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Abstract

We introduce a universal framework for characterizing the statistical efficiency of a statis-
tical estimation problem with differential privacy guarantees. Our framework, which we call
High-dimensional Propose-Test-Release (HPTR), builds upon three crucial components: the ex-
ponential mechanism from [MT07], robust statistics, and the Propose-Test-Release mechanism
from [DL09]. Gluing all these together is the concept of resilience, which is central to robust
statistical estimation. Resilience guides the design of the algorithm, the sensitivity analysis,
and the success probability analysis of the test step in Propose-Test-Release. The key insight
is that if we design an exponential mechanism that accesses the data only via one-dimensional
robust statistics, then the resulting local sensitivity can be dramatically reduced. Using re-
silience, we can provide tight local sensitivity bounds. These tight bounds readily translate into
near-optimal utility guarantees in several cases. We give a general recipe for applying HPTR to
a given instance of a statistical estimation problem and demonstrate it on canonical problems
of mean estimation, linear regression, covariance estimation, and principal component analysis.
We introduce a general utility analysis technique that proves that HPTR nearly achieves the
optimal sample complexity under several scenarios studied in the literature.
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1 Introduction

Estimating a parameter of a distribution from i.i.d. samples is a canonical problem in statistics.
For such problems, characterizing the computational and statistical cost of ensuring differential
privacy (DP) has gained significant interest with the rise of DP as the de facto measure of privacy.
This is spearheaded by exciting and foundational algorithmic advances, e.g., [BD14, KV17, KLSU19,
KSU20, CWZ19]. However, the computational efficiency of these algorithms often comes at the cost
of requiring superfluous assumptions that are not necessary for statistical efficiency, such as known
bounds on the parameters or knowledge of higher-order moments. Without such assumptions, the
optimal sample complexity remains unknown even for canonical statistical estimation problems
under differential privacy. Further, each algorithm needs to be customized to those assumptions or
to the problem instances.

We take an alternative route of focusing only on the statistical cost of differential privacy
without concerning computational efficiency. Our goal is to introduce a general unifying framework
that (1) can be readily applied to each problem instance, (2) provides a tight characterization
of the statistical complexity involved, and (3) requires minimal assumptions. Achieving this goal
critically relies on three key ingredients: the exponential mechanism introduced in [M7T07], robust
statistics, and the Propose-Test-Release mechanism introduced in [DL09]. We first explain these
three components of our approach, and then demonstrate the utility of our proposed framework,
called High-dimensional Propose-Test-Release (HPTR), in canonical example problems of mean
estimation, linear regression, covariance estimation, and principal component analysis.

Exponential mechanism and sensitivity. Differential privacy (DP) is an agreed upon measure
of privacy that provides plausible deniability to the individual entries. Given a dataset S of size n
and its empirical distribution ps = (1/n) > _, ¢ dx,, its neighborhood is defined as Ng = {S" : [S'| =
|S|, drv (s, Ps) < 1/n}, which is a set of datasets at Hamming distance! at most one from S, and
dry(+) is the total variation. Plausible deniability is achieved by introducing the right amount of
randomness. A randomized estimator 6(S) is said to be (e, §)-differentially private for some target
e>0and é €[0,1] if P(9(S) € A) < esP(6(S’) € A) + § for all neighboring datasets S,.S" and all
measurable subset A C RP [DMNS06]. Consider a binary hypothesis testing on two hypotheses, Hy,
where the estimate came from a dataset S, and Hy, where the the estimate came from a dataset S’
that is a neighbor of S. The DP condition with a sufficiently small (e, d) ensures that an adversary
cannot succeed in this test with high confidence [KOV15], which provides plausible deniability.

The sensitivity plays a crucial role in designing DP estimators. Consider an example of mean
estimation, where the error is measured in the Mahalanobis distance defined as D, (1) = [|3, 1/2 (i—
tp)|l, where p, and X, are the mean and covariance of the sample-generating distribution p. This
is a preferred error metric since it has unit variance in all directions and is invariant to a linear
transformation of the samples. A corresponding empirical loss is Djg (1) = HZ;;/ 2(/1 — tpg)ll-
The exponential mechanism from [MT07] produces an (g,0)-DP estimate i by sampling from a
distribution that approximately and stochastically minimizes this empirical loss:

N 1 _ep (
~ P U)
2 Z(S) e 24 S s
where Z(S) = [ exp{—(e/2A)Dp(f1)dfr. The sensitivity is defined as A := max; s sren |Dpg (1) —
Dj,, (j1)], which is the influence of one data point on the loss. From this definition, the (¢, 0)-DP

guarantee follows immediately (e.g., Lemma 2.3).

There are two notions of a neighborhood in DP, which are equally popular. We use the one based on exchanging
an entry, but all the analyses can seamlessly be applied to the one that allows for insertion and deletion of an entry.



Using the exponential mechanism is crucial in HPTR for two reasons: adaptivity and flexibility.
First, it naturally adapts to the geometry of the problem, which is encoded in the loss. For example,
a more traditional Gaussian mechanism [DR14] needs to estimate X, privately in order to add a
Gaussian noise tailored to that estimated X,,, which increases sample complexity significantly. On
the other hand, the exponential mechanism seamlessly adapts to ¥, without explicitly and privately
estimating it. Further, the exponential mechanism allows us significant flexibility to design different
loss functions, some of which can dramatically reduce the sensitivity. Discovering such a loss
function is the main focus of this paper.

One major challenge is that the sensitivity is unbounded when the support of the distribution is
unbounded. A common solution is to privately estimate a bounded domain that the samples lie in
and use it to bound the sensitivity (e.g., [KV17, KLSU19, LKIKO21]). We propose a fundamentally
different approach using robust statistics.

Robust statistics and resilience. The resilience proposed in [SCV 18] plays a critical role in
robust statistics. For the mean, for example, a dataset S is said to be (a, p)-resilient for some
o €[0,1] and p > 0 if for all v € R? with ||v|| = 1 and all subset T C S of size at least |T| > an,

|<U7M}3T>_<U7Mﬁs>| < g : (1)
A more precise statement is in Definition 3.2. This measures how resilient the empirical mean
is to subsampling or deletion of a fraction of the samples. This resilience is a central concept in
robust statistical estimation when a fraction of the dataset is arbitrarily corrupted by an adversary
[SCVI18, ZJS19]. We show and exploit the fact that resilience is fundamentally related to the
sensitivity of robust statistics.
For each direction v € R? with [Jv|| = 1, we construct a robust mean of a one-dimensional
projected dataset, also known as trimmed mean, S, = {(v,x;) € R},,es, as follows. For some
a € [0,1/2), remove an data points corresponding to the largest entries in S, and also remove the

an smallest entries. The mean of the remaining (1 — 2a)n points is the robust one-dimensional
mean, which we denote by (v, ugfbu“)) € R. From the resilience above, we know that the mean of
the removed top part is upper bounded by (v, f1;5¢) + p/c. The mean of the removed bottom part is
lower bounded by (v, usg) — p/a. Hence, the effective support of this robust one-dimensional mean
estimator is upper and lower bounded by the same. This can be readily translated into a bound in
sensitivity of the estimate, (v, ug;ObuSt)> (e.g., Lemma 3.11). A similar sensitivity bound holds for

. . . . bust ..
the robust one-dimensional variance estimator, Ty (rebust) v, defined similarly.

We propose an approach that critically relies on this observation that one-dimensional robust
statistics have low sensitivity on resilient datasets, i.e., datasets satisfying the resilience property
with small p.

This suggests that if we can design a score function that only depends on one-dimensional
robust statistics of the data, it might inherit the low sensitivity of those robust statistics. To this
end, we first transform the target error metric into an equivalent expression that only depends on
one-dimensional (population) mean, (v, u,), and variance, UTva, ie.,

— ~ U,ﬂ — \U, [
1520 — )] = max A (i)

veRd =1 /v T, v
which follows from Lemma 3.1. Next, we replace the population statistics with robust empirical ones
o define a new empirical loss, D = maX,cpd ||y/=1 (v, &) — (v, @y (A v. Pre-
to defi pirical loss, Dpg () = max, ez, =1 (v ) — (o, g ") (/o5 0. P
cise definitions of these robust statistics can be found in Eq. (5). For resilient datasets, such a score



function has a dramatically smaller sensitivity compared to those that rely on high-dimensional
robust statistics. For mean estimation under a sub-Gaussian distribution, the sensitivity of the
proposed loss is O(1/n), whereas a loss using a high-dimensional robust statistics has Q(v/d/n)
sensitivity.

Such an improved sensitivity immediately leads to a better utility guarantee of the exponential
mechanism. We explicitly prescribe such loss functions for the canonical problems of mean esti-
mation, linear regression, covariance estimation, and principal component analysis. This leads to
near-optimal utility in most cases and improves upon the state-of-the-art in others, as we demon-
strate in Section 1.1. Further, this approach can potentially be more generally applied to a much
broader class of problems. One remaining challenge is that the tight sensitivity bound we provide
holds only for a resilient dataset. To reject bad datasets, we adopt the Propose-Test-Release (PTR)
framework pioneered in the seminal work of [D1.09].

Propose-Test-Release and local sensitivity. The tight sensitivity bound we provide on the
proposed exponential mechanism is local in the sense that it only holds for resilient datasets. How-
ever, differential privacy must be guaranteed for any input, whether it is resilient (with desired level
of a and p) or not. We adopt Propose-Test-Release introduced in [DL09] to handle such locality
of sensitivity. In the first step, one proposes an upper bound on the sensitivity of the loss Ds(é),
determined by the resilience of the dataset, which in turn is determined solely by the distribution
family of interest and the target error rate. In the second step, one tests if the combination of the
given dataset S, sensitivity bound A, and the exponential mechanism with loss Ds(é) satisfy the
DP conditions. A part of the privacy budget is used to test this in a differential private manner,
such that the subsequent exponential mechanism can depend on the result of this test, i.e., we
only proceed to the third step if S passes the test. Otherwise, the process stops and outputs a
predefined symbol, L. In the third step, one releases the DP estimate via the exponential mech-
anism. This ensures DP for any input S. We are adopting the Propose-Test-Release mechanism
pioneered in [DL09], which we explain in detail in Section 2. The resulting framework, which we
call High-dimensional Propose-Test-Release (HPTR) is provided in Section 1.2.

Contributions. We introduce a novel (computationally inefficient) algorithm for differentially
private statistical estimation, with the goal of characterizing the achievable sample complexity
for various problems with minimal assumptions. The proposed framework, which we call High-
dimensional Propose-Test-Release (HPTR), makes a fundamental connection between differential
privacy and robust statistics, thus achieving a sample complexity that significantly improves upon
other state-of-the-art approaches. HPTR is a generic framework that can be seamlessly applied to
various statistical estimation problems, as we demonstrate for mean estimation, linear regression,
covariance estimation, and principal component analysis. Further, our analysis technique, which
requires minimal assumptions, also seamlessly generalizes to all problem instances of interest.
HPTR uses three crucial components: the exponential mechanism, robust statistics, and the
Propose-Test-Release mechanism from [D1.09]. Building upon the inherent adaptivity and flexibility
of the exponential mechanism, we propose using a novel loss function (also called a score function
in a typical design of exponential mechanisms) that accesses the data only via one-dimensional
robust statistics. The use of 1-D robust statistics is critical, because it dramatically reduces the
sensitivity. We prove this sensitivity bound using the fundamental concept of resilience, which is
central in robust statistics. This novel robust exponential mechanism is incorporated within the
PTR framework to ensure that differential privacy is guaranteed on all input datasets, including
those that are not necessarily compliant with the statistical assumptions. One byproduct of us-
ing robust statistics is that robustness comes for free. HPTR is inherently robust to adversarial
corruption of the data and achieves the optimal robust error rate under standard data corruption



models.

We present informal version of our main theoretical results in Section 1.1. We present HPTR
algorithm in detail in Section 1.2. We provide a sketch of the proof and the main technical con-
tributions in Section 1.3. Detailed explanations of the setting, main results, and the proofs for
each instance of the problems are presented in Sections 3—6 for mean estimation, linear regression,
covariance estimation, and principal component analysis, respectively.

Notations. Let [n] = {1,2,...,n}. For z € R% we use ||z| = (Zie[d](a:i)z)l/2 to denote the
Euclidean norm. For X € R™*% we use || X| = max,|,—1 | Xvll2 to denote the spectral norm.
The d x d identity matrix is Ijx4. The Kronecker product is denoted by z ® y for z € R% and
y € R%, such that (T @Y)(i—1)d+j = Tiyj for i € [di] and j € [da]. Whenever it is clear from context,
we use S to denote both a set of data points and also the set of indices of those data points. We
use S ~ S’ to denote that two datasets S, S’ of size n are neighbors, such that drv(ps, ps/) < 1/n
where dpy(-) is the total variation and pg is the empirical distribution of the data points in S. We
use 4(S) and X(S) to denote mean and covariance of the data points in a dataset S, respectively.
We use p, and ¥, to denote mean and covariance of the distribution p.

1.1 Main results and related work

For each canonical problem of interest in statistical estimation, HPTR can readily be applied to,
in most cases, significantly improve upon known achievable sample complexity. Most of the lower
bounds we reference are copied in Appendix C for completeness.

1.1.1 DP mean estimation

We apply our proposed HPTR framework to the standard DP mean estimation problem, where
iid. samples S = {z; € R¥}" | are drawn from a distribution P,y with an unknown mean p
(which corresponds to € in the general notation) and an unknown covariance ¥ > 0, and we want
to produce a DP estimate [ of the mean. The resulting error is measured in Mahalanobis distance,
Dp, (1) = |2-Y2(jfi — p)]||, which is scale-invariant and naturally captured the uncertainty in all
directions.

