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Abstract

Finding diverse and representative Pareto solutions from the Pareto front is a key
challenge in multi-objective optimization (MOO). In this work, we propose a
novel gradient-based algorithm for profiling Pareto front by using Stein variational
gradient descent (SVGD). We also provide a counterpart of our method based on
Langevin dynamics. Our methods iteratively update a set of points in a parallel
fashion to push them towards the Pareto front using multiple gradient descent,
while encouraging the diversity between the particles by using the repulsive force
mechanism in SVGD, or diffusion noise in Langevin dynamics. Compared with
existing gradient-based methods that require predefined preference functions, our
method can work efficiently in high dimensional problems, and can obtain more
diverse solutions evenly distributed in the Pareto front. Moreover, our methods
are theoretically guaranteed to converge to the Pareto front. We demonstrate the
effectiveness of our method, especially the SVGD algorithm, through extensive
experiments, showing its superiority over existing gradient-based algorithms.

1 Introduction

Many scientific and engineering problems involve optimizing multiple conflicting objectives [5, 28,
4, 24], including, for example, designing wireless sensors [12], building electric power systems [30],
and training neural networks with multiple tasks [35]. With multiple conflicting objectives, it is
impossible to find a single solution that optimizes all the objectives simultaneously. Instead, it is
essential to find a set of diverse solutions in the Pareto front that represent different preferences on
the different objective functions, so that the users can have a global view of how the optimal trade-off
of the different objectives look like and select the solution according to their own preference.

Unfortunately, profiling the Pareto fronts casts a key computational challenge, especially for high
dimensional problems [5, 12, 28]. Traditionally, a large literature has been devoted to developing
black-box, derivative-free algorithms that are suitable for black-box optimization, such as these
based on evolutionary algorithms [8] and Bayesian optimization [25, 1, 39]. However, the black-box
algorithms tend to be expensive and can only be applied to small scale problems due to the lack of
gradient information. Gradient-based MOO algorithms have been catching attention only recently,
which include mainly multiple gradient descent (MGD) based methods [10, 22, 27]. However,
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the results of these methods are still dissatisfying in finding diverse and evenly distributed Pareto
solutions in complex problems.

We introduce Stein variational gradient descent (SVGD) [20, 19, 21] and Langevin dynamics [37] as
efficient approaches for profiling Pareto fronts. These methods iteratively evolve a group of particles
to represent the target distribution. The main difference of the two algorithms is how they distribute
points. The Langevin dynamics uses stochastic noises to perturb the particle trajectories, so they can
visit different areas of the Pareto front. On contrast, SVGD is a deterministic sampling algorithm that
pushes the particles to high probability regions using gradient information, while enforcing diversity
between the particles using a repulsive force.

In this work, we propose to a simple approach to integrate SVGD and Langevin Dynamics with
MGD to draw samples from the Pareto front. Theoretical analyses are provided for both algorithms
to understand their limiting distributions and their convergence speed. One challenge with MGD
based sampling is that the limiting distributions do not admit explicit formulations. This is mainly
because the forcing from MGD is in general not the gradient of any function. However, we can show
its non-gradient component is orthogonal to a large class of functions. Assuming each objective
function is strongly convex and regular, we can also show the limiting distributions concentrate on
the Pareto front. Moreover, we can show the two algorithms converge to good solutions of MOO
with O(1/t) and linear rate.

We test our methods on a variety of tasks, ranging from low-dimensional optimization to multi-task
neural network optimization. On all the tasks tested, our method can obtain diverse and high quality
Pareto solutions that distribute evenly on the Pareto front, without predefined preference vectors.
Quantitatively, we substantially outperform PF-SMG and EPO with respect to the hypervolume
metric.

