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ABSTRACT

Designing accurate and efficient vision transformers (ViTs) is an important but
challenging task. Supernet-based one-shot neural architecture search (NAS) en-
ables fast architecture optimization and has achieved state-of-the-art results on
convolutional neural networks (CNNs). However, directly applying the supernet-
based NAS to optimize ViTs leads to poor performance - even worse compared to
training single ViTs. In this work, we observe that the poor performance is due to a
gradient conflict issue: the gradients of different sub-networks conflict with that of
the supernet more severely in ViTs than CNNs, which leads to early saturation in
training and inferior convergence. To alleviate this issue, we propose a series of
techniques, including a gradient projection algorithm, a switchable layer scaling
design, and a simplified data augmentation and regularization training recipe. The
proposed techniques significantly improve the convergence and the performance
of all sub-networks. Our discovered hybrid ViT model family, dubbed NASViT,
achieves top-1 accuracy from 78.2% to 81.8% on ImageNet from 200M to 800M
FLOPs, and outperforms all the prior art CNNs and ViTs, including AlphaNet
and LeViT. When transferred to semantic segmentation tasks, NASViTs also out-
perform previous backbones on both Cityscape and ADE20K datasets, achieving
73.2% and 37.9% mloU with only 5G FLOPs, respectively. Code is available at
https://github.com/facebookresearch/NASViT.

1 INTRODUCTION

Transformers have recently been applied to various vision tasks, including image classification (Liu
et al., 2021; Dong et al., 2021), object detection (Carion et al., 2020; Zhu et al., 2020), semantic
segmentation (Xie et al., 2021; Cheng et al., 2021), video understanding (Bertasius et al., 2021; Fan
et al., 2021), etc. Vision transformers (ViTs) benefit from high model capacity, large receptive field,
and grouping effect, etc (Dosovitskiy et al., 2020), and demonstrate superior performance compared
to convolutional neural networks (CNNs) especially with the scaling of the model size and training
data size. For example, CoAtNet (Dai et al., 2021) achieves 90.88% top-1 accuracy on Imagenet by
scaling the model to 2586G FLOPs and pre-training the model on JFT-3B dataset (Sun et al., 2017).

Though promising in the high computation budget regime, the performance of ViTs is still inferior to
that of the CNN counterparts on small- or medium-sized architectures, especially compared to CNN
architectures that are highly optimized by neural architecture search (NAS), e.g., AlphaNet (Wang
et al., 2021a), FBNetV3 (Dai et al., 2020), etc. For example, the initial DeiT-Tiny (Touvron et al.,
2020) only achieves 72.2% top-1 accuracy with 1.2G FLOPs. The recently proposed LeViT (Graham
et al., 2021) makes significant progress to achieve 76.6% top-1 accuracy with 305M FLOPs with
convolution/transformer hybrid architectures and a 3x longer training schedule. In contrast, AlphaNet
(Wang et al., 2021a) achieves 77.8% top-1 accuracy with only 203M FLOPs. The large accuracy
gap illustrated above raises a natural question: are transformer blocks that build large and dynamic
receptive fields beneficial for small models?
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To answer the question above, in this work, we target at developing a family of efficient ViTs with
FLOPs ranging from 200M to 800M . A natural approach is to leverage NAS, which has achieved
state-of-the-art (SOTA) accuracy-efficiency trade-off for CNNs (Wang et al., 2021a; Dai et al., 2020;
Cai et al., 2019). The recently proposed supernet-based NAS, e.g., BigNAS (Yu et al., 2020a) and
AlphaNet (Wang et al., 2021a), builds a weight-sharing graph including all the sub-networks in
the architecture search space. A sandwich sampling rule with inplace knowledge distillation (KD)
(Yu et al., 2018) is leveraged to simultaneously optimize the supernet and sub-networks for each
mini-batch, which stabilizes the training and improves the training convergence.

To leverage the supernet-based NAS, we first modify the LeViT model to build the architecture
search space for ViTs and then jointly optimize the model architectures and parameters following
AlphaNet. However, we find that directly applying AlphaNet achieves poor performance on the ViT
search space, even worse compared to training single ViTs. To understand the root cause of the
poor performance, we examine the supernet training procedure and observe that the gradients of the
supernet and the different sub-networks conflict with each other during the sandwich sampling, which
makes the training loss saturates much more quickly for ViTs, thus leading to slow convergence.

To alleviate the issue of conflicting gradients, we propose three different techniques to improve
the supernet training. Firstly, instead of directly adding the gradients from different sub-networks
together, we find it beneficial to prioritize the training of the sub-networks over the supernet, as our
main purpose is to build efficient sub-networks. We achieve this with a projection gradient algorithm
which removes the component of the supernet gradient that is conflict with the sub-network gradient.
Secondly, to alleviate the gradient conflicts among different sub-networks, we propose to augment
each transformer layer with switchable channel-wise scaling layers. The weights of different scaling
layers are not shared among different transformer blocks to reduce gradient conflicts. Thirdly, we
propose to use a weak data augmentation scheme and reduce the regularization in training to decrease
the optimization difficulty and hence reduce gradient conflicts.

Our proposed techniques significantly alleviate the gradient conflict issue and empirically improve the
convergence of supernet training. Compared to the baseline supernet training algorithm in AlphaNet,
we can improve the top-1 accuracy to 78.2% for the small model with 205M FLOPs and achieve
81.8% for the large model with 757M FLOPs. Meanwhile, the resulting model family, NASViT,
outperforms all the SOTA CNN and ViT models across a wide range of computation constraints.
NASVIT also demonstrates good performance on downstream tasks. When transferring to semantic
segmentation tasks, NASViT backbones outperform previous CNN and ViT backbones on both
Cityscape and ADE20K datasets, achieving 73.2% and 37.9% mloU with 5G FLOPs, respectively.