This problem is especially challenging since we aim for a tight guarantee that adapts to the
unknown 3 as measured in the Mahalanobis distance without sufficient samples to directly esti-
mate X, as we explain below. Despite being a canonical problem in DP statistics, the optimal
sample complexity is not known even for standard distributions: sub-Gaussian and heavy-tailed
distributions. We characterize the optimal sample complexity of the two problems by providing
the guarantee of HPTR and the matching sample complexity lower bounds. A precise definition of
sub-Gaussian distributions is provided in Eq. (21).

Theorem 1 (DP sub-Gaussian mean estimation algorithm, Corollary 3.13 informal). Consider a
dataset S = {x; € Rd}?zl of n i.i.d. samples from a sub-Gaussian distribution with mean p and
covariance X. There exists an (g,0)-differentially private algorithm [i(S) that given
~ d d
- o).

achieves Mahalanobis error |2~ Y2(i(S) — p)|| < & with probability 1 — ¢, where Og ¢ hides the
logarithmic dependency on &,¢ and we assume § = e~



HPTR is the first algorithm for sub-Gaussian mean estimation with unknown covariance that
matches the best known sample complexity lower bound of n = Q(d/&2 + d/(&g)) from [KV17,
KLSUL9] up to logarithmic factors in error £ and failure probability ¢. Existing algorithms are
suboptimal as they require either a larger sample size or strictly Gaussian assumptions.

Advances in DP mean estimation started with computationally efficient approaches of [[<XV17,
KLSU19, BD14]. We discuss the results as follows, and omit the polynomial factors in log(1/6).
When the covariance ¥ is known, Mahalanobis error ¢ can be achieved with n = O(d/€2 + d/(&<))
samples. Under a relaxed assumption that Ijwg < ¥ < klgxg with a known x, n = O(d/£2+d/(£€)+
d'5 /) samples are required using a specific preconditioning approach tailored for the assumption
and the knowledge of x. For general unknown ¥, O(d?/£2 +d?/(¢e)) samples are required using an
explicit DP estimation of the covariance. Empirically, further gains can be achieved with CoinPress
[BDKU20].

Computationally inefficient approaches followed with a goal of identifying the fundamental op-
timal sample complexity with minimal assumptions [BIKSW 19, AAAK20]. For the unknown covari-
ance setting, the best known result under Mahalanobis error is achieved by [BGST21]. Through
analyzing the differentially private Tukey median estimator introduced in [LKIKO21], [BGST21]
shows that n = O(d/€2 + d/(€e)) is sufficient even when the covariance is unknown. However,
the approach heavily relies on the assumption that the distribution is strictly Gaussian. For sub-
Gaussian distributions, [BGS'21] proposes a different approach achieving sample complexity of
n=0(d/€ + d/(¢e?)) samples with a sub-optimal (1/2) dependence.

Beyond the sub-Gaussian setting, it is natural to consider the DP mean estimation for dis-
tributions with heavier tails. We apply HPTR framework to the more general mean estimation
problems for hypercontractive distributions. A distribution P, s, with mean p and covariance ¥
is (k, k)-hypercontractive if for all v € RY E,op,[|(v, (z — p))|¥] < £F(vTSv)*/2. The assump-
tion of hypercontractivity is similar to the bounded k-th moment assumptions, except requiring
an additional lower bound on the covariance. This additional assumption is necessary for our set-
ting to make sure the Mahalanobis error guarantee is achievable. We state our main result for
hypercontractive mean estimation as follows. For simplicity of the statement, we assume k, x are
constants.

Theorem 2 (DP hypercontractive mean estimation algorithm, Corollary 3.16 informal). Consider
a dataset S = {x; € R4} | of n i.i.d. samples from a (k, k)-hypercontractive distribution with mean
i and covariance ¥.. There exists an (e, d)-differentially private algorithm [i(S) that given

~ /d d
no= Od<5_2 + E§1+1/(k—1)) ’

achieves Mahalanobis error |S~V2((S) — p)|| < € with probability at least 0.99, where Og hides a
logarithmic factor on d, and we assumes § = e~ O

We prove an n = Q(d/&?le/ (k_l)) sample complexity lower bound for hypercontractive DP
mean estimation in Proposition 3.18 to show the optimality of our upper bound result. Notice that
the first term Od(d/ €2) in the upper bound cannot be improved up to logarithmic factors even if we
do not require privacy, thus HPTR is the first algorithm that achieves optimal sample complexity
for hypercontractive mean estimation under Mahalanobis distance up to logarithmic factors in d.
When the covariance is known, an existing DP mean estimator of [[XSU20] achieves a stronger
(¢,0)-DP with a similar sample size of n = O(d/&% + d /(e +1/(*=1)) and no prior result is known
for the unknown covariance case.



1.1.2 DP linear regression

We next apply HPTR framework to DP linear regression. Given i.i.d. samples S = {(2i,¥:) }icjn]
from a distribution Py x, .2 of a linear model: y; = xZT B +n;, where the input x; € R? has zero mean
and covariance Y and the noise 7; € R has variance 72 satisfying E[z;7;] = 0, the goal of DP linear
regression is to output a DP estimate ﬁ of the unknown model parameter 3, without knowledge
about the covariance Y. The resulting error is measured in Dp, _ (B) = (1/4)||=2(3 - B)|| which

is equivalent to the standard root excess risk of the estimated predictor B Similar to Mahalanobis
distance for mean estimation, this is challenging since we aim for a tight guarantee that adapts to
the unknown ¥ without having enough samples to directly estimate .

Theorem 3 (DP sub-Gaussian linear regression, Corollary 4.16 informal). Consider a dataset
S = {(w,yi) Y7, generated from a linear model y; = x} B +n; for some B € R, where {wi}iem) are
1.4.d. sampled from zero-mean d-dimensional sub-Gaussian distribution with unknown covariance
3, and {n;i}igjn) are i.i.d. sampled from zero mean one-dimensional sub-Gaussian with variance 2.
We further assume the data x; and the noise n; are independent. There exists a (e, 0)-differentially
private algorithm B(S) that given
~ d d
n = O@((@‘Fg) ,

achieves error (1/7)||SY2(B(S) — B)|| < & with probability 1 — ¢, where Og ¢ hides the logarithmic
dependency on £,¢ and we assume § = e~

HPTR is the first algorithm for sub-Gaussian distributions with an unknown covariance 3 that
up to logarithmic factors matches the lower bound of n = Q(d/¢? + d/(£c)) assuming ¢ < 1 and
§ < n~ 7% for some w > 0 from [('WZ19, Theorem 4.1]. An existing algorithm for DP linear
regression from [C'WZ19] is suboptimal as it require 3 to be close to the identity matrix, which
is equivalent to assuming that we know X. [DL.09] proposes to use PTR and B-robust regression
algorithm from [HRRSR6] for differentially private linear regression under i.i.d. data assumptions
(also exponential time), but only asymptotic consistency is proven as n — oo. Under an alternative
setting where the data is deterministically given without any probabilistic assumptions, significant
advances in DP linear regression has been made [VS09, KST12, Mirl3, DNMR 14, BST14, WES15,
FGWCI16, MASN16, Wanl8, Shel9]. The state-of-the-art guarantee is achieved in [Wan18, Shel9]
which under our setting translates into a sample complexity of n = O(d'®/(&e)). The extra d'/?
factor is due to the fact that no statistical assumption is made, and cannot be improved under the
deterministic setting (not necessarily i.i.d.) that those algorithms are designed for.

Similar to mean estimation, we also consider the DP linear regression for distributions with heav-
ier tails, and apply HPTR framework to the linear regression problem under (k, x)-hypercontractive
distributions (see Definition 3.14). HPTR can handle both independent and dependent noise, and
we state the independent noise case here the dependent noise case in Section 4.3.3. For simplicity
of the statement, we assume k, k are constants.

Theorem 4 (DP hypercontractive linear regression with independent noise, Corollary 4.18 infor-
mal). Consider a dataset S = {(z;,y:)}7, generated from a linear model y; = x} B+ n; for some
B € R, where {Ti}ticm) are i.i.d. sampled from zero-mean d-dimensional (k, k)-hypercontractive
distribution with unknown covariance Y and n; are i.i.d. sampled from zero mean one-dimensional
(k, k)-hypercontractive distribution with variance v*. We further assume the data x; and the noise
{ni}iem) are independent. There exists an (&, )-differentially private algorithm B(S) that given

~ 7 d d
no= Od(g_z + e +1/(h—1) ) ;

9



achieves error (1/7)||%1/2 (5(5) —B)|| < & with probability 0.99, where Og hides a logarithmic factor
on d, and we assume § = e~ (d)

The first term in the sample complexity cannot be improved as it matches the classical lower
bound of linear regression even without privacy constraint. For the second term, the sub-Gaussian
lower bound of n = Q(d/(£€)) from [('WZ19, Theorem 4.1] continues to hold in the hypercontractive
setting. We do not have a matching lower bound for the second term. To the best of our knowledge,
HPTR is the first algorithm for linear regression that guarantees (g, )-DP under hypercontractive
distributions with independent noise.

When applied to the setting where noise 7); is dependent on the input vector x;, HPTR is the
first algorithm for linear regression that guarantees (e, d)-DP. We refer the readers to Section 4.3.3
for more detailed description of our result.

1.1.3 DP covariance estimation

We present HPTR applied to covariance estimation from i.i.d. samples under a Gaussian distribu-
tion (0, ). The main reason for this choice is that the Mahalanobis error [|[S~/285"12 — 14, 4|l ¢
of the Kronecker product z; ® x; is proportional to the natural error metric of total variation for
Gaussian distributions. The strength of HPTR framework is that it can be seamlessly applied to
general distributions, for example sub-Gaussian or heavytailed, but the resulting Mahalanobis error
becomes harder to interpret as it involves respective fourth moment tensors.

Theorem 5 (DP Gaussian covariance estimation, Corollary 5.9 informal). Consider a dataset
S = {z; 1y of n i.i.d. samples from N(0,X). There exists a (e,9)-differentially private estimator

> that given
- d2 42
n = O@g(g‘i‘g) )
achieves error |S~V2EN Y2 —14.4llp < € with probability 1 — ¢, where Og; hides the logarithmic
dependency on €,¢ and we assume § = ¢~ 9@

This Mahalanobis distance guarantee (for the Kronecker product, {z; ® z;}, of the samples)
implies that the estimated Gaussian distribution is close to the underlying one in total variation
distance (see for example [KL.SU19, Lemma 2.9]): dry(N(0,%),N(0,%)) = O(|2~ /2012 —
Iyvallr) = O(€). The sample complexity is near-optimal, matching a lower bound of n = Q(d?/£2 +
min{d?,log(1/6)}/(e£)) up to a logarithmic factor when § = ¢=®(@. The first term follows from
the classical estimation of the covariance without DP. The second term follows from extending
the lower bound in [KLSU19] constructed for pure differential privacy with 6 = 0 and matches
the second term in our upper bound when § = e=©@) We note that a similar upper bound
is achieved by the state-of-the-art (computationally inefficient) algorithm in [AAAK20], which
improves over HPTR in the lower order terms not explicitly shown in this informal version of our
theorem. Both HPTR and [AAAK20, ADIK ™ 19] improve upon computationally efficient approaches
of [KV17, KLSU19] which require additional assumption that I;xq < ¥ < kIzyg with a known k.
Recently, [[KMS'21] introduced a novel preconditioning approach that is polynomial time and
removes the upper and lower bounds on ¥ completely, but requires sample complexity of n =

O(d? /€% + d*polylog(1/8)/(&e) 4 d°/?*polylog(1/6) /e).

1.1.4 DP principal component analysis

We next apply HPTR to the task of estimating the top PCA direction from i.i.d. sampless
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Theorem 6 (DP sub-Gaussian principle component analysis, Corollary 6.5). Consider a dataset
S ={x; € Rd}?zl of n i.i.d. samples from a zero-mean sub-Gaussian distribution with unknown
covariance . There exists an (g,0)-differentially private estimator @ that given
~ d d
n = O@((@‘Fg) )
achieves error 1 — “”TTE”“ < & with probability 1 — (, where ON&C hides the logarithmic dependency on
¢, ¢ and we assume § = e @)

HPTR is the first estimator for sub-Gaussian distributions to nearly match the information-
theoretic lower bound of n = Q(d/£? + min{d,log(1/8)}/(c€)) as we showed in Proposition 6.6.
The first term (d/&?) is unavoidable even without DP (Proposition 6.7). The second term in the
lower bound follows from Proposition 6.6, which matches the second term in the upper bound when
§ = e~ Existing DP PCA approaches from [BDMNO05, CSS13, KT13, DTTZ14, HR12, HR13,
Har13] are designed for arbitrary samples not necessarily drawn i.i.d. and hence require a larger
samples size of n = O(d/€? + d"°/(¢e)). This is also unavoidable for more general deterministic
data, as it matches an information theoretic lower bound [DTT7Z14] under weaker assumptions on
the data than i.i.d. Gaussian.

Theorem 7 (DP hypercontractive principle component analysis, Corollary 6.10). Consider a
dataset S = {x; € RY}Y"_, of n i.i.d. samples from a zero-mean (k,k)-hypercontractive distribu-
tion with unknown covariance ¥. There exists an (g,0)-differentially private estimator 4 that given

) d d
no= OM( €O/ | gglv2/() > ’

achieves error 1 — % < & with probability 0.99, where Og,d hides the logarithmic dependency on

¢,d and we assume § = e O,

HPTR is the first estimator for hypercontractive distributions to guarantee differential privacy
for PCA with sample complexity scaling as O(d). As a complement of our algorithm, we proved a
n = Q(d/&>+min{d,log(1/6)} /(€% #=2)¢)) information-theoretic lower bound in Proposition 6.11.
The first term (d/¢2) in the lower bound is needed even without DP, and there is a gap of factor
0183 —2/ (k_z)) compared to the first term in our upper bound. The second term in the lower bound
matches the last term in the upper bound when § = e=©(@),

1.2 Algorithm

The proposed High-dimensional Propose-Test-Release (HPTR) is not computationally efficient, as
the TEST step requires enumerating over a certain neighborhood of the input dataset and the
RELEASE step requires enumerating over all directions in high dimension. The strengths of HPTR
is that (i) the same framework can be seamlessly applies to many problems as we demonstrate
in Sections 3-6; (ii) a unifying recipe can be applied for all those instances to give tight utility
guarantees as we explicitly prescribe in Section 1.2.1; and (éi7) the algorithm is simple and the
analysis is clear such that it is transparent how the distribution family of interest translates into
the utility guarantee (via resilience).

