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Abstract

We propose discrete Langevin proposal (DLP), a
simple and scalable gradient-based proposal for
sampling complex high-dimensional discrete dis-
tributions. In contrast to Gibbs sampling-based
methods, DLP is able to update all coordinates
in parallel in a single step and the magnitude
of changes is controlled by a stepsize. This al-
lows a cheap and efficient exploration in the space
of high-dimensional and strongly correlated vari-
ables. We prove the efficiency of DLP by show-
ing that the asymptotic bias of the stationary dis-
tribution is zero for log-quadratic distributions,
and is small for distributions that are close to
being log-quadratic. With DLP, we develop sev-
eral variants of sampling algorithms, including
unadjusted, Metropolis-adjusted, stochastic and
preconditioned versions. DLP outperforms many
popular alternatives on a wide variety of tasks,
including Ising models, restricted Boltzmann ma-
chines, deep energy-based models, binary neural
networks and language generation.

1. Introduction

Discrete variables are ubiquitous in machine learning prob-
lems ranging from discrete data such as text (Wang &
Cho, 2019; Gu et al., 2018) and genome (Wang et al.,
2010), to discrete models such as low-precision neural net-
works (Courbariaux et al., 2016; Peters & Welling, 2018).
As data and models become large-scale and complicated,
there is an urgent need for efficient sampling from complex
high-dimensional discrete distributions.

Markov Chain Monte Carlo (MCMC) methods are typically
used to perform sampling, of which the efficiency is largely
affected by the proposal distribution (Brooks et al., 2011).
For general discrete distributions, Gibbs sampling is broadly
applied, which resamples a variable from its conditional
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distribution with the remaining variables fixed. Recently,
gradient information has been incorporated in the proposal
of Gibbs sampling, leading to a substantial boost to the
convergence speed of the sampler in discrete spaces (Grath-
wohl et al., 2021). However, Gibbs-like proposals often
suffer from high-dimensional and highly correlated distribu-
tions due to conducting a small update per step. In contrast,
proposals in continuous spaces that leverage gradients can
usually make large effective moves. One of the most popu-
lar methods is the Langevin algorithm (Grenander & Miller,
1994; Roberts & Tweedie, 1996; Roberts & Stramer, 2002),
which drives the sampler towards high probability regions
following a Langevin diffusion. Due to its simplicity and
efficiency, the Langevin algorithm has been widely used for
sampling from complicated high-dimensional continuous
distributions in machine learning and deep learning tasks
(Welling & Teh, 2011; Li et al., 2016; Grathwohl et al.,
2019; Song & Ermon, 2019). Its great success makes us
ask: what is the simplest and most natural analogue of the
Langevin algorithm in discrete domains?

In this paper, we develop such a Langevin-like proposal for
discrete distributions, which can update many coordinates
of the variable based on one gradient computation. By re-
forming the proposal from the standard Langevin algorithm,
we find that it can be easily adapted to discrete spaces and
can be cheaply computed in parallel due to coordinatewise
factorization. We call this proposal discrete Langevin pro-
posal (DLP). Inheriting from the Langevin algorithm, DLP
is able to update all coordinates in a single step in parallel
and the magnitude of changes is controlled by a stepsize.
Using this proposal, we are able to obtain high-quality sam-
ples conveniently on a variety of tasks. We summarize our
contributions as the following:

* We propose discrete Langevin proposal (DLP), a
gradient-based proposal for sampling discrete distri-
butions. DLP is able to update many coordinates in a
single step with only one gradient computation.

* We theoretically prove the efficiency of DLP by show-
ing that without a Metropolis-Hastings correction, the
asymptotic bias of DLP is zero for log-quadratic distri-
butions, and is small for distributions that are close to
being log-quadratic.
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* With DLP, we develop several variants of sampling
algorithms, including unadjusted, Metropolis-adjusted,
stochastic and preconditioned versions, indicating the
general applicability of DLP for different scenarios.

* We provide extensive experimental results, including
Ising models, restricted Boltzmann machines, deep
energy-based models, binary Bayesian neural networks
and text generation, to demonstrate the superiority of
DLP in general settings.

2. Related Work

Gibbs Sampling-based Methods Gibbs sampling is per-
haps the de facto method for sampling from general discrete
distributions. In each step, it iteratively updates one vari-
able leaving the others unchanged. Updating a block of
variables is possible, but typically with an increasing cost
along with the increase of the block size. To speed up the
convergence of Gibbs sampling in high dimensions, Grath-
wohl et al. (2021) uses gradient information to choose which
coordinate to update and Titsias & Yau (2017) introduces
auxiliary variables to trade off the number of updated vari-
ables in a block for less computation. However, inheriting
from Gibbs sampling, these methods still require a large
overhead to make significant changes (e.g. > 5 coordinates)
to the configuration in one step.