2 Background

In Multi-objective optimization (MOO), we are interested in minimizing a vector-valued loss function
F (x) = (f1(x), f2(x), . . . , fm(x)) ∈ R

m, where x ∈ R
d and fi : R

d → R, i ∈ [m] is the i-th
scalar-valued objective function. Here we use notation [m] = {1, 2, . . . ,m}. Obviously, we can not
fully optimize all the objective functions simultaneously because they may be conflicting with each
other. Instead, we are interested in finding the points which can not be improved simultaneously for
the objective functions, yielding the notion of Pareto optimality.

Definition 1 ( Pareto Optimality). For x1, x2 ∈ R
d, We say that x1 is dominated by x2 iff fi(x2) ≤

fi(x1), ∀i ∈ [m], and F (x1) 6= F (x2). A point x∗ is called globally Pareto optimal on R
d iff it is

not dominated by any other x′ ∈ R
d. A point x∗ is called locally Pareto optimal iff there exists an

open neighborhood N (x∗) of x∗, such that x∗ is not dominated by any x ∈ N (x∗). The collection
of globally (resp. locally) Pareto optimal points are called the global (resp. local) Pareto set. The
collection of function values F (x∗) of all the Pareto points x∗ is called the Pareto front.

Our goal is to find diverse and representative solutions {xi}ni=1 from the Pareto set, so that their
function values {F (xi)}ni=1 covers different preferences on different objectives. This would allow
the end-users to have a global view on the optimal trade-off between the different objective functions
and decide which solution based on their own preference.

Linear Scalarization One standard approach to solve MOO is using a preference vector λ =
[λ1, . . . , λm] from the probability simplex on [m], i.e., S = {λ :

∑m

i=1 λi = 1, λi ≥ 0, i ∈ [m]}.
Each λ ∈ S leads to a weighted objective function fλ(x) =

∑m

i=1 λifi(x) and its minimizer
x∗
λ = argminx fλ(x). Then as we take λ in a grid of S, we hope that the corresponding x∗

λ gives a
rough sketching of the Pareto front.

Although this strategy is simple and easy to implemented, it suffers from the a number of weaknesses.
A key problem is that F (x∗

λ) can only lie on the convex envelope of the Pareto front, and hence it
only works in cases when the Pareto front is convex. In addition, a uniform grid of λ on S does not
necessarily yield uniformly distributed points on the Pareto front.

Multiple Gradient Descent (MGD) MGD is a natural extension of the single-objective gradient
descent to finding a Pareto point [10], which, unlike linear scalarization, works for non-convex Pareto
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fronts. The idea is to iteratively update the variable x along a direction that ensures that all the
objectives are decreased simultaneously (which is called Pareto improvement).

Let gi(x) = ∇fi(x) be the gradient of the i-th objective. Suppose we update the variable by
x′ ← x− εg∗(x), where g∗(x) is a vector field to be determined and ε is a small step size. By Taylor
approximation, we have 〈gi, g∗〉 ≈ −(fi(x′)− fi(x))/ε, which represents the decreasing rate of fi
when we update x along direction g∗(x). In MGD, g∗ is chosen to maximize the slowest decreasing
rate among all the objectives, that is,

g∗(x) ∝ argmax
g∈Rd

{

min
i∈[m]
〈g, gi(x)〉, s.t. ‖g‖ ≤ 1

}

. (1)

Therefore, g∗(x) is encouraged to have positive inner products with all gi(x). If this is impossible
to achieve, {gi(x)}mi=1 will contain conflicting directions, and we would have g∗(x) = 0 which
terminates the algorithm. Using Lagrangian duality, we can show that the optimal solution to (1) is
g∗(x) ∝∑m

i=1 λ
∗
i (x)gi(x), where {λ∗

i (x)}mi=1 is the solution of

min
{λi}

∥

∥

∥

∥

∥

m
∑

i=1

λigi(x)

∥

∥

∥

∥

∥

s.t.
m
∑

i=1

λi = 1, λi ≥ 0, ∀i. (2)

This optimization has a simple closed-form solution when m = 2, and a fast algorithm is offered by
[35] for m > 2. By construction, when the step size ε is small, MGD monotonically decreases all
the objectives simultaneously and will terminate when it arrives a local Pareto point; in this case we
have g∗(x) =

∑m

i=1 λ
∗
i (x)gi(x) = 0, suggesting that the zero vector 0 is inside the convex hull of

{gi(x)}mi=1.

