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Abstract

We propose discrete Langevin proposal (DLP), a

simple and scalable gradient-based proposal for

sampling complex high-dimensional discrete dis-

tributions. In contrast to Gibbs sampling-based

methods, DLP is able to update all coordinates

in parallel in a single step and the magnitude

of changes is controlled by a stepsize. This al-

lows a cheap and efficient exploration in the space

of high-dimensional and strongly correlated vari-

ables. We prove the efficiency of DLP by show-

ing that the asymptotic bias of the stationary dis-

tribution is zero for log-quadratic distributions,

and is small for distributions that are close to

being log-quadratic. With DLP, we develop sev-

eral variants of sampling algorithms, including

unadjusted, Metropolis-adjusted, stochastic and

preconditioned versions. DLP outperforms many

popular alternatives on a wide variety of tasks,

including Ising models, restricted Boltzmann ma-

chines, deep energy-based models, binary neural

networks and language generation.

1. Introduction

Discrete variables are ubiquitous in machine learning prob-

lems ranging from discrete data such as text (Wang &

Cho, 2019; Gu et al., 2018) and genome (Wang et al.,

2010), to discrete models such as low-precision neural net-

works (Courbariaux et al., 2016; Peters & Welling, 2018).

As data and models become large-scale and complicated,

there is an urgent need for efficient sampling from complex

high-dimensional discrete distributions.

Markov Chain Monte Carlo (MCMC) methods are typically

used to perform sampling, of which the efficiency is largely

affected by the proposal distribution (Brooks et al., 2011).

For general discrete distributions, Gibbs sampling is broadly

applied, which resamples a variable from its conditional
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distribution with the remaining variables fixed. Recently,

gradient information has been incorporated in the proposal

of Gibbs sampling, leading to a substantial boost to the

convergence speed of the sampler in discrete spaces (Grath-

wohl et al., 2021). However, Gibbs-like proposals often

suffer from high-dimensional and highly correlated distribu-

tions due to conducting a small update per step. In contrast,

proposals in continuous spaces that leverage gradients can

usually make large effective moves. One of the most popu-

lar methods is the Langevin algorithm (Grenander & Miller,

1994; Roberts & Tweedie, 1996; Roberts & Stramer, 2002),

which drives the sampler towards high probability regions

following a Langevin diffusion. Due to its simplicity and

efficiency, the Langevin algorithm has been widely used for

sampling from complicated high-dimensional continuous

distributions in machine learning and deep learning tasks

(Welling & Teh, 2011; Li et al., 2016; Grathwohl et al.,

2019; Song & Ermon, 2019). Its great success makes us

ask: what is the simplest and most natural analogue of the

Langevin algorithm in discrete domains?

In this paper, we develop such a Langevin-like proposal for

discrete distributions, which can update many coordinates

of the variable based on one gradient computation. By re-

forming the proposal from the standard Langevin algorithm,

we find that it can be easily adapted to discrete spaces and

can be cheaply computed in parallel due to coordinatewise

factorization. We call this proposal discrete Langevin pro-

posal (DLP). Inheriting from the Langevin algorithm, DLP

is able to update all coordinates in a single step in parallel

and the magnitude of changes is controlled by a stepsize.

Using this proposal, we are able to obtain high-quality sam-

ples conveniently on a variety of tasks. We summarize our

contributions as the following:

• We propose discrete Langevin proposal (DLP), a

gradient-based proposal for sampling discrete distri-

butions. DLP is able to update many coordinates in a

single step with only one gradient computation.

• We theoretically prove the efficiency of DLP by show-

ing that without a Metropolis-Hastings correction, the

asymptotic bias of DLP is zero for log-quadratic distri-

butions, and is small for distributions that are close to

being log-quadratic.
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• With DLP, we develop several variants of sampling

algorithms, including unadjusted, Metropolis-adjusted,

stochastic and preconditioned versions, indicating the

general applicability of DLP for different scenarios.

• We provide extensive experimental results, including

Ising models, restricted Boltzmann machines, deep

energy-based models, binary Bayesian neural networks

and text generation, to demonstrate the superiority of

DLP in general settings.

2. Related Work

Gibbs Sampling-based Methods Gibbs sampling is per-

haps the de facto method for sampling from general discrete

distributions. In each step, it iteratively updates one vari-

able leaving the others unchanged. Updating a block of

variables is possible, but typically with an increasing cost

along with the increase of the block size. To speed up the

convergence of Gibbs sampling in high dimensions, Grath-

wohl et al. (2021) uses gradient information to choose which

coordinate to update and Titsias & Yau (2017) introduces

auxiliary variables to trade off the number of updated vari-

ables in a block for less computation. However, inheriting

from Gibbs sampling, these methods still require a large

overhead to make significant changes (e.g. > 5 coordinates)

to the configuration in one step.

