVM {Fs}s by a rank-1 POVM {\/ws2"|1s)X1s|}s using Lemma 4.8.

Finally, we describe an intermediate regime where the algorithm has bounded quantum memory.
We only consider definitions for learning states in the main text. The definition for learning channels
with bounded quantum memory can be defined similarly. Intuitively, we consider the algorithms
to have a k-qubit quantum memory o. Every time the algorithm a new copy of quantum state
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p, it performs a partial measurement on the combined state o ® p that results in a k-qubit post-
measurement state. Because we need to consider post-measurement quantum state in this case,
we can not replace the general POVM {F}; by a rank-1 POVM using Lemma 4.8. The formal
definition is given below.

Definition 4.20 (Learning states with size-k quantum memory). The algorithm maintains a k-
qubit quantum memory o. For each access to the oracle, the algorithm can select a POVM measure-
ment {Fs}s on (p® o), where each POVM element has some Cholesky decomposition Fs = MM,
and obtain a classical outcome s as well as the first k qubits of the post-measurement state,

M,(p® o) M}
tI‘>k (W> s (25)

with probability tr(Fs(p ® o)). For each access to the oracle, the algorithm can select a POVM
{Fs}s that depends on all previous measurement outcomes. After T oracle accesses, the algorithm
predicts the properties of p.

Remark 4.21. One can verify that the definition for learning states with quantum memory is
equivalent to the definition for learning states with size-k quantum memory when k — oo.

4.5 Review of tensor network diagrams

It will be convenient to review the diagrammatic notation for tensor contraction, which we will
leverage in several proofs. These so-called ‘tensor networks’ will render the index contraction of
higher-rank tensors more transparent than standard notations. We also refer the interested reader
to [Lanl12, BC17] for a more comprehensive overview of tensor networks.

Diagrams for individual tensors

For our purposes, a rank (m,n) tensor is a multilinear map 7 : H*®™ @ H®" — C. If {]i)} is an
orthonormal basis for H, then in bra-ket notation 7" can be expressed as

T= Y T (i) ® - ® lim)) (1] @ @ (al) (26)
Zl7 7lm
j17"'7j7l

for some T;’ll ;m € C. Tt is clear that a quantum state |¥) on H is a rank (1,0) tensor, being a map

from H* — C. Accordingly, its dual (V] is a (0,1) tensor. Moreover a matrix M =}, M; li)(j| is
a (1,1) tensor. We elect to represent T' diagrammatically by

: | T (27)

which has m outgoing legs on the left and n incoming legs on the right. Each leg in the diagram
may be associated with an index of the coefficients T;ll ]“” We set the convention that outgoing
legs are ordered counter-clockwise and incoming legs are ordered clockwise. For instance, in (27)
the top-left outgoing leg corresponds to i1, the leg below to i, and so on. Likewise the top-right

incoming leg corresponds to j;, the leg below to j2, and so on.
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Tensor contraction

We next explain how to depict tensor network contractions diagrammatically. For sake of illustra-
tion, suppose we have a rank (2, 1) tensor

A=Y Aliy (@ (k) = —— A [ (28)
ijk
and a rank (1,2) tensor
B=Y B (m®nm) = __| B~ (29)
Imn

Now suppose we want to compute the tensor network contraction corresponding to
S
> AL BIF. (30)
ijk
Here lower indices are contracted with upper indices because this represents contracting vectors
with covectors. The contraction in (30) is depicted diagrammatically as

C— A B ﬂ) (31)

Comparing the diagram with (30), we see that contracted indices corresponding to outgoing and
incoming lines which are glued together. The fact that vectors are to be contracted with covectors
is reflected in the fact that we are only allowed to glue together lines in a manner consistent with
their orientations.

As another example, given a matrix M = 3,. M J’ |i)(j|, the trace can be written as

TS .

If My, Mo, ..., M, are matrices, then the product M Ms - - - My, is depicted by

My My —— M}, (33)

Multiplication by a scalar

Given a tensor T, multiplication by a scalar « is often denoted by aT. In our diagrammatic
notation, we will simply write

Tensor products

Given two tensors 17,715, we can form the tensor product 77 ® T5. We will denote this diagram-
matically as

: | T

(35)

;| I8
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or also

A T (36)

More generally, how to read off the order of a tensor product (e.g. 73 ® T or T ® T) from a
diagram will be clear in context.
Taking norms

Often it will be convenient to compute the norm of a matrix in tensor notation. For instance, if M
is a matrix, then its 1-norm || M||; can be expressed diagrammatically as

(37)

1

Here we are simply taking the diagrammatic notation for M as a stand-in within the expression
||M||1. This is particularly convenient in circumstances where M is given by a tensor network con-
traction whose structure we wish to emphasize; for instance, the I-norm of M =3, ., A@B;?Z 1) (4]
is conveniently depicted by

(38)

| {a =5}

Tensors with legs of different dimensions

So far we have considered rank (m,n) tensors as maps T : H*®™ @ H®" — C. More generally
we can consider tensors T : (Hi® - Q@H}) ® (Hm+1 ® -+ ® Hmsn) — C where the tensored
Hilbert spaces in the domain need not be isomorphic. We can use the same diagrammatic notation
as above, with the additional restriction that tensor legs can be contracted if they both carry the
same dimension (i.e., correspond to a Hilbert space and a dual Hilbert space of the same dimension).

As an example, we can consider the state |[¥) in C? ® C3, and form its density matrix |¥)(¥|.
In our tensor diagram corresponding to this state, the C? (qubit) legs will be solid lines and
the C3 (qutrit) legs will be dotted lines. Performing a partial over the qutrit legs is expressed

diagrammatically as
TIPS (39)

We will discuss the diagrammatic notation of partial traces in more detail below.

Identity operator

The identity operator on a Hilbert space H can be expressed diagrammatically as an oriented line

(40)
We can clearly see that given a state in the Hilbert space
——¥) (41)

if we left-multiply by the identity diagram we will get the same tensor diagram and thus the same
state. Likewise for the dual state
(Up—— (42)
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if we right-multiply by the identity diagram then we return the same tensor diagram.
Likewise, the identity operator on k copies of the Hilbert space H®* is just

— (43)

e

In the setting that the Hilbert space under consideration is H ® H’ where each tensor factor has a
different dimension, it is convenient to represent tensor legs in H by solid lines and tensor legs in
H' be dotted line; in this setting the identity operator is

S—— (44)
which readily generalizes if there are more than two Hilbert spaces with differing dimensions.

Resolutions of the identity

Suppose {|¥;)}; is an orthonormal basis for . Then the resolution of the identity ), [¥;)(¥;| =1
can be expressed diagrammatically as

> AN T =

(45)

If instead {|¥;)}; is a resolution of the identity for H ® H' where the two Hilbert spaces have
different dimensions, we may analogously denote this diagrammatically by

Z Y)Y = I (46)

Similarly, if {MJ]WS}S is a POVM on H then the resolution of the identity >, MIM, =1 can
be written as

>, MM = —— (47)

E}

and analogously if the Hilbert space is H ® H' or has even more tensor factors.

Taking traces and partial traces

Suppose we have a rank (n,n) tensor 7' : H*E™ @ HE™, Then its trace is given by tr(T) =
D i, Ll or diagrammatically

‘ ar——) (48)
tr(T) = T

A very useful diagrammatic identity is the trace of the identity matrix, which can be regarded as
arank (1,1) tensor 1 =), |i)(i|. We have

tr(——— ) = Q =d (49)

and so we see that a closed loop in tensor diagrams equals the dimension of the Hilbert space
associated that curve. As another example, if we have the identity 1gyxq ® 1y xg on H ® H', where
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dim(H) = d, dim(H’) = d’ and we have used subscripts on the identity matrices for emphasis, we

have
tr( _____ DR ) _ Q l‘,\ /:’ = dd, (50)

where the solid line corresponds to the H Hilbert space and the dotted line corresponds to the H’
Hilbert space.

We can also take partial traces in similar fashion. We define the partial trace over the ‘kth
subsystem’ by

try,(T') = > ZTﬁ S i) Gl @ - @ ik 1) G| @ Jikgn) (| © -+ @ [in) (Gl

150yl — 15Tk 4 150500
]1’ 7.]k 17]k+1’ 7.]71

(51)

Note that try(try(T")) = tre(tre(7))). Since the operation of taking partial traces is commutative

we can use the notation try ¢(7"). Notice that tri . ,(T") = tr(T). That is, taking the partial trace

over all subsystems in the tensor is the same as taking the trace of the entire tensor.
Diagrammatically, the partial trace over the first subsystem is given by

try(T)= 3| T [ (52)

The partial trace over the second subsystem is

tro(T) = "@?9” (53)

and so on.

If we have an tensor with legs corresponding to Hilbert spaces of different dimensions, we can still
in some cases take traces or partial traces. In particular, if T : (Hj®---QH})Q(H ®---@H,,) = C,
then if H;, = H) we can still compute the partial trace try(7"). As a simple example consider the
state |¥) hvmg on H®H'. Then its density matrix |¥)(¥| can be regarded as a (2,2) tensor taking
(H* @ H™*) @ (H® M) — C. Then we have

tra(JU) () = “2AUN (YT (54)

which is the same example as (39); a similar diagram expresses trq (|¥) (V).

Isotopies

We remark that tensor network diagrams are to be understood up to isotopy of the tensor legs;
that is, deforming or bending the tensor legs does not change the interpretation of the diagram.
For instance, for a product of matrices M7 Ms we have equivalences like

— My ——{ My |— = aMlgMQ»«L (55)

and similarly for all other kinds of tensors.
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The isotopies are not required to be planar; for instance
SIS (56)

We also can allow legs to cross, for instance

T E D (57)

e ——

——]

We will disregard whether such crossings are overcrossings or undercrossings.

However, we set the convention that we do not change the relative order of the endpoints of the
outgoing or incoming legs. The reason is that permuting the order of the endpoints corresponds
would correspond to permuting the tensor factors on which the tensor is defined. As a transparent
example, let T': (H} @ H3) ® (H1 @ Hz2) — C be denoted by

T (58)

Then the diagram

dr[— (59)

corresponds to a tensor (Hs ® H}) ® (H1 ® Ha) — C where we note that H} and Hj have been
permuted. See also the discussion of permutation operators below.

Permutation operators

Consider the permutation group on k elements, Si, and let 7 be an element of the group. We
define a representation of 7, namely Perm(7), which acts on a k-copy Hilbert space H®* as follows.
Letting |11) ® |12) ® - - - @ |1b,) be a product state on H®*| we define

Perm(T)‘Tbl) ® \¢2> Q& ‘¢n> = ‘¢T*1(1)> ® ’¢T*1(2)> Q- ’wal(n)> (60)

which extends to the entire Hilbert space H®* by linearity. With these conventions, the represen-
tations Perm(7) enjoy the property

Perm(7) - Perm(o) = Perm(70) (61)
where 7o is shorthand for the group product, i.e. the composition 7o o.

These representations of Sy admit a very intuitive tensor diagrams. Consider, for instance, Ss
and 7 = (123). Then the corresponding tensor diagram is

% (62)

This is made very clear by labeling the endpoints of the diagram by

1 1
. 63
2 2

v (63)
This notation generalized accordingly for other permutation representations. The group product

structure is also transparent; for instance Perm((123)) - Perm((12)) is depicted diagrammatically
by

Q

—-—
= e

(64)

X
|



where Perm((123)) is given in red and Perm((12)) is given in blue for clarity; the allowed diagram-
matic manipulations of performing isotopies without rearranging the endpoints of the tensor legs
show that the result of the product is Perm((23)). A nice feature of the diagrams is that the diagram
for Perm(7~!) can be obtain from the diagram for Perm(7) by flipping the latter horizontally.

As another example, if we multiply Perm((123)) by a state |¥) in H®3, then we get

5 w) (65)

from which it is clear that Perm((123)) permutes the tensor factors of the state according to
(123)~1 = (132).
In some later proofs where there is no ambiguity, we will denote Perm(7) simply by 7.

Transposes and partial transposes

Suppose we have a matrix M =}, ; M; i) (j| viewed as a rank (1,1) tensor. We can represent its
transpose M* = 37, . M |j)(i| diagrammatically by

Here we are duahzmg each leg by changing the direction of each arrow, and then reorganizing
the legs via isotopy so that the in-arrow comes in from the right and the out-arrow comes out to
the left; this isotopy is done in order to match the arrow configuration in the diagram on the left.

M = EM) .

If we have a higher-rank tensor, such as a rank (2,2) tensor T = ZZJM ></€| ® |7)(¢|, then we
can also perform a partial transp081tlon on a subsystem; for instance, the partlal transposition on
the second subsystem ., Ty 1) (k| @ |£)(j| is given by

T
{ ) (67)
—

This notation extends to higher rank tensors in an analogous fashion.

Maximally entangled state

The maximally entangled state is given by [2) = >, |¢)|7) where {|i)} is the computational basis.
We treat |Q2) as unnormalized, and it and its Hermitian conjugate are denoted by

- (68)
@={_
Letting Ha ~ Hp ~ Hc, we have the identities
(Ta®(Qpc) (Dap®1c) = ZI (69)
(Qap®@1c) (1a ® Q) Bc) Z li)c (70)
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which can be expressed diagrammatically as

- (72)

We can think of the black dot as being a transpose operation since it changes the orientation of
the tensor leg; moreover, two black dots annihilate one another since taking two transposes is the
identity operation.

5 Exponential separations in learning quantum states

The main contribution of this work is in establishing information-theoretic lower bounds in learn-
ing algorithms without quantum memory. For learning properties of quantum states, a quantum-
memoryless algorithm performs a POVM measurement on the unknown quantum state p and store
the classical measurement outcome in a classical memory. The state of the classical memory is
equivalent to the collection of all previous measurement outcomes. Because the POVM measure-
ments performed at each time step depends on the previous outcomes, it is naturally to consider
a tree representation for the learning algorithm. Each node on the tree represents the state of
the classical memory. The classical memory state begins from the root of the tree. Every time
we perform a POVM measurement on p, we move to a child node along the edge that encodes
the measurement outcome. The POVM measurement we perform at each node will be different.
Based on Remark 4.19, we only need to consider rank-1 POVM. Hence, we consider each node u
to have an associated rank-1 POVM {/w¥2"|¢¥)}¢¥|}s. We also associate a probability to each
node to represent the probability of arriving at the memory state in the learning process. Because
we consider T' measurements, all the leaf nodes are at depth T

Definition 5.1 (Tree representation for learning states). Fiz an unknown n-qubit quantum state
p. A learning algorithm without quantum memory can be expressed as a rooted tree T of depth T,
where each node on the tree encodes all the measurement outcomes the algorithm has seen so far.
The tree satisfies the following properties.

e Fach node u is associated with a probability p”(u).
e For the root 1 of the tree, pP(r) = 1.

o At each non-leaf node u, we measure a POVM {M¥}s on p to obtain a classical outcome s.
FEach child node v of the node u is connected through the edge ey.s.

e Ifv is the child node of u connected through the edge e, s, then
pP(v) = pP(w)wg2" (Vg p[¥5) (73)
where {wi2™ [P Y¥}s is a rank-1 POVM that depends on the node u.

e Every root-to-leaf path is of length T'. Note that for a leaf node £, p”({) is the probability that
the classical memory is in state £ after the learning procedure.
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The general strategy we utilize is a reduction from the prediction task we care about to a
two-hypothesis distinguishing problem. In particular, we consider distinguishing a set of unknown
quantum state {p} from the completely mixed state 1/2".