As a byproduct of the simplicity of the algorithm and clarity of the analysis, we achieve the state-
of-the-art sample complexity for all those problem instances with minimal assumptions, oftentimes
nearly matching the information theoretic lower bounds. As a byproduct of the use of robust
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statistics, we guarantee robustness against adversarial corruption for free (e.g., Theorems 10, 12,
14).

We describe the framework for general statistical estimation problem where data is drawn
i.i.d. from a distribution represented by two unknown parameters § € RP and ¢ and is coming from
a known family of distributions. An example of a problem instance of this type would be mean
estimation from heavy-tailed distributions that are (k, k)-hypercontractive with unknown mean
(which in the general notation is §) and unknown covariance ¥ (which corresponds to ¢).

The main component is an exponential mechanism in RELEASE step below that uses a loss

A~

function Dg(#) and a support B; g defined as
B;s={0 €RP: Dg(f) <7} .

Bounding the support of the exponential mechanism is important since the sensitivity also depends
on 6 in many problems of interest. We discuss this in detail in the example of mean estimation in
Section 3.2.2. The specific choices of the threshold 7 only depend on the tail of the distribution
family of interest and not the parameters 6 or ¢ or the data. In particular, we use the resilience
property of the distribution family to prescribe the choice of 7 for each problem instance that gives
us the tight utility guarantees. As explained in Section 1, we use one-dimensional robust statistics
to design the loss functions, which we elaborate for each problem instances in Sections 3—6, where
we also explain how to choose the sensitivity for each case based on the resilience of the distribution
family only.

After we PROPOSE the choice of the sensitivity A and threshold 7 for the problem instance in
hand, we TEST to make sure that the given dataset .S is consistent with the assumptions made
when selecting Ds(é), A, and 7. This is done by testing the safety of the exponential mechanism,
by privately checking the margin to safety, i.e., how many data points need to me changed from
S for the exponential mechanism to violate differential privacy conditions. If the margin is large
enough, HPTR proceeds to RELEASE. Otherwise, it halts and outputs 1. A set of such unsafe
datasets is defined as

UNSAFE(. ;) = {§' CR™"|35" ~ 5 and 3E C R such that

(0 € E) > P,

O~ (e A, 57)

(BeE)+5orP, (6 € E) > ¢°P, (éeE)+5},

O~r o A 7,87 O~T (e A 7,577
(2)

where (. A - g) denotes the pdf of the exponential mechanism in Eq. (3). Given a loss (or a distance)

O~ (e A 7,571

function, Ds(é), which is a surrogate for the target measure of error, D¢(é,6), High-dimensional
Propose-Test-Release (HPTR) proceeds as follows:

1. Propose: Propose a target bound A on local sensitivity and a target threshold 7 for safety.

2. Test:

2.1. Compute the safety margin m, = ming dg (S5, S") such that S’ € UNSAFE /3 5/2 7).
2.2. If m,; = m, + Lap(2/e) < (2/e)log(2/9), then output L, and otherwise continue.

3. Release: Output 0 sampled from a distribution with a pdf:

{ yep{ - &5DsB)} 0eB.s, )

Te,AT é =
(8,4, 75)( ) 0 otherwise ,

where Z = fBT,s exp{—(eDs(6))/(4A)}dd.
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It is straightforward to show that (e, d)-differential privacy is satisfied for all input S.

Theorem 8. For any dataset S C X", distance function Dg : RP — R on that dataset, and
parameters €,0, A and 7, HPTR is (g,0)-differentially private.

Proof. The differentially private margin 1, is (¢/2,0)-differentially private, because the sensitivity
of the margin is one, and we are adding a Laplace noise with parameter 2/e. The TEST step
(together with the exponential mechanism) is (0, d/2)-differentially private since there is a proba-
bility §/2 event that a unsafe dataset S with a small margin m is classified as a safe dataset and
passes the test. On the complimentary event, namely, that the dataset that passed the TEST is
indeed safe, the RELEASE step is (g/2,/2)-differentially private since we use UNSAFE /5 52 -y in
the TEST step. O

1.2.1 Utility analysis of HPTR for statistical estimation

We prescribe the following three-step recipe as a guideline for applying HPTR to each specific
statistical estimation problem and obtaining a utility guarantee. Consider a problem of estimating
an unknown ¢ from samples from a generative model Py 4, where the error is measured in Dy(6,0).

e Step 1: Design a surrogate Ds(é) for the target error metric D¢(é, 6) using only one-dimensional
robust statistics on S.

e Step 2: Assuming resilience of the dataset, propose an appropriate sensitivity bound A and
threshold 7 and analyze the utility of HPTR.

e Step 3: For each specific family of generative models P 4 with a known tail bound, charac-
terize the resulting resilience and substitute it in the utility analysis from the previous step,
which gives the final guarantee.

We demonstrate how to apply this recipe and carry out the utility analysis for mean estimation
(Section 3), linear regression (Section 4), covariance estimation (Section 5), and PCA (Section 6).
We explain and justify the use of one-dimensional robust statistics in Step 1 and the assumption
on the resilience of the dataset in Step 2 in the next section using the mean estimation problem
as a canonical example. It is critical to construct Dg(é) using only one-dimensional and robust
statistics; this ensures that Ds(é) has a small sensitivity as demonstrated in Section 3.1. We
prove error bounds only assuming resilience of the dataset; this relies on a fundamental connection

between sensitivity and resilience as explained in Section 3.2.

1.3 Technical contributions and proof sketch

We use the canonical example of mean estimation to explain our proof sketch. For i.i.d. samples
from a sub-Gaussian distribution P, s, with mean p and covariance X, we show in Theorem 9 that
HPTR achieves a near optimal sample complexity of n = O(d/a? + d/(ag)) to get Mahalanobis
error || 2Y2(i — p)|| = O(«) for some target accuracy a € [0, 1].

Our proof strategy is to first show that the robust one-dimensional statistics have small sensi-
tivity if the dataset is resilient. Consequently, the loss function Dg(/1) has a small local sensitivity,
i.e. the sensitivity is small if restricted to i close to p and if the dataset is resilient. To ensure
DP, we run RELEASE only when those two locality conditions are satisfied; we first PROPOSE the
sensitivity A and a threshold 7, and then we TEST that DP guarantees are met on the given dataset
with those choices. We prove that resilient datasets pass this safety test with a high probability
and achieve the desired accuracy. We give a sketch of the main steps below.
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One-dimensional robust statistics have small sensitivity on resilient datasets. A set
S ={z; € Rd}ie[n] of i.i.d. samples from a sub-Gaussian distribution has the following resilience

property with probability 1 — ¢ if n = Q(d/ a?), where Q hides polylogarithmic factors « and the
failure probability (:

(i = 1i)] < 20 /og(1]a) . and [ 3 (v =) =)

x; €T z, €T

< 207 log(1/a)

E>

for any subset T C S of size at least an and for any unit norm v € R% where o2 = v Sv
(Lemma 3.12). This means that the a-tail of the distribution (when projected down to one dimen-
sion) cannot be too far from the true one in mean and variance. For mean estimation, we use the
loss function of Dg(j1) = max,erd jjpjj=1 (v, i — p(Moy,a))/ /v E(My o )v, where u(T) and 3(T) are
mean and covariance of a dataset 1" and M, o, C S is defined as follows. For each dlrectlon v, we
partition S into three sets 7y o, My, and By o. Ty.o C S is the subset of datapoints corresponding
to the largest an datapoints in {(v, z;)}4,es, the projected data points in the direction v. B, o C S
corresponds to the smallest an values, and M, , C S is the remaining (1 — 2a)n data points.

We show that the robust projected mean, (v, (M, o)) has sensitivity O(o,+/log(1/c)/n).
Under the resilience above, the top a-tail, 7, ., has the empirical mean that is no more than
O(oy/log(1l/a) ) away from the true projected mean (v, u), and the same is true for B, . It
follows that there exists at least one data point in 7, , and one data point in B, , that are no
more than O(o,+/log(1/c)) away from p,. This implies that the range of the middle subset M,,
is provably bounded by O(o,+/log(1/a)), and the sensitivity of the robust mean (v, u(M, o)) is
guaranteed to be O(o,+/log(1/a)/n). We can similarly show that v’ (M, q)v has sensitivity
O(a7 log(1/a)/n).

Under the above sensitivity bounds for the one dimensional statistics, it follows (for example,
in Eq. (20)) that the sensitivity of the loss function Dg(ji) is bounded by O \/log 1/a)/n) as
long as Dg(f1) < 7 := Cay/log(1/a) and the dataset is resilient. It is worth noting here that
since the sensitivity is only small when Dg(f1) < 7, our exponential mechanism only samples from
the set B; g, which contains only the hypotheses with small scores. We handle this locality with
TEST step that checks that the DP conditions are satisfied for the given dataset and the choice of
A = C"\/log(1l/a)/n and 7 := Cay/log(1/«). Tt is critical for ensuring DP that these choices only
depend on the resilience (which is the property of the distribution family of interest, which in this
case is sub-Gaussian) and the target accuracy, and not on the dataset S.

Sample complexity analysis. Assuming the sensitivity is bounded by A = C’\/log(1/a)/n,
which we ensure with the safety test, we analyze the utility of the exponential mechanism. For a
target accuracy of |X~2(j—pu)|| = O(ar/log(1/a)), we consider two sets, Bou = {1 : |2~ Y2 (ji—

w < coar/log(1/a)} and Biy = {ji : [|S72(is — p)|| < cray/log(1/a)}, for some ¢y > ¢1. The

exponential mechanism achieves accuracy coay/log(1/a) with probability 1 — ¢ if

o coan/log(l/a
P(ji ¢ Bowt) < (/{Qf Bout) < Vol(B; ) e~ aaco g(1/a) < O o= 1% (co—c1)ay/log(1/a) <,
]P)(/L € B; ) VOI(Bin) e —gxc1aq/log(1/a)

where the second inequality requires Dg(ji) ~ ||S~Y2(ji — p)||, which we show in Lemma 3.6. Since
A = O(y/log(1/a)/n), it is sufficient to have a large enough ¢y and n = O((d + log(1/¢))/(ae))
with a large enough constant. Together with the sample size required to ensure resilience, this gives
the desired sample complexity of n = O(d/a? 4 (d+1og(1/¢))/(ae)) where O hides polylogarithmic
factors in 1/a and 1/6.
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Safety test. We are left to show that for a resilient dataset, the failure probability of the safety
test, P(m, + Lap(2/e) < (2/¢)log(2/d)), is less than {. This requires the safety margin to be
large enough, i.e. m; > k* = (2/¢)log(4/(6C)). Recall that the safety margin is defined as the
Hamming distance to the closest dataset to S where the (¢/2,/2)-DP condition of the exponential
mechanism is violated. We therefore need to show that the DP condition is satisfied for not only S
but any dataset S’ at Hamming distance at most k* from S. We treat S’ as a corrupted version of
a resilient S by a fraction k*/n-corruption. Since we are using robust statistics that are designed
to be robust against data corruption, we can show that the corrupted resilient set still has a low
sensitivity for Dg(f1). Building upon the proof techniques developed in [BGS'21] for a safety test
for a Tukey median based exponential mechanism, we use the fact that S’ is a corrupted version of
a resilient dataset S to show that the safety test passes with high probability.

2 Preliminary on differential privacy and Propose-Test-Release

We give the backgrounds on differential privacy and the Propose-Test-Release mechanism. We say
two datasets S and S’ of the same size are neighboring if the Hamming distance between them is
at most one. There is another equally popular definition where injecting or deleting one data point
to S is considered as a neighboring dataset. All our analysis generalizes to that definition also, but
notations get slightly heavier.

Definition 2.1 ([DMNS06]). We say a randomized algorithm M : X™ — Y is (e, 0)-differentially
private if for all neighboring databases S ~ S € X™, and all Y C Y, we have P(M(S) € Y) <
eP(M(S) €Y) + 6.

HPTR relies on the exponential mechanism for its adaptivity and flexibility.

Definition 2.2 (Exponential mechanism [MT07]). The exponential mechanism Moy, : X" — O

takes database S € X™, candidate space O, score function Dg(0) and sensitivity A as input, and
select output with probability proportional to exp{—eDgs(0)/2A}.

A~

The exponential mechanism is (¢,0)-DP if the sensitivity of Dg(#) is bounded by A.

Lemma 2.3 ([MT07]). If max;_q maxgsr |Ds(0) — Dg/(A)| < A, then the exponential mechanism
is (¢,0)-DP.

Starting from the seminal paper [D1.09], there are increasing efforts to apply differential privacy
to statistical problems, where the dataset consists of i.i.d. samples from a distribution. There are
two main challenges. First, the support is typically not bounded, and hence, the sensitivity is
unbounded. [DL09] proposed to resolve this by using robust statistics, such as median, to estimate
the mean. The second challenge is that while median is quite insensitive on i.i.d. data, this low
sensitivity is only local and holds only for i.i.d. data from a certain class of distributions. This led
to the original definition of local sensitivity in the following.

Definition 2.4 (Local Sensitivity). We define local sensitivity of dataset S € X™ and function
[ X" =R as Ap(S) = maxgs |f(S) — f(5)].