Related Works Recently, researchers have used supernet-based NAS to optimize the architecture
for transformers. For example, HAT (Han et al., 2021) uses supernet for hardware-aware transformer
optimization. HAT mainly focuses on NLP tasks and features a design space with heterogeneous
transformer layers. AutoFormer (Chen et al., 2021a) and ViTAS (Su et al., 2021) leverages supernet-
based NAS to optimize the ViT architecture. By searching the width, depth, K/Q/V dimension, MLP
ratio, etc, better accuracy is achieved compared to the baseline DeiT models (Chen et al., 2021a).
However, these works focus on large ViT models with more than 1G FLOPs and their accuracy is
still inferior to the CNN backbones with similar compute, e.g., EfficientNet (Tan & Le, 2019). We
refer readers to appendix for more discussions about related works.

2 NAS FOR EFFICIENT TRANSFORMERS

Our goal is to design efficient small- and medium-sized ViTs in the FLOPs regime from 200M to
800M. We build our search space inspired by the recently proposed LeViT (Graham et al., 2021).
LeViT is a family of efficient models leveraging a hybrid architecture of convolutions and transformers.
In LeViT, the convolutions are introduced to handle high resolution inputs thanks to their efficiency
from local computation while the transformers are leveraged for lower resolution features to extract
global information. We closely follow LeViT to build our search space; see Figure 1 for an overview.

Search Space 'We summarize the detailed search dimensions of our search space in Table 1. For
each CNN block, we directly follow the design in AlphaNet (Wang et al., 2021a;b) and search for
the optimal channel widths, block depths, expansion ratios and kernel sizes; for each transformer
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Figure 1: An illustration of our ViT search space. MBConv refers to inverted residual blocks (Sandler
et al., 2018). All CNN and transformer blocks contain a stack of dynamic layers with searchable
architecture configurations. Additionally, we also search for the input resolutions.

Block Width Depth Kernel size Expansion ratio SE Stride Number of Windows
Conv {16, 24} - 3 - -2 -
MBCony-1 {16,241 (1.2} (3.5} 1 N 1 -
MBConv-2 (24,32} (3.4,5) (3.5} (456} N 2 -
MBConv-3 {32, 40} (3,4,5,6} (3.5} {456} Y 2 -
Transformer-4 {64, 72} {3,4,5,6} - {1,2} -2 1
Transformer-5 {112,120, 128}  {3,4,5,6,7,8} - {1,2} -2 1
Transformer-6 | {160, 168, 176, 184} {3,4,5,6,7, 8} {1,2} - 1 1
Transformer-7 {208, 216, 224} {3,4,5,6} - {1,2} - 2 1
MBPool {1792, 1984} - | 6 _ -

Input resolution {192, 224, 256, 288}

Table 1: An illustration of our search space. MBConv refers to the inverted residual block (Sandler
et al., 2018). MBPool denotes the efficient last stage (Howard et al., 2019). SE represents the squeeze
and excite layer (Hu et al., 2018). Transformer stands for the transformer blocks (Vaswani et al.,
2017). For MBConv blocks, the expansion ratio refers to the expansion ratio of the depth-wise
convolution layer. For transformer layers, it refers to the MLP expansion ratio. For each transformer
block, we use 3 x 3 depth-wise convolution with stride 2 for down-sampling and the down-sampling
layer is placed as the first layer for that block.

block, we search for the best number of windows, hidden feature dimensions (denoted as Width in
Table 1)!, depths and MLP expansion ratios. Compared to CNN blocks, one special search dimension
for transformer blocks is the number of windows k. When the number of windows k is greater
than 1, we follow Swin transformer (Liu et al., 2021) and partition the input tokens into k groups.
We then compute the self-attention weights for each group separately to reduce computational cost.
Standard global self-attention is a special case of £ = 1. In this work, we only search the number of
windows for the first transformer block, as the input resolutions to the other transformer blocks are
already small after 4 times of down-sampling. Similar to the search range of AlphaNet, the smallest
sub-network in our search space has 190M FLOPs and the largest sub-network has FLOPs of 1,881M.
we refer the reader to Appendix B for more description of our search space.

Naive supernet-based NAS fails to find accurate ViTs We first closely follow the previous best
practices in AlphaNet (Wang et al., 2021a) for the supernet training. We train the supernet for 360
epochs on ImageNet (Deng et al., 2009). At each training step, we adopt the sandwich sampling
rule (Yu et al., 2018) and sample four sub-networks: the smallest sub-network, the supernet (a.k.a.
the largest sub-network), and two random sub-networks. All small sub-networks are supervised by
the supernet with a-divergence-based KD; see Algorithm 1 in Appendix C.1 for an overview of the
supernet training procedure. Additionally, as our candidate networks contain transformer blocks, we
further incorporate the best training recipe from LeViT (Graham et al., 2021) by replacing the SGD
optimizer with Adam (Kingma & Ba, 2014) and leveraging an external pre-trained teacher model
for the best accuracy. Specifically, we use the pre-trained teacher to supervise the supernet and still
constrain all other small sub-networks to learn from the supernet. In this work, we always use an
EfficientNet-B5 (Tan & Le, 2019) with 83.3% top-1 accuracy on ImageNet as the teacher to train our
ViT supernet unless otherwise specified.

We plot the training curves of the smallest sub-network and the largest sub-network in Figure 2. We
find both the smallest sub-network and the largest sub-network from our search space converge poorly
compared to the CNN baseline. Specifically, the validation accuracy of both the smallest and the

"Hidden feature dimension equals the number of heads times the feature dimension of each head. In our
search space, we fix the head dimension to be 8, and only searching for the number of heads.
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Figure 2: (a-b) show the training curves of the smallest sub-network and the largest sub-network (i.e.,
the supernet), respectively. Note that AlphaNet is trained without external teacher models.