Locally-Balanced Proposals Based on the information

of a local neighborhood of the current position, locally-

balanced proposals have been developed for sampling from

discrete distributions (Zanella, 2020). Later they have been

extended to continuous-time Markov processes (Power &

Goldman, 2019) and have been tuned via mutual informa-

tion (Sansone, 2021). Similar to Gibbs sampling-based

methods, this type of proposals is very expensive to con-

struct when the local neighborhood is large, preventing

them from making large moves in discrete spaces. A re-

cent work (Sun et al., 2022) explores a larger neighborhood

by making a sequence of small movements. However, it

still only updates one coordinate per gradient computation

and the update has to be done in sequence, while on the

contrary, our method can update many coordinates based on

one gradient computation in parallel.

Continuous Relaxation Incorporating gradients in the

proposal has been a great success in continuous spaces,

such as the Langevin algorithm, Hamiltonian Monte Carlo

(HMC) (Duane et al., 1987; Neal et al., 2011) and their

variants. To take advantage of this success, continuous re-

laxation is applied which performs sampling in a continuous

space by gradient-based methods and then transforms the

collected samples to the original discrete space (Pakman &

Paninski, 2013; Nishimura et al., 2020; Han et al., 2020;

Zhou, 2020; Jaini et al., 2021; Zhang et al., 2022). The

efficiency of continuous relaxation highly depends on the

properties of the extended continuous distributions which

may be difficult to sample from. As shown in previous

work, this type of methods usually does not scale to high

dimensional discrete distributions (Grathwohl et al., 2021).

3. Preliminaries

We consider sampling from a target distribution

π(θ) =
1

Z
exp(U(θ)), ∀θ ∈ Θ,

where θ is a d-dimensional variable, Θ is a finite1 variable

domain, U is the energy function, and Z is the normalizing

constant for π to be a distribution. In this paper, we restrict

to a factorized domain, that is Θ =
∏d

i=1
Θi, and mainly

consider Θ to be {0, 1}d or {0, 1, . . . , S − 1}d. Addition-

ally, we assume that U can be extended to a differentiable

function in R
d. Many popular models have such natural

extensions such as Ising models, Potts models, restricted

Boltzmann machines, and (deep) energy-based models.

Langevin Algorithm In continuous spaces, one of the

most powerful sampling methods is the Langevin algorithm,

which follows a Langevin diffusion to update variables:

θ′ = θ +
α

2
∇U(θ) +

√
αξ, ξ ∼ N (0, Id×d) ,

where α is a stepsize. The gradient helps the sampler to

explore high probability regions efficiently. Generally, com-

puting the gradient and sampling a Gaussian variable can be

done cheaply in parallel on CPUs and GPUs. As a result, the

Langevin algorithm is especially compelling for complex

high-dimensional distributions, and has been extensively

used in machine learning and deep learning.

4. Discrete Langevin Proposal

In this section, we propose discrete Langevin proposal

(DLP), a simple counterpart of the Langevin algorithm in

discrete domains.

At the current position θ, the proposal distribution q(·|θ)
produces the next position to move to. As introduced in

Section 3, q(·|θ) of the Langevin algorithm in continuous

spaces can be viewed as a Gaussian distribution with mean

θ+α/2∇U(θ) and covariance αId×d. Obviously we could

not use this Gaussian proposal in discrete spaces. However,

we notice that by explicitly indicating the spaces where

1We consider finite discrete distributions in the paper. However,
our algorithms can be easily extended to infinite distributions. See
Appendix C for a discussion.
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the normalizing constant is computed over, this proposal is

essentially applicable to any kind of spaces. Specifically, we

write out the variable domain Θ explicitly in the proposal

distribution,

q(θ′|θ) =
exp

(

− 1

2α

∥

∥θ′ − θ − α
2
∇U(θ)

∥

∥

2

2

)

ZΘ(θ)
, (1)

where the normalizing constant is integrated (continuous)

or summed (discrete) over Θ (we use sum below)

ZΘ(θ) =
∑

θ′∈Θ

exp

(

− 1

2α

∥

∥

∥
θ′ − θ − α

2
∇U(θ)

∥

∥

∥

2

2

)

.

Here, Θ can be any space without affecting q being a valid

proposal. As a special case, when Θ = R
d, it follows that

ZRd(θ) = (2πα)d/2 and recovers the Gaussian proposal

in the standard Langevin algorithm. When Θ is a discrete

space, we naturally obtain a gradient-based proposal for

discrete variables.