[DL09] introduced the Propose-Test-Release mechanism to resolve both issues. First, a certain
robust statistic f(S), such as median, mode, Inter-Quantile Range (IQR), or B-robust regression
model [HRRS&6] is chosen as a query. It can be used to approximate a target statistic of interest,
such as mean, range, or linear regression model, or the robust statistic itself could be the target.
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Then, the PTR mechanism proceeds in three steps. In the propose step, a local sensitivity A is
proposed such that Af(S) < A for all S that belongs to a certain family. In the test step, a safety
margin m, which is how many data points have to be changed to violate the local sensitivity, is
computed and a private version of the safety margin, m, is compared with a threshold. If the safety
margin is large enough, then the algorithm outputs f(S) via a Laplace mechanism with parameter
2A/e. Otherwise, the algorithm halts and outputs L.

Definition 2.5 (Propose-Test-Release (PTR) [DL09, Vadl7]). For a query function f: X™ — R,
the PTR mechanism Mptgr : X™ — R proceeds as follows:

1. Propose: Propose a target bound A > 0 on local sensitivity.
2. Test:

2.1. Compute m = ming dg (S, 5") such that local sensitivity of S satisfies A¢(S") > A.
2.2. If m =m + Lap(2/e) < (2/¢)log(1/6) then output L, and otherwise continue.

3. Release: Output f(S)+ Lap(2A/e).
It immediately follows that PTR is (e, d)-differentially private for any input dataset.
Lemma 2.6 ([DL09, Vadl7]). Mprg is (¢,6)-DP

Given a robust statistic of interest, the art is in identifying the family of datasets with small local
sensitivity and showing that the sensitivity is small enough to provide good utility. For example,
for privately releasing the mode, for the family of distributions whose occurrences of the mode
is at least (4/¢)log(1/0) larger than the occurrences of the second most frequent value, the local
sensitivity is zero and PTR outputs the true mode with probability at least 1 — [Vad17]. Such a
specialized PTR mechanism for zero local sensitivity is also called the stability based method.

In general, a naive method of computing m in the TEST step requires enumerating over all
possible databases S € X™. For typical one-dimensional data/statistics, for example median esti-
mation, this step can be computed efficiently. This led to a fruitful line of research in DP statistics
on one-dimensional data. [D1L.09, BAM?20] propose PTR mechanisms for the range and the median
of of a 1-D smooth distribution and [AMB19, AM20, BAM?20] propose PTR mechanisms that can
estimating median and mean of a 1-D sub-Gaussian distribution. The stability-based method in-
troduced in [Vadl7] can be used to release private histograms, among other things, which can be
subsequently used as a black box to solve several important problems including range estimation
of a 1-D sub-Gaussian distribution [KV17, KLSUI19, LIKKKO21] or a 1-D heavy-tailed distribution
[[KSU20, LKIKO21], and general counting queries. PTR and stability-based mechanisms are power-
ful tools when estimating robust statistics of a distribution from i.i.d. samples.

Even if computational complexity is not concerned, however, directly applying PTR to high
dimensional distributions can increase the statistical cost significantly, which has limited the appli-
cation of PTR. One exception is the recent work of [BGST21]. For the mean estimation problem
with Mahalanobis error metric of ||X~1/2(ji — )|, the private Tukey median mechanism introduced
in [LKKO21] is studied. One major limitation of the utility analysis is that private Tukey median
requires the support to be bounded. In [LKKO21], this is circumvented by assuming the covariance
Y is known, in which case one can find a support with, for example, the private histogram of [Vad17].
Instead, [BGS21] proposed using private Tukey median inside the PTR mechanism and designed
an advanced safety test for high-dimensional problems. This naturally bounds the support that
adapts to the geometry of the problem without explicitly and privately estimating 3. One notable
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byproduct of this approach is that the resulting exponential mechanism is no longer pure DP, but
rather (g,6)-DP. This is because the resulting exponential mechanism has a support that depends
on the dataset .S, and hence two exponential mechanisms on two neighboring datasets have different
supports. The limitations of the private Tukey median are that (i) it requires symmetric distribu-
tions, like Gaussian distributions, and do not generalize to even sub-Gaussian distributions, and
(i7) it only works for mean estimation. To handle the first limitation, [3GS'21] propose another
PTR mechanism using Gaussian noise, which works for more general sub-Gaussian distributions
but achieves sub-optimal sample complexity.

HPTR builds upon this advanced PTR with the high-dimensional safety test from [BGS™21].
However, there are major challenges in applying this safety test to HPTR, which we overcome with
the resilience property of the dataset and the robustness of the loss function. For private Tukey
median, the sensitivity is always one for any i and any S, and the only purpose of the safety test is
to ensure that the support is not too different between two neighboring datasets. For HPTR, the
sensitivity is local in two ways: it requires S to be resilient and the estimate /i to be sufficiently
close to . To ensure a large enough margin when running the safety test, HPTR requires this local
sensitivity to hold not just for the given S but for all S” within some Hamming distance from S.
We use the fact that this larger neighborhood is included in an even larger set of databases that
are adversarial corruption of the a-fraction of the original resilient dataset S with a certain choice
of a. The robustness of our loss function implies that the bounded sensitivity is preserved under
such corruption of a resilient dataset. This is critical in proving that a resilient dataset passes the
safety test with high probability.

We take a first-principles approach to design a universal framework for DP statistical estimation
that blends exponential mechanism, robust statistics, and PTR. The exponential mechanism in
HPTR adapts to the geometry of the problem without explicitly estimating any other parameters
and also gives us the flexibility to apply to a wide range of problems. The choice of the loss functions
that only depend on one-dimensional statistics is critical in achieving the low sensitivity, which
directly translates into near optimal utility guarantees for several canonical problems. Ensuring
differential privacy is achieved by building upon the advanced PTR framework of [BGS ' 21], with
a few critical differences. Notably, the safety analysis uses the resilience of robust statistics in a
fundamental way.

On the other hand, there is a different way of handling local sensitivity, which is known as smooth
sensitivity. Introduced in [NRS07], smooth sensitivity is a smoothed version of local sensitivity on
the neighborhood of the dataset, defined as

AjcmOOth(S) _ Sl}éa;é(n{Af(S,)e_adH(&S )}

Note that, in general, computing smooth sensitivity is also computationally inefficient with an
exception of [AM21]. Using smooth sensitivity, [Leill, Smill, CHI12, AM?21] leverage robust M-
estimators for differentially private estimation and inference. The intuition is based on the fact that
the influence function of the M-estimators can be used to bound the smooth sensitivity. The ap-
plications include: linear regression, location estimation, generalized linear models, private testing.
However, these approaches require restrictive assumptions on the dataset that need to be checked
(for example via PTR) and fine-grained analyses on the statistical complexity is challenging; there
is no sample complexity analysis comparable to ours. One exception is [BS19], which proposes a
smooth sensitivity based approach and gives an upper bound on the sub-Gaussian mean estimation
error for a finite n, but only for one-dimensional data.
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3 Mean estimation

In a standard mean estimation, we are given ii.d. samples S = {z; € Rd}?zl drawn from a
distribution P, s, with an unknown mean 4 (which corresponds to ¢ in the general notation) and
an unknown covariance ¥ > 0 (which corresponds to ¢ in the general notation), and we want
to produce a DP estimate [ of the mean. The resulting error is best measured in Mahalanobis
distance, Dy (ji, 1) = || ~1/2(fi — p)]|, because this is a scale-invariant distance; every direction has
unit variance after whitening by X.

This problem is especially challenging as we aim for a tight guarantee that adapts to the
unknown 3 as measured in the Mahalanobis distance without enough samples to directly estimate
Y (see Section 1.1 for a survey). Despite being a canonical problem in DP statistics, the optimal
sample complexity is not known even for standard distributions: sub-Gaussian and heavy-tailed
distributions. We characterize the optimal sample complexity by showing that HPTR matches
the known lower bounds in Section 3.3. This follows directly from the general three-step strategy
outlined in Section 1.2.1.

3.1 Step 1: Designing the surrogate Dg(/i) for the Mahalanobis distance

We want to privately release fi with small Mahalanobis distance || £ ~'/2(f1— p)||. In the exponential
mechanism in RELEASE step, we propose using the surrogate distance,

<U, /l> - Nv(Mv a)

DS(M) - U}ﬁ}’ﬁ}él Uv(Mv,a) | ' (4)

where the robust one-dimensional mean pi,(M,,q) and variance o7(M,,q) are defined as follows.
We partition S = {z;}}_; into three sets B, o, My, and T, o, by considering a set of projected
data points S, = {(v, 2;) }s,es and letting B, o be the data points corresponding to the subset of
bottom (2/5.5)an data points with smallest values in S,, 7Ty o be the subset of top (2/5.5)an data
points with largest values, and M, , be the subset of remaining (1 — (4/5.5)a)n data points. For
a fixed direction v, define

1 1

o(Mua) = T > (v,3;), and ai(Mvva):, , Y (2 — p(Mua)?, (5)
v, 1‘1'6./\/11;,@ v Z‘iEMv,a

which are robust estimates of the population projected mean p, = (v,u) and the population

projected variance o2 = v Y.

General guiding principles for designing Dg(ji). We propose the following three design
principles that apply more generally to all problem instances of interest. The first guideline is
that it should recover the target error metric Dy (i, ) = ||X~Y2(ji — p)|| when we substitute the
population statistics, e.g. u, and o, for mean estimation, for their robust counterparts: j,(My,q)
and o,(M,, o). This ensures that minimizing Dg(j1) is approximately equivalent to minimizing the
target metric Dx;(j1, ) = ||~ Y2(t — p)|| (Lemma 3.6). For mean estimation, this equivalence is
shown in the following lemma.

Lemma 3.1. For any u € R? and 0 < ¥ € R4, let pu, = (v, p) and 02 = v Sv. Then, we have

- > <vaﬂ> — K
=@ —w| = max T2
CHIS! Oy
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Proof. Let i—p = 2?21 agup with ap = (ug, it —p), |la]| = |2 — p|| and uy’s are the singular vectors
of ¥. Similarly, let v = Z?:l beuy with ||b|| = 1. Then we have

(v,(h—p)) _ (a,b)
v \/Ebzf’é

From Cauchy-Schwarz, we have (a,b)? < (3" b20y)(3 aZo,!), which proves that

=120 - = Jmax (o) {v, (7 =) -

1722 = w? = Y _(ai/or) and

To show equality, we find v that makes Cauchy-Schwarz inequality tight. Let v = E?:l bouy

with a choice of by = (1/Z)aso, ' and Z = /3", a?0,; . This implies ||b]| = 1 and

(1/0¢)a?, and \/Zb%dg =

which implies that there exists a v such that [|S=Y2(i—pu)|| = (1/0y) (v, fi—p) and |~V (a—p)| <
maxv:||v||:1(1/av)<v7 f— :u> O

M&

Z:

The second guideline is that Dg(fi) should depend only on the one-dimensional statistics of the
data. This is critical as the sensitivity of high-dimensional statistics increases with the ambient
dimension d. For example, consider using the robust mean estimate fiyopust(S) € R? from [DHL19]
and using the Euclidean distance Dg(ft) = ||t — firobust (S)]| in the exponential mechanism, where
we are assuming > = I for simplicity. It can be shown that, even for Gaussian distributions,
this requires n = Q(d%2/(ca) + d/a?) samples to achieve an accuracy || — p| = O(a). This is
significantly sub-optimal compared to what HPTR achieves in Corollary 3.13, which leverages the
fact that sensitivity of one-dimensional statistic is dimension-independent.

The last guideline is to use robust statistics. Robust statistics have small sensitivity on re-
silient datasets, which is critical in achieving the near-optimal guarantees. We elaborate on it in
Section 3.2.2.

3.2 Step 2: Utility analysis under resilience

For utility, we prefer smaller A and 7 to ensure that the exponential mechanism samples [i closer to
the minimum of Dg(j1) ~ || X~/2(ji—u)|. However, aggressive choices can violate the DP condition
and hence fail the safety test. Near-optimal utility can be achieved by selecting A and 7 based on
the resilience of the dataset defined as follows.

Definition 3.2 (Resilience for mean estimation [SCV 18, ZJS19]). For some a € (0,1), p; € Ry,
and ps € Ry, we say a set of n data points Sgood s (e, p1, p2)-resilient with respect to (u, X) if for
any T C Sgooa of size |T| > (1 — a)n, the following holds for all v € R? with |jv|| = 1:

< pioy, and (6)

v, ‘T2> — Mo

Pt

((v.a)) = )" =02 < pao, ™)

mZ
Z

where pi, = (v, 1) and o2 = v’ To.
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Originally, resilience is introduced in the context of robust statistics. Resilience measures how
sensitive the sample statistics are to removing an a-fraction of the data points. A dataset from
a distribution with a lighter tail has smaller resilience (p1, p2). For example, sub-Gaussian distri-
butions have p; = O(a/log(1/a)) and ps = O(alog(l/a)) (Lemma 3.12), which is smaller than
the resilience of heavy-tailed distributions with bounded k-th moment, i.e. p; = O(a!~/*) and
p2 = O(a'=?/F) (Lemma 3.15). Resilience plays a crucial role in robust statistics, where the re-
silience of a dataset determines the minimax sample complexity of estimating population statistics
from adversarially corrupted samples [SCV 18, ZJS19].

In the context of differential privacy, our design of HPTR is guided by our analysis showing
that the sensitivity of one-dimensional robust statistics is fundamentally governed by resilience.
Leveraging this three-way connection between the use of robust statistics in the algorithm, the
resilience of the data, and the sensitivity of the distance Dg(f1) is crucial in achieving the near-
optimal utility.

Concretely, we consider « as a free parameter that we can choose depending on the target
accuracy. For example, let |S~12(ji — pu)|| = 32p; be our target accuracy. Note that we did
not optimize the constants in our analysis and they can be further tightened. In the case of sub-
Gaussian distributions, we have p; = C'ay/log(1/a) w.h.p. when the sample size is large enough.
This determines the value of « that achieves a target accuracy and also the choice of A and 7 as
follows.