Definition 5.2 (Many-versus-one distinguishing task). We consider the following two events to
happen with equal probability.

e The unknown state p is the n-qubit completely mixed state 1/2™.

e The unknown state p is sampled uniformly from a set of n-qubit states {pz}s.
The goal of the learning algorithm is to predict which event has happened.

The basic strategy for proving lower bounds in a two-hypothesis distinguishing problem is the
two-point method. After T measurements on the unknown quantum state p, the classical memory
state will be represented by a leaf £ of the rooted tree 7. We will then use the information stored
in the classical memory to distinguish between the two events. In order to successfully do so,
intuitively, the distribution over the classical memory state in the two events must be sufficiently
distinct. This is made rigorous by the famous two-point method in information-theoretic analysis.
In the following lemma, we describe the two-point method in terms of the tree representation for a
learning algorithm without quantum memory.

Lemma 5.3 (Le Cam’s two-point method, see e.g. Lemma 1 in [Yu97]). Consider a learning
algorithm without quantum memory that is described by a rooted tree T. The probability that the
learning algorithm solves the many-versus-one distinguishing task correctly is upper bounded by

1

_ Pz _ /2"

5 > [0 -0 ). (74)
Leleaf(T)

It is tempting to try to apply Lemma 5.3 by uniformly upper bounding the quantity ‘Em pP=(£) — p'/2" (£) ‘
for all leaves ¢. Unfortunately, it turns out that for some leaves, this quantity can be very
large. The good news however is that we do have a uniform one-sided bound: as we will show,
pY/2" (0) — E, pP=(£) (without the absolute values) can always be upper bounded by a very small
value. It turns out that such a one-sided bound already suffices for applying Le Cam’s two-point
method.

Lemma 5.4 (One-sided bound suffices for Le Cam). Consider a learning algorithm without quan-
tum memory that is described by a rooted tree T. If we have

Ealp (0]
70

then the probability that the learning algorithm solves the many-versus-one distinguishing task cor-
rectly is upper bounded by 0.

Proof. We utilize the basic fact that 1 >, [p(i) — (i) = 2isp(i)>q(i) P(1) — (i), hence

>1—-9, Vleleaf(T). (75)

]. n n
5 X BT O)= Y PO B (76)
£€leaf(T) Leleaf(T)
P!/ (0)2Es pP= (6)
< > pMws < s (77)
Leleaf (T)
Pt/ () >E, pPa (€)

We can then apply Lemma 5.3 and conclude the proof of the lemma. O
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5.1 Shadow tomography

Given M observables Oy, ..., Oy with ||O;|lcc = 1, Vi, the goal of shadow tomography is to predict
the expectation values tr(O;p) for all the observables up to e-error. If we consider a class of traceless
observables O1, ..., O such that

O; = —O;4p/2, and all eigenvalues of O; are +1, Vi=1,...,M/2, (78)

then the hardness of shadow tomography in learning algorithms without quantum memory can be
characterized by the following quantity,

M2

2 2
501, ....0n) =sup— S (6] 0; |62, 79
(O ) S@;)M;H 3 (79)

where sup)y is taken over the entire space of n-qubit pure states. We establish this hardness
relation by the following theorem.

Theorem 5.5 (General shadow tomography lower bound). Consider M traceless observables
O1,...,0 satisfying Eq. (78), any learning algorithm without quantum memory requires

TzQ( (80)

1
e26(0y,. .. ,OM))
copies of p to predict expectation values of tr(Oyp) to at most e-error for all x = 1,..., M with at
least a probability of 2/3.

Proof. We consider a many-versus-one distinguishing task where we want to distinguish between
maximally mixed state versus the set of n-qubit states {p;}, given by

1 +3e0,

- (81)

Pz
Using Eq. (78), we have tr(O2) = 2". Using tr(O2) = 2" and tr(O,) = 0, we have tr(O,p,) = 3¢
and tr(Oz(1/2")) =0 for all z = 1,..., M. Therefore for any p,, there exists an O, with tr(Ogpz)
substantially greater than zero. On the other hand, for 1/2", we have tr(O,(1/2")) = 0 for all O,.
Together, if a learning algorithm without quantum memory can predict the expectation values of
tr(Ogp),VYo = 1,..., M up to error € with probability at least 2/3, then we can use the learning
algorithm to perform the many-versus-one distinguishing task. Hence, a lower bound for this task
also gives a lower bound for shadow tomography task. Given this result, we will now use Lemma 5.4
to establish a lower bound on 7.

To utilize Lemma 5.4, we need to establish Eq. (75). Consider the tree representation 7 of
the learning algorithm without quantum memory given in Definition 5.1. For any leaf ¢ of T, we
consider the collection of edges on the path from root 7 to leaf ¢ to be {ey, s, }; where u; = 7.
From the recursive definition for the probability p”(u) in Definition 5.1, we have

T
p(0) = [Jwir2™ (witl p ). (82)
t=1
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We then have the following calculation:

T
(E, ppx
pl /2n =E; H

t=1

wy2n

wg2" + 3wy 2" (Pt | Oy by >)

T
(ng (14 3 (Y| Oy |1 >)> (84)

t=1
T
>e <Z »log (1432 (7| Op 05 >)> (85)
t=1
T M/2
>e p(;];zmg(l% (W] 0: [v)?) (86)
L8 8
>exp< ;MZ€2 Ut Oy |1h2t)? (87)

T
Zexp( Z 25 Ol,..., M)) (88)

Equation (85) uses Jensen’s inequality. Equation (86) uses the condition on the observables; see
Equation (78). Equation (87) uses log(1 —x) > —2x,Vz € [0,0.79] which is satisfied given € < 0.29.
Equation (88) uses Equation (79). Plugging the above analysis to Eq. (87), we get

(E, p=(£))

LT (D) > exp (—97<%6(01,...,0n)) > 1 —9T€*5(0y,...,0un). (89)

Utilizing Lemma 5.4 on a one-sided two-point method, we have that the learning algorithm without
quantum memory solves the many-versus-one distinguishing task correctly with probability at most
9Te%5(0y, . ..,0p). Combining with the fact that the learning algorithm without quantum memory
solves the many-versus-one distinguishing task correctly with probability at least 2/3, we have

1
T>0 . 90
- <€2(5(01,...,OM)> ( )
This concludes the proof. ]
5.1.1 Lower bound for random observables
We consider a random collection of observables Oy, ... Op; on n-qubit systems given by
O1 = U1 ZNU], ... Onjo = UM/QZNU]L/27 (91)
Onmyzy1 = ~U1ZNUY, ... Oy = _UM/QZNUM/27 (92)
where Uy, ..., Uy o are sampled from the Haar measure over the unitary group U(2") and Z,, =

1®...® Z is the Pauli-Z operator on the n-th qubit. It is easy to check that this collection of
observables satisfies Eq. (78). This random collection of observables is very hard to predict.
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Lemma 5.6 (0 for random observables). With a constant probability over the random collection of
the observations {O1,...,0On}, we have

vz 230473 log(1 + 2M) 4 1

2 2
= — i < Mo
(01, ...,0nm) 3 z; (6 Oi ) i A T

where supq s taken over the entire space of n-qubit pure states.

Proof. We prove this lemma by the following strategy: take the covering net over all pure states,
obtain exponential concentration inequality, and apply union bound. We first note that because
Ui,...,Uppo are independent random matrices, for a fixed [¢), we can consider M/2 independent
and identically distributed pure states [¢1), ..., [{r/2) sampled from the Haar measure. Thus we

can write
o M/2 o M/2

, Flgy2 = _© . \2
;w\mznm [) M/ngzrznw» : (94)

&
M2

Furthermore we have the following bound on the Lipschitz continuity of the function f(|¢)) =
(Y| Zn |9),

FU)) = £(18)) = (&l Zn |9) — (€] Zn [€) (95)
< (@] = (€D Zn[¥) + (€l Za(lih) — 1€)) (96)
< 2[[|4) = [E)]2- (97)

Using Levy’s lemma and E[f](|1))) = 0, we have the following concentration inequality

n42
Pl = 6 < 2ex0 (- 255 ). (98)

This means f(|¢)) is a sub-Gaussian random variable with variance proxy 1873/2". A well-known
fact in high-dimensional probability is that X? — E[X]? is a sub-exponential random variable
with variance proxy 1602 if X is a sub-Gaussian random variable with variance proxy o2. Thus
F(wi))? — E[f](J1:))? is a sub-exponential random variable with variance proxy A\ = 28873/2".
Using Bernstein’s inequality, we have

M/2

2
Prl s 2o £ ~BIA| 2 0 < 200 (~Fmin (55)) o9

Using the second moment of Haar-random vectors, we have E[f](|4;))? = 1/(2"+1). An n-covering
net A, for n-qubit pure state is upper bounded by (1 + 2/1)?*2". We can apply union bound to
control the fluctuations in the covering net, which gives rise to the following inequality.

M/2
. Fr1a)2 —
Pr|319) € Nop | 3773 Z; (G UZaU]10) = 5 | 2 (100)
o on M [t t
<2(1+2/n) exp (—2 min ()\2, /\)) . (101)
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Now, we can extend from the covering net to the entire space of pure states by noting the following
Lipschitz continuity property

1 M/2 1 M/2
W Zl (6| U; ZnU] |9)* — 7 Zl (| U2, U] [15)? (102)
1 M/2
=z ;«aﬁ! Ui ZnU} |6) — (G| Ui ZoUJ |9)) (8] Ui Zu U |¢) + (| Ui 2 U] 1)) (103)
M/2
S E_Z 2 (9l UiZuU} 16} — (1 UsZaU] )] < 4lll6) = ). (104)

This gives rise to the following concentration inequality for any pure states

M/2
1
Pr|3 — 7. UT |6)2 — >t44 1
r(3), M/QEWJZ WU = G| 2+ 4 (105)
n M ot
2X2 .
<2(142/n)*** exp <—2m1n ()\2,)\>>. (106)

We will assume that M < 2". When M > 2", we can start using classical shadow (an approach for
shadow tomography using single-copy incoherent measurement that only requires log(M) copies),
so a lower bound of M/log(M) would not hold in that regime. Under the assumption, we choose

1 8- 2"log(1 +2M) 230473 log(1 + 2M)
=10 x i i : (107)
to yield the following probability bound
L M
. T2 — _
Pr|3¢), m;@‘ UiZnU; |) on 11 >t+4n| <2exp(-2). (108)
Therefore with constant probability, we have
M/2
2 1 230473 log(1 +2M) 4 1
= Ui ZoUl |9)? <t +4 = — . (109
sup 57 2 (OIUZU 0 <t dn+ gy i Fartar 10
This concludes the proof of the lemma. O
We can combine Lemma 5.6 that upper bounds §(Oq,...,0)s) for the random collection of
observables and Theorem 5.5 to obtain the following corollary. This corollary also implies the exis-
tence of a collection of observables Oy, ..., Oy such that any learning algorithm without quantum

memory requires Q(min(M/log(M),2")/?) copies of p to perform shadow tomography.

Corollary 5.7 (Shadow tomography lower bound for random observables). With a constant prob-
ability over the random collection of the observables {O1,...,On}, any learning algorithm without
quantum memory requires

in(M/log(M),2"
€
copies of p to predict expectation values of tr(Ogp) to at most e-error for all x = 1,..., M with at

least a probability of 2/3.
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5.1.2 Lower bound for Pauli observables

Recall that we define an n-qubit Pauli observable to be the tensor product of n operators from the
set {1, X,Y, Z}; see Definition 4.9. To construct a collection of observables that are traceless and
satisfies Equation (86), we define the following collection of 2(4™ — 1) Pauli observables with plus
and minus signs,

P,...;,Ppn_1€{+01®...Q0y, 0, c {1,X,)Y, Z},Vi} \ {Il®...®1}, (111)
Py, Pyygn_1y €{~01®...® 0y, 0; € {1, X, Y, Z}Vi} \{-1®... @1}, (112)
This collection of observable yields an exponentially small § (Pl, ey PQX(M,D).

Lemma 5.8 ( for Pauli observables).

4n 1

i=1

Proof. For any n-qubit pure state |¢), we have

1 4"—-1 1 47 —1
T O (9P = ((Z P Pl-) |¢><¢|®2) (114)
i=1

i=1
=t ((2"SWAP,, — 1%%") |¢)(¢]|®?) (115)
2" —1 1
= = . 11
4 —1 2n+1 (116)
The second equality follows from Lemma 4.10. O
We can combine Lemma 5.8 that characterizes 6(P1, ..., Pox(4n_1)) for the collection of Pauli

observables and Theorem 5.5 to obtain the following corollary.

Corollary 5.9 (Shadow tomography lower bound for Pauli observables). Any learning algorithm

without quantum memory requires
T >Q(2"/%) (117)

copies of p to predict expectation values of tr(P;p) to at most e-error for all i = 1,...,2(4" — 1)
with at least a probability of 2/3.

5.1.3 Upper bound

We give a upper bound for performing shadow tomography using a learning algorithm with only
classical memory. There are two regimes. When M < 2", we apply the naive strategy of measuring
each observable sequentially. When M > 2", we apply the classical shadow protocol [HKP20].

Theorem 5.10 (General shadow tomography upper bound). For any collection of observables
{O1,...,00p} on n-qubit state with ||O;||cc < 1, there is a learning algorithm without quantum
memory that uses

(118)

T<0 (min(Mlog(]\é),Q” log(M))>

copies of m-qubit state p to predict expectation values of tr(Ogp) to at most e-error for all v =
1,..., M with high probability.
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Proof. When M < 2", we measure each observable O, on the unknown state p sequentially. For
each observable O,, we measure O, on p for O(log(M)/e?) times, such that the empirical average
is close to tr(Ogzp) up to e error with probability at least 1 — 0.01/M. This gives a total of
T = O (M log(M)/e) measurements on T" copies of p. A union bound over all O, shows that with
probability at least 0.99, we can estimate all M expectation values tr(O1p),...,tr(Opp) to € error.