Computing the sum over the full space in ZΘ(θ) is gen-

erally very expensive, for example, the cost is O(Sd) for

Θ = {0, 1, . . . , S − 1}d. This is why previous methods

often restrict their proposals to a small neighborhood. A

key feature of the proposal in Equation (1) is that it can be

factorized coordinatewisely. To see this, we write Equa-

tion (1) as q(θ′|θ) =
∏d

i=1
qi(θ

′
i|θ), where qi(θ

′
i|θ) is a

simple categorical distribution of form:

Categorical
(

Softmax
(1

2
∇U(θ)i(θ

′
i − θi)−

(θ′i − θi)
2

2α

))

,

(2)

with θ′i ∈ Θi (note that the equation does not contain the

term (α/2∇U(θ)i)
2 because it is independent of θ′ and will

not affect the softmax result). Combining with coordinate-

wise factorized domain Θ, the above proposal enables us

to update each coordinate in parallel after computing the

gradient ∇U(θ). The cost of gradient computation is also

O(d), therefore, the overall cost of constructing this pro-

posal depends linearly rather than exponentially on d. This

allows the sampler to explore the full space with the gradient

information without paying a prohibitive cost.

We denote the proposal in Equation (2) as Discrete Langevin

Proposal (DLP). DLP can be used with or without a

Metropolis-Hastings (MH) step (Metropolis et al., 1953;

Hastings, 1970), which is usually combined with proposals

to make the Markov chain reversible. Specifically, after

generating the next position θ′ from a distribution q(·|θ),
the MH step accepts it with probability

min

(

1, exp (U(θ′)− U(θ))
q(θ|θ′)
q(θ′|θ)

)

. (3)

By rejecting some of the proposed positions, the Markov

chain is guaranteed to converge asymptotically to the target

distribution.

We outline the sampling algorithms using DLP in Algo-

rithm 1. We call DLP without the MH step as discrete

unadjusted Langevin algorithm (DULA) and DLP with the

MH step as discrete Metropolis-adjusted Langevin algo-

rithm (DMALA). Similar to MALA and ULA in continu-

ous spaces (Grenander & Miller, 1994; Roberts & Stramer,

2002), DMALA contains two gradient computations and

two function evaluations and is guaranteed to converge to

the target distribution, while DULA may have asymptotic

bias, but only requires one gradient computation, which is

especially valuable when performing the MH step is expen-

sive such as in large-scale Bayesian inference (Welling &

Teh, 2011; Durmus & Moulines, 2019).

Connection to Locally-Balanced Proposals Zanella

(2020) has developed a class of locally-balanced propos-

als that can be used in both discrete and continuous spaces.

One of the locally-balanced proposals is defined as

r(θ′|θ) ∝ exp

(

1

2
U(θ′)− 1

2
U(θ)− ∥θ

′ − θ∥2
2α

)

,

where θ′ ∈ Θ. DLP can be viewed as a first-order Taylor

series approximation to r(θ′|θ) using

U(x)− U(θ) ≈ ∇U(θ)⊺(x− θ), ∀ x ∈ Θ.

Zanella (2020) discussed the connection between their

proposals and Metropolis-adjusted Langevin algorithm

(MALA) in continuous spaces but did not explore it in dis-

crete spaces. Grathwohl et al. (2021) uses a similar Taylor

series approximation for another locally-balanced proposal,

r′(θ′|θ) ∝ exp

(

1

2
U(θ′)− 1

2
U(θ)

)

, (4)

where θ′ belongs to a hamming ball centered at θ with

window size 1. Like Gibbs sampling, their proposal only

updates one coordinate per step. They also propose an exten-

sion of their method to update X coordinates per step, but

with X times gradient computations. See Appendix D for a

discussion on Taylor series approximation for Equation (4)

without window sizes.

Beyond previous works, we carefully investigate the proper-

ties of the Langevin-like proposal in Equation (2) in discrete

spaces, providing both convergence analysis and extensive

empirical demonstration. We find this simple approach ex-

plores the discrete structure surprisingly well, leading to a

substantial improvement on a range of tasks.
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Algorithm 1 Samplers with Discrete Langevin Proposal

(DULA and DMALA).

given: Stepsize α.

loop

for i = 1 : d do {Can be done in parallel}
construct qi(·|θ) as in Equation (2)

sample θ′i ∼ qi(·|θ)
end for

▷ Optionally, do the MH step

compute q(θ′|θ) =∏i qi(θ
′
i|θ)

and q(θ|θ′) =∏i qi(θi|θ′)
set θ ← θ′ with probability in Equation (3)

end loop

output: samples {θk}

5. Convergence Analysis for DULA

In the previous section, we showed that DLP is a convenient

gradient-based proposal for discrete distributions. However,

the effectiveness of a proposal also depends on how close its

underlying stationary distribution is to the target distribution.