The robust statistics of a resilient dataset (i.e., one with small resilience) cannot change too
much when a small fraction of the dataset is changed. This is made precise in Lemma 3.11 which
shows, for example, that the robust mean y, (M, o) can only change by O(p1/(an)) when one data
point is arbitrarily changed. This implies the sensitivity of Dg(j1) is also small: A = O(p1/(an)).
Choosing 7 = 42p; to be larger by a constant factor from the target accuracy, we show that a
sample size of n = O(d/(eav)) is sufficient to achieve the desired utility.

Theorem 9 (Utility guarantee for mean estimation). There exist positive constants ¢ and C such
that for any (a, py1, p2)-resilient set S with respect to some (pn € R, X = 0) satisfying o € (0,c¢),
p1 < ¢, pa < ¢, and p? < ca, HPTR with the choices of the distance function in Eq. (4), A =
110p; /(an), and T = 42p1 achieves ||S~Y2(i — p)|| < 32p1 with probability 1 — ¢, if

W s ol los(1/(0)
eQ

This theorem shows how a resilient dataset (which is a deterministic condition) implies small
error for HPTR. We make formal connections to standard assumptions on the sample generating
distributions and their respective resiliences in Section 3.3, where we also discuss the optimality of
this utility guarantee. For example, sub-Gaussian distributions have p; = O(ay/log(1/a)) when
n > C'd/(alog(1/a))? for any « smaller than a universal constant. This implies that HPTR
achieves a target accuracy of |2~/2(ji — p)|| < & with sample size O(% + d%) where O hides
logarithmic factors in 1/«, §, and (. We explain the intuition behind our analysis and provide a
complete proof in Sections 3.2.2-3.2.6. One by-product of using robust statistics is that we get

robustness for free, which we show next.

3.2.1 Robustness of HPTR

One by-product of using robust statistics is that HPTR is also robust to adversarial corruption.
We therefore provide a more general guarantee that simultaneously achieves DP and robustness.
Suppose we are given a dataset S that is a corrupted version of a resilient dataset Sgqod-
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Assumption 1 (acorrupt-corruption). Given a set Sgood = {Zi € Rd}?zl of n data points, an adver-
sary inspects all data points, selects oorruptnt 0f the data points, and replaces them with arbitrary
dataset Spaq Of size Qcorruptn. The resulting corrupted dataset is called S = {z; € Rd}?zl.

This adaptive adversary is strong, as the corruption can adapt to the entire dataset (for example
it covers the Huber contamination model [Hub64] and the non-adaptive adversarial model [L1.20]).
This threat model is now standard in robust statistics literature [SCV18]. If the original Seood 18
resilient, we show that the same guarantee as Theorem 9 holds under corruption up to an acerrupt
fraction of Sgo0q for sufficiently small corrupt < (1/5.5)a. The factor 1/5.5 is due to the fact that
the algorithm treats some of the good data points as outliers (which is at most 4acorups due to
the top and bottom tails cut in the definition of M, (5/55),) and we need to handle neighboring
datasets up to (0.5/5.5)an Hamming distance. Hence, we need to ensure resilience for a at least
5.5 times larger than the corruption ccorrupt-

Definition 3.3 (Corrupt good set). We say a dataset S is (Qcorrupt, @, p1, p2)-corrupt good with
respect to (p, X) if it is an Qeorrupt -corruption of an (a, py, pa2)-resilient dataset Sgood-

We get the following theorem showing that HPTR can tolerate up to (1/5.5)a fraction of the
data being arbitrarily corrupted.

Theorem 10 (Robustness). There exist positive constants ¢ and C' such that for any ((2/11)a, o, p1, p2)-
corrupt good set S with respect to (n € R = 0) satisfying o < ¢, p1 < ¢, p2 < ¢, and

p3 < ca, HPTR with the distance function in Eq. (4), A = 110p1/(an), and T = 42p; achieves
|27Y2(n — p)|| < 32p1 with probability 1 — ¢, if

W s ol los(1/(0)
EQ

In Sections 3.2.2-3.2.6, we prove this more general result. When there is no adversarial corrup-
tion, Theorem 9 immediately follows as a special case by selecting « as a free parameter depending
on the target accuracy. The constants in all the theorems can be improve if we track them more
carefully, and we did not attempt to optimize them in this paper.

3.2.2 Proof strategy for Theorem 10

We show in Section 3.2.5 that the robust one-dimensional statistics, p, (M, o) and o2(M, o), have
small sensitivity if the dataset is resilient. Consequently, Dg(f1) has a small local sensitivity, i.e. the
sensitivity is small if restricted to [ close to u and if the dataset is resilient. To ensure DP, we run
RELEASE only when those two locality conditions are satisfied; we first PROPOSE the sensitivity
A and a threshold 7, and then we TEST that DP guarantees are met on the given dataset with
those choices. Resilient datasets (i) pass this safety test with a high probability and (ii) achieve
the desired accuracy, both of which rely on our general analysis of HPTR with a general distance
function (Theorem 15). We give sketches of the main steps below.

One-dimensional robust statistics have small sensitivity on resilient datasets. Consider
the robust projected mean ji, (M, o) for some small enough a > 0. If S is (a, p1, p2)-resilient, then
the following technical lemma shows that the top and bottom (2/5.5)a-tails cannot deviate too
much from the mean.

Lemma 3.4 (Lemma 10 from [SCV18]). For a («, p1, p2)-resilient dataset S with respect to (p,>)
and any 0 < & < «, the following holds for any subset T' C S of size at least an and for any unit
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norm v € R4:

1 2—a
T i — ) < ———p1oy, and (8)
T a
z, €T
1 2—-a
‘WZ(<U,%—M>2—03)‘ < P20y . (9)

z, €T

Under the definitions in Eq. (4), the top (2/5.5)a-tail denoted by 7, o and bottom (2/5.5)a-tail
denoted by B, , have the empirical means that are no more than O(o,p1/c) away from the true
projected mean p,, respectively. It follows that there exists at least one data point in 7, , and one
data point in B, , that are no more than O(o,p1/a) away from j,. This implies that the range of
the middle subset M, , is provably bounded by O(oyp1/c), and the sensitivity of the robust mean
po(My.o) is guaranteed to be O(oy,p1/(an)). We can similarly show that 02(M, ) has sensitivity
O(02p?/(a®n)) as shown in Eq. (19). Note that these sensitivity bounds are local in the sense that
it requires the data to be (a, p1, p2)-resilient.

Small local sensitivity of Dg(j1). Under the above sensitivity bounds for y1,(M, ) and 62(M, o),
it follows after some calculations as shown in Eq. (20) that the sensitivity for a resilient dataset S
is bounded by

—1/2/ ~
IDs(@) - Do) < 2 (14 UE2E =01y (10)
an «@

for some constant C’ and all neighboring datasets S’, assuming ps is sufficiently small. Note that
this sensitivity bound is local for two reasons; for this sensitivity to be small (i.e. O(p1/(an))), we
require S to be resilient and fi to be close to p. Thus the meaning of local here is two folded while
traditionally local sensitivity in the privacy literature only concerns the sensitivity of a particular
dataset S. We handle these two locality with TEST step that, among other things, checks that
the DP conditions are satisfied for the given dataset and the choice of A and 7, which bounds
the support of the exponential mechanism to be within B, g = {{i : Dg(t) < 7} with a choice of
7 = O(p1). Consequently, we require p?/a < 1 for the second term in Eq. (10) to be dominated by
the first. Fortunately, this is indeed true for all scenarios we are interested in. For sub-Gaussian
distributions, p? = a?log(1/a) < «a. For k-th moment bounded distributions with k > 3, p3 =
a2k « . For covariance bounded distributions, we do not hope to get a Mahalanobis distance
guarantee. Instead, we aim for a Euclidean distance guarantee whose sensitivity does not depend
on fi and we do not require p?/a < 1 (Section 3.3.3).

Sample complexity analysis. Assuming the sensitivity of Dg(ji) is bounded by A = O(p1/(an)),
which we ensure with the safety test, we analyze the utility of the exponential mechanism. For a
target accuracy of [|[S~Y2(i—p)| = O(p1), we consider two sets Boy, = {ji : |22 (i—p)| < cop1}
and By, = {1 : [|[27Y2(ip — p)|| < c1p1} for some ¢y > ¢;. The exponential mechanism achieves
accuracy copp with probability 1 — ( if

P(ft ¢ Bout) < Vol(Bys) e”15 0 < O e=axlco—c)p < ¢

P(ii & Bout) < - = < <,
(M¢ t) P(/LGBin) ~ VOl(Bin) e 1A 1Pl

where the second inequality requires Dg(j1) =~ ||X~'/2(fi — p)||, which we show in Lemma 3.6. Since
the volume ratio is Vol(B,.g)/Vol(Bow) = 2@, 7 = O(p1), and A = O(p1/(an)), it is sufficient
to have a large enough ¢y and n = O((d + log(1/¢))/(aec)) with a large enough constant.

Safety test. We are left to show that for a resilient dataset, the failure probability of the safety
test, P(m, + Lap(2/e) < (2/¢)log(2/d)), is less than {. This requires the safety margin to be
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large enough, i.e. m; > k* = (2/¢)log(4/(6C)). Recall that the safety margin is defined as the
Hamming distance to the closest dataset to S where the (¢/2,/2)-DP condition of the exponential
mechanism is violated. We therefore need to show that the DP condition is satisfied for not only
S but any dataset S’ at Hamming distance at most k* from S.

Consider two exponential mechanisms 7. A 7,5y and r a 7 g7 on neighboring datasets S’ and
S". Since B; g # B; g, we separately analyze the intersection B, g/ N By g» and the differences
B: s\ By g and B, g» \ B; g. In the intersection, we show that the two probability distributions
are within a multiplicative factor e?/2 of each other:

peA) < e?P feA),

P"(E,A,T,s’) ( T(e,A,7,8") (

for all A C B; ¢» N B, g», S’ within Hamming distance k* from a resilient dataset S, and S” ~ S’
The main challenge is that S’ is no longer a resilient dataset but a k*-neighbor of a resilient dataset.
Since such S’ is (k* /n, «, p1, p2)-corrupt good (Definition 3.3), we show that corrupt good sets also
inherit the bounded local sensitivity of a resilient dataset seamlessly as shown in Lemma 3.11.

In the set difference, we show that the total probability mass ]P’T,(Ey ArS) (o € Brs \ B;g) and
IP’T(E’ NS S,)(,& € B.g \ B;g) are bounded by 4, respectively, as long as the overlap of the two
supports are large enough. This requires 7 > Ak*, as we show in Appendix A.1, which is satisfied

for n > (log(1/(6¢))/(ae)).

Outline. The analyses for the accuracy and the safety test build upon a universal analysis of HPTR
in Theorem 15, which holds more generally for any distance function D¢(é) in the estimation
problems of interest. For mean estimation, we show in Sections 3.2.3-3.2.5 that the sufficient
conditions of Theorem 15 are met for the choices of constants and parameters: p = p1, ¢g = 31.8,
c = 10.2, k* = (2/¢e)log(4/(6C)), T = 42p1, and A = 110p;/(an). We can set c2 to be a large
constant and will only change the constant factor in the sample complexity which we do not track.
A proof of Theorem 10 is provided in Section 3.2.6, from which Theorem 9 follows immediately. All
the lemmas assume ((1/5.5)q, «, p1, p2)-corrupt good set S, a < 0.015, p; < 0.013, and p2 < 0.0005.
We omit this assumption in stating the lemmas for brevity.

3.2.3 Resilience implies robustness

For the assumption (d) in Theorem 15, we show that Dg(ji) is a good approximation of the true
distance | X~Y2(ji — p)|| in Lemma 3.6. We first show that the one-dimensional mean and the
variance of the filtered out M, , are robust.

Lemma 3.5. For any unit norm v € R?, (v, p—p(My.o))| < 6p1 0y and 0.90, < 04,(My o) < 1.10,.

Proof. For the mean bound,

{0, 1t = p(Moa))]

|Mv a Sbad| ’MU aln Sgood’
< v’ bad] _ va  Mgoodl _
S Mo (v, 1(Sbad N Mo,a) — )| + Mo (v, 1(Sgood M Mu,a) — )]
(1/5.5)a  2pyoy, 1—-(1/55)«
= 1-(4/55) (1/55)a  1— (4/5.5)a’*7"
< (2014 p1)ou/(1 = (4/5.5)a) , (11)

The second inequality follows from the following. First, |(v, 1(Sgo0d N Mu,a) — )| < ouwp1 by
the definition of resilience and that fact that |Sgooq N Maya| > (1 — (5/5.5)a)n. Next, since
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|(v, 11(Shad N My,a) — )| is less than [(v, u(Sgood N To,a) — 1)] o [(v, t(Seood N Bu,a) — )|, both of
which are at most 2p10,/(1/5.5)c, from applying Lemma 3.4 with a set size at least (1/5.5)an, we
have

2
’<07N(Sbad N Mv,a) - NH < mﬁlav .