Locally-Balanced Proposals Based on the information
of a local neighborhood of the current position, locally-
balanced proposals have been developed for sampling from
discrete distributions (Zanella, 2020). Later they have been
extended to continuous-time Markov processes (Power &
Goldman, 2019) and have been tuned via mutual informa-
tion (Sansone, 2021). Similar to Gibbs sampling-based
methods, this type of proposals is very expensive to con-
struct when the local neighborhood is large, preventing
them from making large moves in discrete spaces. A re-
cent work (Sun et al., 2022) explores a larger neighborhood
by making a sequence of small movements. However, it
still only updates one coordinate per gradient computation
and the update has to be done in sequence, while on the
contrary, our method can update many coordinates based on
one gradient computation in parallel.

Continuous Relaxation Incorporating gradients in the
proposal has been a great success in continuous spaces,
such as the Langevin algorithm, Hamiltonian Monte Carlo
(HMC) (Duane et al., 1987; Neal et al., 2011) and their
variants. To take advantage of this success, continuous re-
laxation is applied which performs sampling in a continuous
space by gradient-based methods and then transforms the
collected samples to the original discrete space (Pakman &
Paninski, 2013; Nishimura et al., 2020; Han et al., 2020;

Zhou, 2020; Jaini et al., 2021; Zhang et al., 2022). The
efficiency of continuous relaxation highly depends on the
properties of the extended continuous distributions which
may be difficult to sample from. As shown in previous
work, this type of methods usually does not scale to high
dimensional discrete distributions (Grathwohl et al., 2021).

3. Preliminaries
We consider sampling from a target distribution

7(6) =  D(U6),

Vo € O,

where 0 is a d-dimensional variable, © is a finite! variable
domain, U is the energy function, and Z is the normalizing
constant for 7 to be a distribution. In this paper, we restrict
to a factorized domain, that is © = H?Zl O;, and mainly
consider © to be {0,1}4 or {0,1,...,S — 1}4. Addition-
ally, we assume that U can be extended to a differentiable
function in RY. Many popular models have such natural
extensions such as Ising models, Potts models, restricted
Boltzmann machines, and (deep) energy-based models.

Langevin Algorithm In continuous spaces, one of the
most powerful sampling methods is the Langevin algorithm,
which follows a Langevin diffusion to update variables:

0 =0+ %VU(G) Fyag, £~ N (0, Igxa),

where « is a stepsize. The gradient helps the sampler to
explore high probability regions efficiently. Generally, com-
puting the gradient and sampling a Gaussian variable can be
done cheaply in parallel on CPUs and GPUs. As a result, the
Langevin algorithm is especially compelling for complex
high-dimensional distributions, and has been extensively
used in machine learning and deep learning.

4. Discrete Langevin Proposal

In this section, we propose discrete Langevin proposal
(DLP), a simple counterpart of the Langevin algorithm in
discrete domains.

At the current position 6, the proposal distribution ¢(+|6)
produces the next position to move to. As introduced in
Section 3, ¢(|0) of the Langevin algorithm in continuous
spaces can be viewed as a Gaussian distribution with mean
0+ «/2VU () and covariance I« 4. Obviously we could
not use this Gaussian proposal in discrete spaces. However,
we notice that by explicitly indicating the spaces where

"We consider finite discrete distributions in the paper. However,
our algorithms can be easily extended to infinite distributions. See
Appendix C for a discussion.
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the normalizing constant is computed over, this proposal is
essentially applicable to any kind of spaces. Specifically, we
write out the variable domain © explicitly in the proposal
distribution,

exp (=5 [0 =0 = 3vU©)]3)

a(0'16) = 7o) ,

(D

where the normalizing constant is integrated (continuous)
or summed (discrete) over © (we use sum below)

Ze(0) = Z exp (—2104 ‘

0'c©

00— Z‘VU(Q)Hz) .

Here, © can be any space without affecting ¢ being a valid
proposal. As a special case, when © = RY, it follows that
Zpa(0) = (2ma)?? and recovers the Gaussian proposal
in the standard Langevin algorithm. When O is a discrete
space, we naturally obtain a gradient-based proposal for
discrete variables.