FLOPs (M) | 190 208 309 591 AlphaNet DeiT LeViT
Scratch 712 775 79.1 804 Smallest 77.0 76.6 76.8
Supernet 764 76.6 78.5 80.6 Largest 82.4 82.2 82.2

Table 2: ImageNet top-1 accuracy from sub- Table 3: ImageNet Top-1 accuracy from the
networks trained from scratch vs. results from smallest and the largest sub-network by using
sub-networks sampled from the supernet. different training recipes.

largest sub-network is saturated at around the 250-th epoch, and the final accuracy is much worse
than the CNN baselines. To understand the inferior model performance, we investigate the potential
issues of our ViT supernet training from the following three directions.

Investigation 1: Is our search space designed badly? We seek to understand if the performance
gap is caused by a bad search space design. To verify, we randomly pick four sub-networks from
the search space with computation cost ranging from 190M to 591M FLOPs. Then, we train these
networks from scratch with the same data augmentation and regularization. As we can see from
Table 2, the sub-networks trained from scratch outperform the sub-networks sampled from the
supernet. Note that from previous works (e.g. Yu et al., 2020a), supernet often learns more accurate
sub-networks compared to the training from scratch performance, by taking advantage of inplace
knowledge KD and weight-sharing. Our observations in Table 2 indicate that the poor performance
does not come from the search space but from the interference with the training of the supernet.

Investigation 2: Are the training settings suitable for ViTs? Our default training settings from
AlphaNet are originally optimized for CNNs only. Compared with AlphaNet, recent ViT methods,
e.g., DeiT and LeViT, suggest to use stronger data augmentation schemes (e.g., a combination of
CutMix (Yun et al., 2019), Mixup (Zhang et al., 2017), randaugment (Cubuk et al., 2020), random
erasing (Zhong et al., 2020), and repeated augmentation) and stronger regularization (e.g., large
weight decay, large drop path probability) for training. We evaluate the effectiveness of these ViT
specific training recipes and summarize our findings in Table 3. As we can see from Table 3,
DeiT- or LeViT-based training recipe produces even worse accuracy compared to the results from
AlphaNet-based training.

Investigation 3: Saturated supernet training due to gradient conflicts? Compared to the stan-
dard single network training, a major difference of supernet training is that multiple networks are
sampled and trained at each step. We hypothesize that the training loss from the supernet and that from
the sub-networks may yield conflicting gradients due to the heterogeneous and complex structures
of networks, and the conflict gradients may consequently lead to slow convergence and undesirable
performance.

To verify this hypothesis, we compute the cosine similarity between the gradients from the supernet
and the averaged gradients from the sub-networks. A negative cosine similarity indicates the supernet
and sub-networks produce conflict gradients and tend to update model parameters in opposite
directions. To quantitatively examine the gradient conflict issue, we go through the entire ImageNet
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Epoch Ist 90th 180th 270th 360th
AlphaNet 27% 20% 21% 24% 28%
ViT 36% 27% 27% 32% 34%

Table 4: An estimation of negative cosine similarity ratio (gradient conflict ratio) between the
supernet gradient and the averaged gradient of the sub-networks.

training set and calculate the percentage of negative cosine similarity between the gradients of
supernet and sub-networks among all training images at a per layer granularity. The gradients are
computed under the same data augmentation and regularization as the supernet training stage. For
AlphaNet, we train the model using its official code 2. As shown in Table 4, our ViT supernet suffers
from more severe gradient conflicts compared to the CNN baseline. According to existing works in
multi-task learning, large gradient conflict ratios may result in significant accuracy drop even for
binary classification problems (see Figure 3 in Du et al. (2018) and Figure 4(b) in Yu et al. (2020b)).
We hypothesize that the inferior performance of our ViT supernet is mainly caused by the large
percentage of disagreements between the supernet gradients and the subnetworks gradients.

3 GRADIENT CONFLICT AWARE SUPERNET TRAINING

d -th activated layer in a transformer block |

We propose to improve the ViT supernet training by address-

Scaling

cl activated

Gradient projection to prioritize sub-networks update
Our first idea is to focus on training the sub-networks when-
ever gradients from the supernet and the gradients from the Input | [Tinactivated
sub-networks conflicted with each other. As we are interested :
in the sub-networks from the 200M to 800M FLOPs range,
we propose to prioritize the optimization of the sub-networks
over the supernet when gradient conflicts are observed. Let
Vlup and V4, denote the gradients of the supernet and the
sub-networks, respectively. To prioritize sub-networks train-
ing, we always project V/,, to the normal vector of V/,;
to avoid gradient conflicts when the cosine similarity between
Visp and VU, is negative. The overall accumulated gradi-

ing the gradient conflict issue between the supernet and the

sub-networks from three aspects: 1) manually resolving the gra- —

dient conflict by projecting the supernet gradients to the normal Channel-wise

vector of the sub-networks gradients; 2) introducing switchable

scaling layers to the search space to give more optimization c2 activated

freedom for sub-networks; 3) reducing data augmentation and $

regularization to provide easier training signals. Channel-wise
[ =]

Figure 3: A basic transformer layer
with scaling. Activated compo-
nents are the neurons selected in the
forward path for one sub-network.
‘cl” and ‘c2’ represent the num-
ber of channels activated in a self-
attention layer and MLP, respec-

ent at each training iteration with projection can be written as tively.
follows,
g = Vlsup + proj(Vlsu,) with (1)
, Vesup if cos(Vesup, Vlsup) > 0,
proj(Veeu) = {vgsup - %Vﬁsub otherwise.

Note that cos(V&sup, proj(Velsup)) = 0 if cos(Vlsyp, VLsyup) < 0, which ensures the gradient
cosine similarity is non-negative. In sandwich sampling, since several sub-networks are sampled
in each iteration, /g, is computed as the summation of the gradients from all sub-networks. Note
similar ideas of gradient projection have also been explored in multi-tasks learning, see e.g., Yu et al.
(2020b); Du et al. (2018); Real et al. (2019); Dery et al. (2021).