The MGD direction g∗ provides a natural notion of gradient for multiple objectives. A point x is said
to be Pareto stationary if g∗(x) = 0. Similar to the case of differentiable single-objective optimization,
every Pareto local optimal is a Pareto stationary point. See [10, 35, 22] for more discussion.

However, the vanilla MGD suffers from several key weaknesses. Although it promises to return
a point on the (local) Pareto set, and it is difficult to explicitly control which Pareto point it will
converge to. The convergence point of MGD is implicitly determined by the initialization and the
other hyper-parameters of the algorithm (e.g., step size) in a complicated way. It can be harder for
MGD to converge to some Pareto points than the others. In fact, assume the Pareto front is an open
set in R

d, then the vanilla MGD, when initialized from outside of Pareto front, will terminate when it
reaches the boundary of the Pareto front, and hence never reach the interior points. Below is a simple
example to demonstrate this.

Example 1. Consider f1(x) = x2 and f2(x) = (x − 1)2 for x ∈ R as shown in Figure 1. Then
the Pareto set is the interval [0, 1]. However, when initialized outside of [0, 1], MGD will converge
to either x = 0 or x = 1 and can not reach the interior points of the Pareto set unless we add a
diversity-promoting mechanism, such as random noise or deterministic repulsive force. See figure 1.
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Figure 1: (a) The plot of f1 and f2 in Example 1. (b) The MGD direction g∗(x). The Pareto set is [0, 1], within
which we have g∗(x) = 0. (c) MGD can only converge to either of the two end points (x = 0 or x = 1) of the
Pareto set [0, 1] when initialized outside of [0, 1]. (d) Solutions from our MOO-SVGD; we use 30 particles with
3000 iterations. (e) Solutions from MOO-LD; we run the algorithm for 106 steps, and uniformly sample 30
points from the last 1000 points.

3 Profiling Pareto front with Particle Dynamics

We improve MGD by integrating it with sampling algorithms for approximating distributions to
obtain diverse solutions that cover the Pareto front more evenly. In this section, we first introduce our
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main algorithm, which integrates MGD with Stein variational gradient descent (SVGD), yielding an
interacting particle system that evolves diverse Pareto solutions with deterministic repulsive forces
(Section 3.1). We also introduce a related idea of combining MGD with Langevin dynamics to
obtain diverse solutions by injecting diffusion noises, which is found less favorable in practice than
SVGD-based method but is of independent interest (Section 3.2).

3.1 Multi-Objective Stein Variational Gradient Descent

Stein Variational Gradient Descent (SVGD) [20] is a deterministic sampling method for finding
diverse and representative points (a.k.a. particles) for approximating an un-normalized distribution,
by iteratively evolving the particles with both gradient information and a special repulsive force. In
this section, we integrate SVGD with MGD and adapt it to profile the Pareto front.

We derive our algorithm following how SVGD was derived in [20]. We initialize a set of points
{xi}ni=1 (a.k.a. particles) and iteratively updates them to 1) mimic the MGD trajectory and 2) maintain
diversity between the points. For the derivation, assume the particles {xi} follow a distribution ρ and
we update them with xi ← xi − εφ∗(x), ∀i ∈ [n], where φ is an update direction, selected from a
predefined function spaceH, to strike the balance of the following two factors:

1) We want to choose φ to make the dynamics mimic the MGD trajectory as close as possible; this
can be framed as maximizing the average inner product Ex∼ρ[〈g∗(x), φ(x)〉], to make the direction
of φ and g∗ as close as possible.