Because if it is far, even if using the MH step to correct the

bias, the acceptance probability will be very low. In this

section, we provide an asymptotic convergence analysis for

DULA (i.e. the sampler using DLP without the MH step).

Specifically, we first prove in Section 5.1 that when the

stepsize α → 0, the asymptotic bias of DULA is zero for

log-quadratic distributions, which is defined as

π(θ) ∝ exp (θ⊺Wθ + b⊺θ) , θ ∈ Θ (5)

with some constants W ∈ R
d,d and b ∈ R

d. Without loss of

generality, we assume W is symmetric (otherwise we can

replace W with (W +W ⊺)/2 for the eigendecomposition).

Later in Section 5.2, we extend the result to general distribu-

tions where we show the asymptotic bias of DULA is small

for distributions that are close to being log-quadratic.

5.1. Convergence on Log-Quadratic Distributions

We consider a log-quadratic distribution π(θ) as defined

in Equation (5). This type of distributions appears in com-

mon tasks such as Ising models. The following theorem

summarizes DULA’s asymptotic accuracy for such π.

Theorem 5.1. If the target distribution π is log-quadratic

as defined in Equation (5).

Then the Markov chain following transition q(·|θ) in Equa-

tion (2) (i.e. DULA)

is reversible with respect to some distribution πα and πα

converges weakly to π as α→ 0. In particular, let λmin be

the smallest eigenvalue of W , then for any α > 0,

∥πα − π∥
1
≤ Z · exp

(

− 1

2α
− λmin

2

)

,

where Z is the normalizing constant of π.

Theorem 5.1 shows that the asymptotic bias of DULA de-

creases at a O(exp(−1/(2α)) rate which vanishes to zero

as the stepsize α → 0. This is similar to the case of the

Langevin algorithm in continuous spaces, where it con-

verges asymptotically when the stepsize goes to zero.

We empirically verify this theorem in Figure 1a. We run

DULA with varying stepsizes on a 2 by 2 Ising model. For

each stepsize, we run the chain long enough to make sure

it converged. The results clearly show that the distance be-

tween the stationary distribution of DULA and the target

distribution decreases as the stepsize decreases. Moreover,

the decreasing speed roughly aligns with a function contain-

ing exp(−1/(2α)), which demonstrates the convergence

rate with respect to α in Theorem 5.1.

5.2. Convergence on General Distributions

To generalize the convergence result from log-quadratic

distributions to general distributions, we first note that the

stationary distribution of DULA always exists and is unique

since its transition matrix is irreducible (Levin & Peres,

2017). Then we want to make sure the bound is tight in

the log-quadratic case and derive one that depends on how

much the distribution differs from being log-quadratic. A

natural measure of this difference is the distance of ∇U
to a linear function. Specifically, we assume that ∃W ∈
R

d×d, b ∈ R, ϵ ∈ R
+, such that

∥∇U(θ)− (2Wθ + b)∥
1
≤ ϵ, ∀ θ ∈ Θ. (6)

Then we have the following theorem for the asymptotic bias

of DULA on general distributions.

Theorem 5.2. Let π be the target distribution and π′(θ) =
exp (θ⊺Wθ + bθ) /Z ′ be the log-quadratic distribution sat-

isfying the assumption in Equation (6), then the stationary

distribution of DULA satisfies

∥πα − π∥
1
≤ 2c1 (exp (c2ϵ)− 1) + Z ′ exp

(

− 1

2α
− λmin

2

)

,

where c1 is a constant depending on π′ and α; c2 is a

constant depending on Θ and maxθ,θ′∈Θ ∥θ′ − θ∥
∞

.

The first term in the bound captures the bias induced by the

deviation of π from being log-quadratic, which decreases

in a O(exp(ϵ)) rate. The second term captures the bias by

using a non-zero stepsize which directly follows from Theo-

rem 5.1. To ensure a satisfying convergence, Theorem 5.2

suggests that we should choose a continuous extension for

U of which the gradient is close to a linear function.
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Dataset VAE (Conv) EBM (Gibbs) EBM (GWG) EBM (DULA) EBM (DMALA)

Static MNIST -82.41 -117.17 -80.01 -80.71 -79.46

Dynamic MNIST -80.40 -121.19 -80.51 -81.29 -79.54

Omniglot -97.65 -142.06 -94.72 -145.68 -91.11

Caltech Silhouettes -106.35 -163.50 -96.20 -100.52 -87.82

Table 1. EBM learning results. We report the log-likelihoods on the test set for different models trained on discrete image datasets.

