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Abstract

We propose a general method to construct centroid approximation for the dis-
tribution of maximum points of a random function (a.k.a. argmax distribution),
which finds broad applications in machine learning. Our method optimizes a set of
centroid points to compactly approximate the argmax distribution with a simple
objective function, without explicitly drawing exact samples from the argmax
distribution. Theoretically, the argmax centroid method can be shown to minimize
a surrogate of Wasserstein distance between the ground-truth argmax distribution
and the centroid approximation under proper conditions. We demonstrate the
applicability and effectiveness of our method on a variety of real-world multi-
task learning applications, including few-shot image classification, personalized
dialogue systems and multi-target domain adaptation.

1 Introduction

Many problems in machine learning and statistics involve optimizing a random function such as
the empirical loss. This work focuses on approximating the distribution of the optimum points of a
random function of interest. Specifically, we consider the following problem:

The Argmax Centroid Problem Assume we are given a random function f¢(0) where £ is a
random variable and 0 is a variable of interest. We are interested in estimating the distribution p*
of the minimum points 0¢ := arg miny f¢(6) as we draw & randomly. In particular, we want to find
a set of “centroid points” {0;}I'_,, whose empirical measure is close to p* in terms of Wasserstein
distance. We assume the minimizer of f¢ is always unique.

This problem can find applications in a variety of machine learning and statistics techniques, including
bootstrap (Efron & Tibshirani,|1994), random MAP (Hazan et al.||2013), Thompson sampling (Russo
et al., [2017), as well as multi-task learning and meta learning. One naive method to approximate
p*, which is widely used in the methods above, is to draw an i.i.d. sample of ¢ and calculate
the corresponding argmin points. However, this approach is computationally expensive because
calculating each argmin point requires solving an independent optimization problem and the quality
of Monte Carlo approximation is poor unless n is very large, especially for large-scale optimization
problems in deep learning.

In this work, we propose a more efficient centroid approximation to replace the Monte Carlo sampling,
in which we explicitly optimize a set of points @ = {6;}?_; to approximate target distribution p*. By
carefully choosing the location of each point 6; (rather than drawing them randomly), our method
allows us to obtain a set of points @ that are well aligned to approximate the overall argmin distribution
p*. Theoretically, under proper conditions, our method can be viewed as minimizing a surrogate
of the Wasserstein distance between the empirical distribution of the centroid approximation and
the ground-truth distribution. Therefore, given a small budget on sample size, we can estimate the
argmin distribution more accurately than using Monte Carlo estimation.
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Argmax centroids can find applications in a variety of machine learning problems. In the empirical
studies of this work, we mainly focus on meta learning and multi-task learning tasks. For these
problems, we learn from a distribution of datasets/tasks/domains and & denotes a random dataset
drawn from some population. Using argmax centroids allows us to obtain an ensemble of centroid
models that can capture the uncertainty and variation in different datasets and domains. We test our
method on multiple tasks, e.g., the few-shot image classification, the personalized dialogue system,
and the multi-target domain adaptation. For all the above tasks, our method can be easily implemented
and enhance the performance of a number of baseline methods, including but not limited to some of
the recent state-of-the-art (SOTA) methods, e.g. IFSL (Yue et al., 2020).

2 Methodology

We introduce our problem description, propose our algorithm to approximate argmin distributions,
and study its properties.

Problem description Many problems in machine learning can be framed as minimizing or maxi-
mizing random functions f¢(#) where £ is some random variable drawn from a distribution 7 on a
space Z and # € © C R?. That is,

0 = argmin fe(6). (1
0cO

We assume the minimum of f¢(#) is unique. Denote by p* the distribution of 8¢ where & ~ 7, which
we call the argmin distribution of f. We are interested in approximating p*. The problem in (1) finds
wide applications in machine learning in various different ways, including random MAP (Hazan et al.,
2013), bootstrapping (Efron & Tibshirani, [1994), and multi-domain/meta learning as we elaborate in
Section[3

As mentioned in Section |l, a naive method to approximate p* is to draw an i.i.d. sample {&;}7
from 7 and calculate the corresponding argmin points ¢, for each particle respectively. However, the
quality of Monte Carlo approximation is poor when n is small (Kuo & Sloan}2005). In practice, it
is not affordable to draw a large number of argmin points for large-scale optimization problems in
deep learning, both because that it requires to solve an optimization for calculating each 0, , and it is
memory-hungry to store a large number of ¢, when the parameter dimension is high.