When M > 2™ we apply the classical shadow protocol under random Clifford measurement
given in [HKP20]. We perform a random Clifford measurement on each copy of p. Random
Clifford measurement is equivalent to apply a random Clifford unitary sampled uniformly from the
Clifford group to p, then measure in the computational basis. We record both the random Clifford
unitary and the n-bit outcome from computational basis measurement. We perform the random
Clifford measurement for T = O (2” log(M) /52) times to gather a set of classical measurement
data, also referred to as the classical shadow of p.

By combining Theorem 1 and Equation (S16) in [HKP20], we find that, for any collection
of observables {O1,...,0)} with tr(O2) < 2", with high probability, we can use the classical
measurement data (classical shadow of p) to estimate tr(O.p) to e additive error for all x =

.y M. Because ||O;llcc < 1, we have tr(O2) < 27(|0;||%, < 2". Hence, we can apply classical
shadow protocol with random Clifford measurement to achieve the stated complexity when M > 2.
The stated result follows from combining the complexity from both M < 2™ and M > 2". O

We can see that the above upper bound matches with the lower bound for random observables
stated in Corollary 5.7 up to poly-logarithmic scaling in M. When Oj,...,Oj; are Pauli observ-
ables, we have M = 2(4™ — 1) and the above upper bound becomes O(n2"/c?), which matches the
lower bound stated in Corollary 5.9 up to a factor of n.

5.2 Testing purity of the quantum state
5.2.1 Lower bound

In this subsection, we provide exponential lower bound for testing if a quantum state is pure or
maximally mixed. In this section, we will denote d = 2" to be the Hilbert space dimension.

Theorem 5.11 (Purity testing lower bound). Any learning algorithm without quantum memory
requires

T>0 <2”/2) (119)

copies of p € H2"*2" to distinguish between whether p is a pure state or a mazimally mized state
with probability at least 2/3.

Proof. Let T be the tree corresponding to any given learning algorithm for this distinguishing task.
By Lemma 5.4 it suffices to lower bound E, [p‘ vkl (¢) /pPmm (0)] for all leaves £. If {ey, s, }{—; are the
edges on the path from root to the leaf ¢, then

T

T
= F Hd<¢§‘:!v>2] arCESYE dd+T_1 >t <w®| ) (120)

t=1 TEST

The second equality follows from Lemma 4.12 where 7 is the permutation operator. By Lemma 5.12
below, the sum in (120) is lower bounded by 1, so

ploXvl(p) dr T-1 N N\
I?[p”mm“)] AT ) [@d+T-1) " 1 <1_d> = (1_d> - (121)

t=0
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Figure 3: Illustration of the equality (125) for T'= 3, # = (123). The corresponding permutation
7 = (12) can be seen on the right-hand side.

Using Lemma 5.4, we have the probability that the given learning algorithm successfully distin-
guishes the two settings is upper bounded by 1— (1 — %)T. Therefore, 2/3 < 1— (1 — %)T implying
that T > Q(V/d). O

The key step in the above proof is the following technical lemma that lower bounds the norm
of the projection of any tensor product of pure states to the symmetric subspace.

Lemma 5.12. For any collection of pure states |11) , ..., |¢Yr) € HY,

Z tr (77®|¢t ?,Z)t) (122)

weSrt

Proof. Let TI denote the projector to the symmetric subspace in (C2")®”. Note that (122) is
equivalent to the statement that tr (H ®;‘F:1]wt>(1/}t|> > 1/T!. This is clearly true for 7' = 1; we

proceed by induction on T'. Let II denote the projector to the symmetric subspace in ((CQH)®T*1,

and define the (unnormalized) state |¢) £ II ®th2 [th).
As Il is a projector, we have

(Wl¢) = <®th

where the last step follows by the inductive hypothesis.
We can rewrite the left-hand side of (122) as > o tr <7T|1j)1><¢1| ® \w><w|) and decompose this

sum into 7 for which 7(1) = 1 and all other 7. Note that

S u(rledmle i) = Y (ROKG) = (- DHEG =1 (124)

7T€ST27F(1):1 TEST_1

T
® > = tr (ﬁ ®|¢t><”¢t\> > T 1 i (123)

t=2 t=2

It remains to argue that 3 g, .x1)2 tT ( |1 Y| ® |¢>(¢])

Consider the map which sends any 7 € Sp for which 7(1) 75 1 to 7 € Sp_; defined as follows.
For any 2 < i < T, for which (i) # 1, #(i — 1) £ 7(i) — 1 and for i = 7~1(1) > 1, #(i — 1) £ = (1).
Then for any m € Sr,

tr (mlpaen] @ [0XP]) = tr | 710 @ Lol @ 18- @ DY) (125)
w(1)—2 T—7(1)
=t (e el )| el o 1)g)KIP) (126)
=t (e elelplele oK) 20,  @127)
as claimed, where the first step (125) is illustrated in Figure 3. O
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5.2.2 Upper bound

Here we give a simple algorithm for the above distinguishing task that matches the lower bound in
Theorem 5.11 up to constant factors.

Theorem 5.13. There is a learning algorithm without quantum memory which takes T = 0(2”/2)
copies of p to distinguish between whether p is a pure state or mazximally mized.

To prove this, we will use the following well-known result from classical distribution testing:

Theorem 5.14 ([CDVV14, DKN14, CDGRI18]). Given 0 < € < 1 and sample access to a dis-
tribution q over [d], there is an algorithm TESTUNIFORMITYL2(q,d,¢) that uses T = O(v/d/e?)
samples from q and with probability 9/10 distinguishes whether q is the uniform distribution over
[d] or e//d-far in Ly distance from the uniform distribution.

We will also need the following standard moment calculation:

Lemma 5.15 (Lemma 6.4 in [CLO21]). For Haar-random U € U(2") and p € H?"*%", let Z
denote the random variable Zfil ((i| UT™MU |2>)2 Then

2 2
ElZ] = 5o (tr(M)? + [M]lFys) - (128)
If in addition we have that tr(M) = 0, then
2y . 1+0(1) 4
E[Z7] < — 55— IMlas. (129)

We are now ready to prove Theorem 5.13.

Proof of Theorem 5.13. Sample a Haar-random basis {U [i)};con) and measure every copy of p
in this basis. If p is maximally mixed, note that the distribution over outcomes from a single
measurement is the uniform distribution w over [2"]. On the other hand, if p is a pure state,
let Z denote the random variable ||¢Y — u||2, where ¢V is the distribution over outcomes from a
single measurement. Note that Z is precisely the random variable Z defined in Lemma 5.15 for
M = p— pmm, so we conclude that E[Z] = ﬁ lp = pmmllfg and E[Z?] < lJ{g,(Ll) “|lp = pmml|fiss SO
by Paley-Zygmund, there is an absolute constant ¢ > 0 for which Pr[|Z] > c||p — pmm||ig] > 9/10.
Note that [|p — pmml|l4g = 1 — 1/2", so with probability at least 9/10 over the randomness of U,
lg% — ullz > Q(27/).

So by Theorem 5.14, TESTUNIFORMITYL2(¢Y, 2", ©(27/2)) will take T = O(2™?) samples
from ¢ and correctly distinguish whether ¢ is uniform or far from uniform with probability at least

4/5 over the randomness of the algorithm and of U. O

6 Exponential separation with bounded quantum memory

In this section, we consider a separation between algorithms with different quantum memory size.
To the end, we will give a shadow tomography task and prove that any learning algorithm with
k-qubit memory require 9(2(”_k)/ 3) copies. In contrast, learning algorithms with n-qubit memory
can succeed in the task using O(n) copies. In particular, the task is to predict the absolute value
of the expectation tr(Pp) for all Pauli observables P in an unknown state p.
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6.1 Lower bound with k-qubit of quantum memory

We restate the main theorem of this section, originally presented in Section 1.1.2, for convenience:

Theorem 1.4 (Shadow tomography with bounded quantum memory). Any learning algorithm
with k qubits of quantum memory requires T > ) (2(”_k)/3) copies of p to predict [tr(Pp)| for all
n-qubit Pauli observables P with at least probability 2/3.

To establish the theorem, we will again utilize the tree structure. The main difference is that
each node on the tree is associated with a positive-semidefinite matrix that represents the quantum
state of the k-qubit memory scaled by the probability of arriving at the node. In particular, we
will work with the following analogue of Definition 5.1 for the bounded quantum memory setting;:

Definition 6.1 (Tree representation for learning states with bounded quantum memory). Fiz
an unknown n-qubit quantum state p. A learning algorithm with size-k quantum memory can be
expressed as a rooted tree T of depth T, where each node encodes the current state of the quantum
memory in addition to the transcript of measurement outcomes the algorithm has seen so far.
Specifically, the tree satisfies the following properties:

1. Each node u is associated with a k-qubit unnormalized mized state XP(u) corresponding to
the current state of the quantum memory.

2. For the root r of the tree, 3P(r) is an initial state denoted by .

3. At each node u, we apply a POVM measurement {F*}s on XP(u) ® p to obtain a classical
outcome s. Fach child node v of u is connected through the edge €, s.

4. For POVM element F = MM and ¥ € H2kX2k, define
AR (2) 2 troy (M(E ® p)MT) . (130)
If v is the child node of u connected through the edge e, s, then
X0 (v) £ Al (2°(u). (131)
A (X)) is the first k-qubit of the unnormalized post-measurement state from Definition 4.6.

5. Note that for any node u, p”(u) = tr(XP(u)) is the probability that the transcript of mea-
surement outcomes observed by the learning algorithm after t measurements is u. And
3P(u)/p”(u) is the state of the k-qubit memory at the node w.

Given p, we will abuse notation and let p” denote the distribution on leaves of T given by
the probabilities {p”(¢)},. Let Pp,..., Pyn_1 denote the collection of non-identity n-qubit Pauli
observables from Definition 4.9; in this section, when we refer to a Pauli P we mean one from this
collection, and we will use Ep[-] to denote expectation with respect to a uniformly random such P.

We consider a many-versus-one distinguishing task where we want to distinguish between the
completely mixed state pmm versus the set of n-qubit states {pp} where P ranges over all n-qubit
Pauli observables not equal to identity, where pp = (I + P)/2". As in the proof of Theorem 5.5, a
lower bound for this task immediately translates to one for shadow tomography. For the former, it
suffices to show that for T = o (2"=R/3)  dry (pPmm, Ep[pPP]) = o(1).

As in the proofs in Section 5, the primary technical ingredient for this will be a second moment
bound. To formulate this, we will need the following object:
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Definition 6.2. Given a POVM element F = MM and an unnormalized mized state ¥ € HQk“k,

2n+k % 2n+k

v,y € H is given by
(d 2k . ok i)
- \\_47
27L 2"’7,

(The dimensions of the Hilbert spaces corresponding to the edges have been labeled.)

One can think of the following lemma as bounding a matrix-valued analogue of the quantity defined
n (113). Indeed, when k = 0, the following specializes up to constant factors to Lemma 5.8.

Lemma 6.3. For any POVM element M and unnormalized mized state 3 € H2k><2k,
1 1
E[ A" (2) = AT (D)) < g - 5z — - tr (rarz)”. (133)
P 2n 2en — 1
Proof. Note that Af7™(X) — AMP(2) = —trog (M (& ® £) MT), so by the fact that || X[ <

2F tr(X?),VX € H2" %2 the left-hand side of (133) is upper bounded by

o[ (1 (zr02) )] )| 139

For fixed P, we express the expression inside the expectation diagrammatically as

C D - »

™, ™, — ™% T™,=
P/ Q /2 < ) C >
d ) B Pt/ Pt/
(135)
™% ™%
< P/2">< P/2" >
By Lemma 4.10, averaging (135) with respect to P yields
m < ™, ™, > 22n(221n - < ™, 7'1\/1,2:>
(136)
< 2n(221l — < s> TM,)3>

N

C

where the inequality follows from the fact that the second term is equal to Wén—l) tr(trsi(7)?)

which is non-negative. The claim follows from the fact that tr(72?) < tr(7)? (as 7 is positive-
semidefinite) and utilizing Eqn. (134). O

36



We will not be able to make use of the convexity trick present in the proof of Theorem 5.5
when each node is associated with a probability instead of positive-semidefinite matrix. Instead,
we make use of a careful pruning argument; intuitively, for any leaf ¢, we will essentially ignore the
contribution to dry(p’™, Ep[p”?]) coming from Paulis P for which A%} behaves too differently to

Aﬁ'jé“ for some edge e, s on the path from root to 4.

Definition 6.4. A Pauli P is bad for an edge e, s if

1 1
e 2w \am o " (Tazg zomm () - (137)

| Agm (2mm (w) — A5 (20 ()

Otherwise we say P is good for e, s. Given node u, let Plu] denote the set of all Paulis which are
good for all edges on the path from root to u.

The following is an immediate consequence of Fact 6.3 and Markov’s:

Fact 6.5. For any edge e, s, there are at most 2-(=k)/3 . (47 — 1) bad Paulis P € H*"*2". In
particular, along any given root-to-leaf path of the learning tree, there are at most T - 2~ ("=K)/3.
(4™ — 1) Paulis which are bad for some edge along the path.

Lemma 6.5 allows us to bound the dry(p’™, Ep[p?F]) by a small term coming from bad Paulis
and a term coming from good ones:

Lemma 6.6.

drv (ppmm,lg[p’““]) S e D DED Dl DA OB > Gl (138)

Eeleaf (T) PeP[/]

Proof. Let L denote the set of leaves ¢ for which p”m(¢) > Ep[p”? (¢)]. Then

dry (o)) = Xm0 - 5l 0] (139)

el
smemwwmmm—wwm (140)
lel
< D Elmin(p ™ (0), 277 (€) = 207 (0] (141)
ZEE

<> |Pe[P & Pl - pPmm(0) + ) — 2P (L) (142)

teL - T peP[q)

The first equality uses the fact that drv(p,q) = 5>, |pi — @] = Ei:pi>¢]i (pi — q;). Inequality (141)
(
<

||tr )

uses the fact that [|XPmm(¢) — 2PP(0)|,, > tr(ZPrm(0) — EPP (L)) = pPrm(¢) — pPP(£). The lemma
follows from Fact 6.5 and the fact that ), p’m(£) < 1. O

We are now ready to prove Theorem 1.4.