While the gradient projection in Eqn. (1) eliminates the gradient conflicts, it may lead to slow
convergence as the resulting gradients are biased. Hence, we also propose the follow two techniques to
reduce the gradient conflicts from a search space design and training strategy refinement perspective.

https://github.com/facebookresearch/AlphaNet
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Switchable scaling layer Motivated by Slimmable NN (Yu et al., 2018), we introduce additional
switchable scaling layers to allow sub-networks with different layer widths and depths to re-scale
their features in a privatized way. Specifically, for each transformer layer, a switchable scaling
layer is introduced at the output of the self-attention (SA) and the MLP, respectively, as shown in
Figure 3. Assume x|, 5) € R is a input feature of a scaling layer, with c the feature dimension (i.e.
the number of selected channels in the forward path) and d the index of this layer in a transformer
search block. The scaling layer transforms x| q) as W q) © T[c,q]- Here wi. gy € R are learnable
parameters and ® denotes element-wise multiplication. For each transformer block (see Table 1),
each different configuration of [c, d] will specify a set of independent switchable scaling layers.
Following CaiT (Touvron et al., 2021), we initialize all scaling factors w to a small value (e.g. 10~%)
for fast convergence and stable training. Intuitively, the switchable scaling layers effectively increase
the model capacity of sub-networks and give the sub-networks more optimization flexibility.

Reduced data augmentation and regularization Furthermore, we observe that the supernet and
the sub-networks are more likely to conflict with each other in the presence of stronger data aug-
mentations and stronger regularization, e.g., large weight decay, large DropConnect (Wan et al.,
2013). Hence, we simplify the AlphaNet training recipe and use a weaker data augmentation scheme
- RandAugment (Cubuk et al., 2019) with both the number of augmentation transformations and the
magnitude set to 1, and remove the regularization, e.g. DropConnect (Wan et al., 2013), dropout and
weight decay, from the training; see Table 5 for a comparison.

Method Data augmentation Weight decay DropConnect Dropout
AlphaNet AutoAugment 107° 0.2 0.2
Ours RandAugment (n = 1,m = 1) 0 0 0

Table 5: An illustration of our simplified training settings, where n is the number of augmentation
transformations and m the number of magnitudes in RandAugment. A typical setting of RandAug-
ment is n=2 and m=9 for training a single network; see Cubuk et al. (2020); Liu et al. (2021).

4 EXPERIMENTS
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4.1 IMAGENET

We compare our NASViT models with state-of-the-art NAS-based CNNs, including AlphaNet (Wang
et al., 2021a) and FBNetV3 (Dai et al., 2020), and recently-proposed efficient ViTs, e.g., LeViTs.

Settings Note that our ViT supernet is trained with a pretrained Efficient-B5 teacher model (83.3%
top-1) model. For fair comparison, we retrain AlphaNet with the same teacher. For FBNet-V3 and
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Group Method M FLOPs  Top-1 accuracy (%)
AlphaNet-A0 203 77.9
200-300 (M) NASVIiT-A0 (ours) 208 782
LeViT (Graham et al., 2021) 300 76.6
NASViT-A1 (ours) 309 79.7
300-400 (M) AlphaNet-A2 317 79.4
FBNetV3 (Dai et al., 2020) 357 79.6
LeViT 406 78.6
400-500 (M) NASViT-A2 (ours) 421 80.5
AlphaNet-A4 444 80.4
NASViIT-A3 (ours) 528 81.0
FBNetV3 557 80.8
500-600 (M) NASViT-A4 (ours) 591 81.4
AlphaNet 596 81.1
LeViT 658 80.0
600 - 1000 (M) NASViIT-AS (ours) 757 81.8
FBNetV3 762 81.5
AutoFormer* (Chen et al., 2021a) 1,300 T4.7
PiT-XS (Heo et al., 2021) 1,400 79.1
ViTAS-D* (Su et al., 2021) 1,600 76.2
NASVIT (supernet) (ours) 1,881 82.9
> 1000 (M) CVT-13-NAS* (Wu et al., 2021) 4,100 82.2
Swin-Tiny* (Liu et al., 2021) 4,500 81.3
CVT-13* (Wu et al., 2021) 4,500 81.6
T2T-ViT-14* (Yuan et al., 2021a) 5,200 81.5
DeepViT (Zhou et al., 2021) 6,200 82.3

Table 6: Comparison with prior art efficient CNNs and ViTs on ImageNet. The reported AlphaNet
models are trained with an external teacher model. The “*” indicates that the ViTs are trained without
external teacher models.

LeViT models, these models already use teachers with better performance than Efficient-B5 for
training, and therefore we directly report their results following their papers. Specifically, FBNet-V3
use a RegNetY-32G with 84.5% top-1 and LeViT use a RegNetY-16G with 83.6% top-1 as the teacher
model, respectively.

Results We summarize our results in both Table 6 and Figure 4. Our discovered NASViT models
outperform all evaluated CNN and ViT baselines. Our models are the first models with transformers
blocks that outperform state-of-the-art efficient CNNs with similar FLOPs on ImageNet. For example,
with < 600M FLOPs, our NASViT-A4 achieves 81.4% top-1 accuracy on ImageNet. As a reference
point, a ResNet-50 model (4G FLOPs) achieves 81.5% top-1 accuracy by distilling from a BiT
(Kolesnikov et al., 2020) teacher (87.5% top-1 accuracy) with 1200 epochs of training (Beyer et al.,
2021).

76 41

5 239 =@ Ours
=) & =) =< Segformer
=0~ AlphaNet
o / s MobileNetV3
& 10 20 27 10 20 27
(a) G FLOPs (Cityscapes) (b) G FLOPs (ADE20K)

Figure 5: Results of our method and baselines on semantic segmentation. (a-b) show the results on
the Cityscapes and ADE20K validation set, respectively.