Computing the sum over the full space in Zg(0) is gen-
erally very expensive, for example, the cost is O(S?) for
© = {0,1,...,8 — 1}%. This is why previous methods
often restrict their proposals to a small neighborhood. A
key feature of the proposal in Equation (1) is that it can be
factorized coordinatewisely. To see this, we write Equa-
tion (1) as ¢(6'|0) = H?:l qi(0;]0), where ¢;(0%|0) is a
simple categorical distribution of form:

I n)\2
Categorical (Softmax(%VU(&)i(t% —0;) — %)),
2

with 0/ € ©; (note that the equation does not contain the
term (a/2VU (6);)? because it is independent of 6’ and will
not affect the softmax result). Combining with coordinate-
wise factorized domain ©, the above proposal enables us
to update each coordinate in parallel after computing the
gradient VU (9). The cost of gradient computation is also
O(d), therefore, the overall cost of constructing this pro-
posal depends linearly rather than exponentially on d. This
allows the sampler to explore the full space with the gradient
information without paying a prohibitive cost.

We denote the proposal in Equation (2) as Discrete Langevin
Proposal (DLP). DLP can be used with or without a
Metropolis-Hastings (MH) step (Metropolis et al., 1953;
Hastings, 1970), which is usually combined with proposals
to make the Markov chain reversible. Specifically, after
generating the next position 6 from a distribution ¢(+|6),
the MH step accepts it with probability

3)

min (1,exp (U0) —U(6)) Q(W)) .

q(0'10)

By rejecting some of the proposed positions, the Markov
chain is guaranteed to converge asymptotically to the target
distribution.

We outline the sampling algorithms using DLP in Algo-
rithm 1. We call DLP without the MH step as discrete
unadjusted Langevin algorithm (DULA) and DLP with the
MH step as discrete Metropolis-adjusted Langevin algo-
rithm (DMALA). Similar to MALA and ULA in continu-
ous spaces (Grenander & Miller, 1994; Roberts & Stramer,
2002), DMALA contains two gradient computations and
two function evaluations and is guaranteed to converge to
the target distribution, while DULA may have asymptotic
bias, but only requires one gradient computation, which is
especially valuable when performing the MH step is expen-
sive such as in large-scale Bayesian inference (Welling &
Teh, 2011; Durmus & Moulines, 2019).

Connection to Locally-Balanced Proposals Zanella
(2020) has developed a class of locally-balanced propos-
als that can be used in both discrete and continuous spaces.
One of the locally-balanced proposals is defined as

1 6" —6]I*
2U(9) - 20 )

1
r(0')0) < exp <2U(9’) -
where 8’ € ©. DLP can be viewed as a first-order Taylor
series approximation to r(6’|#) using

U(x)-UB)=VUO) (x—0), Va €O.

Zanella (2020) discussed the connection between their
proposals and Metropolis-adjusted Langevin algorithm
(MALA) in continuous spaces but did not explore it in dis-
crete spaces. Grathwohl et al. (2021) uses a similar Taylor
series approximation for another locally-balanced proposal,

1010 xo (3U0) - 500) . @

where 6’ belongs to a hamming ball centered at § with
window size 1. Like Gibbs sampling, their proposal only
updates one coordinate per step. They also propose an exten-
sion of their method to update X coordinates per step, but
with X times gradient computations. See Appendix D for a
discussion on Taylor series approximation for Equation (4)
without window sizes.

Beyond previous works, we carefully investigate the proper-
ties of the Langevin-like proposal in Equation (2) in discrete
spaces, providing both convergence analysis and extensive
empirical demonstration. We find this simple approach ex-
plores the discrete structure surprisingly well, leading to a
substantial improvement on a range of tasks.



A Langevin-like Sampler for Discrete Distributions

Algorithm 1 Samplers with Discrete Langevin Proposal
(DULA and DMALA).
given: Stepsize a.
loop
for i =1 : d do {Can be done in parallel}
construct ¢;(-|0) as in Equation (2)
sample 0, ~ ¢;(-|0)
end for

> Optionally, do the MH step
compute (¢/]6) — [T, ¢ (¢1/6)
and q(616") = 1, a: (6:16")
set 0 < 6’ with probability in Equation (3)
end loop
output: samples {6}

5. Convergence Analysis for DULA

In the previous section, we showed that DLP is a convenient
gradient-based proposal for discrete distributions. However,
the effectiveness of a proposal also depends on how close its
underlying stationary distribution is to the target distribution.
Because if it is far, even if using the MH step to correct the
bias, the acceptance probability will be very low. In this
section, we provide an asymptotic convergence analysis for
DULA (i.e. the sampler using DLP without the MH step).
Specifically, we first prove in Section 5.1 that when the
stepsize o — 0, the asymptotic bias of DULA is zero for
log-quadratic distributions, which is defined as

m(0) x exp ((TWEO +b70),0 € © )

with some constants W € R%? and b € R¢. Without loss of
generality, we assume W is symmetric (otherwise we can
replace W with (W + WT)/2 for the eigendecomposition).