Argmax Centroids We propose a more efficient centroid approximation to replace Monte Carlo
sampling, where we explicitly optimize a set of points 8 = {0;}7, € Om, associated with a
set of weights v = {v;}?_; € R", such that the ground-truth target distribution p* can be well
approximated by the weighted empirical measure:

n
Pov = E v;0,,
=1

where dy, is delta measure centered at §;, and v is assumed to take values from the probability simplex
onn): V={v: > vi=1, 1, >0, Vié€ [n]}. Here [n] = {1,2,--- ,n}.

Ideally, we would like to choose 8, v to minimize certain distance metrics between pg ,, and p*, a
canonical example of which is the p-Wasserstein distance (p > 0), defined as

W, (p,p*) = inf B0 — 0cP17,
(P P") et o) w16 — O[]

where TI(p, p*) denotes the set of probability measures on © x O such that its two marginal distribu-
tions on © are p and p*. We assume that ||-|| is the standard Euclidean norm in this paper.

However, it is expensive to calculate the Wasserstein distance due to the high computational cost of
drawing 0¢ ~ p*, which requires to repetitively solve optimization (I). To improve the computational
efficiency, we propose to minimize the following surrogate of Wasserstein distance:
min = We(pe.p, 7), We(p, m) = inf Ep ey 0], 2
e (Po.v, ™) £(p, ) el B~ [fe(0)] 2)
where TI(p, ) is the set of probability measures on © x =, whose marginal distributions on © and E
equal p and T, respectively. Here we replace the norm || — ¢||” with the function f¢(6), so that we



do not need to draw ¢ ~ p* and hence solve the expensive optimization in (I). A key property of
W is that its global minimum in the space of distributions is achieved by the argmin distribution p*.
Hence, we obtain increasingly accurate estimate of p* as we solve (2)) with increasing particle size n.

To introduce the result, we start with a general definition of argmin distributions that works for when
the minimum of f¢ is not necessarily unique.

Definition 2.1. Assume f; = mingee fe (0) > —oo for every £ € Z. We say that a distribution p*
on © is an argmin distribution of fe with § ~ , if there exist a coupling measure p* € II(p*, ),
such that p*(0 € argmin f¢) = 1. Here argmin f¢ is the set of global minima of fe, that is,

argmin fe = {J € ©: fe(V) = fi}.

If the optimum of f¢ is unique for every £ € Z, then there is an unique argmin distribution p*, which
is the distribution of ¢ = argmingcg fe(6) when § ~ .

Theorem 2.2. Assume p* is any argmin distribution of f¢ with & ~ . Then the minimum of Wy (p, )
is achieved by p*, that is,

We(p* = E¢or |mi 0)| = min We(p, ),
(p"sm) = Ee [ggg fe( )] min Wy (p, )
where P is the space of probability distributions on ©.

It is not easy to directly minimize the form of Wy in (2) because it requires to jointly minimize 6, v
and the coupling measure p. However, the key observation below shows that the optimization in both
v and p can be solved in closed form, yielding a simple objective function on 6.

Theorem 2.3. For a fixed @ € O, we have

iy V) o, 7) = e | min 161
ve

1€[n]

where the minimum on the left hand side is achieved by v* = {v;}7_ with

vi = Egun l@(z‘ € argmin fs(ﬁj))] . Vi€, )
Jj€ln]

withP(i € argmin; ¢, fe(0;)) = ﬁgﬂ(z € argmin;¢p,) fe(0;)) and Zg ¢ the number of elements

in the argmin set, i.e., Zg ¢ = | arg miﬁje[n] fe(65)].

Here the v in (3) is the probability that 6 achieves the minimum value of min ¢, f¢ (67 ), with ties
broken randomly with equal probabilities. ‘

Therefore, the optimal centroids 8" and the weights v* are given by

0" = argmin {L(G) =Eeun [min fE(Gi)} } .V =FEeun |:IP(Z € argmin f¢(07))| . (4
{0:}7_, i€[n] j€ln]

Note that objective in (@) reduces to the well known K-means objective function if we take f¢(0) =

[0 — 0¢||* , in which case 6 and v are the centers and the sizes of the clusters, respectively. Intuitively,
minimizing (@) allows us to ensure that the best function value min;e(,,) fe(6;) is small on average.