The mean bound follows from (11) and o < 0.1. For the variance upper bound,

1 1
7o(Mua)* = (1— (4/55)a)n 2 {omi = pMoa))” < (1— (4/5.5)a)n 2 (vwi—w?”,

xiEMv,a xiEMv,a

where the first inequality follows from the fact that subtracting the empirical mean (M, o) min-
imizes the second moment. We can decompose the empirical deviation and show an upper bound
first:

> vieMy o (V2 — 1)? = 07)
(1—-(4/5.5)a)n
2

Z{EiGMU’QﬂSbad(CU’ ‘Ti - Iu>2 - 012)) ZwiEMu,aﬂSgood“U? xi - /’L>2 - UU)

- (1— (4/5.5)a)n - (1— (4/5.5)a)n
2 o a 0,2
< (1/55)04(2/72/(1/51-5_)681%;)((11 (4/5.5))proy 6pao? (12)

where in the second inequality we used resilience on M, o M Sgooa Of size at least 1 — (5/5.5)a. For
Z; € Spad N My o, we use the fact that

| (v,2; — p)> — 03| < max { 225€Sgpoa oo 25 ~ n - 012))7 2 €S gooanBusa (Vs Tj — ? = 0’12))}
|Sgood N 7:),04| |Sgood N Bv,a|
2/)20’12)
= (1/55)a’

where we used Eq. (9) in Lemma 3.4 for sets with size at least (1/5.5)an. For the variance deviation
lower bound,

ZmieMv,a(@? T — N(Mv70c)>2 - 012;) Z;pie/\/{yya ( (v, — N>2 - ‘712; — (v, — N(Mv,a)>2)

(1—(4/5.5)a)n B (1—(4/5.5)a)n
Z"Eie‘/\/l’%&msbad(<'v7 f]:i - lu>2 - 012)) + ZIiGMU,ansgood(<v7 xi - /’[/>2 - U%) . 36 202
20207 1 (4/55)a ) -
= o - > —(3.2 1
= T1-(4/55)a  1- (4/55)a"? 36p10, = —(3.2p2 + 36p7)0y; , (13)

where we used o < 0.1, the first term only uses the fact that |Spaq| < (1/5.5)an, the second term
uses resilience, and the last term uses the mean bound we proved earlier. In (12) and (13), assuming
p1 < 0.04, and pa < 0.035, we have /T + 6pz < 1.1 and /1 — 3.2p2 — 36p7 > 0.9. O

We show that resilience implies our estimate of the distance is robust.

Lemma 3.6. If i € B.g and 7 = 42p; then | |22 — w)|| — Ds(f)

< 6p1 + 0.17 < 10.2p1.
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Proof. From Lemma 3.5, we know that for all 4 € By g,

(v, o = p(Mya)) > max (v, fi = p) — 6p10y ‘

D (i = a.
S(IU) ||g?ha:X1 JU(MU,Q) T vll=t 1.10,

and

DS(IEL) — max <U7ﬂ_M(Mv7Q)> < max <U7l&_lu’> +6p10_U )

=1 ou(Mya) = ofl=1 0.9,

(15)

Applying Lemma 3.1, we get 0.9Dg(j1) —6p1 < |X72(i—p)|| < 1.1Dg(j1) +6p;. Since Dg(j1) < 7,
we get the desired bound.
U

3.2.4 Bounded volume
We show that the assumption (a) in Theorem 15 is satisfied for robust estimate Dg(i).

Lemma 3.7. For p = py, ¢; = 10.2, 7 = 42p1, A = 110p;1 /(an), and ca > log(67/12) + log((co +
2¢1)/c1), we have (7/8)T — (k* +1)A > 0,

VOI(BT+(]€*+1)A+61/),S)
Vol(B 7 /8)r—(k*+1)A—c1p,S)

Vol({f1: |S72( — w)|| < (co + 2¢1)p}) s
Vol({fu: [[2=Y2(f — p)|| < c1p}) B '

cod

(&

IN

, and

Proof. The second part of assumption (a) follows from the fact that
Vol({iu: 572 (a — )| < r}) = calSIr?,

where |X| = H;l:l 0j(X) is the determinant of ¥ and o0;(X) is the j-th singular value, for some
constant cg that only depends on the dimension and selecting ¢y > log((co + 2¢1)/¢q).

The first part is tricky as we do not yet have handle on the set B; ¢ for t > 7. In particular, we
do not know how Dg(f1) relates to ||X"/2(ji — )| for such a i outside of B, g. To this end, we
use the following corollary.

Corollary 3.8 (Corollary of Lemma 3.6). If i € Barg and 7 = 42p; then H|E_1/2(,a —wl -
Ds(fr) | < 14.2p1.

We will show that (7/8)7 — (k* +1)A > 0. As this implies that 7+ (k* + 1)A < 27, we can use
the above corollary to show that

VOl(Br i (k+1)Ateips) Vol ({fu: |S72(p—p)|| <7+ (k" + DA+ c1p+14.2p1})
Vol(B(z/syr— (k= +1)a-cip,s)  — Vol({f: |[B712(a — p)l| < (7/8)7 — (k* + 1)A — c1p — 14.2p1})
_ ( T4+ (K" +1)A+cip+14.2p; >d
(7/8)T — (k* + 1)A — c1p — 14.2p;
< (67/12)% < e2?

for the choices of p = p1, c1 = 10.2, 7 = 42p1, A = 110p1 /(an), and ¢y > log(67/12) where we used
the fact that for n > C'log(1/(6¢))/(ae) with a large enough constant C, we have (k*+1)A < 0.3p;.
It follows that the condition (7/8)7 — (k* + 1)A > 0 is also satisfied. O
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3.2.5 Resilience implies bounded local sensitivity

We show that resilience implies the assumption (b) in Theorem 15 (Lemma 3.11). However, since
local sensitivity needs to be established first for not just the given set S but also Hamming distance
E*+1 neighborhood of S, we need robustness results for this broader regime. Assuming (k*+1)/n <
a/11, we can extend robustness results analogously as follows. We consider a set S” with k data
points arbitrarily changed from S. This implies that S’ is a ((1/5.5)a + (k/n), a, p1, p2)-corrupt
good set with respect to (u,%). We first prove the analogous bounds to Lemma 3.5 for this S’.

Lemma 3.9. For an ((1/5.5)a+a, a, p1, pa)-corrupt good set S” with respect to (1, ), & < (1/11)a,
and any unit norm v € R, |(v, u — w(My.o))| < 14py oy and 0.90, < 0y(My o) < 1.10,,.

Proof. Analogous to (11), we have

(1/55)a+a 2mo,  1—(1/55)a—a
fon—p Mol < T i S ma T T B
< ldpioy,

where we used the fact that (5/5.5)a + & < a. Analogous to (12), we have

Ve (0,2 = n(Moa))® —0b) - (1/5.5)a +8)(pgiaza)or + (1 = (1/5.5)a — d)paoy
(1 —(4/5.5)a)n - 1—(4/5.5)x
14py02 .

A

Analogous to (13), we have

2aieMy (022 = p(Moa))® = 00) ((1/5.5)a + &)2p20?
(1 - (4/5.5)a)n Z T (@BRa)((/55)a —a) pao? — 14%p3a?

> —(7.3p2 + 196p3 )02 .

For a <0.045, p; <0.013, and py < 0.0005, we have the desired bounds. O

Lemma 3.10. For an ((1/5.5)a + &, «, p1, p2)-corrupt good set S" with respect to (1, X) and & <
(1/11)a, if i € Bygr for some t > 0 then we have |[S7V2(j — p)|| < 14p1 + 1.1t and |D(p, S") —
157120 — )] < 14p1 +0.12,

Proof. Analogously to the proof of Lemma 3.6, we have

L1D(4,S") > —14py + |S7Y2(a — )| , and
0.9D(j1, 8) < 1dpy + [572(i— )l -

This gives the desired bound. O

The sensitivity of Dg(ji) is local in two ways. First, we get the desired sensitivity bound for
a dataset S that behaves nicely, which is captured by the notion of ((1/5.5)c, a, p1, p2)-corrupt
good set S. Secondly, the sensitivity bound requires the estimate parameter i to be close to u
in ||[2712(f — p)||. Both locality in dataset and locality in estimate are ensured by the safety test
(Test step in HPTR). To show that corrupt good datasets pass the safety test, the following lemma
establishes that those datasets have small local sensitivity.
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Lemma 3.11. For A =110p1/(an), 7 = 42p1, and an ((1/5.5¢), a, p1, p2)-corrupt good S, if

_ Q<10g(1/(50)> ’ (16)

ag

then the local sensitivity in assumption (b) is satisfied.

Remark. Note that to keep A = O(p1/(an)) that we want (and is critical in getting the fi-
nal utility guarantee), we need the extra corruption to be k*/n = O(«). This implies n =
Q(k*/a) = Qog(1/(0C))/(ex)). Further, k* = Q(log(1/(0¢))/e) cannot be improved, as it is
critical in achieving small failure probability in the testing step. Hence, the sample complexity of
Q(log(1/(6¢))/(ea)) cannot be improved under current proof strategy.

Proof. Since S'is ((1/5.5)a, «, p1, p2)-corrupt good and dg (S, S”) < k*, it follows that S is ((1/5.5)a+
&, o, p1, p2)-corrupt good with & = (k*/n). We further assume that & < (1/11)a, which follows
from k* = (2/¢)log(4/(6¢)) and n = Q(log(1/6¢)/(ear)) with a large enough constant. We show
that this resilience implies that S’ is dense around the boundary of M, o, which in turn implies
low sensitivity.

Recall that T, o C S is the set of data points corresponding to the largest (2/5.5)an data points
in the projected set Sév) = {(v, %) }z,es and By C S is the bottom set. Let Sgooq denote the
original uncorrupted resilient dataset. Applying Lemma 3.4 to Sgood N To,a (and Sgood N Bya) of
size at least (1/11)a (since corruption fraction is at most (1/5.5)a + & < (1.5/5.5)a),

2p104
(1/11)04

This implies that there is at least one good data point that is closer to the center than the means
of the upper tail and the bottom tail:

‘ 2010’1;

| (v, 1(Sgood N Tv,a) — 1) ‘ < 1/11)

) and ‘ <07N(Sgood N Bvoc -

2p10y

2
P10 , and min ‘ vV, Ty — W | < 1/11

min | U, T; — W ‘ = 1/11 2;€Sg00dMNBu,a

xiesgoodn%,&
It follows that the distance between two closest points in 7, , and B, , is bounded by

i ) — < (44 1
e g ) R, (00 < (@) a7
when p € My, o. When pu € Ty o or i € B, 4, it is straightforward that the above inequality holds.
This implies low sensitivity as follows.
Recall that M, o(S") denote the middle part after filtering out the top and bottom (2/5.5)a

quantiles from {(v,x;)},,;es. For a neighboring dataset S” and the corresponding SE;), con-

sider a scenario where one point x; in M, ,(S") is replaced by another point z;. If (v, ;) €
[MaXy;€8,004MBy .0 (Vs Ti) , Milg,e8,,,4nT o (U, i) |, then Eq. (17) implies that [(v, z;—;)| < (44/a)p10y.
Otherwise, M, o(S") will have x; replaced by either arg minjes, 47, o (v, T;) OF arg Maxjes, 4B, o (Vs )
In either case, Eq. (17) implies that |(v, x; — ;)| < (44/a)p10,. The other case of when the replaced
sample x; € S is not in M, , follows similarly.

From this, we get the following bounds on the sensitivity of the robust mean and robust variance.
Note that using robust statistics is critical in getting such small sensitivity bounds. Let p/ =
w(My.o(S") and p” = p(My.(S”)) where we write the dataset S” in M, o(S’) explicitly,

/ " 44p10
[ =i < s syam

(18)

27



For the variance bound, let 072 = 02(M, o (5")) = (1/|My.a(5")|) Dl e Mo (51 (Vs TG — ©')? and
o1 = O Mua(S")). Since (1= (5510 = 3, 50054~ 10 = e o (074~
Y2~ (o, 1~ )2), we have (1= (4/5.5)a)n(02—072) = Soureng. 51 (05 =B —Sren, sy (02—
w2 — (1 — (4/5.5)a)n{v, u" — u')?. We bound each term separately. Note that M, ,(S’) and
My, (S”) only differ in at most one data point. We denote those by 2’ and 2" respectively. Then,

Z <U,x; - NH>2 _ Z (v,xé’ o Iu//>2 ‘ — | (v,x/ _ Iu//>2 _ <ij// o NH>2 |
€M, (S") 2 €Moy,a(S")
<’U,$, _|_$ll _ 2/.LH><U,IE/ _ 33‘”> |
= [(v,a’ =) + (v, 1" = ") + (v,2" = p")| |(v,2" — ") |

2
< 3<44p10v> ,
[0

and

(44P1 Uv)2

(1—(@/55)a)n(v, 0 —p"? < (1- A58 G /s 5)amy

This implies that

o — o] <

(44p1 (0 /2)0)? 1 ) - 4(44p10,)? 19)

(1—(4/5.5)a)na2< T U= @snan) = 0= (@d/55ama?

Together, we get the following bound on the sensitivity of D(ji,S’). Since max, a, — max, b, <
maxy |a, — by|, we have

‘ (v, —p') (v, o —p")

/ o I

| Dsi (1) = Dsw(i))] < max

viljof|=1 Ty Ty
< max |<v,u’,—u”>| n (v, o = p")| 0_7 _ ff_”
v:||v||=1 Oy Oy Oy Oy
44p1 —1/2¢ Ty
< 2 / o 22
= 0.9a(1 — (4/5.5)a)n * (= )l max oyoy (o, +oy) oy~ o
44p¢ 5312p? 12,
! 1/2(N - N”)H )

090 = (4s5)an T ara = @/maya)n

where we used triangular inequality in the second inequality and the third inequality follows from
o, > 090, (Lemma 3.9), Egs. (18), and Lemma 3.1, and the last inequality follows from and
ol > 0.90, and (19).

From Lemma 3.10, fi € B; | (+13)a,5 implies 1212 (p— p)|| < 14py 4+ 1.1(7 + (k* +3)A). From
Lemma 3.9, |27Y2(u — p”")|| < 14p;. We apply triangular inequality and show that ||X~1/2(j —
Wl < ca/py for the choices of A, k*, 7 and n, with an arbitrarily small constant c:

ISP — ") < 281+ LA(r + (K +3)A)

Cpy + 7 log(1/(6¢))
- ean

< 2Cpy,

A

for some constant C' > 0 where A = 110p1/(an), 7 = 42p1, k* = (2/¢)log(4/(0¢)), and n >
C'1og(1/(8¢))/(¢ ). Under the assumption that p? < ca and a < ¢ for some small enough c, this
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implies

N . 441 121py
D / —D 17 < (1 20 )
|Ds: (1) s (il = 0.9(1 — (4/5.5)a)an * a n
44/0. 1444 11
< (44/0.9)p1 1+ 44c < A = 100 (20)
an  1—(4/5.5)c an
]

3.2.6 Proof of Theorem 10

We show that the sufficient conditions of Theorem 15 are met for the choices of constants and
parameters: p =d, p = p1, co = 31.8, ¢; = 10.2, 7 = 42p;, and A = 110p; /(an). We can set ¢y to
be a large constant and will only change the constant factor in the sample complexity.