Later in Section 5.2, we extend the result to general distribu-
tions where we show the asymptotic bias of DULA is small
for distributions that are close to being log-quadratic.

5.1. Convergence on Log-Quadratic Distributions

We consider a log-quadratic distribution () as defined
in Equation (5). This type of distributions appears in com-
mon tasks such as Ising models. The following theorem
summarizes DULA’s asymptotic accuracy for such 7.

Theorem 5.1. [f the target distribution 7 is log-quadratic
as defined in Equation (5).

Then the Markov chain following transition q(-|0) in Equa-
tion (2) (i.e. DULA)

is reversible with respect to some distribution ., and T,
converges weakly to m as o — 0. In particular, let )\, be

the smallest eigenvalue of W, then for any o > 0,

1 Aumi
o = 7l < 2+ cxp (5 = 25,

where Z is the normalizing constant of .

Theorem 5.1 shows that the asymptotic bias of DULA de-
creases at a O(exp(—1/(2a)) rate which vanishes to zero
as the stepsize a — 0. This is similar to the case of the
Langevin algorithm in continuous spaces, where it con-
verges asymptotically when the stepsize goes to zero.

We empirically verify this theorem in Figure 1a. We run
DULA with varying stepsizes on a 2 by 2 Ising model. For
each stepsize, we run the chain long enough to make sure
it converged. The results clearly show that the distance be-
tween the stationary distribution of DULA and the target
distribution decreases as the stepsize decreases. Moreover,
the decreasing speed roughly aligns with a function contain-
ing exp(—1/(2a)), which demonstrates the convergence
rate with respect to o in Theorem 5.1.

5.2. Convergence on General Distributions

To generalize the convergence result from log-quadratic
distributions to general distributions, we first note that the
stationary distribution of DULA always exists and is unique
since its transition matrix is irreducible (Levin & Peres,
2017). Then we want to make sure the bound is tight in
the log-quadratic case and derive one that depends on how
much the distribution differs from being log-quadratic. A
natural measure of this difference is the distance of VU
to a linear function. Specifically, we assume that 3W &
R4 b € R, e € RT, such that

IVU(0) — (2W6 +b)||, < e,V 0 € ©. (6)

Then we have the following theorem for the asymptotic bias
of DULA on general distributions.

Theorem 5.2. Let 7 be the target distribution and 7' (0) =
exp (0TWO + b0) /Z' be the log-quadratic distribution sat-
isfying the assumption in Equation (6), then the stationary
distribution of DULA satisfies

1 )\min
7o — 7|y < 2¢1 (exp (c2€) — 1)+ Z'exp (204 -

where ¢y is a constant depending on 7' and «; co is a
constant depending on © and maxg ¢/ co ||0’ — 0|

[e'e

The first term in the bound captures the bias induced by the
deviation of 7 from being log-quadratic, which decreases
in a O(exp(e)) rate. The second term captures the bias by
using a non-zero stepsize which directly follows from Theo-
rem 5.1. To ensure a satisfying convergence, Theorem 5.2
suggests that we should choose a continuous extension for
U of which the gradient is close to a linear function.
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Example. To empirically verify Theorem 5.2, we consider
a 1-d distribution 7 () o exp (ab? + b + 2esin(67/2))
where § € {—1,1} and € € R. The gradient is VU (0) =
2a0 + b + em cos(07/2) of which the closeness to a linear
function in R is controlled by e. From Figure 1b, we can
see that when € decreases, the asymptotic bias of DULA
decrease, aligning with Theorem 5.2.

In fact, the example of 7(0) o exp (2esin(f7/2)) with
0 € {—1,1} can be considered as an counterexample for
any existing gradient-based proposals in discrete domains.
The gradient on {—1, 1} is always zero regardless the value
of € whereas the target distribution clearly depends on e.
This suggests that we should be careful with the choice
of the continuous extension of U since some extensions
will not provide useful gradient information to guide the
exploration. Our Theorem 5.2 provides a guide about how
to choose such an extension.
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Figure 1. Empirical verification of theorems. Left: DULA with
varying stepsizes on an Ising model. Right: 1-d distribution with
varying closeness € to being log-quadratic.

6. Other Variants

Thanks to the similarity with the standard Langevin algo-
rithm, discrete Langevin proposal can be extended to dif-
ferent usage scenarios following the rich literature of the
standard Langevin algorithm. We briefly discuss two such
variants in this section.