Dataset
Training Log-likelihood (↑) Test RMSE (↓)

Gibbs GWG DULA DMALA Gibbs GWG DULA DMALA

COMPAS -0.4063 ±0.0016 -0.3729 ±0.0019 -0.3590 ±0.0003 -0.3394 ±0.0016 0.4718 ±0.0022 0.4757 ±0.0008 0.4879 ±0.0024 0.4879 ±0.0003

News -0.2374 ±0.0003 -0.2368 ±0.0003 -0.2339 ±0.0003 -0.2344 ±0.0005 0.1048 ±0.0025 0.1028 ±0.0023 0.0971 ±0.0012 0.0943 ±0.0009

Adult -0.4587 ±0.0029 -0.4444 ±0.0041 -0.3287 ±0.0027 -0.3190 ±0.0019 0.4826 ±0.0027 0.4709 ±0.0034 0.3971 ±0.0014 0.3931 ±0.0019

Blog -0.3829 ±0.0036 -0.3414 ±0.0028 -0.2694 ±0.0025 -0.2670 ±0.0031 0.4191 ±0.0061 0.3728 ±0.0034 0.3193 ±0.0021 0.3198 ±0.0043

Table 2. Experiment results with binary Bayesian neural networks on different datasets.

7.3. Learning Energy-based Models

Energy-based models (EBMs) have achieved great success

in various areas in machine learning (LeCun et al., 2006).

Generally, the density of an energy-based model is defined

as pθ(x) = exp(−Eθ(x))/Zθ, where Eθ is a function pa-

rameterized by θ and Zθ is the normalizing constant. Train-

ing EBM usually involves maximizing the log-likelihood,

L(θ) ≜ Ex∼pdata
[log pθ(x)]. However, direct optimization

needs to compute Zθ, which is intractable in most scenar-

ios. To deal with it, we usually estimate the gradient of the

log-likelihood instead,

∇L(θ) = Ex∼pθ
[∇θEθ(x)]− Ex∼pdata

[∇θEθ(x)] .

Though the first term is easy to estimate from the data, the

second term requires samples from pθ. Better samplers can

improve the training process of Eθ, leading to EBMs with

higher performance.

7.3.1. ISING MODELS

As in Grathwohl et al. (2021), we generate a 25 by 25

Ising model and generate training data by running a Gibbs

sampler. In this experiment, Eθ is an Ising model with learn-

able parameter Ŵ . We evaluate the samplers by computing

RMSE between the estimated Ŵ and the true W .

Results Our results are summarized in Figure 5. In (a),

DMALA and DULA always have smaller RMSE than base-

lines given the same number of iterations. In (b), DMALA

and DULA get a log-RMSE of−5.0 in 800s, while the base-

line methods fail to reach −5.0 in 1, 400s. In (c), we vary

the number of sampling steps per iteration from 5 to 100
(we omit the results of Gibbs-1 since it diverges with less

than 100 steps) and report the RMSE after 10,000 iterations.

DMALA and DULA outperform GWG consistently and the

improvement becomes larger when the number of sampling

steps becomes smaller, demonstrating the fast mixing of our

discrete Langevin proposal.

7.3.2. DEEP EBMS

We train deep EBMs where Eθ is a ResNet (He et al., 2016)

with Persistent Contrastive Divergence (Tieleman, 2008;

Tieleman & Hinton, 2009) and a replay buffer (Du & Mor-

datch, 2019) following Grathwohl et al. (2021). We run

DMALA and DULA for 40 steps per iteration. After train-

ing, we adopt Annealed Importance Sampling (Neal, 2001)

to estimate the likelihood. The results for GWG and Gibbs

are taken from Grathwohl et al. (2021), and for VAE are

taken from Tomczak & Welling (2018).

Results In Table 1, we see that DMALA yields the highest

log-likelihood among all methods and its generated images

in Figure 9 in Appendix I.4 are very close to the true im-

ages. DULA runs the same number of steps as DMALA

and GWG but only with half of the cost. We hypothesis that

running DULA for more steps or with an adaptive stepsize

schedule (Song & Ermon, 2019) will improve its perfor-

mance.

7.4. Binary Bayesian Neural Networks

Bayesian neural networks have been shown to provide

strong predictions and uncertainty estimation in deep learn-

ing (HernÂandez-Lobato & Adams, 2015; Zhang et al., 2020;

Liu et al., 2021a). In the meanwhile, binary neural net-

works (Courbariaux et al., 2016; Rastegari et al., 2016; Liu

et al., 2021b), i.e. the weight is in {−1, 1}, accelerate the

learning and significantly reduce computational and memory

costs. To combine the benefits of both worlds, we consider

training a binary Bayesian neural network with discrete sam-

pling. We conduct regression on four UCI datasets (Dua &
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Gibbs  Results:

all of which he started

all of which he started

all of which he started

all of which he started

four of which he started

Infilling Task: it also marked the first time the dodgers had won six straight opening day games , [MASK] of which he [MASK] .