Proof of Theorem 1.4. By Lemma 6.6, it suffices to control the latter term on the right-hand side
of Eq. (138). We do so via a hybrid argument. For any leaf ¢ with parent u and incoming edge
eu,s, and any P € P[{], we can upper bound |3/ (¢) — 3PP ({)||,, by

HAPmm zpmm ) Aﬁj’g(zpmm(

o+ HA”P (S (1) — PP (1))

; (143)

tr
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where we have used the transition formula in Eq. (131) and the triangle inequality. We can upper
bound the former term by

1 2211 1
o(n—k)/3 "\ 92n _ 1 -tr <2nTMu Somm (y )) (144)

because P is good for edge e, s; see Definition 6.4 and note that v/227 - 2% = 1. Using Definition 6.2
and the fact that {(M%)TM"}, is a POVM hence Y (M*)T M2 = 1, we have the following identity.

Zlg[tr (217_LTM;J7Epmm (u)>] = Ig[tr(zpmm (u))], Yu : node on T. (145)

Therefore, we have

> I]@[ (21” 2pmm(u)):|:I]F; S ()] =1 (146)

u,8: ey,s connected u: connected
to a leaf to a leaf

As for the latter term in Eq. (143), note that for any leaf ¢ with parent u, P[u] C P[{], so

A @ @] < > |[afh (=) - 2o (w) (147)
£,PeP{] tr u,S: eqy,s connected tr
to a leaf, P€ Plu]
=Y XAk ) - =) (148)
u: u_connected s ’ tr
to a leaf,PEP[u]
Note that for any node u, the map
£: X'—>Z| s| @ AQF,(X) (149)
is a quantum channel, so in particular ||€(X)|ltr < [[X||tr. In particular, we can see that
e ) = 227 ()l = 324 (2 ) = 27 @) (150)
tr

We may thus upper bound Eq. (148) by
> 1B (u) = 2P (), = Do IEm(u) = B (u) |y (151)

u: connected to u: at depth T—1
a leaf,P€P[u] PePlu]

Combining Eq. (143), (144), and (151), we conclude that

1 22n
S Eem () - 2P ()], < soin T T > (u) = P (), (152)
Leleaf(T) u at depth T—1
PeP/] PePlu)

We can thus conclude by induction and by Lemma 6.6,
22n

drv <ppmm,E[ppP]) <T .9 (n=K)/3 L . 9-(n=k)/3
P

In order to achieve the many-versus-one distinguishing task with probability at least 2/3, we must
have 2/3 < dpvy (p”™, Ep[p°?]) from Le Cam’s two point method; see Lemma 5.3. However for T =
0 (2(”_k)/3), dpv (pPm™ Ep[p°P]) = o(1). This concludes the lower bound that 7' > Q(2(»=%)/3).
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6.2 Upper Bound with n-qubit of quantum memory

Here we show that with n qubits of quantum memory, we can estimate the absolute values of the
expectations in M arbitrary Pauli observables using only O(log M) copies of the unknown state.

Theorem 6.7. Given unknown mized state p € H?"*2" and any collection of M Pauli observ-
ables Py, ..., Py, there is a learning algorithm using n qubits of quantum memory that measures

O(log(M )/6 ) copies of p and outputs e-accurate estimates for [tr(P;p)|? for all i € [M] with prob-
ability at least 2/3.

Proof. We use an n-qubit memory to store a single copy of p from the previous experiment. In the
current experiment, we can combine the quantum memory with the new quantum data p to measure
the two copies p ® p using an entangled measurement. For a pair of copies of p, if we measured
every qubit j of p ® p in the Bell basis to obtain outcome |3;) € {|UT),[¥~),|®T),|®)}, then
note that because {P; ® Pi}ie[ ) is simultaneously diagonalized in the n-fold tensor power of the
Bell basis, we have

[Tt (P @ Pl | = X Tt (P © Pl (0 @ o)) = (Po)?. (154)
j=1

{BJ {B]}J 1

where P;;y denotes the j-th qubit of F;, p; denotes the j-th qubit of p, and Ilg denotes the
projector to Bell state 8. The random variable in the expectation on the left-hand side of (154) is
clearly bounded, so by Chernoff bounds, we can estimate its mean for any fixed j to within error
¢ with probability at least 1 —1/3M using O(log(M/d)/e?) samples. The claim follows by a union
bound. O

7 Exponential separations in learning quantum channels

7.1 Prerequisites

We begin by generalizing the tree representation for learning quantum states to the setting of
learning quantum channels. First let us state the idea of the definition intuitively before delving
into its technical description. There is some quantum channel C which we wish to learn about; we
have the ability to apply the channel to a state of our choice and then to completely measure the
resulting state. The resulting measurement outcome can be recorded in a classical memory. The
procedure of preparing a state, applying the channel, and then making a measurement is repeated
over multiple rounds, wherein the measurement outcomes of previous rounds can inform the states
prepared in future rounds, as well as the choice of measurement in future rounds. That is, the
protocol is adaptive. At the end, we have gained a list of measurement outcomes with which we
can judiciously infer properties of the channel C under investigation.
Now we provide the full technical definition:

Definition 7.1 (Tree representation for learning channels). Consider a fixed quantum channel C
acting on an n-qubit subsystem of a Hilbert space H >~ Hmain ® Haux where Hmain =2 ((C2)®” is the
‘main system’ comprising n qubits and Haux = ((C2)®"I is an ‘auziliary system’ of n' qubits. It is
convenient to define d = 2" and d' = 2" . A learning algorithm without quantum memory can be
represented as a rooted tree T of depth T such that each node encodes all measurement outcomes
the algorithm has received thus far. The tree has the following properties:

e Each node u has an associated probability p(u).
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e The root of the tree r has an associated probability p°(r) = 1.

o At each non-leaf node u, we prepare a state |p,) on H, apply the channel C onto the n-
qubit subsystem, and measure a rank-1 POVM {\/w¥dd' |{¥)(V¢|}s (which can depend on
u) on the entire system to obtain a classical outcome s. FEach child node v of the node u
corresponds to a particular POVM outcome s and is connected by the edge e, s. We refer
to the set of child node of the node u as child(u). Accordingly, we can relabel the POVM as

{Vwudd [thy) (o }UEChild(u) .
e Ifv is a child node of u, then

P6(v) = () wodd' (Wy] (C ® L) [|$u) {Dul] [0) (155)

e Each root-to-leaf path is of length T. For a leaf of corresponding to node €, pC(f) is the
probability that the classical memory is in state £ after the learning procedure.

Each node u in the tree represents the state of the classical memory at one time step of the learning
process. The associated probability p© (u) for a node u is the probability that the classical memory
enters the state u during the learning process. Each time we perform one experiment, we transition
from a node u to a child node of w.

There are several features of the definition which we will remark on. First and foremost, an
important feature of the definition is that we have access to an auxiliary Hilbert space Haux for
each state preparation and measurement. In particular, even though the channel C only acts
on n qubits, we can apply it to the first n qubits of a state |¢) € Hmain ® Haux Which can be
entangled between the n qubits and the auxiliary system. Moreover, we can measure the resulting
state (C @ Zaux)[|@) (¢|] using POVM’s which are entangled between the n qubits and the auxiliary
system. The presence of the auxiliary system will render our proofs somewhat elaborate; moreover,
the presence of the auxiliary system renders our results stronger than previous ones for adaptive
incoherent access QUALMs [ACQ21]. In this particular QUALM setting, the notion of learning
algorithm is similar, except that there is no auxiliary system.

We consider quantum channel learning tasks which were first studied in the QUALM setting
without an auxiliary Hilbert space [ACQ21]. They are:

Definition 7.2 (Fixed unitary task). Suppose that an n-qubit quantum channel C is one of the
following with equal probability:

o C is the completely depolarizing channel D.

e C is the unitary channel Clp] = UpUT for U a fived, Haar-random unitary.

The fized unitary task is to distinguish between the two above possibilities. We can also consider
analogous versions of the problem where U is instead a Haar-random orthogonal matriz, or a Haar-
random symplectic matriz.

Note that instead of considering the completely depolarizing channel D can be thought of in a
different way which makes the fixed unitary task more illuminating. Specifically, we can equivalently
think of D as an n-qubit unitary channel which applies an i.i.d. random Haar unitary each time the
channel is applied. From this perspective, D implements time-dependent random unitary dynamics
(i.e. a new unitary is selected for each application of the channel); the task is then to distinguish
this from time-independent random unitary dynamics wherein the channel applies a single fixed
random unitary. Said more simply, from this point of view the task is to distinguish a type of
time-dependent dynamics from a type of time-independent dynamics.
We also consider another task from [ACQ21] with a slightly different flavor:
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Definition 7.3 (Symmetry distinction task). Suppose that an n-qubit quantum channel C is one
of the following with equal probability:

e Clp] = UpU?' for U a fized, Haar-random unitary matriz.
e Clp] = OpOt for O a fized, Haar-random orthogonal matriz.
e Clp] = SpST for S a fived, Haar-random symplectic matriz.
The symmetry distinction task is to distinguish between the three above possibilities.

Unitary, orthogonal, and symplectic matrices manifest three different forms of what is called time-
reversal symmetry [Dys62]. In this terminology, the symmetry distinction task is to determine the
time-reversal symmetry class of C. The task belongs to a class of problems of determining the
symmetries of an uncharacterized system, which are important in experimental physics.

In the above distinguishing tasks, we will always reduce them to two-hypothesis distinguishing
problem. We define a two-hypothesis distinguishing problem as follows.

Definition 7.4 (Two-hypothesis channel distinction task). The following two events happen with
equal probability:

o The channel C is sampled from a probability distribution D over channels.
o The channel C is sampled from a probability distribution Dp over channels.
The goal is to distinguish whether C is sampled from D4 or Dp.

For any two-hypothesis distinguishing problem, we can always apply the two-point method similar
to Lemma 5.3 in learning quantum states.

Lemma 7.5 (Le Cam’s two-point method, see e.g. Lemma 1 in [Yu97]). Consider a learning
algorithm without quantum memory that is described by a rooted tree T. The probability that the
learning algorithm solves the two-hypothesis channel distinction task correctly is upper bounded by

% > |(Eenp, 1°(0) — (Benpy 19(0)] - (156)
Leleaf(T)

7.2 Review of the Weingarten calculus

Here we will review Haar measures on unitary, orthogonal, and symplectic matrices, and present
several key lemmas that we will leverage in the later proofs. First we recall the definitions of
orthogonal and symplectic matrices. Denoting the set of unitary matrices on (C?)®" by

U(d) = {U € Matg,q(C) : UT =U"1}, (157)
the set of orthogonal matrices on is given by
O(d)={0cU(d) : O' =071}, (158)
and the set of symplectic matrices is given by

Sp(d/2) ={S eU(d) : JS'J 1 =571}. (159)
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Here J is the symplectic form

7= | Oap2xarz Lajaxay ’ (160)
—Lg/oxa/2 Oayoxas2

where 04/, 4/2 is the d/2 x d/2 matrix of all zeroes and 14/954/2 is the d/2 x d/2 identity matrix.
The quantity JS*J ! is sometimes called the “symplectic transpose” and denoted by SP.

Note that Sp(d/2) is sometimes called the “symplectic unitary group” to distinguish it from the
group of symplectic matrices which need not be unitary. For the orthogonal group, the matrices
O will necessarily be real. For the symplectic unitary group, the matrices S could be complex
numbers. For our purposes, we will adopt standard terminology by dropping the word ‘unitary’
since the context is clear.

Since U(d),O(d),Sp(d/2) are each compact Lie groups, they admit canonical Haar measures
which are right and left-invariant under group multiplication. For instance, for U(d), the Haar
measure satisfies

/ U f(U) = / AU F(VU) = / U FUV) (161)
U(d) U(d) U(d)

for any V € U(d) and any f(U). Analogous expressions hold for the Haar measures corresponding
to O(d) and Sp(d/2). Such Haar integrals will be essential for our proofs, and so here we catalog
important properties.

Now we turn to discussing more detailed properties of the Haar integrals. Our short overview
will be based on [CM17, Gul3, Mat13, ACQ21]. Instead of using the integral notation, we will
often use expectation values Eypaar| -]

7.2.1 Haar averaging over U(d)

For our purposes it will be useful to study moments of the Haar ensemble, in particular

Ev~Haar Ui1j1Ui2j2"'Uikiji’lj{Ui’Qjé"'Ui;j,’c] = > oy r0rnsWel(ord). (162)

o,7ES}

This equation requires some unpacking. On the left-hand side, the bar denotes complex conjugation;
for instance U;; = U jTi. On the right-hand side, Sy is the symmetric group on k elements, I is a
multi-index I = (i1, ...,4x) and similarly for I’; J, J', and

50(1)71/ = 5%(1)72"1 5%(2)71"2 T 5%(1@),1'; . (163)

Finally, WgU( -,d) is amap S; — R called the unitary Weingarten function to be specified shortly.
To further compress notation, it will be convenient to fully commit to multi-index notation and
write U%k = Ui 1 Uiyjy - - - Ui, j, so that (162) becomes

k _
Ev~Haar {U%kU;T(% } = Z So(1),1/0-(1), s W (o771, d) . (164)

o, TESE

The utility of (164) is that it allows us to compute Egaa [U®* @ UT®¥], and matrix elements thereof,
in terms of data of the symmetric group on T' elements. We remark that Ega.. [U®* @ UT®] vanishes
for k # £, so (164) covers all non-trivial cases.

It still remains to specify the unitary Weingarten function WgU( -, d). In fact, it can be regarded
as the inverse of an easily specified matrix. To this end, in a slight abuse of notation, we will let
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permutations 7,0 in Sy also label their representations on H®*. That is, 7 will denote a unitary
d* x d* matrix on H®* which permutes the k copies of H according to the permutation specified
by the label 7. Now we can readily define

GY(or71,d) = tr(o7}) = d#em) (165)
such that #(o7~!) counts the number of cycles of o7~ 1. Now WgV( -, d) is defined by the identity
> We(o7 r,d) GY(r ' d) = b,z (166)

TESk

for all o, m € Si. This equation expresses that Wg¥ and GV are in fact inverses as k! x k! matrices.
To see this more readily, we can use the notation Wg! (o717, d) = ngﬁ and GY (17 17,d) = Gi{ﬂ
so that (166) is simply > ngT GTU77r = 0.7

We conclude by presenting a theorem, corollary, and lemma which will be used in our proofs.

Theorem 3.2 of [CM17]. For any o € Sy, and d > v/6k7/%,

1 —1)k=#(0) g2k=#() WV (5, d 1
— S( ) o g¥(o,d) < (167)
T IL (G;—D)e;! 1 =5

where the left-hand side inequality is valid for any d > k. Note that o € Sk has cycle type (¢1, 02, ...).
An immediate corollary is:
Corollary 7.6. [WeV(1,d) — d*| < O(k7/2d-(k+2))

We also recapitulate a useful result from [ACQ21]:

Lemma 6 of [ACQ21]. 3 _o [We!(r,d)| = Rt

TESE

7.2.2 Haar averaging over O(d)

Just as Haar averaging over U (d) is intimately related to the permutation group Sk, Haar averaging
over O(d) (and likewise Sp(d/2)) is intimately related to pair partitions P»(2k). Accordingly, we
will begin with discussing pair partitions.