With Stochastic Gradients Similar to Stochastic gradient
Langevin dynamics (SGLD) (Welling & Teh, 2011), we can
replace the full-batch gradient with an unbiased stochastic
estimation VU in DLP, which will further reduce the cost of
our method on large-scale problems. To show the influence
of stochastic estimation, we consider a binary domain for
simplicity. We further assume the stochastic gradient has
a bounded variance and the norm of the true gradient and
the stochastic gradient are bounded. Then we have the
following theorem.

Theorem 6.1. Let © = {0,1}%. We assume that the
true gradient VU and the stochastic gradient VU sat-
isfy: E[VU;] = VU;, E[VU;] < o2 for some constant
o; |VU|, |[VU;| < L for some constant L. Let q; and §; be
the discrete Langevin proposal for the coordinate i using the
full-batch gradient and the stochastic gradient respectively,

t/’lel’l
Qz QZ 1 = p 2 .

This suggests that when the variance of the stochastic gradi-
ent or the stepsize decreases, the stochastic DLP in expec-
tation will be closer to the full-batch DLP. We test DULA
with the stochastic gradient on a binary Bayesian neural
network and empirically verify it works well in practice in
Appendix L5.

With Preconditioners When 7 alters more quickly in
some coordinates than others, a single stepsize may result
in slow mixing. Under this situation, a preconditiner that
adapts the stepsize for different coordinates can help al-
leviate this problem. We show that it is easy for DLP to
incorporate diagonal preconditioners, as long as the coor-
dinatewise factorization still holds. For example, when the
preconditioner is constant, that is we scale each coordinate
by a number g;,

discrete Langevin proposal becomes

N2
4:(8,]6) ox exp @vmmi(eg o) - %) .
Similar to continuous spaces, g; adjusts the stepsize for dif-
ferent coordinates considering their variation speed. The
above proposal is obtained by applying a coordinate trans-
formation to 6 and then transforming the DLP update back
to the original space. In this way, the theoretical results in
Section 5 directly apply to it. We put more details and an
Ising example in Appendix H.

7. Experiments

We conduct a thorough empirical evaluation of discrete
Langevin proposal (DLP), comparing to a range of popular
baselines, including Gibbs sampling, Gibbs with Gradient
(GWG) (Grathwohl et al., 2021), Hamming ball (HB) (Tit-
sias & Yau, 2017)—three Gibbs-based approaches; discrete
Stein Variational Gradient Descent (DSVGD) (Han et al.,
2020) and relaxed MALA (RMALA) (Grathwohl et al.,
2021)—two continuous relaxation methods; and a locally
balanced sampler (LB-1) (Zanella, 2020) which uses the
locally-balanced proposal in Equation (4) with window size
1. We denote Gibbs-X for Gibbs sampling with a block-size
of X, GWG-X for GWG with X indices being modified
per step (see D.2 in Grathwohl et al. (2021) for more de-
tails of GWG-X), HB-X-Y for HB with a block size of
X and a hamming ball size of Y. All methods are imple-
mented in Pyt orch and we use the official release of code
from previous papers when possible. In our implementation,
DMALA (i.e. discrete Langevin proposal with an MH step)
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has a similar cost per step with GWG-1 (the main costs
for them are one gradient computation and two function
evaluations), which is roughly 2.5x of Gibbs-1. DULA (i.e.
discrete Langevin proposal without an MH step) has a sim-
ilar cost per step with Gibbs-1 (the main cost for DULA
is one gradient computation, and for Gibbs-1 is d function

evaluations). We released the code at https://github.

com/rugizhang/discrete-langevin.

7.1. Sampling From Ising Models

We consider a 5 by 5 lattice Ising model with random vari-
able # € {—1,1}%, and d = 5 x 5 = 25. The energy
function is

U(0) = afTW0 + b0,

where W is a binary adjacency matrix, a = 0.1 is the con-
nectivity strength and b = 0.2 is the bias. We first show that
DLP can change many coordinates in one iteration while
still maintaining a high acceptance rate in Figure 2 (Left).
When the stepsize o = 0.6, on average DMALA can change
6 coordinates in one iteration with an acceptance rate 52%
in the MH step. In comparison, GWG-6 (which at most
changes 6 coordinates) only has 43% acceptance rate, not to
mention it requires 6x cost of DMALA. This demonstrates
that DLP can make large and effective moves in discrete
spaces. We compare the root-mean-square error (RMSE)
between the estimated mean and the true mean in Figure 3.
DMALA is the fastest to converge in terms of both run-
time and iterations. This demonstrates the importance of
(1) using gradient information to explore the space com-
pared to Gibbs and HB; (2) sampling in the original discrete
space compared to DSVGD and RMALA; and (3) chang-
ing many coordinates in one step compared to LB-1 and
GWG-1. GWG-4 underperforms because of a lower accep-
tance rate than DMALA. DULA can achieve a similar result
as LB-1 and GWG-1 but worse than DMALA, indicating
that the MH step accelerates the convergence on this task.
In Figure 2 (Right), we compare the effective sample size
(ESS) per second for exact samplers (i.e. having the target
distribution as its stationary distribution). DMALA signifi-
cantly outperforms other methods, indicating the correlation
among its samples is low due to making significant updates
in each step. We additionally present results on Ising models
with different connectivity strength a in Appendix 1.2.