In practice, we can optimize 6; using stochastic gradient descent, and update v; recursively. See
Algorithm E for details. At each iteration, we draw a (set of) £ ~ m, find the 6; that attains
i = argmin; f¢(0;) and update 0; with gradient descent as displayed in line 4, Algorithm E The
frequency v; is also updated accordingly when a 6; is updated, see line 5 in Algorithm |1}

Re-sampling During optimization, it is possible that some 6; are rarely selected and hence its weight

v; becomes small and causes a degeneration problem (i.e., nearly zero important weight). To address
this problem, we monitor the effective sample size of the points, defined as nqy = (3, v4)?/ (3, V7).
If the effective sample size becomes smaller than a threshold, we re-sample a set of new particles
6, with replacement from pg,, = > .-, v;0p, and repeat the updates. In practice, we break the ties

randomly in argmin to avoid the case when two 6; remain to be identical throughout the algorithm.



Algorithm 1 Main Algorithm: Argmax Centroids for Approximating p*

1: Input: {6;}" , denotes the learnable centroids, v; denotes the updated frequency of 6;, e denotes
the step size for gradient descent, o € [0, 1] denotes a parameter to control the frequency update
and 7 is a threshold to control the resampling.

2: while not convergence do

3:  Find i, = argmin; f¢(6;) with & ~ 7.

4: Update 0;, < 0;, — €V, fe(0;.),vi, < av; +1,and v; = av; fori # i,.
5: If ngy < n, resample {6;}!"_, from pg, o< > ., v;0p,.

6: end while

Bounds with Wasserstein Because Wy coincides with the Wasserstein distance if f¢ is a simple
quadratic function f¢(8) = ||6 — 0¢||?, we can provide some simple bounds between W and
Wasserstein distance by approximating f¢ with the quadratics using Taylor approximation.

Assumption 2.4. Let 0¢ be the minimum of f¢(0) as in (1). Assume there exists hy, ha,p1,p2 €
(0, 00), such that for any 0 € © and £ € =,

hi |0 = Oc||”* < fe(0) — fe(Oe) < o |0 — O¢ .

This assumption holds with p; = ps = 2 if f is strongly convex w.r.t. 6 and 0 < h;/2 <
)\mm(fg’(O)) < )\maw(fé’(é’)) < ha/2 < oo for V6 and &, where Ay, and Apyq, are the minimum
and maximum eigenvalue; it also holds with p, = 1if f is Lipschitz w.r.t. 6 with || f|[,, = ho.
Theorem 2.5. Assume Assumption 2.4 holds.
1) We have for any @ € O™ andv € V),

thpl (pA97V7 p*)P1 < Wf(ﬁ? 7(') - Wf(p*aﬂ-) < h2Wp2 (p97l/v p*)pQ'
2) For the optimal 0" and v* in (@), we have

ha
Wy, (Poe e, ) < 22 inf Wy (pow, o). 5
v (Do s p7)P < gm ) dnb W, (Po.ws 07) ®)

3 Applications and Related Works

Approximating argmax distribution can be found as a key component of many machine learning
methods. This includes methods like bootstrap (Ye & Liu, [2021), Thompson sampling, and random
MAP, in which the argmax distribution plays a key role by design, and as well as novel applications
from meta learning and multi-task learning, which we study extensively in Section 4]

Learning with Ensembles of Datasets Approximat-

. ing the argmax distribution finds a natural application
Training Models Test Dataset

Dataset in meta learning and multi-task/multi-domain learning,
in which we need to learn from an ensemble or a distri-
L D1 F ' bution of datasets. Denote by D a dataset on which we
[? Select Best §,  Want to learn a model parameter 0 with a loss funct.ion
[E[Dj N i £(6, D). Instead of having a single dataset, we consider
s k. ) T | the case when we have a large number of datasets {D;}
[E ) Test | which we assume is drawn from a distribution P.

We aim to find a set of models {6, }_; where exists at
least one good model for every dataset D with small n.
Denote by 0p = argmin, ¢(f, D) and p* the distribu-
tion of fp as D ~ P. Then the problem can framed
as finding {6;}7 ; to approximate p*, and hence can be
framed into

min {EDNP [min £(0;, D)} } . (6)

{0: iy i€[n]

Figure 1: An illustration of our selection
process for both training and evaluation.
Test dataset D refers to the training or vali-
dation subset of the coming test task D.