Informally, a pair partition on 2k is a way of pairing off 2k elements (e.g., pairing off people in
a ballroom dance class). There are in fact (22T]2),' = (2k — 1)!! possible pairings of 2k elements. More
formally, a pair partition m € P»(2k) is a function m : [2k] — [2k] satisfying m(2i — 1) < m(2¢) for
1 <i<kandm(l) <m(3) <--- <m(2k — 1). The pair permutation is often notated as

m = {m(1), m(2) {m(3), m(4)} - - - {m(2k — 1), m(2k)} (168)

where the brackets denote individual pairs, and the constraints on m order the pairs in a canonical
(and unique) manner. In words, within each pair the ‘left’ element is always less than the ‘right’
element, and the pairs themselves are ordered according to the ‘left’ element of each pair.

It is natural to endow pair permutations with a group structure so that they form a subgroup
Moy, of the permutation group Ssi. We simply define Moy by

Moy :={oc € Sop, : 0(2i—1)<o(2i) for 1 <i<k, o(l)<o@3)<---<o(2k—1)} (169)
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and it is readily checked that My, forms a group. We will often leverage the natural bijection
between P»(2k), namely m — oy, where m(i) = o, (7) for all i. The identity pairing is denoted by
¢, and by the above bijection maps to the identity permutation o, = 1.

Pair permutations also have a notion of cycles, which differs from that of the symmetric group.
That is, the cycle type of oy as an element of My is different from the cycle type of oy thought
of as an element of S . To construct the pair partition cycles oy, (we will also refer to this as the
cycle type of m), consider the function fn : [2k] — [2k] defined by

O vl aro
m(25 —1) ifi=m(2j)

This function maps i to the integer it is paired with under m. The function f, corresponds to the
identity pairing. We can construct the cycles of m as follows. Consider the sequence

(1, fm(1), feo fm(1), fmo feo fm(1),...). (171)

This sequence is periodic, and so we truncate it at its period so that no element is repeated. We
call this truncated list B;, and view it is a cyclically ordered list (i.e., the list is regarded as the
same if it is cyclically permuted). If B; contains all of [2k], then m contains only one cycle, namely
Bj. Otherwise, let j be the smallest integer in [2k] with is not in Bj, and construct

(Js fm(4), fe o fu(G)s fmo fe o fu(G), ) (172)

This is likewise periodic, and we truncate it at its period to get the cyclically ordered list By. If
B and B3 do not contain all of [2k], then we construct a Bs, etc. When the procedure terminates,
we have Bj, By, ... which contain all of [2k]. The By, Bs, ... are the pair partition cycles of m. Their
corresponding lengths by, bo, ... are all even, and the cycle type (also called the coset type) of m is
given by

(1, p2, ) = (b1/2,02/2,...) (173)

which is often listed in descending order of cycle size.
Using our notation for pair partitions as well as the multi-index notation we established previ-
ously, we have the following formula for a Haar integral over the orthogonal group

Eonttaar [O1705 0] = Y An(IT') An(JJ") We (03 0) (174)
m,nePs(2k)

where IT" merges the multi-indices I and I" as 11" = (i1,4}, ..., ix, i},) and likewise for JJ'. Letting
IT =1=(iy,is, ..., 19) we define

k
An(I) == H G201 sim(e) - (175)

s=1

Similar to before, Wg?(-,d) is a map My, — R called the orthogonal Weingarten function. Al-
though we have written (175) in a way that emulates (164), the formula (175) has a different char-
acter to it. Specifically, examining the left-hand side, we can equivalently write it as Exaar[O117,7.07]
where we have simply used the equivalence Of,, = Op . That is, (175) tells us how to compute
EHaar[O‘g’Qk] and matrix elements thereof for 2k even; this integral vanishes if we replace 2k by an
odd number. By contrast with the Haar unitary setting where we needed as many U’s as U'’s to
get a non-trivial integral, here we just need an even number of O’s, essentially because Of = O.
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Analogous to the unitary setting discussed above, we can define the orthogonal Weingarten
function Wg®( -, d) in terms of a simpler function

GO (0 oy, d) = d#7(om on) (176)
where #9(010,) counts the number of Mog-cycles of o 'oy,. We have the identity

D> We(on'on,d) GO0y oy, d) = Gmyp - (177)
neP;(2k)
which expresses that Wg® and GO are inverses as (2k — 1)!! x (2k — 1)!! matrices.

Finally, we present a theorem, corollary, and lemma which we will leverage in our proofs about
the symmetry distinction problem:

Theorem 4.11 of [CM17]. For any o € My, and d > 12k7/2,

1 — 24k7/2 (_1)k—#o(am)d2k—#o(0m)WgO(o‘m, d) < 1

d
1 _ 144K7 S H (2;1,1'72)! - 1 _ 144K7 (178)
d? @ (pi—1)lps! d?

where oy has May-cycle type (p1, po, ...).

We have the immediate corollary

Corollary 7.7. [Wg9(o,,d) — d~*| < O(k"d~(k+2)) .

Analogous to Lemma 6 of [ACQ21] written above, we have [ACQ21]:

Lemma 8 of [ACQ21]. } . cp,op (WeO (0w, d)| = (dj!lc)!! ‘

7.2.3 Haar averaging over Sp(d/2)
Haar averaging over the Sp(d/2) is very similar to the orthogonal setting. We have the identity

Esmtaar [S1sShp] = Y ARUIT)AL(JT) Wg™P (0 0, d/2) (179)
mne Py (2k)
where
k
AL®) = T Finoe 1y dnos) - (180)
s=1

Here J is the canonical symplectic form defined in (160). The symplectic Weingarten function
WgP(.,d/2) taking Mo, — R is a small modification of the orthogonal Weingarten function,
namely

WP (0, d/2) = (—1)*e(0q) Wg? (0, —d) (181)

where (o) is the signature of oy, thought of as an element of Soy.
We give a theorem, corollary and lemma analogous to the ones for the orthogonal group above.

Theorem 4.10 of [CM17]. For any o € Moy and d > 6k7/2, we have

1 d2R—#7 (o) [ WeSP (g, d/2))| 1
1— AL = (21 —2)! = 6k7/2
Il =y 1

(d/2)2 15— 1)1yl — (d/2)?

(182)

where o has May-cycle type (ju1, po, ...) and #5P (o) = #°(on).
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This has the direct corollary
Corollary 7.8. [Wg*(0,,d/2) — d~*| < O(k7/2d-(k+2))
From [ACQ21] we borrow the useful lemma:

Lemma 10 of [ACQ21]. 3, ¢ p, k) IWe*P (0w, d/2)] = [1}25 T -

7.3 Depolarizing channel versus random unitary
7.3.1 Lower bound without quantum memory

We are now prepared to establish the following results:

Theorem 7.9 (Exponential hardness of fixed unitary task without quantum memory). Any learn-
ing algorithm without quantum memory requires

T>0 (d1/3) , (183)

to correctly distinguish between the completely depolarizing channel D on n qubits from a fized,
Haar-random unitary channel U[p] = UpU' on n qubits with probability at least 2/3.

Theorem 7.10 (Exponential hardness of fixed orthogonal matrix task without quantum memory).
Any learning algorithm without quantum memory requires

T>0 (d2/7) , (184)

to correctly distinguish between the completely depolarizing channel D on n qubits from a fized,
Haar-random orthogonal matriz channel U[p] = OpOt on n qubits with probability at least 2/3.

Theorem 7.11 (Exponential hardness of fixed symplectic matrix task without quantum memory).
Any learning algorithm without quantum memory requires

T>0 (d1/3) : (185)

to correctly distinguish between the completely depolarizing channel D on n qubits from a fized,
Haar-random symplectic matriz channel Ulp] = SpSP on n qubits with probability at least 2/3.

Hence, we established an exponential lower bound when the algorithms do not have a quantum
memory. The proofs of Theorems 7.9, 7.10, and 7.11 have many similarities; however, the first
involves heavy use of the combinatorics of permutations, whereas the latter two involve heavy use
of the combinatorics of pair permutations. As such, we will prove Theorems 7.9 first, followed by
a simultaneous proof of Theorems 7.10 and 7.11.

We now turn to a proof of Theorem’s 7.9, 7.10, and 7.11 which are our main result about the
fixed unitary problem. We note that a special case of these theorems were proved in [ACQ21],
namely where the learning protocol (see Definition 7.1) does not have an auxiliary system, i.e. Haux
is a trivial Hilbert space. The inclusion of an H,ux of arbitrary size d’ = 27" is our main technical
contribution here; our proof will follow the same contours as that of [ACQ21], but with sub-
stantive modifications and generalizations. Indeed, the original proof strategy leads to T bounds
like (183), (184), and (185), but reduced by factors of d'’, rendering the bounds useless even when
d ~ O(1) (but non-zero).
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7.3.2 Proof of Theorem 7.9

Let us begin with a proof of Theorem 7.9:

Proof. The proof begins by utilizing Lemma 7.5, which gives

<

> PO = (Bup(0)]. (186)

Leleaf(T)

Wi N
| =

The goal now would be to obtain an upper bound right hand side. It is convenient to establish
some notation. Each root-to-leaf path in 7 is specified by a sequence of vertices vg, v1, ..., v where
vg = r is the root and vp = £ is a leaf. Moreover, the leaf ¢ determines the entire root-to-leaf
path: it is the shortest path from that leaf to the root. So knowing /¢ is the same as knowing the
entire path vg = r,v1,...,v7_1,vr = £. Recall from Eq. (155) and following the root-to-leaf path
vy = T,V1, ..., v7_1, 07 = £, the probability of the leaf ¢ under the channel C is

H (wo,dd’ (o, ] (C & Zaw) [|P0r—1) {Dves [11¥00r)) (187)
t=1

where each |¢y, ), |¥v,_,) lives in (dd’')-dimensional Hilbert space H =~ Hmain @ Haux from Defini-
tion 7.1. To analyze the probability, we let

’(I)f> = |¢v0> ® ‘¢111> Q- ® ‘d)’UT71> (188)
|\ij> = |'9Z1v1> ® |¢JU2> Q- ® ‘¢UT> (189)
Wi = Wy, Wy, -+ - Wy (190)

where vg = r and vy = £. Notice that |®,) and |¥;) each live in H®?. Recall from Definition 7.1, for

any node u, the set {v/wydd’ [¢y)(¢u|}vecnila(u) is a POVM. Hence, we have 3 i) wydd' |thy) (1y |
Tnain ® Taux. It is not hard to use this fact to derive the following identity

ST ([@dd) W T (] = (Limain ® Lau) " (191)
£eleaf(T)

and so accordingly ZZeleaf(T) W, =1.
With these notations at hand, we can write p”(¢) diagrammatically as

(‘Pet“”“*"“'lq’e)
pP () = dT W, (192)

<‘P4L~”«J‘I’e>

For Efgaar [P (£)], we utilize the Haar averaging of unitary group discussed in Section 7.2.1 to obtain

(Dol o] %)
Ettaar [p" (0)] = (dd')" Z Wi ¥ { WeY(ro™ 1, d) (193)
o, TEST <\I}£ i -1 - \I/g>

T

where the solid lines correspond to ’Hfﬁgn and the dotted lines correspond to HEL . Tt is convenient

to let py-(¢) denote the summand of (193). We now use the triangle inequality in combination
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with the Cauchy-Schwarz inequality to write
1

9 Z ’ppw)_EHaar[pu(e)”
L€ leaf(T)
1 1
<3 X WOty Y Y@ty XY el (194)
¢ eleaf(T) EEleaf( T)o#1 Leleaf(T) 7#1,0

We will bound each term in turn.

First term

Applying Cauchy-Schwarz to the first term in (194) we find that it is less than or equal to
1 (el %)
5 D, @)W
¢ € leaf(T) (P, l’—<_‘| ¥y)

wel(1, d)—i .

- (195)

We can remove the absolute values on the diagrammatic term since it is strictly positive; this
enables us to perform the sum over leaves }_ cjoo¢(7) and via the identity given in (191). The first
term in (194) can now be written as

dr 1
- Wg (]1 d)—d—T . (196)
4/7
Since by Corollary 7.6 we have [Wg¥ (1, d) — —] < O(T?/dT+2) for T < (%) , Eqn. (196) is
O(T7/?/d?) and so
1 I~ T7/2
5 >, PO -pa@l<O( =], (197)
£eleaf(T)

Second term

Next we treat the second term in (194), namely 3 >, leaf(T) 2021 |Po,1 (€)]. Utilizing the Cauchy-
Schwarz inequality, this term is less than or equal to

(@l 7 100
> Y @) w Z} O wate ). (198)

£€leaf(T) o#l <\I!!I:——<-;j\ljﬁ>

We can dissect the middle term in the summand using the Holder inequality

L_"B—@e (@ 12

< lolloo (199)
(‘Ifg 4_‘|\I’é> <\Il€r—<—“\1’é>

1

and notice that ||o||cc = 1. Furthermore, using the fact that the matrix inside the 1-norm on the
right-hand side is positive semi-definite, we can replace the 1-norm with the trace and find the
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bound

@eh —1@0 (@l.—”“““j@e)

_ , (200)
(‘I’el‘_%+~1‘1’e> . <‘I’eL—<_.J‘I’e>
Thus (198) is upper bounded by
")
1 (@l At
5 2 )ywe oy { WeleTha)l. (201)
¢ € leaf(T) o1 (Ul {Ty)
Then applying the identity (191) we are left with
Z (We' (071, d)l (202)

o#1l

which is less than or equal to O(T?/d) by Lemma 6 of [ACQ21]. In summary, we have

5 D Y Ipea(®) |<0<d2> (203)

K €leaf(T) o#£1

Third term

Finally we treat the third term in (194), namely %ZEGIeaf(’T) > 741, 0 [Por(£)], which is the most
difficult case. Leveraging the Cauchy-Schwarz inequality, this term is upper bounded by

(@17 @)
> D ) w v (Wel(ro, d)|. (204)

1
2 L€ leaf(T) T#1L,0 (\I’e‘h)

Applying the Holder inequality to the second term in the summand as before, we find

sfAo )| |[@d o)
¥ { < ¥ { o]l 0o (205)
Q727 s S | ) (e~ -1 1)

T T g 1

where ||o]c = 1. We also use the convenient inequality

gLl I e llwm (@ ‘-_@e

= < (206)

L T 01 I [ 77 S S, 751 [ 27 s S 2]

to reorganize the order of the tensor legs; we have used the Holder inequality to go from the middle
term to the last term, and the fact that ||7|. = 1.