In what follows, we mainly compare our method with GWG-
1 and Gibbs-1, as other methods either could not give rea-
sonable results or are too costly to run.

7.2. Sampling From Restricted Boltzmann Machines

Restricted Boltzmann Machines (RBMs) are generative arti-
ficial neural networks, which learn an unnormalized proba-
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Figure 2. Ising model sampling results. Left: DLP is able to
change many coordinates while keeping a high acceptance rate.
Right: DMALA yields the largest effective sample size (ESS) per
second among all the methods compared.
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Figure 3. Ising model sampling results. DMALA outperforms the
baselines in both number of iterations and running time.

bility over inputs,

U(0) = _ Softplus(W6 + a); + bT0,

where {W, a,b} are parameters and 6 € {0,1}%. Follow-
ing Grathwohl et al. (2021), we train {W, a, b} with con-
trastive divergence (Hinton, 2002) on the MNIST dataset
for one epoch. We measure the Maximum Mean Discrep-
ancy (MMD) between the obtained samples and those from
Block-Gibbs sampling, which utilizes the known structure.

Results The results are shown in Figure 4. Since DULA
and DMALA can update multiple coordinates in a single
iteration, they converge remarkably faster than baselines in
both iterations and runtime. Furthermore, DMALA reaches
the lowest MMD (=~ —6.5) among all the methods after
5,000 iterations, demonstrating the importance of the MH
step. We leave the sampled images in Appendix 1.3.
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Figure 4. RBM sampling results. DULA and DMALA converge
to the true distribution faster than other methods.
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Dataset VAE (Conv) EBM (Gibbs) EBM (GWG) | EBM (DULA) EBM (DMALA)
Static MNIST 82.41 117.17 -80.01 -80.71 -79.46
Dynamic MNIST -80.40 -121.19 -80.51 -81.29 -79.54
Omniglot 97.65 -142.06 94.72 -145.68 91.11
Caltech Silhouettes |  -106.35 -163.50 -96.20 -100.52 -87.82

Table 1. EBM learning results. We report the log-likelihoods on the test set for different models trained on discrete image datasets.

Dataset Training Log-likelihood (1) Test RMSE ({)
Gibbs GWG DULA DMALA Gibbs GWG DULA DMALA
COMPAS | -0.4063 +0.0016 -0.3729 +0.0019  -0.3590 +0.0003 -0.3394 +0.0016 | 0.4718 +0.0022 0.4757 +0.0008 0.4879 +0.0024 0.4879 +0.0003
News -0.2374 +0.0003  -0.2368 +0.0003  -0.2339 +0.0003 -0.2344 +0.0005 | 0.1048 +0.0025 0.1028 +0.0023  0.0971 +0.0012  0.0943 +0.0009
Adult -0.4587 400029 -0.4444 +0.0041  -0.3287 +0.0027 -0.3190 +0.0019 | 0.4826 +0.0027 0.4709 +0.0034 0.3971 +0.0014  0.3931 +0.0019
Blog -0.3829 +0.0036  -0.3414 +o0.0028 -0.2694 +0.0025 -0.2670 t0.0031 | 0.4191 +o.0061 0.3728 +0.0034  0.3193 +0.0021  0.3198 -+0.0043

Table 2. Experiment results with binary Bayesian neural networks on different datasets.

7.3. Learning Energy-based Models

Energy-based models (EBMs) have achieved great success
in various areas in machine learning (LeCun et al., 2006).
Generally, the density of an energy-based model is defined
as po(x) = exp(—FEy(x))/Zp, where Ey is a function pa-
rameterized by 6 and Zj is the normalizing constant. Train-
ing EBM usually involves maximizing the log-likelihood,
L(0) £ Eyrpy,,. [logpe(z)]. However, direct optimization
needs to compute Zp, which is intractable in most scenar-
ios. To deal with it, we usually estimate the gradient of the
log-likelihood instead,

VL(O) = Egnpy [VoEo(2)] — Evnpaara [VoEo(2)].
Though the first term is easy to estimate from the data, the
second term requires samples from py. Better samplers can
improve the training process of Ey, leading to EBMs with
higher performance.