In the test phase, given a new coming dataset D), which we assume includes a validation set D
with true labels, we select the best model ;, among the centroids that minimizes the loss i, =
arg min;ep,) £(0;, D). The pipeline is shown in Figure IZ The idea here is to prepare a pool of
candidate models to best cover all different scenarios (according to probability 8 ~ p*), so that we
can select the best model for any new random task drawn from p*. This is different from typical
ensemble learning which averages the output of multiple models during evaluation; instead, we
use the best single model 6;, selected from the pool during evaluation. The objective ¢ and how to
optimize / is problem-dependent. For example, in meta learning, ¢ is updated with gradient descent
and meta gradient. The details about the formulation of ¢ and its update rule is shown in Section 4| for
different tasks. The method in (6) can also be used in bootstrapping, in which we are given a dataset
Dy of true interest and we draw random datasets D ~ P by resampling from D with replacement.
Using the argmax centroids can yield better approximation with small » than naive random sampling
that calculates p from randomly drawn D ~ P. The theoretical properties and efficient algorithms
specified to bootstrap desires an independent treatment, which we explore separately in another work.
Another related method is multiple choice learning (MCL) (Guzman-Rivera et al., 2012 Yu et al.}
2018} |Lee et al., 2016), which is an ensemble learning method using a similar objective function
as (6) but with very different motivation and settings. MCL can be viewed as minimizing (6], but
assuming each D to be a single data example rather than a dataset, with the goal of learning a set of
models and ensemble them for a single dataset. During evaluation, the outputs of the multiple models
from MCL are averaged to give the final output, rather than selecting the best one as we suggest
above based on the perspective of approximating p* .

Multi-task Learning Jointly learning models from multiple tasks has attracted long-term attention
in machine learning community. In multi-task learning (MTL), there are multiple learning tasks
and most of them (or all of them) are assumed to be related to each other. MTL algorithms can be
grouped into two main approaches: the feature learning methods and task relation learning methods.
Since tasks are related, it is intuitive to assume that different tasks share some common feature
representation, and thus feature learning approaches focus on learning the common representation
with regularizations (Yang et al.,|2009), structure designing (Caruana,|1997), etc. The other approach
focuses on learning task relations. The task relations are learnt from data automatically with a given
prior (Yu et al.,|[2005; Xue et al., |2007; Zhang & Yeung, [2012), matrix decomposition (Chen et al.,
2012) or clustering (Thrun & O’Sullivan, [1996). Recently, meta learning (Finn et al., 2017), lifelong
learning (Thrun, |1998) and continual learning (Zenke et al., 2017) are proposed to solve MTL under
different conditions.

Our method is similar to learning task relation with clustering. Different from previous works which
cluster the tasks with latent representation (Zhou & Zhao| 2015), learnable relation matrix (Zhou
et al.,[2011} [Kang et al.;|2011) or side information (Caruana,|[1997), we automatically assign a model
to a certain domain/task based on its loss.

4 Experiments

In our experiments, we start with a toy example on which we show that our algorithm approximates
the argmax distribution better than simple Monte Carlo estimation (Section.T). We then apply our
method to standard few-shot learning benchmarks, in which parameters are learned on thousands of
domains (Section4.2). We further apply our method to personalized dialogue systems (Peng et al.|
2020) (Section d multiple target domain adaptation (Yu et al.,2018) (Section to verify
whether our proposed method can be applied to different real-world applications. In all experiments,
we set the replacement controller 7 = 1.2 and a = 0.5 for Algorithm I}

4.1 Toy Examples

We start with a toy example to verify that our method can provide a better approximation of p* than
Monte Carlo estimation with the same number of samples. We set f¢(0) = ||0 — ¢ I, so that O =¢
and p* = 7. We set 7 to be d-dimension Gaussian mixture model with five modes. Note that our
method is equivalent to a gradient descent variant of K-means in this case. Figure 2] demonstrates the
two-dimension case, from which we can see that argmax centroids captures the different modes in
the distribution and are aligned optimally to get better approximation then random sampling.
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Figure 2: 2D toy example. Figure (a), (b) and (c) show the estimated centroids {6;}?_, (the red
dots) and contour (green) of the true distribution p*. Figure(d) shows the 2-Wasserstein distance
(p = 2) between the empirical measure pg- .~ of the centroids (centroid approximation) and the true
distribution p* w.r.t. the sample size n, when we vary the dimension in d € {10, 100}. ‘Log (Wass)’
denotes log-scale Wasserstein distance.