GWG Results:

five of which he started

five of which he started

four of which he started

four of which he pitched

two of which he started

DMALA  Results:

two of which he started

one of which he started

three of which he led

all of which he selected

six of which he missed

Gibbs  Results:

given me the chance but had abandoned me instead

given me the chance but had abandoned me instead

given me the chance but had abandoned me instead

given me the chance but had abandoned me completely

given me the chance but had abandoned me anyway

Infilling Task: he had not , after all , [MASK] me the chance but [MASK] abandoned me [MASK] .

GWG Results:

given me the chance but had abandoned me instead

given me the chance but had abandoned me himself

offered me the chance but had abandoned me completely

gave me the chance but had abandoned me anyway

given me the chance but he abandoned me instead

DMALA  Results:

shown me the chance but had abandoned me anyway

shown me the chance but not abandoned me immediately

gives me the chance but also abandoned me perhaps 

grants me the chance but really abandoned me entirely

offered me the chance but yet abandoned me instead 

Figure 6. Examples of the generated sentences on text infilling. Blue and Red words are generated where Red indicates repetitive

generation. DMALA can generate semantically meaningful sentences with much higher diversity.

We use one-hot vectors to represent categorical variables

(see Appendix B for a discussion of DLP with categorical

variables in practice).

Results The quantitative and qualitative results are shown in

Table 3 and Figure 6. We find that DULA and DMALA can

fill in the blanks with similar quality as Gibbs and GWG but

with much higher diversity. Due to the nature of languages,

there exist strong correlations among words. It is generally

difficult to change one word given the others fixed while

still fulfilling the context. However, it is likely to have

another combination of words, which are all different from

the current ones, to satisfy the infilling. Because of this,

the ability to update all coordinates in one step makes our

methods especially suitable for this task, as reflected in the

evaluation metrics and generated sentences.

8. Conclusion

We propose a Langevin-like proposal for efficiently sam-

pling from complex high-dimensional discrete distributions.

Our method, discrete Langevin proposal (DLP), is able to ex-

plore discrete structure effectively based on the gradient in-

formation. For different usage scenarios, we have developed

several variants with DLP, including unadjusted, Metropolis-

adjusted, stochastic, and preconditioned versions. We prove

the asymptotic convergence of DLP without the MH step

under log-quadratic and general distributions. Empirical

results on many different problems demonstrate the superi-

ority of our method over baselines in general settings.

While the Langevin algorithm has achieved great success

in continuous spaces, there has always lacked a counterpart

of such simple, effective and general-purpose samplers in

discrete spaces. We hope our method sheds light on building

practical and accurate samplers for discrete distributions.

Acknowledgements

We would like to thank Yingzhen Li and the anony-

mous reviewers for their thoughtful comments on the

manuscript. This research is supported by CAREER-

1846421, SenSE2037267, EAGER-2041327, Office of Navy

Research, and NSF AI Institute for Foundations of Machine

Learning (IFML).

References

Brooks, S., Gelman, A., Jones, G., and Meng, X.-L. Hand-

book of markov chain monte carlo. CRC press, 2011.

Buza, K. Feedback prediction for blogs. In Data analysis,

machine learning and knowledge discovery, pp. 145±152.

Springer, 2014.

Cho, G. E. and Meyer, C. D. Comparison of perturbation

bounds for the stationary distribution of a markov chain.

Linear Algebra and its Applications, 335(1-3):137±150,

2001.

Courbariaux, M., Hubara, I., Soudry, D., El-Yaniv, R., and

Bengio, Y. Binarized neural networks: Training deep

neural networks with weights and activations constrained

to+ 1 or-1. arXiv preprint arXiv:1602.02830, 2016.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:

Pre-training of deep bidirectional transformers for lan-

guage understanding. Association for Computational

Linguistics, 2019.

Donahue, C., Lee, M., and Liang, P. Enabling language

models to fill in the blanks. In Proceedings of the 58th

Annual Meeting of the Association for Computational

Linguistics, pp. 2492±2501, 2020.

Du, Y. and Mordatch, I. Implicit generation and gener-

alization in energy-based models. Advances in Neural

Information Processing Systems, 2019.



A Langevin-like Sampler for Discrete Distributions

Dua, D. and Graff, C. UCI machine learning repository,

2017. URL http://archive.ics.uci.edu/ml.

Duane, S., Kennedy, A. D., Pendleton, B. J., and Roweth, D.

Hybrid monte carlo. Physics letters B, 195(2):216±222,

1987.