For a fixed permutation 77!, we can decompose it into cycles C1C - - - Cu(r—1). Wesay that i —
j is in the mth cycle C,, if C,, = (---ij---). Using this notation, for fixed 77! = C1Cs - - - Cu(r1)
and letting vo = r,v1, ..., v7_1, v = £ be the root-to-leaf path terminating in ¢, we have
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Lemma 7.12. We have the following identity represented using tensor network diagrams.

q)g’,_h '_‘q)f #(T_l) <¢'Uz 1‘+ —<‘¢UJ 1>

= I 1I ‘ (207)

S —— 73] BT RS <¢”1‘——‘J%J>

Proof. Take any cycle Cy, and any i — j € Cy,. The solid leg of (¢, ,| is dangling and the dotted
leg connects to (iy,|. Similarly, the solid leg of [¢,, ,) is dangling and the dotted leg connects to
;). Lastly, the solid leg of (1| connects to [i,;). This accounts for all legs among ¢y, _,, P,
bv;_,, and 9, so the part of the diagram on the left of (207) that corresponds to these four states
is not connected to the rest of the diagram. In this fashion, we conclude that the diagram on the
left is a tensor product of the diagrams on the left for all m and i — j € C),, from which the lemma
follows. O

1

We would like to convert the product of trace norms in (207) into a product of traces. We do
so via the following basic estimate. First, for any i € [T], define the unnormalized density operator

pv; € Matx4(C) by
ﬁvi = <jl¢'ur, 1 qs’Uz 1t> (208)

_<J Pu,) (o, i’_<_

Lemma 7.13. For any i — j € C,,, the corresponding term on the right-hand side of (207) is
upper bounded by tr(py,pv,). In particular, (207) is at most

#(rh)
H H \/ tr (v, o, )- (209)

m=1 i—jeCpn

Proof. Using the relations [|Al; = | A ® AT||}/? < |[SWAP - (A @ A)||}/?, we find

i o] e rﬂ ) %,iﬂ% )

= | Wl ey Wl e |,

Since the operator inside the 1-norm on the right-hand side is clearly positive semi-definite, we can
replace the 1-norm with a trace, namely

(G rJ %v,l (60, P\ﬂ%l 10

(Yo, T;J%J ) (b, T—Awm

Observe that we can equivalently rewrite (210) as /tr(py,pv;) , where p,, is the component of the

diagram denoted in red and p,, is the one in blue, yielding the first part of the lemma. The second
follows from plugging this into the right-hand side of Eqn. (207). O
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To bound (209), it is convenient to develop some notation for cycles Cy,. The usual notation
for a cycle of length p (which for us is less than or equal to T') is Cy, = (ajaz- - - ap) where in our
setting {a1, as, ...,ap} € {1,2,...,T}. We will decorate each a; by an additional subscript as a,,; to
remember that it that belongs to the mth cycle C),. Similarly, we will sometimes write p = |Cy,|
to remind ourselves that it depends on m. In this notation, we can write (209) as a product of

VB P ) \J 0B, yPory) = S By P y) 0Py o, ) (211)

over the different m = 1,...,#(7~!). We can further process the above expression for a given m.
We proceed by analyzing two cases: (i) p = |Cy,| is even, and (ii) p = |C)y,| is odd.

Case 1: p is even. Each term in Eqn. (211) has the form \/tr(ﬁvamiﬁvam ..1) except for the

last term; however, if we treat the ¢ subscripts of a,,; modulo p, then we can write the last term

as \/ tr(pu,,, pﬁvam p+1) . We elect to use this notation. Then we can rearrange and group the terms
in Eqn. (211) as follows

(H wr(ﬁuam,iﬁvam,M)) 1 /oo, ,pun, ) | - (212)

7 odd j even

Using the inequality ab < %(a2 + b?), the above is upper bounded by

~ ~ 1 ~ ~
IT G e )+ 5 I 60 ) (213)
i odd

j even

N

We will call the first term %Rm, _ and the second term %Rm,Jr .

Case 2: p is odd. Again consider the product in Eqn. (211). We can rearrange and group
terms as

VG, ) | T 0GP ) | | TT 0B P ,) | - (214)

i odd j even

If two matrices A, B are Hermitian and positive semi-definite, then using Cauchy-Schwarz com-
bined with operator norm inequalities we have tr(AB) < ||All2 ||Bll2 < [|A]]1 || B|l1 < tr(A) tr(B).

Accordingly, we have \/tr(ﬁvam’p Pva, ) < \/tr(ﬁvam’p) tr(py, ) and so (214) is upper bounded by

o, I 0@, Po, ) | | 0B TT 6@, P ) | - (215)

1 odd j even

Again using the inequality ab < %(a2 +b?), we have the upper bound

1 ~ - 1 ~ ~
5 tr(pvam,p) H tr(p’uamyi p'Ua,m’,H,l) + 5 tr(pvam’l) H tr(pvamyj pvam7j+1) (216)
7 odd j even
1<i<p—2
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where we analogously call the first term %Rm, _ and the second term % Ry .

In both cases, note that R, — and R,, 4 implicitly depend on the leaf ¢, so we will denote them
by R _and an’ . when we wish to make this dependence explicit.

Putting together our notation and bounds from Case 1 and Case 2, we find that Eqn. (209) is
upper bounded by

#(7_1) 1 #(7_1)
I I Ve@ui) < gor 11 Rt B
o 2# (77 1)
m=1 i—jeCn m=1
1
T o#( D Z Ry Raiy - R#(T‘l):i#(rfl) : (217)

Each term in the sum in the last line of (217) is a product of terms like tr(p,,) and tr(py,py,, ). But
the key point is that we have arranged the equations so that each term in the sum has p,, for each
i=1,...,T appear ezxactly once. This has the following highly useful consequence.

Lemma 7.14. Fiz any iy, ...,ig—1) € {+,—}. Then

T 4 0 ¢ %7{]:(%71%
> (dd) WiR Ry Ry, <d (218)
L€ leaf(T)

where L(7~Y) is the length of the longest cycle in 77 1.

Proof. For ease of notation, we will let Rﬁ £ Rg’ij. Recall from (190) that W; = wy, wy, - - - wy, and
note that

Z dd' Wy Py = <¢parent(v)’¢parent(v)> Laxa = Laxa - (219)
v:depth(v)=1

Accordingly we have that for any p € Matgyq(C),
ST ddw, (o) = tr(p) (220)
v: depth(v)=1
and in particular, for p = 1,

Y ddwytr(p,) = d. (221)

v:depth(v)=1

We now turn to bounding the left-hand side of (218). Recalling that []; Rﬁ as a product of terms
like tr(py,) and tr(py,;pu, ), we will define some sets of indices encoding this data. Let SgT) C 1]

denote the indices i for which tr(py,) appears in []; Rﬁ , and let SéT) C [T] x [T] denote the set
of (unordered) pairs (i,4’) for which tr(py,p.,) appears, so that for any root-to-leaf path in 7
consisting of nodes vy, ...,vpr = £, we have

1z =11 =G II ©@uss,) (222)
J

ies{™ (i,i")ess™)

by definition. Now construct Sft) C [t] and Sét) C [t] x [t] for 1 < ¢ < T inductively as follows. If
te Sit) then define Sgt_l) £ S?)\{t} and Sét_l) £ Sét). Otherwise if (¢,t') € Sét) for some t' < t,
then define Sf_l) £ Sft_l) U {t'} and Sét_l) = S;t)\{(t,t’)}. We collect some basic observations
about these two set sequences:
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Observation 7.15. For every i € S(T), we have that i € S(i).

Observation 7.16. For every (i,i') € S , if i < then i€ S( ) while i ¢ Sii/).

The reason for defining these set sequences is that we can extract p,, from the product on the
right-hand side of (222) and apply (221) (resp. (220)) if T' € SgT) (resp. (T,t') € S;T) for some
t' < T) to obtain

S @y w [[ R =atmesT St @y wy [T wG) I (e,

Leleaf (T) J u: depth(u)=T-1 lGS%T ) (1,i’)€SéT_l)

(223)
where W, = wy, - - - Wy, _, if the path from root to w in 7 consists of vy, ...,v7_1 = u. Proceeding
inductively, we can express the right-hand side of (223) as

dr i titest) (224)

T)‘

By Observations 7.15 and 7.16, S.°_ 1t € S t)] |S | + \Sé . Because every even cycle Cy, of

7~! contributes |C,,|/2 pairs to Sé )

(T)

and one element to S;

, and every odd cycle C,, contributes ||C,,|/2] pairs to SéT)

, we conclude that

Leleaf(T) J

B d2 Z#(T )VC;@\J

2o
<d? 2 (225)
as claimed. n

Putting all of our previous analysis together, in particular by combining Eqn.’s (205), (206),
(207), (209), (217), and (218), we arrive at

L(r*l)J

> > \pa,T(s)\SdTZ\WgU(a-l,d)yZd{ 2

Leleaf(T) 7#1, 0 o T#L

(226)

The first sum on the right-hand side is bounded by d* >~ _ |[Wg¥ (o1, d)| < 14+0 (%) . Considering

the second sum on the right-hand side, let N (7, ¢) be the number of permutations in S7 where the
length of the longest cycle is £. Then the second sum can be written as

T
ZNT€
=2

where we omit £ = 1 from the sum since it corresponds to the identity permutation. Since N(T,¢) <
(7;) 0= (T%)! < T*, (227) is upper bounded by

M\r\

(227)

H ( +T)5 T3 T? 75
ZW 0= T Lol 22)
T d

93



Now if T' < o(d/?), then this quantity is o(1) for some absolute constant ¢ > 0. Altogether, we
find

5 Y el <o) (229)

Leleaf(T) T#1, 0
O

7.3.3 Proof of Theorems 7.10 and 7.11

As discussed above, we will present proof of Theorems 7.10 and 7.11, making heavy use of pair
partitions.

Proof. The probability distribution p?(¢) is notated the same way as before. We can depict
EHaar[p© (€)] diagrammatically by

(il —|®,)
Enaar [pO ()] = (dd/>T Z W j 4’\ Wg0(0n0;17 d) (230)
m,neP>(27T) <\IJ£ . _ ‘I/Z>

where pg ,(¢) denotes the summand. Similarly Exaar[p® (¢)] is given by

(Pl /,-‘M)

Ettane[p® (0)] = (dd)" > W, B, { WgP(onont,d/2) (231)
m,ne Py (27) <‘I’Z\I’e>
where here pi’n(f) denotes the summand. Moreover, J := J® As before, we use the triangle

inequality in combination with the Cauchy-Schwarz inequality to write the two inequalities

1
5 2. P70~ Enaulp®(0)]
£ e leaf(T)
1 1 1
<5 D2 WPPO-LOI+5 >0 Y IR(OI+5 Y. X a0l (232
L€ leaf(T) L€ leaf(T) m#e L€ leaf(T) m#e,n
and
1
) Z ‘pD(g) — EHaar [pS(e)”
L€leaf(T)
1 1 1
< 5 Z ’PD(E) - pge(€)| + 5 Z Z |pfl,e(£)‘ + 5 Z Z ‘pi,n(e)‘ : (233)
Leleaf(T) L€ leaf(T) m#e L€ leaf(T) m#e,n

We will bound the right-hand sides of (232) and (233) term by term.

First term for O(d) case

We apply the Cauchy-Schwarz inequality to the first term in (232) to find the upper bound

(@)

1 1
5 D ()W Weoe,d) = = | . (234)

v
¢ € leaf(T) (U~ Ty
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As in the unitary setting, we remove the absolute values on the diagrammatic term by virtue of its
positivity, and sum over leaves to get

T 1
- Wg(0e,d) — ==/ .

T (235)

Using Corollary 7.7 which gives us [Wg® (o, d)—d%| <O(T"/dT+2) for T < (1%)2/7, we immediately

find
7
3 X P0-sei<o( ). (236)

L€ leaf(T)

First term for Sp(d/2) case

We recapitulate the same manipulations in the symplectic case. Applying the Cauchy-Schwarz
inequality to the first term in (233) gives us the upper bound

P ﬁ]@
1 (® ¢ .
5 Z (ddl)T WZ 'Wgsp O, d/2) dT (237)
¢ € leaf(T) (¥, l’—¢_’ W)
We again remove the absolute values around the diagrammatic term, and sum over leaves to find
d’ S 1
o W0 d/2) - (238)

Using the analogous Corollary 7.8 which provides the bound [Wg® (o, d) — d%\ < O(T7/?/dT+2)
for T < (%)2/7, we have

7/2
DY |pD<z>—p§e<f>|so(7;l2>. (239)

L€ leaf(T)

Second term for O(d) case

Applying Cauchy-Schwarz to the second term in (232), we find the upper bound

1 (Do i) o
5 O @)Wl x4 W d)l. (240)
¢ € leaf(T) m#e 4127 7))

Let us define the matrix

<¢'Uz lt :|¢'Uz 1>
C(2i —1,2i) := (241)
(wvzl’—‘_lwm
where the 2i — 1 and 2i are just labels (i.e. they are not matrix indices). We will further define
C(2i,2i — 1) := C(2i — 1,2i)". Then the diagrammatic term in (240) is equivalent to

T
tr <Am X c(2i-1, 2¢)) ‘ : (242)

=1
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This can be expressed more explicitly as the absolute value of a product of traces of the C’s, namely
tr(C(Q, DC(fm(1), feo fu(1))C(fmo feo fm(1), feo fmo feo fu(1)) - C(fe 0 fn—1(2), fn— (2)))

where we have used the definition of fi, and f, as per (170). Each trace corresponds to a particular
Mosp-cycle of m. Using the 1-norm inequality [|A1As--- Ag|1 < Hle |Aill1, Eqn. (243) is upper
bounded by

T
H 1C(2i — 1,2i)|1 (244)

where we have used [|C(2i — 1,2i)|; = ||C(2i,2i — 1)||;. Since each C(2i — 1,2i) is positive semi-
definite, ||C(2i — 1,21)||1 = tr(C(2¢ — 1,2i)) and so (240) has the upper bound

(‘Pzt 100)
5 2. 2 @d)Tw, L (Weoyt )l (245)
zeleaf T mte (\I’el’—._l‘lfd
Summing over leaves we arrive at
— Z (We(ont, d)| (246)
m;ée

which is upper bounded by O(T7/d?) + O(T?/d) using Corollary 7.7 in combination with Lemma
8 of [ACQ21]. The ultimate result is