2) We also want to choose φ to encourage the diversity between the particles. Assume ρ is a
continuous distribution; the diversity of ρ can be measured by the entropy H(ρ), and hence we
want to choose φ such that the entropy of the distribution of the updated particles, denoted by ρ′,
is maximized. [20] showed that H(ρ′) = H(ρ)− εEx∼ρ[∇ · φ(x)] +O(ε2), where ∇· denotes the
divergence operator in vector calculus. Therefore, we should choose φ to maximize−Ex∼ρ[∇·φ(x)]
to encourage the diversity of the updated particles.

Overall, we optimize φ to maximize a linear combination of the two terms above: φ∗
ρ =

argmaxφ∈F

{

Ex∼ρ[〈g∗(x), φ(x)〉 −α∇ · φ(x)]
}

, where α is a positive coefficient that controls the
importance of the divergence term. Following [20], we take F to be the unit ball of a reproducing
kernel Hilbert space (RKHS) with a positive definite kernel k(x, x′). With the same derivation as
[20], we get a closed form solution: φ∗

ρ(x) ∝ Ex′∼ρ [g
∗(x′)k(x′, x)− α∇x′k(x′, x)] .

By approximating ρ with the empirical distribution of the particles ρ =
∑

i δxi
/n and iteratively

updating the particles with φ∗
ρ above, we obtain the following MOO-SVGD:

xi ← xi − εφ̂(xi), where φ̂(xi) =
1

n

n
∑

j=1

g∗(xj)k(xi, xj)− α∇xj
k(xi, xj). (3)

We can see that MOO-SVGD simply replaces the gradient in SVGD with the multiple gradient g∗.

The intuition of the update is clear: the first term in φ̂ makes the dynamic follow the MGD direction
so that the particles are pushed towards the Pareto set when {g∗(xi)} have large magnitudes; the
second term pushes the different particles away from each other, so that more areas of the Pareto set
is approximated. In particular, when all the particles are in the Pareto set with g∗(xi) ≈ 0, then only
the pairwise repulsive force will push the particles to be away from each other and form a uniform
distribution inside the Pareto set.

If g∗ is the gradient vector of some scalar function, i.e., g∗(x) = ∇f∗(x), then our method reduces
to the standard SVGD for sampling from distribution ρ∗(x) ∝ exp(−f∗(x)/α). In general, g∗ is
not a gradient vector field of any scalar-valued objective function, and hence our method yields a
general “non-gradient” variant SVGD. Similar to vanilla SVGD, we can characterize the evolution of
the density of the particles with a nonlinear different equation. In the large particle (n → ∞) and
continuous time limit, let ρt be the limit density of the particles at time t (ε→ 0). Following [19],
the evolution of ρt is governed by,

dρt(x)

dt
= ∇x · (φ∗

ρ(x)ρt(x)). (4)

Unlike the case of the vanilla SVGD, the behavior of (4) is less clear due to the non-gradient nature
of g∗(x). In the following, we show that the stationary distribution of (4) is connected to a Helmholtz
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like decomposition of g∗(x) into a gradient component and non-gradient components. To facilitate
our discussion, we define the kernel embedding of any function f with density ρ as

f[ρ](x) =

∫

k(x, y)f(y)ρ(y)dy.

Theorem 3.1. Assume ρ∗ is a fixed point of (4) for which log ρ∗(x) is continously differentiable and

satisfies the Stein’s identity Ex∼ρ∗ [∇ log ρ∗(x)k(x, x′) +∇k(x, x′)] = 0 for every x′ ∈ R
d. Then

we have the following decomposition of the vector field g∗:

g∗(x) = −α∇ log ρ∗(x) + (x), (5)

where ∇ log ρ∗ and  can be viewed as the gradient and non-gradient components of g∗, and (x)
satisfies the following property: its kernel embedding is orthogonal to the kernel embedding of
any gradient field in RKHS H, that is, let h be any C1 function with a compact support then
〈[ρ∗], ∇h[ρ∗]〉H = 0.