7.3.1. ISING MODELS

As in Grathwohl et al. (2021), we generate a 25 by 25
Ising model and generate training data by running a Gibbs
sampler. In this experiment, Fj is an Ising model with learn-
able parameter W. We evaluate the samplers by computing
RMSE between the estimated 1/ and the true 1.

Results Our results are summarized in Figure 5. In (a),
DMALA and DULA always have smaller RMSE than base-
lines given the same number of iterations. In (b), DMALA
and DULA get a log-RMSE of —5.0 in 800s, while the base-
line methods fail to reach —5.0 in 1, 400s. In (c), we vary
the number of sampling steps per iteration from 5 to 100
(we omit the results of Gibbs-1 since it diverges with less
than 100 steps) and report the RMSE after 10,000 iterations.
DMALA and DULA outperform GWG consistently and the
improvement becomes larger when the number of sampling

steps becomes smaller, demonstrating the fast mixing of our
discrete Langevin proposal.

7.3.2. DEEP EBMS

We train deep EBMs where F)y is a ResNet (He et al., 2016)
with Persistent Contrastive Divergence (Tieleman, 2008;
Tieleman & Hinton, 2009) and a replay buffer (Du & Mor-
datch, 2019) following Grathwohl et al. (2021). We run
DMALA and DULA for 40 steps per iteration. After train-
ing, we adopt Annealed Importance Sampling (Neal, 2001)
to estimate the likelihood. The results for GWG and Gibbs
are taken from Grathwohl et al. (2021), and for VAE are
taken from Tomczak & Welling (2018).

Results In Table 1, we see that DMALA yields the highest
log-likelihood among all methods and its generated images
in Figure 9 in Appendix 1.4 are very close to the true im-
ages. DULA runs the same number of steps as DMALA
and GWG but only with half of the cost. We hypothesis that
running DULA for more steps or with an adaptive stepsize
schedule (Song & Ermon, 2019) will improve its perfor-
mance.

7.4. Binary Bayesian Neural Networks

Bayesian neural networks have been shown to provide
strong predictions and uncertainty estimation in deep learn-
ing (Herndndez-Lobato & Adams, 2015; Zhang et al., 2020;
Liu et al., 2021a). In the meanwhile, binary neural net-
works (Courbariaux et al., 2016; Rastegari et al., 2016; Liu
et al., 2021b), i.e. the weight is in {—1, 1}, accelerate the
learning and significantly reduce computational and memory
costs. To combine the benefits of both worlds, we consider
training a binary Bayesian neural network with discrete sam-
pling. We conduct regression on four UCI datasets (Dua &
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Figure 5. Learning Ising models. DULA and DMALA find W in a shorter time than baselines, and the improvement gets larger with

smaller number of sampling steps.

Unique n-grams (%) (1)
Model Methods | Self-BLEU () Self WT103 TBC Corpus BLEU (1)
n=2 n=3 n=2 n=3 n=2 n=3

Gibbs 86.84 1098 16.08 18.57 3221 2122 33.05 23.82

Bert-Base GWG 81.97 15.12  21.79 2276 3759 2472 3798 22.84
DULA 72.37 23.33 3288 27.74 4585 30.02 46.75 21.82

DMALA 72.59 2326 32.64 2799 4577 3032 4649 21.85

Gibbs 88.78 9.31 13.74 17.78 30.50 2048 31.23 22.57

Bert-Large GWG 86.50 11.03 16.13 19.25 3320 2142 33.54 23.08
DULA 77.96 1797 26.64 23.69 4130 26.18 42.14 21.28

DMALA 76.27 19.83 2848 2538 4294 27.87 43.77 21.73

Table 3. Quantative results on text infilling. The reference text for computing the Corpus BLEU is the combination of WT103 and TBC.
DULA and DMALA generate sentences with a similar level of quality as Gibbs and GWG (measured by Corpus BLEU) while attaining

higher diversity (measured by self-BLEU and Unique n-grams).

Graff, 2017), and the energy function is defined as,
N
U©) == lfolz:) — ill%,
i=1

where D = {x;,y;} Y, is the training dataset, and fj repre-
sents a two-layer neural network with Tanh activation and
500 hidden neurons. The dimension of the weight d varies
on different datasets ranging from 7, 500 to 45,000. We
report the log-likelihood on the training set together with
root mean-square-error (RMSE) on the test set.