4.2 SEMANTIC SEGMENTATION

We evaluate the transfer learning performance of our discovered NASViT models by fine-tuning
them on downstream semantic segmentation tasks. In particular, we fine-tune NASVIiT-Al to
NASViIT-A4 as backbones and we show that our NASVIT models yield the best segmentation
performance compared to the results from the previous efficient CNN backbones, e.g., AlphaNet
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and MobileNetV3 (Howard et al., 2019), as well as the recently proposed transformer-based Seg-
former (Xie et al., 2021).

Settings We evaluate on two benchmark datasets, Cityscapes (Cordts et al., 2016) and
ADE20K (Zhou et al., 2017). To handle large input resolutions efficiently, for each transformer block,
we set the number of windows to be the input feature map size divided by 7 instead of using our
searched settings on ImageNet. We use the recent proposed light-weight Segformer head (Xie et al.,
2021) as the decoder head for all the backbones, to achieve a better accuracy efficiency trade-off.

Results As shown in Figure 5, our models yield the best FLOPs vs. mloU trade-offs. For example,
our model achieves 76.1% mloU and 41.4% mIOU with less than 30G FLOPs on the Cityscapes and
the ADE20K validation set, respectively.

4.3 ABLATION STUDIES ON GRADIENT CONFLICT AWARE TRAINING

‘We conduct ablation studies on ImageNet to have a better understanding on the effectiveness of our
proposed methods. We mainly study 1) how our techniques can mitigate the gradient conflict issues
and improve the performance 2) whether CNN supernets can also benefit from our techniques. All
the comparisons in this section are conducted on ImageNet.

On the effectiveness of our gradient conflict aware training techniques As demonstrated in
Table 7, both weak data augmentation and regularization and switchable scaling layer and can
significantly reduce the gradient conflict ratios and in the meantime, improve the top-1 accuracy of
both the smallest sub-network and the supernet. By further applying gradient projection to prioritize
the sub-networks update (denoted by Prioritize (sub)), the performance of both the smallest and
largest sub-network is boosted by around 0.3% on top-1 accuracy.

Prioritizing the supernet update Instead of focusing on training the sub-networks, we retrain our
ViT supernet and prioritize the supernet update by moving the proj(-) term in Eqn. (1) to Vlgyp.
As demonstrated in the last column of Table 7, this training strategy (denoted by Prioritize (sup))
leads to a slightly improved supernet while resulting in less competitive performance on the smallest
sub-network.

Baseline | Weak DA Switchable Prioritize | Prioritize
& Reg scaling (sub) (sup)
Top-1 (smallest) 76.6 77.4 77.6 78.1 77.9
Top-1 (supernet) 82.2 82.5 82.6 82.9 83.0
Negative Cosine Similarity Ratio 34% 30% 29% 0% 0%

Table 7: Ablation study results on ImageNet. We show the top-1 validation accuracy of the smallest
and largest sub-network, and the negative cosine similarity ratio for each case. Note that switchable
scaling layer is applied on top of Weak DA & Reg; and Prioritize (sub) is applied on top of both Weak
DA & reg and switchable scaling layer.

Improving CNN-based supernets We verify the generalizability of our three techniques to the
CNN supernets. In this setting, we applied all three techniques together to improve CNN-based
supernets. We show in Table 8 that our method is especially helpful for AlphaNet trained with KL
based KD (denoted by AlphaNet (w/ KL)). To further understand the large improvements on AlphaNet
(w/ KL), we follow ours studies in Table 4 and compute the gradient conflict ratio for AlphaNet (w/
KL) at epoch 1st, 90th, 180th, 270th, and 360th, and the corresponding gradient conflicts ratio is 25%,
18%, 24%, 28% and 31%, respectively. The gradient conflict issue is more severe for AlphaNet (w/
a-KL) compared with AlphaNet trained with a-divergence based KD (AlphaNet (w/ a-div)). Our
findings indicate that our techniques are not restricted to the ViT supernet training and might be
beneficial for all supernets in which a large ratio of gradient conflicts presents.

4.4 ABLATION STUDIES ON SEARCH SPACE

In this part, we provide additional ablation studies to support some key design choices of our ViT
search space. For all the studies, we use a 250M sub-network that is randomly sub-sampled from our
search space for consistency.
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Architectures (M FLOPs) A0 cosMm) Aleromy A2317M) A3357M) Ad@aam) AS @o1M) A6 (709M)
AlphaNet (w/ KL) 77.0 78.2 78.5 78.8 79.3 79.6 80.1
AlphaNet (w/ KL) + Ours 77.5 78.6 78.9 79.2 79.8 80.1 80.7
AlphaNet (w/ a-div) 77.8 78.9 79.2 79.4 80.0 80.3 80.8
AlphaNet (w/ a-div) + Ours| 77.8 78.9 79.2 79.4 80.0 80.4 80.9

Table 8: Improving CNN-based supernets on ImageNet. AlphaNet (w/ KL) and AlphaNet (w/ a-div)
denote AlphaNets trained with KL and a-divergence based knowledge distillation, respectively. AO to
A6 are the architectures reported in AlphaNet (Wang et al., 2021a). Note that the AlphaNet supernets
here are trained without external teacher models.

Global attention vs. local attention In our search space (Table 1), we mainly use the global
self-attention for the best representation learning capacity. However, with the more computationally
efficient local and linear self-attention schemes, we would be able to use a slightly bigger model under
similar FLOPs constraints with a sacrifice of global context modeling. To test this trade-off, we train
the aforementioned model from scratch with different types of self-attention strategies. Specifically,
in addition to the global self-attention, we further evaluate a number of local and linear self-attention
mechanisms, including Swin (Liu et al., 2021), CSwin (Dong et al., 2021), VOLO (Yuan et al., 2021b)
and LSH (Kitaev et al., 2020). We uniformly scale the width of the transformer blocks to ensure all
models have similar compute FLOPs. In Table 9, we show that the standard global attention achieves
the best accuracy compared to other faster local and linear self-attention methods. Additionally,
from our evolutionary search results, we also notice that the sub-networks with all standard global
self-attention layers often yield the best accuracy vs. FLOPs trade-offs.