The existence of ρ∗ is discussed in the Appendix after the proof of Theorem 3.1. Next, we show that
ρ∗ concentrates on the Pareto set. In order to do so, recall that ‖g∗(x)‖ = 0 indicates that x is on
the Pareto set. Therefore we will show the norm of the MGD field g∗ is small over ρ∗ and SVGD
updates can find a solution with small ‖g∗‖.
To simplify our discussion, we limit our discussion on the case where a truncated (σ,md)-Gaussian

kernel is used: k(x, y) = (det(2πσ2I))−
1

2 exp(− 1
2σ2 ‖x− y‖2)1‖x−y‖≤mdσ. Note that its gradient

may be singular at the truncation threshold. Formally we can ignore such singularity and simply

define formally: ∇yk(x, y) :=
x−y
σ2 k(x, y)1‖x−y‖≤mdσ. We also assume the objectives functions

are regular and strongly convex:

Assumption 1. Each objective function fi is C3, i.e., third-order continuously differentiable, and
c1I � ∇2fi � c2I, |∂3

j,k,lfi| ≤ c3, for i, k, l ∈ [d], where 0 < c1 ≤ c2 ≤ ∞, 0 ≤ c3 < ∞ are

constants. Here ∇2fi is the Hessian matrix of fi, and A � B indicates that B − A is a positive
semi-definite matrix.

It is well known that, with strongly convex single objective function, gradient based algorithm can
converge to the global minimum. We show that this also true for MOO-SVGD method.

Theorem 3.2. Suppose ‖g∗‖2 is C1, g∗ is L-Lipschitz and Assumption 1 holds. If we apply MOO-
SVGD using the (σ,md)-truncated Gaussian kernel k, the equilibrium distribution ρ∗ of MOO-SVGD
satisfies

‖g∗[ρ∗]‖2H =

∫

ρ∗(x)k(x, y)ρ∗(y)g∗(x)>g∗(y)dxdy

≤
∫

ρ∗(x)k(x, y)ρ∗(y)‖g∗(x)‖2dxdy ≤ 1

2c21
(L+ α/σ2)2m2

dσ
2‖1[ρ∗]‖2H.

If the MOO-SVGD density ρt following (4) is considered, for any t there is an s ≤ t such that

‖g∗[ρs]
(x)‖2H ≤

1

2c21
(L+ α/σ2)2m2

dσ
2‖1[ρs]‖2H +

1

t
Ex∼ρ0

‖g∗(x)‖2.

Claim 1 of Theorem 3.2 says that, at the equilibrium ρ∗, the kernel embedding of g∗ is O((1 +
α/σ2)2σ2) which can be arbitrarily small if σ and α are chosen to be small numbers. Claim 2 of
Theorem 3.2 indicates the SVGD density flow ρt can find a solution of similar property in finite time.

3.2 Multi-Objective Langevin Dynamics

Besides SVGD, MGD can also be integrated with Langevin dynamics (LD), which yields diverse
solutions by injecting random noise into the updates. Similar to SVGD, we can achieve this by simply
replacing the gradient field in LD with g∗, yielding MOO-LD:

x← x− εg∗(x) +
√
2αεξ, (6)
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where ξ is a standard Gaussian noise and α is a positive coefficient that determines the magnitude of
the noise. The intuition is again simple: if x is far away from the Pareto set with a large multiple
gradient ‖g∗(x)‖, the dynamics will mainly drive x towards the Pareto set; when x is close to Pareto
set with a small ‖g∗(x)‖, the noise term will dominate and allow x randomly diffuse on Pareto set.

If g∗ is the gradient vector of some sclar-valued function f∗, that is, g∗(x) = ∇f∗(x), then its
stationary distribution equals ρ∗(x) ∝ exp(−f∗(x)/α). If g∗ is not a gradient field, the Langevin
dynamics is known to be irreversible [e.g., 32, 11].