Results From Table 2, we observe that DMALA and DULA
outperform other methods significantly on all datasets ex-
cept test RMSE on COMPAS, which we hypothesize is
because of overfitting (the training set only has 4, 900 data
points). These results demonstrate that our methods con-
verge fast for high dimensional distributions, due to the abil-
ity to make large moves per iteration, and suggest that our
methods are compelling for training low-precision Bayesian
neural networks of which the weight is discrete.

7.5. Text Infilling

Text infilling is an important and intriguing task where the
goal is to fill in the blanks given the context (Zhu et al., 2019;

Donahue et al., 2020). Prior work has realized it by sampling
from a categorical distribution produced by BERT (Devlin
etal., 2019; Wang & Cho, 2019). However, there are a huge
number of word combinations, which makes sampling from
the categorical distribution difficult. Therefore, an efficient
sampler is needed to producing high-quality text.

We randomly sample 20 sentences from TBC (Zhu et al.,
2015) and WiKiText-103 (Merity et al., 2017), mask 25%
of the words in the sentence (Zhu et al., 2019; Donahue
et al., 2020), and sample 25 sentences from the probability
distribution given by BERT. We run all samplers for 50 steps
based on two models, BERT-base and BERT-large. As a
common practice in non-autoregressive text generation, we
select the top-5 sentences with the highest likelihood out of
the 25 sentences to avoid low-quality generation (Gu et al.,
2018; Zhou et al., 2019). We evaluate the methods from
two perspectives, diversity and quality. For diversity, we
use self-BLEU (Zhu et al., 2018) and the number of unique
n-grams (Wang & Cho, 2019) to measure the difference be-
tween the generated sentences. For quality, we measure the
BLEU score (Papineni et al., 2002) between the generated
texts and the original dataset (TBC+WikiText-103) (Wang
& Cho, 2019; Yu et al., 2017). Note that the BLEU score
can only approximately represent the quality of the genera-
tion since it cannot handle out-of-distribution generations.
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Infilling Task: it also marked the first time the dodgers had won six straight opening day games , [MASK] of which he [MASK] .

Gibbs Results:

all of which he started
all of which he started
all of which he started
all of which he started
four of which he started

GWG Results:

five of which he started

five of which he started

four of which he started

four of which he pitched
two of which he started

DMALA Results:
two of which he started
one of which he started
three of which he led
all of which he selected
six of which he missed

Infilling Task: he had not , after all , [MASK] me the chance but [MASK] abandoned me [MASK] .

Gibbs Results: GWG Results:

DMALA Results:

given me the chance but had abandoned me instead given me the chance but had abandoned me instead shown me the chance but had abandoned me anyway
given me the chance but had abandoned me instead given me the chance but had abandoned me himself shown me the chance but not abandoned me immediately
siven me the chance but had abandoned me instead offered me the chance but had abandoned me completely | gives me the chance but also abandoned me perhaps

given me the chance but had abandoned me completely | gave me the chance but had abandoned me anyway
given me the chance but had abandoned me anyway given me the chance but he abandoned me instead

grants me the chance but really abandoned me entirely
offered me the chance but yet abandoned me instead

Figure 6. Examples of the generated sentences on text infilling. Blue and Red words are generated where Red indicates repetitive
generation. DMALA can generate semantically meaningful sentences with much higher diversity.

We use one-hot vectors to represent categorical variables
(see Appendix B for a discussion of DLP with categorical
variables in practice).

Results The quantitative and qualitative results are shown in
Table 3 and Figure 6. We find that DULA and DMALA can
fill in the blanks with similar quality as Gibbs and GWG but
with much higher diversity. Due to the nature of languages,
there exist strong correlations among words. It is generally
difficult to change one word given the others fixed while
still fulfilling the context. However, it is likely to have
another combination of words, which are all different from
the current ones, to satisfy the infilling. Because of this,
the ability to update all coordinates in one step makes our
methods especially suitable for this task, as reflected in the
evaluation metrics and generated sentences.

8. Conclusion

We propose a Langevin-like proposal for efficiently sam-
pling from complex high-dimensional discrete distributions.
Our method, discrete Langevin proposal (DLP), is able to ex-
plore discrete structure effectively based on the gradient in-
formation. For different usage scenarios, we have developed
several variants with DLP, including unadjusted, Metropolis-
adjusted, stochastic, and preconditioned versions. We prove
the asymptotic convergence of DLP without the MH step
under log-quadratic and general distributions. Empirical
results on many different problems demonstrate the superi-
ority of our method over baselines in general settings.

While the Langevin algorithm has achieved great success
in continuous spaces, there has always lacked a counterpart
of such simple, effective and general-purpose samplers in
discrete spaces. We hope our method sheds light on building
practical and accurate samplers for discrete distributions.
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