The assumptions (a), (b), and (d) follow from Lemmas 3.7, 3.11, and 3.6, respectively. The
assumption (c) follows from

~ 110p; - 1.2p1€ B (co — 3c1)pe
an T 32(cad + (£/2) +1og(16/(6C)))  32(cad + (¢/2) 4+ 1og(16/(5¢)))

for large enough n > C’(d + log(1/(6¢)))/(ce). This finishes the proof of Theorem 10 from which
Theorem 9 immediately follows.

A

3.3 Step 3: Near-optimal guarantees

We provide utility guarantees for popular families of distributions in private or robust mean estima-
tion literature: sub-Gaussian [BD14, LRV16, SCVI18, ZJS19, KV17, KLSU19, CWZ19, BKSW19,
BDKU20, AAAK20, BGS*21, DKK*+19, DKK*17, DHL19, Hop20, DKK*18, HLY21], k-th mo-
ment bounded [BD14, LRV16, SCV18, ZJS19, KSU20], and covariance bounded [BD14, LRV 16,
SCVIR, ZJS19, KSU20, DHL19, HLZ20, DL19, DL21]. We apply known resilience bounds of each
family of distributions and substitute them in Theorems 9 and 10. In all cases, the resulting sample
complexity is near-optimal, which follows from matching information-theoretic lower bounds.

Since we aim for Mahalanobis distance error bounds, corresponding mean resilience we need in
Definition 3.2 scales linearly in the projected standard deviation. For sub-Gaussian distributions,
this requires the projected variance v’ Yv to be lower bounded by how fast the tail is decreasing,
capture by the sub-Gaussian proxy Q(v'T'w) in Eq. (21) (Section 3.3.1). For k-th moment bounded
distributions with & > 3, this requires the projected variance to be lower bounded by Q(E[|(v, 2 —
1)|¥12/%), a condition known as hypercontractivity (Section 3.3.2). When we do not have such lower
bounds on the covariance, HPTR can only hope to achieve Euclidean distance error bounds. Under
our design principle, this translates into the choice of Dg(fi) = max,|<1(v, i) — pro(Mya). We
give an example of this scenario with covariance bounded distributions (Section 3.3.3).

3.3.1 Sub-Gaussian distributions

We say a distribution P is sub-Gaussian with proxy I if for all ||v|| =1 and ¢ € R,

Esnp| exp(t (v,z))] < exp (21)

Under this standard sub-Gaussianity, we are only guaranteed mean resilience of Eq. (6), for example,
with R.H.S scaling as p; Vv T'v instead of p; Vv T Xv. This implies that the Mahalanobis distance
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of any robust estimate can be made arbitrarily large by shrinking the covariance in one direction
such that v " Xv < v 'T'w. To avoid such degeneracy, we add an additional assumption that ¥ >= ¢TI,
which is also common in robust statistics literature, e.g., [JL.T20]. With this definition, it is known
that sub-Gaussian samples are (o, O(a+/log(1/a)), O(alog(1/a)))-resilient.

Lemma 3.12 (Resilience of sub-Gaussian samples [ZJ519] and [JL'T20, Corollary 4]). For any
fized o € (0,1/2), consider a dataset S = {x; € R4} | of n i.i.d. samples from a sub-Gaussian
distribution with mean w, covariance %, and a sub-Gaussian prory 0 < T' = ¢1 X for a constant cy.
There exist constants co and c3 > 0 such that if n > ca((d + log(1/¢))/(alog(1/a))?) then S is

(a, csan/log(1/a), csarlog(1/a))-resilient with respect to (u, ) with probability 1 — (.

This lemma and Theorem 9 imply the following utility guarantee. Further, from Theorem 10
the guarantee also holds under a-corruption of the i.i.d. samples from a sub-Gaussian distribution.

Corollary 3.13. Under the hypothesis of Lemma 3.12 there exists a constant ¢ > 0 such that for
any a € (0,¢), a dataset of size

At log(1/e) | d+ log(1/(50)
"= O gy T )

sensitivity of A = O((1/n)y/log(1/a)), and threshold of T = O(ay/log(1/a)), with large enough
constants are sufficient for HPTR(S) with the distance function in Eq. (4) to achieve

1723 = )| = Ola/log(1/)) , (22)

with probability 1 — (. Further, the same guarantee holds even if a-fraction of the samples are
arbitrarily corrupted as in Assumption 1.

This sample complexity is near-optimal up to logarithmic factors in 1/a and 1/¢ for 6 =
e~ 9@ Even for DP mean estimation without corrupted samples, HPTR is the first algorithm
for sub-Gaussian distributions with unknown covariance that nearly matches the lower bound of
n = Q(d/a? + d/(ag) + log(1/d) /e) from [KV17, KLSU19], where Q hides polylogarithmic terms
in 1/¢,1/a,d,1/e and log(1/0). The third term has a gap of 1/« factor to our upper bound, but
this term is dominated by other terms under the assumption that § = e~ 9 For completeness,
we state the lower bound in Appendix C. Existing algorithms are suboptimal as they require either
n = 0((d/a?) + (d(log(1/5)3)/(ae?))) samples with (1/e2) dependence to achieve the error rate of
Eq. (22) [BGST21] or extra conditions such as strictly Gaussian distributions [BGST 21, BIKSW19]
or known covariance matrices [[KLSU19, AAAK20, BD14].

The error bound is near-optimal in its dependence in « under a-corruption. HPTR is the
first estimator that is both (g, 6)-DP and also achieves the robust error rate of |X~V2(ji — p)|| =
O(ar/log(1/a)), nearly matching the known information-theoretic lower bound of || S~Y2(j—p)|| =
Q(a) [CGR18]. This lower bound holds for any estimator that is not necessarily private and
regardless of how many samples are available. In comparison, the existing robust and DP estimator
from [LIKKO21], which runs in polynomial time, requires the knowledge of the covariance matrix %
and a larger sample complexity of n = Q((d/a?) + (d*/?log(1/6))/(ae)). If privacy is not required
(i.e., € = 00), a robust mean estimator from [ZJ519] achieves the same error bound and sample
complexity as ours.

3.3.2 Hypercontractive distributions

For an integer k > 3, a distribution P, x. is k-th moment bounded with a mean p and covariance X if
for all ||v]| = 1, we have E,p, [|(v, (x—p))|¥] < k¥ for some k > 0. However, similar to sub-Gaussian
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case, Mahalanobis distance guarantees require an additional lower bound on the covariance. To this
end, we assume hypercontractivity, which is common in robust statistics literature, e.g., [KKIKKMI18].

Definition 3.14. A distribution P,y is (k, k)-hypercontractive if for all v € R, Eyopy [|(v, (z —
p)IF] < KF (T S0)H2,

Although samples from such heavy-tailed distributions are known to be not resilient, it is
known that it is O(a)-close in total variation distance to an (a, O(a!~'/*), O(a'=2/*))-resilient
dataset. This means that the resulting dataset is ((1/11)a, a, O(a'=1/%), O(a!=2/¥))-corrupt good,
for example. Note that hypercontractivity is invariant under affine transformations and x does not
depend on the condition number of the covariance.

Lemma 3.15 (Resilience of k-th moment bounded samples [ZJ519, Lemma G.10]). For any fized
a € (0,1/2), consider a dataset S = {x; € R4}, of n i.i.d. samples from a (k, k)-hypercontractive
distribution with mean p and covariance X = 0 for some k > 3. For any cs > 0, there exist
constants c1 and co > 0 that only depend on c3 such that if

- d k2a? 2/kdlogd k2dlogd
n= 61<C2(1—1/k)a2(1—1/k) + 24Tk 2 o2k > ;

then S is (csor, av, cokrad = V/RCTVR eok2 k2 =2/RC=2/F) corrupt good with respect to (p, X)) with prob-
ability 1 — C.

This lemma and Theorem 9 imply the following utility guarantee. Further, from Theorem 10 the
guarantee also holds under (1/5.5—c3)a-corruption of the i.i.d. samples from a (k, k)-hypercontractive
distribution. Choosing appropriate constants, we get the following result.

Corollary 3.16. Under the hypothesis of Lemma 3.15 there ewists a constant c ¢ that only
depends on k, r, and ¢ such that for any o € (0,cxr¢), a dataset of size

d +1log(1/(5¢)) d k2a?2?kdlogd = w*dlogd

no= O( o + C20=1/k) 20— 1/F) + 247k 2 2k > ,
sensitivity of A = O(1/(na/*)), and threshold of T = O(a*=Y*), with large enough constants
are sufficient for HPTR(S) with the distance function in Eq. (4) to achieve |S™Y2(f — p)|| =
O(k;/iﬁ_l/kal_l/k) with probability 1 — . Further, the same guarantee holds even if a-fraction of
the samples are arbitrarily corrupted as in Assumption 1.

This sample complexity is near-optimal in its dependence in d, 1/¢, and 1/a when § = e,

Suppose (, k, and k are ©(1). Even for DP mean estimation without robustness, HPTR is the first
algorithm that achieves |2~Y2(ji — p)|| = O(a'~V*) with n = O(az(lill/k) + d+10g(1/6)) samples,

EQ

which nearly matches the known lower bounds. The first term O(d/a?('=1/¥)) cannot be improved
even if we do not require privacy. The second term O((d + log(1/d))/ea) nearly matches the
lower bound of n = Q(min{d,log((1 —e™¢)/0)}/(ecv)) for DP mean estimation that we show in
Proposition 3.18. In typical DP scenarios, we have 0 < ¢ < 1 and § = e~ ©@ [BD14], in which
case the upper and lower bounds match. An existing DP mean estimator (without robustness)
of [KKSU20] achieves a stronger (¢,0)-DP and a similar accuracy but in Euclidean distance with a
similar sample size of n = 5(% + 5%) However, it requires a known or identity covariance
matrix and a known bound on the unknown mean of the form u € [~ R, R]%. Such a bounded search
space is critical in achieving a stronger pure privacy guarantee with 6 = 0.
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The error bound is optimal in its dependence in « under a-corruption. The error bound
12-12(5 — p)|| = O(a'~Y*) matches the following information-theoretic lower bound in Proposi-
tion 3.17; no algorithm can distinguish two distributions whose means are at least O(a!'~/*) apart
from a-fraction of samples corrupted, even with infinite samples. HPTR is the first algorithm that
guarantees both differential privacy and robustness (i.e., the error only depends on « and not in
d) for k-th moment bounded distributions. If privacy is not required (i.e., £ = 00), a robust mean
estimator from [ZJS19] achieves a similar error bound and sample complexity as ours.

Proposition 3.17 (Lower bound for robust mean estimation). For any o € (0,1/2), there exist
two distributions Dy and Ds satisfying the hypotheses of Lemma 3.15 such that drv(D1,Ds) = «,
and

1= 2 (11 — p2)|| = Qa4

Proof. We construct two scalar distributions D; and Dy with drv (D1, D2) = « as follows:

Di(z) = {(l—a)/Q, if v € {~1,1} Cand  Ds(z) = {(1—04)/2, if v e {—1,1}

Qo if v = —allk o if x = al/k

The variance is Q(1) for both distributions and [Egp, [z] — Epp,[z]| = 201 7/*. Then it suffices to
show that D; and Dy are both (O(1), k)-hypercontractive. In fact, we know E,p,[z] = —al =1/,
Epop, [2%] = Boupy[2?] = 1 — a + a'=%/% and Ep, [|z|*] = 2 — a. Since a € (0,1/2), there exists a
constant ¢ such that E,p, [|2 — p1]¥] < ¢, which concludes the proof.

U

Proposition 3.18 (Lower bound for DP mean estimation). Let P, s, 1 be the set of (1, k)-hypercontractive
distributions with mean p € R and covariance ¥ € R¥*?, Let M, 5 be a class of (g,0)-DP estima-

tors using n i.4i.d. samples from P € P, s . Then, for e € (0,10), there exists a constant ¢ such

that

inf sup Espn[||S72(i(S) — p)]|*] > cmin { < oy

AEMe 5 eRE 5350, PEP,, 5 &

— -2/
dANlog((l—e )/5))2 2 k,l}.

Proof. We extend the proof of [BD14, Proposition 4] to hypercontractive distributions. Before
we prove the lower bound, we first establish the private version of standard statistical estimation
problem. Specifically, let P denote a family of distributions of interest and 6 : P — © denote the
population parameter. The goal is to estimate 6 from i.i.d. samples z1,z2,...,x, ~ P. Let 6 be
an (e,d)-differentially private estimator. Furthermore, let p : © x © — R™ be a (semi)metric on
parameter space © and £ : Rt — RT be a non-decreasing loss function with ¢(0) = 0.

To measure the performance of our (e,d)-DP estimator é, we define the minimax risk as follows:

i%f ;161?) Ezi 2o, zn~P [E <p <é (X1, 2p) ,9(P)>)] . (23)

To prove the lower bound of the minimax risk, we construct a well-separated family of distri-
butions and convert the estimation problem into a testing problem. Specifically, let V be an index
set of finite cardinality. Define Py = {P,,v € V} C P be an indexed family of distributions. If for
all v # v € V we have p(P,, Py) > 2t, we say Py is 2t-packing of ©.

The proof of [BD14, Proposition 4] is based on following lemma.
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Lemma 3.19 ([BD14, Theorem 3]). Fiz p € [0,1], and let Py be a 2t-packing of © such that
drv(Py, Py) =p. Let 0 be (g,0) differentially private estimator. Then

—elnp] _ gl=eclnl
%ZPU (P (5=9(Pv)) > t) > M= v <%e iR > _ (24)
vey

1L+ (V| —1) - eclnpl

In our problem, we set P to be P = P,y . It suffices to construct such index set V and
indexed family of distributions Py. We construct a similar packing set defined in the proof of
[BD14, Proposition 4]. By [ASZ21, Lemma 6], there exists a finite set VV C R? with cardinality
V| = 2%D ju|| = 1 for all v € V, and |Jv — /|| > 1/2 for all v # v € V. Define Qq as
Qo = N(0,I4xq), and @, as a point mass on x = a/kcy, where v € V. We construct P, as
P, = aQ, + (1 — a)Qo.