Global Swin CSwin VOLO LSH
78.5 78.0 77.9 78.1 78.0

Table 9: ImageNet top-1 accuracy with different types of self-attention mechanisms.

The placement of transformer blocks Our ViT supernet has a convolution stem with 3 down-
sampling strides. We further test the optimal choice of where to switch to transformer blocks. We
uniformly scale the width of transformer layers of our baseline model to ensure similar FLOPs for
different architecture designs. As shown in Table 10, we notice that our current design, a convolution
stem with 3 strides, yields the best performance.

#strides 2 3 4 Head Dimension 8 16 32
Top-1 Accuracy 78.1 78.5 78.4 Top-1 Accuracy | 78.5 78.3 78.2

Table 11: Ablation studies on the impact of

Table 10:  Ablation studies on where to . .
head dimension.

switch to transformer blocks.

Head Dimension In previous ViT works (e.g Touvron et al., 2020; 2021; Zhou et al., 2021; Wu
et al., 2021; Liu et al., 2021), the feature dimension of each self-attention head is usually set to be 32,
64, or larger. In this work, as shown in Table 11, we found a smaller head feature dimension (e.g., 8)
yields better performance.

5 CONCLUSION

In this work, we identify one key issue of ViT supernet training that the supernet gradients and the
sub-network gradients are likely to disagree with each other, and consequently leading to inferior
NAS performance. We fix this gradient conflict issue by introducing a gradient projection method
to prioritize the sub-networks update, designing switchable scaling layers to increase the model
capacities of sub-networks and simplifying the training recipe to provide easier training signals. With
our improved ViT supernet training techniques, our method finds a family of efficient models, called
NASVIT, that establishes a new state-of-the-art top-1 accuracy vs. FLOPs trade-offs on ImageNet.
Our NASVIT models are the first ViT variants that outperform prior-art efficient CNNs on the mobile
FLOPs regime.
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A  RELATED WORK

ViTs ViT (Dosovitskiy et al., 2020) and its follow-ups (Wu et al., 2021; Liu et al., 2021; Zhou
et al., 2021; Touvron et al., 2021) have been demonstrated to be an alternative choice to CNNs
for challenging vision tasks, especially for image classification. In (Dosovitskiy et al., 2020), a
large-scale ViT-Large model is trained on JFT-300 to obtain good performance. The follow-ups
mainly focus on making the data size and model size smaller without loss of accuracy. A line of
works introduce inductive bias or CNN layers to keep the good performance of ViTs while reducing
the data and model sizes (e.g. Liu et al., 2021; Dong et al., 2021; Yuan et al., 2021b; Wu et al., 2021).
For smaller data sizes, researchers successfully achieve good performance using ViTs without extra
data. For example, VOLO (Yuan et al., 2021b) achieves 87.3% top-1 accuracy on ImageNet without
extra data.

For smaller model sizes, however, ViTs have not achieved comparable results to efficient CNNS
smaller than 1G FLOPs, even if additional CNN layers are introduced (Graham et al., 2021). Dynamic
ViTs (Rao et al., 2021; Chen et al., 2021b) propose to dynamically filter the tokens to reduce the
computation cost, and the efficiency is not comparable to efficient CNNs. LeViT (Graham et al.,
2021), Xiao et al. (2021) and PiT (Heo et al., 2021) processes the high resolution inputs with early
convolution layers or spatial-aware layers and also adopt more efficient self-attention designs. Mobile-
former (Chen et al., 2021c) proposes a two-branch neural network: one is efficient CNN layers and
the other is transformer layers with a small number of tokens (e.g. 6, 8).

NAS NAS is a powerful tool for automating efficient neural architecture design. It often targets at
searching for the best model in a search space under given efficiency-related constraints. Earlier NAS
solutions often build on reinforcement learning (e.g. Zoph & Le, 2016; Zoph et al., 2018; Howard
et al., 2019) and evolutionary algorithms (e.g. Real et al., 2019; 2017; Wan et al., 2020). More
NAS practices have made the search more efficient through weight-sharing and search architectures
with gradient-based methods (e.g. Liu et al., 2018; Pham et al., 2018; Stamoulis et al., 2019). This
helps alleviate the heavy computational burden of training all candidate networks from scratch
and accelerates the NAS process significantly. and researchers work on how to rank the model
performance more accurately (Dong & Yang, 2020). Recently, training a large supernet without
retraining candidate sub-networks with inplace KD is shown to be an effective mechanism that
significantly improves the supernet performance (e.g. Yu et al., 2020a; Wang et al., 2021b;a). In
addition to inplace KD, various of KD variants have also been investigated in the literature. For
example, Peng et al. (2020) proposes to search a prioritized path as the teacher; Li et al. (2020)
proposes to distill the feature level knowledge from an additional teacher model to improve the NAS
performance.

NAS for ViT Most recently, several related works, e.g., AutoFormer (Chen et al., 2021a), and
ViTAS (Su et al., 2021), have been proposed to search for ViTs. AutoFormer is the first paper that
leverages NAS for ViT optimization. A comprehensive search space for the ViT architecture is
proposed and a weight-entanglement training strategy is developed to improve the NAS efficiency.
ViTAS leverages a similar supernet-based NAS method compared to AutoFormer and introduces
private class token and self-attention maps to cater for the variance of distinct ViT architectures. Both
work demonstrate promising accuracy improvement compared to the baseline DeiT models for large
models with more than 1G FLOPs.