Figure |Z(d) shows the 2-Wasserstein distance (p = 2) from the empirical measure pg+ .- of the
centroids and the true distribution p* (calculated by drawing a large sample from p*), when the
dimension d of 6 varies. We can see that for both 100-dimension and 10-dimension cases, our method
yields lower Wasserstein distance than random sampling for different n.

Method Transductive Backbone 1-shot (Acc) 5-shot (Acc)

MAML (Finn et al.,[2017) v Conv4 48.7+1.8 64.6£1.2
(Tian et al.,[2020) v ResNet12 64.8+0.6 82.1+0.4
Baseline (Dhillon et al., [2020) X WRN-28-10 68.1+0.7 80.4+0.5
SIB (Hu et al.,[2020) NV WRN-28-10 70.0£0.6 80.0+0.3
+ Ours v WRN-28-10 71.2+0.6 81.1+0.4
IFSL (Yue et al., [2020) v WRN-28-10 73.2+0.3 82.94+0.4
+ Ours v WRN-28-10 73.6:0.4 83.3+0.3

Table 1: Few-shot learning results averaged over 3 trials on Mini-ImageNet.

Method Transductive Backbone 1-shot (Acc) 5-shot (Acc)

MAML (Finn et al.,[2017) v Conv4 - -

(Tian et al.,[2020) v ResNet12 71.5+0.2 86.0+0.5
Baseline (Dhillon et al., [2020) X WRN-28-10 72.940.1 86.2+0.5
SIB (Hu et al.,[2020) NV WRN-28-10 81.2+0.6 87.1+0.4
+ Ours v WRN-28-10 81.8+0.6 87.6+0.4
IFSL (Yue et al., [2020) V4 WRN-28-10 82.440.5 88.3+0.5
+ Ours v WRN-28-10 82.7+0.5 88.5+0.5

Table 2: Few-shot Learning results averaged over 3 trials on TieredlmageNet.

4.2 Few-Shot Supervised Learning

We now apply our method to few-shot image classification using the formulation in (6)), in combination
with model agnostic meta learning (MAML) (Finn et al., [2017).

To introduce the setting, let D = {D]Tm"", D;e” } be a random dataset (or task) drawn P, which

includes a training and test set. Let 6 = A(6, D"") be the result of training the parameter on D"
starting from 6, where .4 denotes the training algorithm, which is typically one step or few steps of
stochastic gradient descent with the training set. In MAML, we optimize 6 so that the peformance of
0’ = A(0, D" ") is maximized on D", The MAML loss is £(0, D) = L(A(6, D', D) with
the hope to rapidly solve a new coming task after learning several other similar tasks.

Standard MAML learns a single model 6, which may not work well for all the tasks D when
the discrepancy between tasks is large. By plugging the MAML loss into (6), we obtain a new
generalization of MAML with which we can prepare a pool of candidate models {6;}!", (the argmax
centroids), out of which we can select the best one during testing. Note that this is different from the



existing ensemble MAML methods such as (e.g., Lee et al., 2019; |Yoon et al., 2018), which averages
(instead of selecting the best among) the outputs of multiple models.

Baselines We compare and implement our method based on the recent state-of-the-art few-shot
learning methods (e.g [Hu et al.| 2020; |Yue et al., | 2020; Wang et al., | 2019). These methods train
a network consisting of a backbone network shared by all the datasets (tasks), which is fed into
classification heads specialized to individual datasets. During training, we first train a backbone
network on all the training datasets in the training tasks using typical method, and then use meta-
learning style training to tune the classification heads while keeping the backbone frozen.

We implement our proposed argmax centroids upon two recently proposed few-learning methods, SIB
and IFSL. These recently proposed methods achieve state-of-the-art results on supervised few-shot
image classification benchmarks E} SIB (Hu et al., [2020) proposes to learn synthetic gradient for
new coming tasks, and IFSL (Yue et al.||2020) finds out that pre-trained knowledge is essentially a
confounder that causes spurious correlations between the sample features and class labels in support
set. They further propose regularization terms to eliminate the mismatch.