As shown in our empirical results, the SVGD based method is more practically attractive than the
Langevin method. We find that SVGD tends to provide more diverse and uniformly distributed points
than Langevin dynamics. And for some of the challenge MOO benchmarks, Langevin dynamics can
be stuck in a small local region and is slow to mix. In comparison, thanks to the deterministic updates,
SVGD is found to generate mores uniformly distributed Pareto solutions in a faster speed. Another
practical advantage of SVGD is that we can define the kernel to be of form k(x, y) = k0(F (x), F (y)),
so that the diversity force is w.r.t. the function values {F (xi)}, rather than the variables {xi}.
In the following, we consider the asymptotic property of the dynamics in (6). Consider the continuous
time limit of the dynamics in (6) (ε→ 0), which yields a stochastic differential equation

dxt = −g∗(xt)dt+
√
2αdwt, (7)

where wt denotes standard Wiener process and t denotes time. Assume we initialize x0 from a
distribution with continuous differential density function ρ0, then the evolution the density of x(t),
denoted by ρt, is governed by a Fokker-Planck equation:

d

dt
ρt(x) = ∇ · (g∗(x)ρt(x) + α∇ρt(x)), (8)

where ∇· denotes the divergence operator in vector calculus.

The stationary distribution of (7) and (8), denoted as ρ∗, uniquely exists as long as g∗(x) is coercive
(e.g., if Assumption 1 holds). See e.g., [29]. It yields a decomposition of g∗(x) analogous to that of
(5). Moreover, we can show the KL divergence between ρt and ρ∗ decays:

Theorem 3.3. Assume ρ∗ is a fixed point of (8) for which log ρ∗(x) is in C1(Rd). Then we have the
following Helmholtz decomposition of the vector field g∗: g∗(x) = −α∇ log ρ∗(x) + (x), where 
satisfies that, for any C1(Rd) function h with a compact support,  is orthogonal with∇h under ρ∗:
∫

(x)>∇h(x)ρ∗(x)dx = 0. Further, if ρt(x)(x)→ 0 when ‖x‖ → ∞, the KL divergence between
ρt and ρ∗ decreases monotonically with

d

dt
KL(ρt || ρ∗) = −αF(ρt || ρ∗), (9)

where F(ρt || ρ∗) = Ex∼ρt
[‖∇ log(ρt(x)/ρ

∗(x))‖2] is the Fisher divergence.

Theorem 3.3 is similar to Theorem 3.1. The differences are: 1) there is no kernel, and the decomposi-
tion is more well-understood, see for example Section 1 of [11]; 2) Interestingly, SVGD does not
seem to have a similar monotonic decreasing property similar to (9). In particular, if ρ∗ is strongly
log-concave, it is well known that (9) indicates that ρt converges to ρ∗ linearly in KL divergence.

Analogues to Theorem 3.2, we can also show the MOO-LD yields a distribution that concentrates on
the Pareto (stationary) set. In fact, we can further show ‖g∗(x)‖ is sub-Gaussian under ρ∗.

Theorem 3.4. Under Assumption 1, let M = c23α/c1 + c22. For any constant 0 < b ≤ c1
4αc2

2

, the fixed

point ρ∗ to (8) satisfies

Ex∼ρ∗‖g∗(x)‖2 ≤ 4αMd/c1, Ex∼ρ∗ exp(b‖g∗(x)‖2) ≤ 3 exp(16αbMd/c1).

The solution ρt to (8) satisfies the following

Ex∼ρt
‖g∗(x)‖2 ≤ exp(−1

2
c1t)Ex∼ρ0

‖g∗(x0)‖2 + 4αMd/c1,

Ex∼ρt
exp(b‖g∗(x)‖2) ≤ exp(−αbMdt)Ex∼ρ0

exp(b‖g∗(x)‖2) + 3 exp(16αbMd/c1).
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4 Related Works

We discuss related works on MOO and also introduce the hypervolume (HV) indicator which we will
use as the evaluation metric in our experiments.