T" T2
3 ¥ SuRi=o(G) o). )
Zeleaf(T ) m#EL

Second term for Sp(d/2) case

A similar proof holds in the symplectic setting. We likewise apply Cauchy-Schwarz to the second
term in (233) to obtain the upper bound

1 @1l au e,
5 2 d@dywel oy WeMeyd/2). (248)
£ € leaf(T) m#e (W[~ Wy)

Using the same notation for C'(2i — 1,2i) as in Eqn. (243) above, we further define
C(2i —1,2i) := C(2i — 1,2i) - J* (249)

and similarly C(2i,2i — 1) := C(2i — 1,2i)". Then the diagrammatic term in Eqn. (248) can be
written as

T
tr <A§n &R C(2i—1, 2i)) ‘ : (250)

=1
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This can be expanded analogously to (243), namely as

tr(é@v 1) Jc(fm(1)7fe o fm(l)) J-- Jé(fe © fm*1(2)a fm*1(2)) J) tr( o ) ’ ”tr( ’ ) : (251)

Using the same 1-norm inequality as the orthogonal case, Eqn. (251) is upper bounded by

T T
[TH1C@i—1,20) 700 <JJlC@i—1,20) 1 1T ]loo 7 ]loc

i=1 i=1
T
=[] tr(C(2i - 1,2i)). (252)
i=1
In the first line we have used the Holder inequality, and in the second line we used ||.J||oo = ||/!|lc0 =
1 as well as ||C(2i — 1,2i)||; = tr(C(2i — 1,24)). Thus we arrive at an upper bound for (248):
B
1 ( ¢ ¢
5 2. D dd)w { (W0, d/2)]. (253)
¢ € loat(T) mae (\I’el’—‘_l 0)
As before we sum over leaves, giving us
dT Sp/ —1
S W (on d/2)] (254)
me

This is is upper bounded by O(T7/2/d?) 4+ O(T?/d) using Corollary 7.8 in combination with Lemma
10 of [ACQ21], and so in the end we obtain

7/2 2
> D 0] < O<TdQ> +O<j;l> . (255)

L€ leaf(T) m#L

Third term for O(d) case

The third term in (232) is %Zfeleaf(T) D ntem ]pn({n(é)\. Applying the Cauchy-Schwarz inequality
we obtain the upper bound

1 (@ /,_‘I)e>
5> > ad)ywe| oy [Welowo,hd)l. (256)
¢ € leaf(T) ne, m (W, W)
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Here we generalize our notation for the C' matrices by writing

(Do, _ 1|>_’_ _I% 1)

C(2i —1,2j) =
<¢mf—«—l¢w
%szﬁvz 1)
C(2i,25) := Abe,) , i<
wdjvg (257)
(Bo;_,
Ci—1,2j—1) = Pk i<

1”’”%

where as before C(j,4) := C(i,7)". Then the diagrammatic term in (256) can be written as

tr(c(fn o fe(1),1)C(fu(1), fuo feo fm(1))C(fmo fuo feo fm(1), fao feo fmo fuo feo fm(1))-- )

(258)
and so using the same 1-norm bound as before we obtain the upper bound
HHC (20),0(2i — 1)1 - (259)

To simplify (259), we define the unnormalized density operator p,, € Matgixq(C):

Son ) Gusl

Po; = { y (260)
—<:I¢U7> <¢U1 "—<—x

for any i € [T]. Then we have the following Lemma:

Lemma 7.17. For anyi,j € [T,

HC(% -1, ZJ)HI < tr(ﬁwﬁfu‘j) (261)
1C(24,2))[[x < y/tr(pv,0f;) (262)
10— 1,2~ )]s < /w(udl). (263)
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Proof. First consider ||C(2i —1,2;)1. Since [|A|]; = [|[A® AT||}/? < ||SWAP-(A®AT)||}/2, we have

(0. rJ <wa ) (6 P \ﬂml )

(Yo, T;J”% ) (W, %—Wu)

Since the tensor network in the trace is positive semi-definite, we can compute the 1-norm by taking
to trace and find

<¢vi—1'~~_\’_ T‘¢'U]’—1> ¢’Uz 1r’—/7g 1 Q%@i‘_‘kﬁvl 1
M A

<

ol ) | ol ) el ) 1

(264)

We have colored the tensor diagram suggestively so that it is transparent how to rewrite it as
tr(pv; pv; ) -
Now consider ||C'(2i,25)||1. Using the same inequality [|Al; = [|[A ® Ajf||1/2 < ||[SWAP - (A®

)H1/2 we find the upper bound

(bv: - IF T Adui) 1/2
gbvg 1|‘V J¢U] 1>

wvy 'QDM %1 wvj
D gf

which is clearly equal to ,/tr(py,p¢,). The upper bound on ||C(2i — 1,25 — 1)[|; is given by an

(265)

identical argument. O

It will be convenient to define the underline notation

{i;l for i odd

% for 7 even

= (266)

and analogously for j. We will say that 4, j have same parity if they are equal modulo 2, and have
different parity otherwise. Then using the above Lemma, we can upper bound (259) by

#© (n)
H H tr(ﬁviﬁvi) H \/ tr(ﬁ%ﬁ&) . (267)
m=1 Z(—}]GBm k(—)éeBm
i,j opposite parity k¢ same parity

Now we turn to bounding (267). We begin by developing some notation for cycles B,,, . Standard
notation for an Msp cycle of “length p” is By, = (a1a2 - - - agp) where for us {ai, as, ..., a2} C [277].
Since the number of elements in an Msp-cycle is always even, by convention we define the length as
half the number of elements (i.e. p instead of 2p). We decorate each a; by an additional subscript

99



as G, to remember that it that belongs to the mth cycle B,,. We sometimes write p = |B,,| to
remind ourselves that it depends on m. Let us also define

tr(ﬁviﬁi(i’j)) =

i

tr(py, pv;) if 4,7 have different parities
{ (Pogho;) 11,7 p | (268)

tr(ﬁ%ﬁﬁl) if ¢, j have the same parity

With these notations in mind, we can write (267) as a product over

-~ ~t m yYm, Nt m yYm, -~ ~t m ym
\/tl“(pva pv((zi;il ¢ 2)) T \/ (pvam 2p— 1pvc(l,(:n 22;) e QP)) \/tr(pvam,zpp”‘(‘i%fp ‘ 71)) (269)

over m = 1,...,#(n); here we drop the O superscript on #9 since we are only discussing pair
permutation here. We will further analyze the above for fixed m in two cases: (i) p = |B,| is even,
and (ii) p = | By, is odd.

It will be convenient to prove a Lemma which is slightly more general than what we need for the
orthogonal case; the advantage of this generality is that it will immediately apply to the symplectic
case. The Lemma is as follows:

Lemma 7.18. Let tr(pmpgj( ’])) equal either tr(py, pu,), tr(ﬁ%ﬁﬁj), or tr(ﬁviJﬁlfj J7Y), depending on
the value of ©,j. Defining - -

Ro = (o) [[ 6o, o) (270)
i odd
1<i<2p—2
Rt = 0(uay ) [T 01, B0, (271)
j even
we have the inequality
i ) 1
H H tr(Dv, Po; ") < 2 # () Z Riiy Rajiy -+ Reg(n) iy - (272)
m=1 i<>j €EBp, U, dg(n) =%

Proof. Similar to the unitary setting, the argument proceeds in two cases.

~f(am i,am, 1+1)

i Pamis1 ) except the last

Case 1: p is even. Every term in Eqn. (269) has the form 4 /tr(py,

Nf(am 2p,am, 2p+1))
pvam ,2p+1

term. The 4 subscripts of a,,; will be treated modulo 2p, and \/ tr(pva . With

this notation at hand, we organize Eqn. (269) as

_f(am,i,am,i+1) _fam,j,am,j+1)
(H \/tr pvam zpvam Pm,it1 : )> H \/ (pvamjpvam ]-il = ) ' (273)

i odd J even

Since ab < %(GQ + b?), the expression above is upper bounded by

~f am Am,i,3m,i ) ~f am sAm, )
By H tI‘ pvaml Vay, i+1 S + H tI‘ pvam] Va,, ]jlijﬂ ) . (274)

2 odd ] even

60



We will call the first term % R,,, — and the second term %Rm,Jr .

Case 2: p is odd. In this setting we can arrange the terms in Eqn. (211) as

el I | VA e N W | QY e

i odd j even
1<e<2p—2

(275)
Since for A, B Hermitian and positive semi-definite we have tr(AB) < [|A|2||Bll2 < ||Al1 | Bl1 <
tr(A) tr(B) it follows that

\/tr(ﬁvam pp’l‘}igj,:r;p »am, 1)) < \/tr(ﬁyamy ) (qujc(Lam p>am,1) — \/tr(ﬁvw) tr(ﬁva”n’l) . (276)

Using the above inequality, (275) has the upper bound

\/Tmp H \/tl" p’l)a Pv«gfx:lam ZH)) \/Tml H \/tr pvam y ﬁ{jﬂm ]+1))

i odd j even
1<i<2p—2

(277)
Further using ab < %(a2 + b?), we find the upper bound

1 ~ ~, m,i dm,7 =~ m,j%m,
5 1(Pv,) H (P, Pl ot “))+*tr Poap) T 6B, Bty (278)

J even

i od.
SZS

where similarly the first term is called %Rm, _ and the second term is called %Rm’_l,_ .
Since R, — and R, + implicitly depend on the leaf ¢, sometimes we will denote them by R! -
and an’ 4 to be explicit.

Taking Case 1 and Case 2 together, we find that Eqn. (267) has the upper bound

#(n) T #(n)
Py Z:J
H(Puipo; ) < 2#(u) [T Ro- + Bins)
m=1 i<»j €Bm m=1
1
~ 2% zz: Ruis Rojia -+ R nyig o - (279)
i1yl () =%
This is the desired bound. O

Observe that each term in the sum in the last line of (279) is a product of terms like tr(p,,) and

tr(pw, ﬁ{g ’k)). As before, the key point is that we arranged the equations so that each term in the

sum has p,, for each i = 1, ..., T appear ezactly once. This allows us to prove the following lemma,
which is akin to Lemma 7.14 above:

Lemma 7.19. Fiz any iy, ...,igm) € {+,—}. Then

<51 (280)

T gy =

Z (dd/) Wg Rl “RQ 12 A R;&(
L€ leaf(T)
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where L(n) is the length of the longest cycle in n (where we recall that the length of an Mar cycle
is defined as half the number of integers in that cycle).

Proof. To ease notation, let RZ = Re . Recall that W, = wy, wy, - - - wy, and note that

Z dd' Wy ;Bv = <¢parent |¢parent v)> Lgxqg = Ngxa (281)
v:depth(v)=1

Z dd’ Wy ﬁzf - <¢parent ’¢parent v)> Tgxa = Laxa (282)
v:depth(v)=3

z dd’ Wy th‘]_ <¢parent |¢parent v)> Laxa = Laxd - (283)
v: depth(v)=i

Taking the traces of the above equations against any p € Matgy4(C), we find

Y dd wytr(ppy) = tr(p) (284)
v: depth(v)=t

> dd wytr(pp) = tr(p) (285)
v: depth(v)=1

Y ddwytr(p JpLT ) = tr(p). (286)
v:depth(v)=1

In particular, for p = 1 we have
> dd'wytr(p,) = d. (287)
v:depth(v)=1

With these various identities in mind, we can now turn to bounding (280). As we discussed, above
I1; Rg is a product of terms like tr(p,,) and tr(py, ﬁf(, )). It is convenient to define some sets
of indices to encode this data. Let S%T) C [T7] denote the indices i for which tr(p,,) appears in
I1; Rﬁ, and also let SéT) C [T] x [T] denote the set of (unordered) pairs (i,4") for which tr(ﬁvlﬁg(f g ))

appears, so that for any root-to-leaf path in T consisting of nodes vy, ...,vyr = £, we have
I8 = 11 v)- I ©@.a0). (288)
J ies(" (i.i") €S

Next we construct S%t) C [t] and Sét) C [t]x[t] for 1 <t < T by the following inductive procedure. If
te SY) then we define Sft_l) £ S%t)\{t} and Sét_l) £ Sét). Otherwise if (¢,t') € Sét) for some ¢’ < ¢,
then we define S%t_l) £ Sy_l) U {t'} and Sét_l) £ Sét)\{(t,t')}. We recall two key observations
about such sequences, which we also leveraged in Lemma 7.14:

Observation 7.20. For every i € S(T), we have that i € S(i).

Observation 7.21. For every (i,i) € S , if i <1 theni € S( D while i ¢ Syl)'
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We have defined this set of sequences in order to extract p,, from the product on the right-hand
side of (288) and apply (287) (respectively (284)) if T' € S%T) (respectively (T,t') € SéT) for some
t' < T) to obtain

Z (dd/)TWZHR§ _ dﬂ[TesﬁT)} Z (dd/)T 1W H pvz) H (51}15{(/1 i ))7

Leleaf (T) J u:depth(u)=T-1 i S%T 1) (,'L")ESéT_l)

(289)
with Wy, = wy, - - wy,_, if the path from root to w in T is given by vy,...,vp—1 = u. We can
proceed inductively by expressing the right-hand side of (289) as

gX i tltesi) (290)

By virture of Observations 7.20 and 7.21, Y. | 1]t € S%t)] = \S%T)\ + ]SéT)]. Since every Mayp-cycle
m of n contributes with |B,,| off contributes |B,,|/2 pairs to SéT), and every Msp-cycle By, with

(T) (T)

| B,| even contributes ||B,,|/2] pairs to S5’ and one element to S;”’, we conclude the formula

S (ad)Tw [ R = aet

Leleaf(T) J

d% E#(n L

d

e (291)

IN

as we desired. O

Putting all our previous bounds together, in particular Eqn.’s (256), (267), (279), and (280),
we arrive at

L0<n>J

DD DCRUIED SRy o) S

£ € leaf(T) n#e,m n#e

(292)

The first sum on the right-hand side is bounded by d” 3" |[Wg° (05!, d)| < 14+0 ( %2) . Considering

the second sum on the right-hand side, let NO(T,¢) be the number of permutations in Sy where
the length of the longest Mar-cycle is 2¢. Then the second sum can be written as

T
S NO(T,0ya L3 (293)
(=2

where we omit ¢ = 1 from the sum since it corresponds to the identity pair permutation. Since
2T 2T
NO(T,0) < (3,) (20— 1) = W < T*, (293) is upper bounded by

. 1+ 13 72 T°
Tf s 0Dy T T : 294

K\J

Now if T' < o(d/?3), then this quantity is o(1) for some absolute constant ¢ > 0. Altogether, we

find
oD Ipaa@l <o(1) . (295)

£ € leaf(T) n#e,m
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Third term for Sp(d/2) case

The third term in (233) is %Z[eleaf(’T) D ntem [p5.a(0)]. Applying the Cauchy-Schwarz inequality
we obtain the upper bound

1 <(I)£|:\\ - @e>
B o) @d)'wy D . (We(onont,d)|. (296)
£ €leaf(T) ne, m (Wl - 1)

To bound the diagrammatic term, we introduce the tilde notation 5(22 —1,2§) = C(2i — 1,2j),

C(2i—1,25—1):=C(2i — 1,25 — 1) as well as

,f;%l)

,
/

~ { jl¢vj_1>

C2i,2j) = 4

o) T)

where as usual C(j,i) = C(i,7)!. Then the diagrammatic term in (296) can be written as

. i< (297)

tr(C(fnofe<1)71) JCO(fu(1), fao feo fu(1)) JC(fumo fao feo fm(1), fuo feo fmo fao feo fm(1))J -

() eetr(eee)
(298)
which is upper bounded in the 1-norm by
T T
[TICm@2i),n2i 1) Nk < [TICME0), n2i = 1)1 7]
i=1 1;1
< [TIC (i), n@i - 1)l (299)
i=1
We now have the following Lemma, analogous to Lemma 7.17:
Lemma 7.22. For anyi,j € [T],
I1C(2i = 1,2j) [l < \/t(B, v, ) (300)
1C(2i,2)) 11 < \/tr(Pu, ) (301)
162 1,2 — Dl < 1 /or(Pudly) (302)

where we recall that AP := JA'J™1 is the symplectic transpose.