Durmus, A. and Moulines, E. High-dimensional bayesian in-

ference via the unadjusted langevin algorithm. Bernoulli,

25(4A):2854±2882, 2019.

Grathwohl, W., Wang, K.-C., Jacobsen, J.-H., Duvenaud, D.,

Norouzi, M., and Swersky, K. Your classifier is secretly

an energy based model and you should treat it like one. In

International Conference on Learning Representations,

2019.

Grathwohl, W., Swersky, K., Hashemi, M., Duvenaud, D.,

and Maddison, C. J. Oops i took a gradient: Scalable sam-

pling for discrete distributions. International Conference

on Machine Learning, 2021.

Grenander, U. and Miller, M. I. Representations of knowl-

edge in complex systems. Journal of the Royal Statisti-

cal Society: Series B (Methodological), 56(4):549±581,

1994.

Gu, J., Bradbury, J., Xiong, C., Li, V. O., and Socher, R.

Non-autoregressive neural machine translation. In Inter-

national Conference on Learning Representations, 2018.

Han, J., Ding, F., Liu, X., Torresani, L., Peng, J., and Liu,

Q. Stein variational inference for discrete distributions.

In International Conference on Artificial Intelligence and

Statistics, pp. 4563±4572. PMLR, 2020.

Hastings, W. K. Monte carlo sampling methods using

markov chains and their applications. 1970.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-

ing for image recognition. In Proceedings of the IEEE

conference on computer vision and pattern recognition,

pp. 770±778, 2016.

HernÂandez-Lobato, J. M. and Adams, R. Probabilistic back-

propagation for scalable learning of bayesian neural net-

works. In International conference on machine learning,

pp. 1861±1869. PMLR, 2015.

Hinton, G. E. Training products of experts by minimizing

contrastive divergence. Neural computation, 14(8):1771±

1800, 2002.

J. Angwin, J. Larson, S. M. and Kirchner, L. Machine bias:

There’s software used across the country to predict future

criminals. and it’s biased against blacks. ProPublica,

2016.

Jaini, P., Nielsen, D., and Welling, M. Sampling in com-

binatorial spaces with survae flow augmented mcmc. In

International Conference on Artificial Intelligence and

Statistics, pp. 3349±3357. PMLR, 2021.

Kingma, D. P. and Ba, J. Adam: A method for stochas-

tic optimization. International Conference for Learning

Representations, 2015.

LeCun, Y., Chopra, S., Hadsell, R., Ranzato, M., and Huang,

F. A tutorial on energy-based learning. Predicting struc-

tured data, 1(0), 2006.

Levin, D. A. and Peres, Y. Markov chains and mixing times,

volume 107. American Mathematical Soc., 2017.

Li, C., Chen, C., Carlson, D., and Carin, L. Preconditioned

stochastic gradient langevin dynamics for deep neural

networks. In Thirtieth AAAI Conference on Artificial

Intelligence, 2016.

Liu, X., Tong, X., and Liu, Q. Sampling with trusthworthy

constraints: A variational gradient framework. Advances

in Neural Information Processing Systems, 34, 2021a.

Liu, X., Ye, M., Zhou, D., and Liu, Q. Post-training quan-

tization with multiple points: Mixed precision without

mixed precision. In Proceedings of the AAAI Conference

on Artificial Intelligence, volume 35, pp. 8697±8705,

2021b.

Merity, S., Xiong, C., Bradbury, J., and Socher, R. Pointer

sentinel mixture models. International conference on

machine learning, 2017.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N.,

Teller, A. H., and Teller, E. Equation of state calculations

by fast computing machines. The journal of chemical

physics, 21(6):1087±1092, 1953.

Neal, R. M. Annealed importance sampling. Statistics and

computing, 11(2):125±139, 2001.

Neal, R. M. et al. Mcmc using hamiltonian dynamics. Hand-

book of markov chain monte carlo, 2(11):2, 2011.

Nishimura, A., Dunson, D. B., and Lu, J. Discontinu-

ous hamiltonian monte carlo for discrete parameters and

discontinuous likelihoods. Biometrika, 107(2):365±380,

2020.

Pakman, A. and Paninski, L. Auxiliary-variable exact hamil-

tonian monte carlo samplers for binary distributions. Ad-

vances in Neural Information Processing Systems, 2013.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. Bleu:

a method for automatic evaluation of machine transla-

tion. In Proceedings of the 40th annual meeting of the

Association for Computational Linguistics, pp. 311±318,

2002.



A Langevin-like Sampler for Discrete Distributions

Peters, J. W. and Welling, M. Probabilistic binary neural

networks. arXiv preprint arXiv:1809.03368, 2018.