Gradient cosine similarity in multi-mask learning A line of prior approaches have observed
that the difficult training with multiple objectives can be improved by using the cosine similarity
between gradients (e.g. Du et al., 2018; Yu et al., 2020b; Real et al., 2019). The cosine similarity is
used to as a regularization or an indicator. Real et al. (2019) adds a regularization term to force the
cosine similarity between two different losses to be larger than zero. Du et al. (2018) and Dery et al.
(2021) propose to use gradient cosine similarity to identify whether auxiliary tasks can benefit the
main task. In Du et al. (2018), once the cosine similarity is negative (gradient conflict), the weight
of the auxiliary task is set to be zero. Yu et al. (2020b) is most related to our projection method,
which projects the gradient of every loss to achieve orthogonal gradients. To avoid negative gradient
cosine similarity, we project the gradient of the supernet to prioritize the training of sub-networks,
which have similar intuition as auxiliary losses. In continual learning, many works uses orthogonal
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gradient descent to restrict the direction of gradient updates of new tasks in order to avoid catastrophic
forgetting (e.g. Farajtabar et al., 2020; Bennani et al., 2020; Saha et al., 2021).

B SEARCH SPACE

Concat D ...... D

Activation
+
+

Softmax | Talking Head @
Talking Head

Multi-Head
T Attention

Input

Figure 6: A demonstration of our self-attention module. ‘RPE’, ’Dw Conv, ‘Talking Head’, ‘Proj’ and
‘MLP’ refer to relative positional embedding, depth-wise convolutional layer, talking head attention,
projection layer and MLP layer, respectively.

B.1 EFFICIENT TRANSFORMER BUILDING LAYER

In this section, we give a detailed introduction about our transformer building layer with self-attention.
In the literature, researchers have develop many variants of the standard self-attention with different
focuses (e.g. efficiency, convergence, lone-term dependency, etc.). Motivated recent works, e.g.,
LeVit, SWIN-tranformer and VOLO (Graham et al., 2021; Liu et al., 2021; Yuan et al., 2021b),
we develop a transformer layer for the purpose of efficiency and effectiveness in vision tasks. A
demonstration of our transformer layer is shown in Figure 6. To enhance the learning capacity of our
ViT models, we incorporate talking head (Shazeer et al., 2020) layers and depth-wise convolution
layer in the self-attention module. Additionally, following LeViT (Graham et al., 2021), we expand
the dimension of V matrix by expansion ratio 4 and introduce activation function after the projection
matrix. Following Swin Transformer (Liu et al., 2021), we use relative positional embedding for the
attention scores. For efficiency, we reduce the MLP expansion ratio to {1, 2} and add one additional
MLP layer to keep the model complexity following MacaronNet (Lu et al., 2019).

Positional information The positional embedding in transformer architectures is location-dependent
trainable parameters. Recent works propose absolute positional embedding, relative positional
embedding or additional depth-wise convolution layers (Dong et al., 2021) to enhance the local
information. We introduce two additional depth-wise convolution layers into a MHSA with relative
positional embedding. For relative positional embedding, we directly follow the implementation in
NLP (Shaw et al., 2018). For depth-wise convolution, we add one depth-wise convolution layer in
the MLP layer and another depth-wise convolution layer after the linear transformations of V matrix.

Expansion Ratio In the self-attention design space, researchers have explored whether expanding
the channels can have good performance. LeViT proposes to expand the dimension of V. We follow
LeViT’s design which expand the dimension of V by an expansion ratio 4. researchers have explored
how many layers (Lu et al., 2019) should we use for MLP in a self-attention block. We follow the
strategy developed by (Lu et al., 2019) which adds one more MLP layer for each self-attention block,
but reduce the MLP expansion ratio to {1, 2} for efficiency. As displayed in Figure 6, we place an
additional MLP layer after the first MLP layer.

Normalization Layers and activation Many recent works apply additional batch normalization
layers, layer normalization layers or activation functions to the network. Taking the computation cost
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of layer normalization layers into consideration, we do not introduce any new normalization layers to
the basic self-attention layers.

Talking-head attention and number of heads Most of the existing ViTs set the dimension of each
head to be 24/32 (e.g Touvron et al., 2020; 2021; Zhou et al., 2021; Wu et al., 2021; Liu et al., 2021).
However, for a model with few channels, a large head dimension leads to few number of heads.
We set a smaller head dimension (e.g. 8, 16) to make the number of heads to be large, and further
introduce the talking-head attention to improve the capacity of different heads. Talking-head attention
(Shazeer et al., 2020) introduce two additional linear transformation between all the heads, one is
before softmax and another is after softmax.

Classification head Due to the use of depth-wise convolution layers and down-sampling, we remove
the classification token for simplicity. While LeViT and DeiT use two heads for the teacher knowledge
distillation and supervised labels, we use one head for all the training settings and replace the one-
layer fully-connected layer head with MobilenetV3 (Howard et al., 2019) head so as to reducing
computation cost.

Scaling Factor To train very deep transformer models, Touvron et al. (2021) introduces additional
learnable channel-wise scaling factors initialized with 10~* into the models. The channel-wise
scaling factors are introduced to the output of each MLP and multi-head attention (MHA) layer
in the model. Notice that many of sub-networks in our search space are very deep, we introduce
architecture-dependent switchable scaling factors into the supernet (see Section 3).

C IMPLEMENTATION DETAILS ON TRAINING AND SEARCHING

C.1 TRAINING AND SEARCH ALGORITHM

Training Consider a supernet with trainable parameter € and the candidate sub-networks set .A.
The goal of training a supernet is to learn model parameter 6 target at optimizing all the sub-networks
in A and simultaneously achieving good accuracy. Let s ~ A, p(x; 6) and g(z; 05) denote the output
probability of the supernet and the sub-network s, we have the loss
k
L= E(e) + Z ZKD(QS.,; , 9detach)7 where {xp (6‘51 s Hdetach) = D(p(l’§ adetach) || Q($§ 951>) .
i=1

Here, ¢(0) denotes the loss of the supernet, §,, represents the parameters for a sampled sub-network
si, and D(p || q) is a divergence that measures the difference between p and g. The 6 etqc, denotes a
copy of 6 whose gradient is stopped during back-propagation.