Proof. The first and third inequalities follow from Lemma 7.17 since C(2i—1,25) = C(2i—1,2j) and
C(2i—1,2j—1) = C(2i—1,25—1). For the second inequality, we again use ||A|; = HA(EQA”H/2 <
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ISWAP - (A® AT)||1/2 to find the upper bound

<¢U7 1|: ¢'U7, 1> 1/2

(o, ¢v; )
" w w "
which evidently equals 4 /tr(py, ﬁlf]) ). O

Leveraging the above Lemma, we can upper bound (299) by

#9(n)
H H \/ tr (v, pu, ) H tr(pv, 04,) H tr(pu, @2) . (303)
m=1 i<>jEBm, k<{EBp, p>q€Bm,
i,j opposite parity k,¢ both odd p,q both even
Defining

tr(pv; pv;) i i, j have different parities

tr(fu, 52 0)) 1= tr(pupr,) i 4, are both odd , (304)
tr(ﬁ%ﬁf_) if 4, 7 are both even

we can write (303) as a product over

~D m,1Ym, -~ ~D m —1,Ym -~ ~D m yYm,
G ) fix G R i, ) (a05)

over m = 1,...,#°P(n). Leveraging Lemmas 7.18 and 7.19 in the same exact was as in the
orthogonal case, we obtain

D= ( |<dTZ|WgSp ,d/2)|Zd‘[¥J. (306)

£eleaf(T) nfe,m nte

. . . J— 2
The first sum on the right-hand side is bounded by d” Y |[Wg5P (05!, d/2)| < 1+ O(%). Con-

sidering the second sum on the right-hand side, let NSP (T, ¢) be the number of permutations in Sy
where the length of the longest Mayp-cycle is 2£. Since NSP(T,¢) = NO(T,¢), the second sum can
be written as

[SIEN

T
NSNS0 als) < 7:4—1;4—(9(55) . (307)

Now if T' < o(d/?3), then this quantity is o(1) for some absolute constant ¢ > 0. Altogether, we

find
oD @ <o(1) (308)

L€ leaf(T) n#e,m
O
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7.3.4 Corollaries involving state distinction

Here we remark on some immediate corollaries of Theorems 7.9, 7.10, and 7.11. We begin with a
corollary essentially identical to one from [ACQ21]:

Corollary 7.23. Any learning algorithm without quantum memory requires
T>0 (2"/3) : (309)

to correctly distinguish between the mazimally mixzed state 1/2"™ on n qubits and a fized, Haar-
random state |W)(¥| on n qubits with probability at least 2/3.

Proof. Suppose by contradiction that a learning algorithm could distinguish between 1/d and a
fixed, Haar-random |¥)(¥| with probability at least 2/3 using T < O(d'/3). Then we could use this
learning algorithm to solve the unitary distinction problem by taking the channel C and applying it
to [0)®"; if C = D then we would get the maximally mixed state, and if C = U we would get a fixed
Haar random state. Moreover we could distinguish the two cases in using 7' < O(d'/3) by running
the alleged state distinction algorithm. But this is impossible since it contradicts Theorem 7.9, so
such a state distinction algorithm can not exist. O

While the above corollary is weaker than Theorem 5.11 for which T > Q(d'/?), it is emblematic
of a general strategy for using learning bounds on channel distinction problems to derive corre-
sponding learning bounds on state distinction problems. Further leveraging this strategy, we can
prove the following two additional corollaries:

Corollary 7.24. Any learning algorithm without quantum memory requires
T>0 (2"/3) , (310)

to correctly distinguish between the mazimally mized state 1/2"™ on n qubits and a fized, real Haar
random state |W)(¥| on n qubits with probability at least 2/3.

To prove this corollary, we observe that |¥)(¥| = O (|0)(0)*™ O for a fixed, Haar-random orthogo-
nal matrix; alternatively, it is also the case that |¥)(¥| = S (|0)(0))*™ SP for a fixed, Haar-random
symplectic matrix. Leveraging the symplectic version (in particular since Theorem 7.10 has a
stronger bound than Theorem 7.11), the corollary follows by the same arguments as the proof
of Corollary 7.23 in combination with Theorem 7.11. Corollary 7.24 also follow from the results
in [ACQ21], although the corollary was not stated there.

7.3.5 Upper bound without quantum memory

The upper bound without quantum memory can be obtained by reducing the problem to a purity
testing and utilize Theorem 5.13. This results in the following corollary.

Corollary 7.25. There is a learning algorithm without quantum memory which takes T = 0(2"/2)
accesses to the unknown quantum channel C to distinguish between whether C is a fived Haar-random
unitary channel or a completely depolarizing channel D.

Proof. We perform T repeated experiments given by the following. Input the all-zero state |0™)
to the unknown quantum channel C to obtain the output state poyt. When C is a scrambling
unitary channel, poys is a fixed pure state. When C is a completely depolarizing channel, poyt is
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the completely mixed state. We then measure the output state poys in the computational basis
to obtain the classical data. The collection of classical data given by the computational basis
measurements can be used to classify if poyut is a fixed pure state or the completely mixed state.
Theorem 5.13 tells us that T = O(2"/?) is sufficient to distinguish between the two cases. Hence,
we can distinguish between whether C is a scrambling unitary channel or a completely depolarizing
channel using T' = O(2"/2). O

7.3.6 Upper bound with quantum memory

The exponential lower bound for algorithms without quantum memory is in stark contrast to those
with quantum memory. The following result from [ACQ21] states that a linear number of channel
applications 1" and quantum gates suffices if we use a learning algorithm with quantum memory.

Theorem 7.26 (Fixed unitary task is easy with an n qubit quantum memory [ACQ21]). There
exists a learning algorithm with n qubits of quantum memory which, with constant probability,
can distinguish a completely depolarizing channel D from a fived, Haar-random U (either unitary,
orthogonal, or symplectic) using only T = O(1) applications of the channel. Moreover, the algorithm
is gate efficient and has O(n) gate complexity.

The protocol is simply a swap test; the basic idea is that for a pure state |¢) on n qubits we have
tr(D[|¢)¢[]?) = & whereas tr(U[|¢p)¢|]*) = 1. The ability to obtain quantum interference between
D[|¢)¢|] and a copy of itself D[|¢)@|] (or U[|p)¢|] and a copy of itself U[|p)¢|]) is enabled by the
n qubit quantum memory which can store a single copy of the state.

7.4 Symmetry distinction problem

7.4.1 Lower bound

Using Theorem 7.9, 7.10, and 7.11, we can show the hardness of distinguishing between unitary
channel, orthogonal matrix channel, and symplectic matrix channel for learning algorithms without
quantum memory. This multiple-hypothesis distinguishing task is equivalent to uncovering what
symmetry is encoded in a quantum evolution. Orthogonal matrix channel and symplectic matrix
channel are quantum evolutions with different type of time-reversal symmetry, while unitary channel
is a general evolution without additional symmetry.

Theorem 7.27. Any learning algorithm without quantum memory requires
T>Q (22"/7) , (311)

to correctly distinguish between a fized, Haar-random unitary channel CY, orthogonal matriz channel
CO, or symplectic matriz channel C° on n qubits with probability at least 2/3.

Proof. Given a tree representation 7 of the learning algorithm without quantum memory. The
probability that the algorithm correctly identifies the class of channels is equal to

LYY Forrm=a (312)

ce{CU O S} Leleaf(T)

67



where Y (¢) is an element in the set {CY,C?,C} equal to the output when the algorithm arrives at
the leaf £. It is not hard to see that the success probability is upper bounded by

2> max (50,0, (1) (313)
Leleaf(T)
1 D C D

<1 PP+ max (€0 - P (0) (314)
3 g@;m et o )

<its Y S 10 -0 |- (315)

ce{cV ,co,cS} \Leleaf(T)
From the proof of Theorem 7.9, 7.10, and 7.11, we have when T = 0(22"/7), we have

> °) - pP0)] =o(1), vCe{cY co .. (316)
Leleaf (T)

Therefore, when T' = 0(22%/7), the success probability will be upper bounded by 1/3 + o(1). Hence
to achieve a success probability of at least 2/3, we must have T' = Q(22%/7). O

7.4.2 Upper bound

We present an upper bound for algorithms without quantum memory. There is still a gap between
the lower and upper bounds, which we leave as an open question.

Theorem 7.28. There is an algorithm without quantum memory that uses
T=0(2"), (317)

to correctly distinguish between a fized, Haar-random unitary channel CY, orthogonal matriz channel
CO, or symplectic matriz channel C° on n qubits with probability at least 2/3.

We will perform three sets of experiments. Each set of experiments is a quantum state tomogra-
phy based on random Clifford measurements [KRT17b, GKKT20b] on the output state C(|v;};])
for an input pure state |1¢;), for i = 1,2,3. We will take [i1) = |0™), |¢9) = %(\@ + 1)) @ |on L),
and [¢3) = %QO) —|1)) ® [0"~1). Note that for each i, C(|¢;)X1;]) is a pure state, which we will

denote by ¢; € C?".
We will use the following guarantee:

Lemma 7.29 (State tomography, see [KRT17b, GKKT20b]). There is an algorithm which for
any € > 0, given copies of an unknown pure state |¢) with density matriz p € H2"*2" makes
O(2"/e?) random Clifford measurements and outputs the density matriz p of some pure state for
which ||p — pllvr < € with probability at least 14/15.

Corollary 7.30. Suppose p; = |$Z><$,] is the output of applying the algorithm in Lemma 7.29 to
p = |#i)@i|l. Then provided the algorithm succeeds, we have that for any matriz M € C*"*2" and
any i,j € {1,2,3}

BMG| — 609 < 22 M]|oc. (318)
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Proof. Because [|p; — pillF < ||pi — pilltr < €, we have that ||¢; — (- $,|| < ¢ for some choice of phase
G €C. As (¢ - oM ;| = |¢pEM ¢|, we may assume without loss of generality that ¢;,(; = 1. Now
note that

61 M ;] < |$: M| + el M|l < i M| + 2¢]|M]|oo (319)
by triangle inequality, from which the claim follows. ]

Henceforth, let (Ez denote the pure state obtained by applying state tomography to copies of
¢; with € = 1/5. We collect the following basic facts about ¢; which will allow us to distinguish
among the three types of channels.

Lemma 7.31. Condition _on the outcome of Lemma 7.29. If C is a Haar-random symplectic
matriz channel, then |¢5Jés| > 1/2. If C is a Haar-random unitary or orthogonal channel, then

\(%J(Eg\ < 1/2 with probability at least 14/15 over the randomness of the channel.

Proof. By definition of the symplectic matrix channel, ¢5Jps = 5SJS3 = ¥iJs = —1. The
first part of the lemma follows by Corollary 7.30 and the fact that ||J||ooc = 1. For the second part,
note that the joint distribution on (¢2, ¢3) is invariant under the transformation (¢p2, —¢3) when
C is a Haar-random unitary (resp. orthogonal) transformation, because conditioned on ¢, ¢3 is a
Haar-random in the subspace in C?" (resp. R?") orthogonal to ¢. So in either case,

1
E[¢5J¢3] = §E[¢§J¢3} +E[¢5J(—¢3)] = 0. (320)
Note that the function F : O +— 9{0'JO1)3 is 2-Lipschitz:
|[F(O1) — F(O2)| < [¢5(01 = 02) JO143] + [505J (01 — O2)th3| < 2[01 — Oz|p (321)

So by Lemma 4.3, with probability at least 9/10 over the randomness of the channel, we have that
| J 3| < O(1/27/2). The second part of the lemma then follows from Corollary 7.30. O

Lemma 7.32. Condition on the outcome of Lemma 7.29. If C is a Haar-random orthogonal matriz
channel, then |¢i¢1| = 1. If C is a Haar-random unitary matriz channel, then |¢}¢1] < 1/2 with
probability at least 14/15 over the randomness of the channel.

Proof. Because ¢ is a unit vector with only real entries, 5351 = 1, so the first part of the claim
follows by Corollary 7.30. For the second part, if the channel is Haar-random unitary, then ¢ is a
Haar-random complex unit vector, so E[&;&] = 0. The function F : U + ¢! U'U1y is 2-Lipschitz
by a calculation completely analogous to (321). So by Lemma 4.3, with probability at least 9/10
over the randomness of the channel, we have that |¢id;| < O(1/2%/2). The second part of the
lemma then follows from Corollary 7.30. 0

We are now ready to prove Theorem 7.28.

Proof of Theorem 7.28. The algorithm will be to apply the state tomography algorithm of Lemma 7.29
to the outputs of {|i;)} under the channel, yielding pure states {|¢;)}. By a union bound, with
probability 2/3 we have that the state tomography algorithm succeeds for all ¢ = 1,2, 3, and Lem-
mas 7.31 and 7.32 hold. We form the quantity |¢4.J¢3| and check whether it exceeds 1/2. If so, we
conclude by Lemma 7.31 that C is symplectic. Otherwise, we form the quantity |$ﬁ$1| and check
whether it exceeds 1/2. If so, we conclude by Lemma 7.32 that C is orthogonal, otherwise it is
unitary.

O
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