Method ‘ MAML (Finn et al..}2017) Ensemble (voon et aL|jpo18) Bayesian (Yoon et al.}[2018) Ours
ResNet-18 56.6£3 56.7£3 57.0£4 57.4+.2
WRN-28-10 57.44+.4 57.4+.5 57.7+.4 58.1+4

Table 3: Comparison to ensemble MAML methods on Mini-ImageNet. We demonstrate the accuracy
for one-shot classification with ResNet-10 and WRN-28-10. We set the number of heads to 16
while sharing the backbone parameters. ‘Ensemble’ and ‘Bayesian’ denotes ensemble MAML and
Bayesian MAML, respectively.

All these baselines and other recent works (e.g.|[Hu et al.,|2020; |Yue et al.,2020; |Wang et al., 2019;
Dhillon et al., 2020) focus on learning a better single model by introducing strong regularization
methods. For the baselines, we focus on, a clear disadvantage of SIB and IFSL is that they share one
single 6 for all the datasets and may not work well once the discrepancy between task is large. By
applying our method, we train a fixed number of classification heads, which are treated as the argmax
centroids. This allows us to pick the best head 0 and further finetune it on the training set for each
test task during testing. We simply combine these baseline approaches with our algorithm to obtain
further improvements. To save computation cost in practice, we evaluate A (6, DT") by one-step
gradient descent and then select 6; with lowest loss among 6.

Datasets Standard benchmarks of few-shot — Baseline
classification are chosen for experiments. We > 731 T SelectonTraining set
evaluate all the baselines and our algorithms & Select on Test Set
on two subsets of ImageNet, Mini-ImageNet §

and TieredImageNet (Sun et al.,[2019). Mini- < 73 /:,/9~e\€

ImageNet contains 64 classes for training, % r o0—a o

16 for validation and 20 for test. Train- 707 2 8 16 32 64

ing/validation/test tasks are sampled from the
64/16/20 classes. TieredlmageNet (Sun et al.,
2019) is much larger compared to minilma-

Number of Heads n

Figure 3: Training n different heads for the few-

geNet and other benchmarks, with 608 classes
and 1300 samples per class. These classes
are partitioned into 351/97/160 disjoint sets for
train/val/test to achieve a larger domain differ-

shot learning task MinilmageNet with SIB (Hu
et al., 2020). ‘Baseline’ denotes training one
model , creating {6;}?_, by dropout and select-
ing {0;}, during evaluation.

ence between training and testing During train-
ing, the images in Mini-ImageNet and tieredlmageNet are resized to 80x 80 and 84 x 84, respectively.
Each sampled dataset D is a 5-class classification, with 1-shot/5-shot images per class for training
and 15 images per class for test. When evaluating the trained models, 2000 test tasks are sampled
from the test set, and the accuracy on D™ of all the test tasks are reported for comparison.

"https://few-shot.yyliu.net
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Implementation Details For each baseline method, we create a small number of additional param-
eters. During the second training stage, given a backbone, e.g., Wide-ResNet-28-10 (Zagoruyko &
Komodakis, 2016), we use additional parameters {6;}? to re-weight the final-layer features. In the
experiments, for few-shot learning based on SIB and IFSL, we set n = 16. We only introduce a small
number of additional parameters (0.01M parameters) compared to the model size (22M parameters).

For both the training and testing, we keep all the settings (e.g. optimizer, learning rate, number of
tasks) the same for each baseline method. We first train the feature extractors using the standard cross-
entropy loss on the base classes (i.e., the classes in the training set in all training tasks). Secondly,
training the heads following the standard meta learning pipeline. Finally, we test the trained models
on sampled test tasks. For each test task, we do a few gradient descent steps on the training set. The
number of iterations follows the baselines.

Results Table 3/ shows the comparison between our proposed method and standard ensemble
MAML methods. We implement our method upon several recently proposed strong baselines. As
demonstrated in Table [T and [2, our algorithm consistently improves all the baseline methods in
all settings, which suggests that our proposed algorithm is a general method for few-shot image
classification. For example, on Mini-ImageNet, we improve the accuracy of SIB by a large margin
for both 1-shot (70.0% to 71.2%) and 5-shot (80.0% to 81.1%) classification. For IFSL, we can also
boost the performance under most of the settings.