Algorithm 1 Algorithm: Supernet based NAS training
1: while not converged do

2: Sample a mini-batch data from dataset

3: Sample the supernet (i.e., the biggest sub-network) from the search space and train the
supernet with with ground truth labels (or with KD from an external teacher model)

4: Sample k random sub-networks from the search space and train them with KD by using the

supernet network as the teacher model
5: end while

Search After training, a random forest based neural predictor is trained to fit the map from the
architecture hyper-parameters to the model performance (e.g., accuracy). A number of sub-networks
are sampled from the trained supernet to train the neural predictor.

We then follow the strategy in previous works (e.g. Cai et al., 2019; Wang et al., 2021a) to do
evolutionary search: 1) we randomly sample 1024 sub-networks from the supernet and estimate
their accuracy on a sub-sampled subset of the ImageNet training set, which is never used during the
supernet training; 2) we apply crossover and random mutation (see Zhou et al. (2011) for more details
about evolutionary algorithms) on the best performing 128 sub-networks. We fix both the crossover
size and mutation size to be 128, yielding 256 new sub-networks. We then evaluate the performance
of these sub-networks; 3) We repeat the second step 40 times. The total number of sub-networks thus
evaluated is around 10K.
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Algorithm 2 Algorithm: Supernet based NAS searching

1: Input: a pretrained supernet with fixed weights

2: Randomly sample 1024 sub-networks and evaluate their performance on a withhold training set

(which is not used during training).

3: Partition 1024 sub-networks into training and validation subset with equal size. Train a random
forest regressor to predict sub-netowrk’s accuracy given the sub-network architecture hyper-

parameters as the input.

4: Run evolution algorithm to search the Pareto of sub-networks. The sub-network accuracy is
given by the random forest based predictor.

C.2 ABLATION STUDIES

Latency-aware Searching Note that the networks in the paper were optimized for the best FLOPs
vs. accuracy trade-off. However, it is expected that the networks that achieve the best FLOPs vs.
accuracy trade-off don’t necessary yield the best latency vs. accuracy trade-off in the same time.
Therefore, to achieve the best latency vs. accuracy trade-off, we re-search three NASViTs (B0/B1/B2)
that form better latency vs. accuracy trade-off compared to the results from NASViTs (A0/A1/A2).
For latency comparison, we evaluate the latency of NASViTs-A0/A1/A2 and AlphaNet-A0/A2/A4 on
Intel(R) Xeon CPUs with a batch size of 1. See the result in the table below. Here, we do not remove
BN or LN layers when estimating latency.

Model Accuracy (%) CPU latency (ms)
NASVIT-BO 78.2 21.0£0.4
NASVIT-AOQ 78.2 21.6+0.5
AlphaNet-A0 77.9 21.440.5
NASVIT-B1 79.6 26.6+0.6
NASVIT-A1 79.7 27.21+0.6
AlphaNet-A2 79.4 27.4+0.5
NASVIT-B2 80.6 29.1+0.6
NASVIT-A2 80.5 29.8+0.5
AlphaNet-A4 80.4 30.4+0.5

Table 12: NASVIT models searched with for better latency vs. accuracy trade-off.
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D ARCHITECTURE VISUALIZATION OF NASVIT MODELS

NASVIT-A1 NASVIT-A2 NASVIT-A3 NASVIT-A4
c: 16 c: 16 c: 16 c: 16
Conv d: 1 d: 1 d: 1 d: 1
ks: 3 ks: 3 ks: 3 ks: 3
s: 2 s: 2 s: 2 s: 2
c: 16 c: 16 c: 16 c: 16
d: 1 d: 1 d: 1 d: 1
MBConv-1 ks: 3 ks: 3 ks: 3 ks: 3
e: 3 e: 3 e: 3 e: 3
s: 1 s: 1 s: 1 s: 1
c: 24 c: 24 c: 24 c: 24
d: 3 d: 3 d: 3 d: 3
MEConv-2 ks: 3 ks: 3 ks: 3 ks: 3
e 4 e 4 e: 5 e 4
s: 2 s: 2 s: 2 s: 2
c: 32 c: 32 c: 32 c: 32
d: 3 d: 3 d: 3 d: 3
MBConv-3 ks: 3 ks: 3 ks: 3 ks: 3
e e: 6 e: 5 e:6
s: 2 s: 2 s: 2 s: 2
c. 64 c: 64 c. 64 c: 64
d: 4 d: 4 d: 4 d: 4
Transformer-4 ki1 k: 1 ki1 k: 1
e: 1 e: 1 e: 1 e: 1
s: 2 s: 2 s: 2 s: 2
c: 112 c: 112 c: 112 c: 120
Transformer-5 d:3 d:3 d:4 d:3
e: 1 e: 1 e: 1 e: 1
s: 2 s: 2 s: 2 s: 2
c: 160 c: 160 c: 160 c: 160
Transformer-6 d:3 d: 5 d: 7 d: 6
e: 1 e: 1l e: 1 e: 1l
s: 1 s: 1 s: 1 s: 1
c: 216 c: 208 c: 216 c: 216
Transformer-7 d:3 d: 4 d: 5 d: 6
e: 1 e 1 e: 1 e: 1
s: 2 s: 2 s: 2 s: 2
MBPool c: 1792 c: 1792 c: 1984 c: 1984
Resolution 192 224 256 288

Table 13: Here, ‘c’ denotes the number of output channels, ‘d” denotes number of layers, ‘ks’ denotes
kernel size, ‘e’ denotes expansion ratio, 'k’ denotes number of windows, ‘s’ denotes stride.
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