Power, S. and Goldman, J. V. Accelerated sampling on

discrete spaces with non-reversible markov processes.

arXiv preprint arXiv:1912.04681, 2019.

Ramachandran, P., Zoph, B., and Le, Q. V. Searching for

activation functions. arXiv preprint arXiv:1710.05941,

2017.

Rastegari, M., Ordonez, V., Redmon, J., and Farhadi, A.

Xnor-net: Imagenet classification using binary convo-

lutional neural networks. In European conference on

computer vision, pp. 525±542. Springer, 2016.

Roberts, G. O. and Stramer, O. Langevin diffusions and

metropolis-hastings algorithms. Methodology and com-

puting in applied probability, 4(4):337±357, 2002.

Roberts, G. O. and Tweedie, R. L. Exponential convergence

of langevin distributions and their discrete approxima-

tions. Bernoulli, pp. 341±363, 1996.

Sansone, E. Lsb: Local self-balancing mcmc in discrete

spaces. arXiv preprint arXiv:2109.03867, 2021.

Schweitzer, P. J. Perturbation theory and finite markov

chains. Journal of Applied Probability, 5(2):401±413,

1968.

Song, Y. and Ermon, S. Generative modeling by estimating

gradients of the data distribution. Advances in Neural

Information Processing Systems, 2019.

Sun, H., Dai, H., Xia, W., and Ramamurthy, A. Path auxil-

iary proposal for mcmc in discrete space. In International

Conference on Learning Representations, 2022.

Tieleman, T. Training restricted boltzmann machines using

approximations to the likelihood gradient. In Proceedings

of the 25th international conference on Machine learning,

pp. 1064±1071, 2008.

Tieleman, T. and Hinton, G. Using fast weights to improve

persistent contrastive divergence. In Proceedings of the

26th annual international conference on machine learn-

ing, pp. 1033±1040, 2009.

Titsias, M. K. and Yau, C. The hamming ball sampler.

Journal of the American Statistical Association, 112(520):

1598±1611, 2017.

Tomczak, J. and Welling, M. Vae with a vampprior. In

International Conference on Artificial Intelligence and

Statistics, pp. 1214±1223. PMLR, 2018.

Wang, A. and Cho, K. Bert has a mouth, and it must speak:

Bert as a markov random field language model. arXiv

preprint arXiv:1902.04094, 2019.

Wang, J., Huda, A., Lunyak, V. V., and Jordan, I. K. A gibbs

sampling strategy applied to the mapping of ambiguous

short-sequence tags. Bioinformatics, 26(20):2501±2508,

2010.

Welling, M. and Teh, Y. W. Bayesian learning via stochastic

gradient langevin dynamics. In Proceedings of the 28th

international conference on machine learning, pp. 681±

688. Citeseer, 2011.

Yu, L., Zhang, W., Wang, J., and Yu, Y. Seqgan: Sequence

generative adversarial nets with policy gradient. In Pro-

ceedings of the AAAI conference on artificial intelligence,

volume 31, 2017.

Zanella, G. Informed proposals for local mcmc in discrete

spaces. Journal of the American Statistical Association,

115(530):852±865, 2020.

Zhang, D., Malkin, N., Liu, Z., Volokhova, A., Courville,

A., and Bengio, Y. Generative flow networks for discrete

probabilistic modeling. arXiv preprint arXiv:2202.01361,

2022.

Zhang, R., Li, C., Zhang, J., Chen, C., and Wilson, A. G.

Cyclical stochastic gradient mcmc for bayesian deep

learning. In International Conference on Learning Rep-

resentations, 2020.

Zhou, C., Gu, J., and Neubig, G. Understanding knowledge

distillation in non-autoregressive machine translation. In

International Conference on Learning Representations,

2019.

Zhou, G. Mixed hamiltonian monte carlo for mixed discrete

and continuous variables. Advances in Neural Informa-

tion Processing Systems, 33:17094±17104, 2020.

Zhu, W., Hu, Z., and Xing, E. Text infilling. arXiv preprint

arXiv:1901.00158, 2019.

Zhu, Y., Kiros, R., Zemel, R., Salakhutdinov, R., Urta-

sun, R., Torralba, A., and Fidler, S. Aligning books and

movies: Towards story-like visual explanations by watch-

ing movies and reading books. In Proceedings of the

IEEE international conference on computer vision, pp.

19±27, 2015.

Zhu, Y., Lu, S., Zheng, L., Guo, J., Zhang, W., Wang, J.,

and Yu, Y. Texygen: A benchmarking platform for text

generation models. In The 41st International ACM SIGIR

Conference on Research & Development in Information

Retrieval, pp. 1097±1100, 2018.