Comparison to Ensemble Methods Here, we follow the setting in and ensemble MAML (Yoon
et al., 2018) where the backbone is not pretrained on all the training images and is jointly training
during the meta learning step. We compare two popular ensemble baselines, ensemble MAML and
Bayesian MAML (Yoon et al.,[2018). Ensemble MAML trains n models independently and take an
average of the outputs of all the models during evaluation. Bayesian MAML (Yoon et al.,|2018) uses
SVGD (Liu & Wang| 2016) to jointly update n models during training and ensemble them during
evaluation. Instead of choosing the best model for a test domain like our method, the ensemble
methods average the outputs of all the models. From Table[3, we can see that our method is better
than both ensemble approaches on one-shot classification on Mini-ImageNet with different neural
architectures. On ResNet-18 and WRN-28-10, our method achieves better results than ensemble
methods.

Ablation Study In Figure[3, we change n and make a selection based on training/test/validation
loss to have a deeper understanding of our algorithm. We notice that, if we do not have a separate
validation set, we may need to select the best model on the training set during evaluation, which
cause overfitting. We investigate this issue in Figure[3] in which we show the results when we select
the best models using training, validation and, test set, respectively. In order to do the selection on the
validation set, we additionally draw 5 images per class for each test task. The result shows that, in our
case, both selecting on training and validation set is worse than the “oracle” way (i.e., selecting on
the test set and evaluating on the test set). When the number of heads increases, the performance of
selecting on training set drops and over-fitting happens. However, in practice, one cannot get access
to the test set during training. Therefore, selecting on the validation set is an alternative choice.

4.3 Personalized Dialogue System

Problem Set We consider learning personalized chit-chat dialogue agents for making chat-bots
more consistent for each user (e.g. |Zhang et al., 2018; |Madotto et al., 2019b; Tian et al., 2020).
Previous approaches usually learning persona
similarity from persona descriptions (Zhang

et al., 2018). Different from these methods, gieitlvk[lgi - Zlgl%si BI()E;; T
. . (Madotto et al.|2019a) . .
current personalized dialogue systems focus on Ours 43.94 0.91

learning to quickly adapt to new personas by
using few samples. In this problem, each dataset
D = (D™4in DTty ~ P contains several dia-
logues of a user. A dialogue contains a set of
utterances, and the objective is to predict the
next utterance given previous utterances. We use the MAML objective for training.

Table 4: Results of automatic evaluation on per-
sonalized dialogue generation. We report case-
insensitive BLEU and PPL.



Baselines We use a recently-proposed meta learning dialogue system (Madotto et al.,[2019b) as the
baseline. We measure the difference between the ground-truth output and model output to evaluate
the model performance by PPL (Perplexity) and case-insensitive BLEU score (Papinent et al., 2002).

Implementation Details Before training, the datasets sampled from P is split into meta-training,
meta-validation and meta-test dataset. The meta-learner learns how to learn by training and evaluating
on the meta-training set. Meta-learning hyper-parameters are tuned on the meta-validation set. The
meta-test set measures generalization on new, unseen tasks. We use the BERT-base (Devlin et al.|
2019) model as the backbone and tune the parameters in the backbone together with the final softmax
layer. For meta training, we use Adam (Kingma & Ba, 2014) with learning rate 103, 10~2 for
inner and outer loop training, respectively. During the evaluation, for all the models, we used beam
search with beam size 4 and length penalty 1.2. These hyper-parameters are selected based on the
performance of the meta-validation dataset.

For our method, we create n = 16 softmax head (i.e. a linear transform followed by a softmax layer),
share the backbone parameters and select one head for each persona with the lowest loss on the test
set for this persona during training, and select the softmax head with the lowest loss on the training
set during evaluation.

Result Table [d shows that our proposed algorithm beats the meta-learning baseline on both the
PPL and BLEU measure. We improve the BLEU from 0.77 to 0.91 and PPL from 46.35 to 43.94,
respectively.

4.4 Multi-Target Domain Adaptation

Domain adaptation is a powerful approach for learning
under distributional shift between training and test data
(e.g.'Wu et al., 2018;|Tzeng et al.,2017). Here, we show
that our proposed algorithm can also be applied to multi-
target domain adaptation (Yu et al.,|2018)) using the dataset
proposed in |Peng et al. (2019). For multi-target domain
adaptation, one source domain and m multi-target domain
is given. In this experiment, we use the classical domain
adaptation method proposed by [Tzeng et al.| (2017), in
which an adversarial net is used to learn the adaptation
from the latent space in the source domain.