Gradient-free MOO Algorithms A large volume of literature focuses on black box and derivative-
free MOO, where fi(x), i ∈ {1, 2, . . . ,m} are observed through the outputs [e.g., 8, 25, 15, 39,
25, 13]. These methods are typically based on evolutionary algorithm or Bayesian optimization.
However, due to the lack of gradient information, they can perform well only in low dimensional
problems and can not be applied to large-scale optimization problems in modern machine learning,
such as learning neural networks.

Gradient-based MOO Algorithms Another important line of work is gradient-based methods.
The foundation of these methods is MGD. Representative methods include Pareto Front Stochastic
Multiple Gradient (PF-SMG) [10, 22], Pareto Multi-task Learning (PMTL) [18], and Exact Pareto
Optimization (EPO) [27].

PF-SMG leverages the randomness in stochastic multiple gradient descent to profile the whole Pareto
front. The method keeps a set of solutions. In every optimization step, the algorithm removes
dominated solutions from the set, randomly sample new solutions from the neighborhood of the
survived solutions, and run MGD for another multiple steps. PF-SMG is similar to the Langevin
method we discuss in Section 3.2 in that both of them leverage random noise, but PF-SMG leverages
the noise in stochastic gradient, which will vanish to zero when the step size decreases to zero.
Therefore, PF-SMG would reduce to MGD except the selection step. In constrast, the diffusion noise
converges to Brownian motion with small step size.

PMTL and EPO are designed to find local Pareto optimal solutions that satisfy specific user preference.
They can also be used to trace the Pareto front by varying the user preference vector uniformly.
However, sampling the preference vector uniformly will not necessarily result in a uniform solution
set on the Pareto front, which is what we observe in the experiments. Compared with PTML and EPO,
our method does not require pre-defined user preference and can obtain more diverse and uniformly
distributed points as we show in experiments.

Pareto Hypernet Methods Several methods, such as [31, 17, 33], proposed to learn a neural
network, called Pareto hypernet, which can generate pareto-optimal solutions given a preference
vector as input. In comparison, our methods directly generates a set of solutions (or particles) that
covers the Pareto front. The usage of neural network can be helpful in some cases, but it also makes
the algorithm more complicated and less transparent, and the choice of neural network structure has
heavy influence on the result. In comparison, our algorithm is much simpler, transparent and directly
outputs the solutions that we want. More empirical evidence and discussion can be found in the
Appendix.

Hypervolume The hypervolume (HV) indicator is a standard metric for evaluating the quality of
sets of solutions in MOO. Assume r = [r1, . . . , rm] is an reference point that is an upper bound of
the objectives, such that supx fi(x) ≤ ri, ∀i ∈ [m]. For a given set of solutions X = {xi}ni=1, its
hypervolume indicator HV (X ) is the measure of the region between F (X ) and r,

HV (X ) = Λ

({

q ∈ R
d | ∃x ∈ X : q ∈

m
∏

i=1

[fi(x), ri]

})

, (10)

where Λ(·) denotes the Lebesgue measure. Directly optimizing the hypervolume metric can be
problematic, because it is piece-wise constant. Hypervolume indicator gradient ascent (HIGA) [36]
relaxes the hypervolume indicator to get usable gradient for optimization, and a recent work [9] is
mathematically similar to HIGA. However, [36] and [9] have two main drawbacks compared with
our sampling-based method: (1) its results depend on the choice of reference point; (2) it may get
stuck in bad local minima. See the Appendix for more empirical comparison.

5 Experiments

We show our method, Multi-Objective Stein Variational Gradient Descent (MOO-SVGD) can effi-
ciently profile the Pareto front on a variety of problems, including the ZDT problem set, tri-objective
problem MaF1, trade-off between accuracy and fairness metrics in fair ML, as well as multi-task
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