—©- Test Loss
=@~ Discriminat
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We first pretrain a CNN using labeled image examples
from the source domain and denote the backbone as g.
Next, for the target domain, we perform adversarial adap-
tation by learning a map ¢ after g such that a discriminator
that sees source examples g(+) and target examples ¢(g(-))

Figure 4: Tllustration of the per-domain
test loss, and per domain negative dis-
criminator loss. For the multi-domain
adaptation task, when the number n of
models increases, the negative discrimi-

cannot reliably predict their domain label. During the
evaluation, target images are mapped with backbone g
followed by the learned map to the shared feature space
and classified by the final-layer classifier trained on the source domain.

nator loss always increases while the test
loss first decreases and then increases.

Our Method After pretraining a backbone on the source domain, We consider to use n adversarial
nets {6;}"_, as domain adaptors to match the representation of the source domain and target domains.
Each 6; = (¢;, ;) contains two part of parameters where ¢; is a feature map and ; is a discriminator.
¢; is an MLP whose input and output have the same dimension and 7; maps the input to a one-
dimension scalar followed by a sigmoid function.

Denote z = g(x) the features extracted by the backbone and S the source domain, £(6;, D) equals to

—Ez_gmM{ log 7:(¢1(2)) + log(1 - wz-(z))} - Ez_g(m),ms{ log 7i(z) + log(1 - w»},
@)

is an adversarial loss which forces the discriminator to make uniform prediction.



Baselines We compare our method with three simple baselines. One is using a shared adversarial
domain adaptors for all the target domains. Another is using n different domain adaptors for m target
domains. The third baseline is randomly assigning domains with models for each iteration during
training and average all the outputs for all models during evaluation.

Experiment Settings We use the DomainNet dataset proposed by Peng et al.|(2019). DomainNet
contains 6 styles, 345 classes and 569,010 images. We create a subset of DomainNet to do experiments.
We sample 25 classes in the same style and sample 300 images for each class. For each sample
subset (domain), we use 5 different data shifts (e.g. brightness, fog, snow, MotionBlur, Gaussian
noise) (Hendrycks et al., 2019) to create new domains. Finally, we obtain 30 different domains.
We randomly select one domain data as the source domain and the rest as target domains during
experiments. For the neural architecture, we use a standard ResNet-18 (He et al.,2016) to train on
the source domain, a three-layer MLP as ~y; and another three-layer MLP as ¢;. During training and
testing, we resize the image into 64 x 64 size. During training, we use standard data augmentation
(mirror and flip).

Method | 1 Adaptor m Adaptor | Ensemble |  Ours
AccT | 39.5£04  41.8+0.6 | 41.34£0.7 | 44.3£0.6
Table 5: Results on multi-target domain adaptation. The reported accuracy are averaged over 5 trials.
“Ensemble” denotes randomly assigning models with domains during training and ensembling all the
models during evaluation.

Results As demonstrated in Table[5] compared to sharing one domain adaptor for all the domains,
using a domain-specific domain adaptor improves the accuracy from 39.5% to 41.8%. With our
proposed method, we can further improve the 41.8% accuracy to 44.3%. In Table [5, we also
demonstrate that randomly aligning different domains hurts the performance. It indicates that in this
setting our method is much better than ensemble multiple models. We further set up an ablation
study on the number of heads. As shown in Figure ] similar to the results in Figure[3] increasing the
number of heads can always improve the training loss (i.e., discriminator loss in (7). Here, increasing
n makes the negative discriminator loss higher indicates that it mixes the two domains successfully.
However, the test loss increases once n is too large. It demonstrates that our argmax centroids method
implicitly serves as a regularization by sharing the same linear map ¢ for multiple similar domains.
Sharing the same linear map increases the number of training data for each 6, and therefore avoids
overfitting.

5 Conclusion

In this work, we propose a method to estimate the argmax distribution. It can be an alternative
for related methods, and we further apply it to many multi-domain and multi-task learning tasks.
Aligning similar domains into a same model, the proposed algorithm boost the SOTA performance on
several few-shot classification and meta learning tasks. In the concurrent work (Ye & Liu, |[2021) we
use the centroid learning idea to improve the bootstrap for data uncertainty quantification, in which we
establish a rigorous theoretically result showing that the centroid objective function is uniformly close
to Wasserstein distance through the whole optimization trajectory induced by a modified gradient
descent algorithm. For the next step, we will consider the connection with diversifying models and
other topics. We will also apply our method to more meaningful and challenging tasks, e.g. lifelong
learning, continual learning.
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