We first verify that Py C P. It is easy to see u(P,) = Eyop,[z] = o' V*y and B(P,) =
Eorp, (7 — p(Py)) (@ — p(P,) ] = (1 = )lgxa+ a(l —a)a*kouT. This implies $14xq < 3(P,) =
Lixa. Since E [(X — E[X])*] < E [X*] for any X > 0, it suffices to show E,p,[| (u, z) |¥] < C* for
some constant C' > 0 and any ||u| = 1. In fact, let ¢; denote k-th moment of standard Gaussian,
we have

k
Eomr, [l (0,2} [F] = (1= a)eg +a |[(w,a7*0) | = 0(1).
It is also easy to see that dpv (P, Py) = a. Let p(01,02) = ||#1 — 02]|. We also have

1-1/k 1-1/k

. 1
t= min « ||v—v\|2§oz

v#V €V

Next, we apply the reduction of estimation to testing with this packing V. For (g,0)-DP
estimator i, using Lemma 3.19, we have

IgtégESNPn[\\E(P)_l/Q(ﬂ(S)—M(P))HQ] > MZESNIM I=(P) "2 (a(S) — p(P))IIP]

veV

IVIZP (“E )72 ((S) — O(R)I| = t)

1
= t2 Al —0(P)|| > 1)
’ veV
d/2 (1 —e[na] _ _ 0
> t2e (26 1_675>
~ 1 + ed/2g—clnal ’

where the last inequality follows from the fact that d > 2.
The rest of the proof follows from [BD 14, Proposition 4]. We choose

a—imin ill—e—:lo -~
" ne 2 08 T ses

sup Es.pn[[2(P)/2(i(S) ~ n(P)|?] 2 0"
PeP

so that

~

This means, for ¢ € (0, 1),

o g 2-2/k
inf sup Egpr[[S(P)" 1/2<ﬂ<s>—u<P>>u2]zmin{<d“g“l V‘”) ,1},

PEM: s pePp ne

which completes the proof. O
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3.3.3 Covariance bounded distributions

A distribution P, x; is covariance bounded with mean p and covariance ¥ if |[3]| < 1. Contrary to
the previous cases, the sample variance is not resilient as {(v, z; — p)2} do not concentrate. To get
around this issue, we use the Euclidean distance: Dgy(fi, 1) = ||2 — p||. This leads to the surrogate
Euclidean distance of

DS(:&) = Iﬁlagxl<vwa> - MU(MU,Q) . (25)

As this does not depend on the robust variance, o2 (My ), we only require the following first order
resilience.

Lemma 3.20 (Resilience of covariance bounded samples [ZJ519, Lemma G.3]). For any fized
a € (0,1/2), consider a dataset S = {x; € R4}, of n i.i.d. samples from a covariance bounded
distribution with mean p and covariance ¥ = 0. If n = Q(dlog(d/¢)/(a)) then with probability
1 — 3¢, for any subset T C S of size |T| > (1 — a)n, there exists a constant C > 0 such that the
following holds for all a € (0,1/2) and for all v € R? with ||v|| = 1:

< Cal/?,

where p, = (v, p).

This lemma and Theorem 10, adapted for the new Dg(j1) = max|<1 (v, i) — po(My,q), imply
the following utility guarantee.

Corollary 3.21. Under the hypothesis of Lemma 3.20 there exists a constant c¢ that only depends
on ¢ such that for o € (0,¢c¢), a dataset of size

o O<d+log(1/(5é)) n dlog(d/C)) ,

EQ «

sensitivity of A = O(1/(ny/a)), and threshold of T = O(y/a), with large enough constants are
sufficient for HPTR(S) with the distance function in Eq. (25) to achieve ||fi — p|| = O(a/?) with
probability 1 —3(. Further, the same guarantee holds even if a-fraction of the samples are arbitrarily
corrupted as in Assumption 1.

This sample complexity is near-optimal in its dependence in d, 1/¢, and 1/« for 6 = e O 1t
matches the information-theoretic lower bound of n = Q(d/ea) from [[KSU20]. For completeness,
we write the lower bound in Appendix C. This problem is easier then the sub-Gaussian or k-th
moment bounded settings, since the error is measured in Euclidean distance and hence one does
not need to adapt to the unknown covariance. Therefore there exist other algorithms achieving
near-optimality and even runs in polynomial time [[XSU20)].

The error rate is near-optimal under a-corruption, matching the information-theoretic lower
bound of || — p|| = Q(a'/?) [DHL19]. Note that there exists an DP and robust algorithm from
[LIKIKO21] that achieves near-optimality in both error rate and sample complexity but requires an
additional assumption that the spectral norm of the covariance is known and the unknown mean
is in a bounded set, [~ R, R]?, with a known R.

Remark. Corollary 3.21 is suboptimal as (i) the error metric is Euclidean || — p|| instead of
Mahalanobis ||S~Y2(1 — p)||, and (1) sample complexity scales as 1/¢ instead of log(1/¢). It
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remains an open problem if these gaps can be closed. For the former, one could use the Stahel-
Donoho outlyingness [Sta&1, Don82],

i) - Med(w.5)
Dsi) = S Nfed ({0, 8) — Med((v, S))]) °

in the exponential mechanism, which replaces second moment based normalization by a first moment
based one that is resilient. Here, Med((v, S)) is the median of {(v,z;)},cs. Further, replacing the
median by the median of means can improve the dependence on (. Such directions have been
fruitful for robust but non-private mean estimation [DL21].

4 Linear regression

In a standard linear regression, we have i.i.d. samples S = {(z; € R%, y; € R)}", from a distribution
Pg 5, 2 of a linear model:

yi =z B+mi,

where the input z; € R? has zero mean and covariance ¥ and the noise 7; € R has variance v2. We
further assume E[z;7;] = 0, which is equivalent to assuming that the true parameter 8 = S~ E[y;x;].
In DP linear regression, we want to output a DP estimate B of the unknown model parameter (3
(which corresponds to 6 = p in the general notation), assuming that both covariance ¥ > 0 and
the noise variance 2 (corresponding to ¢ = (X,7) in the general notation) are unknown. The
resulting error is measured in Dy . (3,8) = (1/7)||2Y2(8 — B)|| which is equivalent to the (re-
scaled) root excess prediction risk of the estimated predictor B Similar to Mahalanobis distance
for mean estimation, this is challenging as we aim for a tight guarantee that adapts to the unknown
> without having enough samples to directly estimate 3. We follow the three-step strategy of
Section 1.2.1 and provide utility guarantees.

4.1 Step 1: Designing the surrogate Dg(J3) for the error metric (1/7)||SY2(5—23)||

In the RELEASE step of HPTR, we propose the following surrogate error metric for the exponential
mechanism:

De(f \Nvlﬁ_a| 2aien, 5 (v i(yi = ) B)) ”
S(/B) - v:ﬁﬂfﬁ}él O-U(Mua)’s/ ) ( )

where 4?2 is defined as

1 _
4% = min i —x; )2 27
7= min g 3 (el (21)

We define NvBa’ My o and Bg,a as follows. For a fixed v, M, is defined in Section 3.1
as a subset of S with size (1 — (4/5.5)a)n that remains after removing (4/5.5)an data points

corresponding to the top (2/5.5)an and the bottom (2/5.5)an samples when projected down to

Sy = {(v,25) }iepn). We denote a robust estimate of the variance in direction v as oy(Myo)? =

(1/[Moal) Xosem, (v,2;)%, since x;’s are zero mean. Similarly, for fixed 3 and v, we consider a

set of projected data points S, 5= {(v, z;(y; — :EZTB»}Z'E[”} and partition S into three disjoint sets
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B, 5. Nvﬁa’ and T, 5, where B 5
data points with smallest values in .S . T, B corresponds to the top (2/5.5)an data points, and
N v.j.0 COrTesponds to the remaining (1 —(4/5.5)a)n middle data points. We use 7;7670‘7./\/;) G &
B, b tO denote both the set of paired examples {(x;,y;)} and the set of indices of those examples,
and it should be clear form the context which one we mean.

For a fixed f3, Bg,, is defined as a subset of S with size (1 — (3.5/5.5)a)n that remains after
removing the largest (2/5.5)an data points in set Sz = {(y;i — 2/ 8)*}icpn)-

This choice is justified by Lemma 4.1, which shows that if we replace the robust one-dimensional
statistics by the true ones, we recover the target error metric. Hence, the exponential mechanism
with distance Dg(j) is approximately and stochastically minimizing |=1/2(3 — B)||. For a more

elaborate justification of using Dg(f3), we refer to a similar choice for mean estimation in Section 3.1.

Lemma 4.1. For any 3€ R, 0 <N € R4 ~ >0, let 02 =0 Sv. IfElnw] =0, y; =z, B+mi,
and (x;,y;) ~ Pgx 2 then we have

is the subset of S corresponding to the bottom (2/5.5)an

~ E 2 sy Lg\Yi — ;I'A
2G| = el OTWZH I
v:||v]|<1 Oy
v = minE[(y; — =/ 5)*] .
BeRd
Proof. We have
Ep, ,, o[(v,2i(yi — 2] )] Ep, , o[(v@i(z] (8- B) +m))]
max = max
vl <1 oy viljofl <1 oy
= max LEOZID gy
vifjof[<1 oy

where the second equality uses the fact that 7, has zero mean and z; has covariance X. The last
equality follows from Lemma B.1. For the noise, we have E[(y; — z,! 3)?] = E[(z] B+ n; - z] B)?) =
E[n?] +E[(8 — ﬁ)x z; (8 — B)], which follows from E[n;z;] = 0. This is minimized when 3 = 3, and

the minimum is 2. O

4.2 Step 2: Utility analysis under resilience

The following resilience is a fundamental property of the dataset that determines the sensitivity of
Dg(5). We refer to Section 3.2 for a detailed explanation of how resilience relates to sensitivity.

Definition 4.2 (Resilience for linear regression). For some o € (0,1), p1 € Ry, ps € Ry, and
p3 € Ry, we say a set of n labelled data points Sgeoq = {(zi € R, y; € R)Y, is (a, p1, p2, p3, pa)-
resilient with respect to (3,%,7) for some 3 € RY, positive definite ¥ € R4, and v > 0 if for any
T C Sgood of size |T| > (1 — a)n, the following holds for all v € R? with ||jv|| = 1:

1
‘m Yo wayi-z{ B < powy (28)
(wi,y:)€T
1
mZ(v,xi>2—ag < proy . (29)
z, €T
1
] Z(v,:ni) < p3oy, , and (30)
z, €T
1
o (yi— 2 B =*| < pr” (31)
T
(zi,yi) €T
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where 02 = v' Y.

For example, n i.i.d. samples from sub-Gaussian x;’s and sub-Gaussian 7;’s (independent of z;’s)
is (o, O(alog(1/a)), O(ax log(1/a)), O(ay/log(1/a)), O(alog(1/a)))-resilient. Resilient dataset im-
plies a sensitivity of A = O(p1/(an)) = O(log(1/a)/n), where « is a free parameter determined
by the target accuracy (1/9)||2Y2(3 — B)|| = O(alog(1/a)). We show that a sample size of
O((d +1og(1/9))/(ec)) is sufficient to achieve the target accuracy for any resilient dataset. In Sec-
tion 4.3, we apply this theorem to resilient datasets from several sampling distributions of interest

and characterize the trade-offs.

Theorem 11 (Utility guarantee for linear regression). There exist positive constants ¢ and C
such that for any («, p1, p2, p3, p4)-resilient set S with respect to (8,% = 0,7 > 0) satisfying o €
(0,¢),p1 < ¢, p2 < ¢, p3 < ca and py < ¢, HPTR with the distance function in Eq. (26), A =
110p1 /(an), and T = 42p; achieves (1/7)||SY2(8 — B)|| < 32p1 with probability 1 — ¢, if

W s ol los(1/0) )

Ex

4.2.1 Robustness of HPTR

One by-product of using robust statistics in Dg(f) is that robustness for HPTR comes for free
under a standard data corruption model.

Assumption 2 (acorrupt-corruption). Given a set Sgooq = {(Z; € R% §; € R) ", of n data points,
an adversary inspects all data points, selects corruptn of the data points, and replaces them with
arbitrary dataset Spaq of size acorrupt. The resulting corrupted dataset is called S = {(x; € Rd, Y; €
R)}iq-

The same guarantee as Theorem 11 holds under corruption up to a corruption of qcorrupt <
(1/5.5)ac fraction of a («, p1, p2, p3, pa)-resilient dataset Sgooqa. The factor (1/5.5) is due to the
fact that the algorithm can remove (4/5.5)a fraction of the good points and a slack of (0.5/5.5)«
fraction is needed to resilience of neighboring datasets.

Definition 4.3 (Corrupt good set). We say a dataset S is (Ccorrupts @, P1, P2, P3, P4)-corrupt good
with respect to (B,%,7) if it is an ccorrupt-corruption of an («, p1, p2, p3, pa)-resilient dataset Sgood -

Theorem 12 (Robustness). There exist positive constants ¢ and C' such that for any ((2/11)a, a, p1, p2, p3, pa)-
corrupt good set S with respect to (B,% = 0,7 > 0) satisfying o < ¢, p1 < ¢, p2 < ¢, pg < ca and
ps < ¢, HPTR with the distance function in Eq. (26), A = 110p1/(an), and 7 = 42p1 achieves
(1/NISV2(B = B)|| < 32p1 with probability 1 — ¢, if

d +1og(1/(8¢))

> .
n > C - (33)

We provide a proof in Sections 4.2.2-4.2.6. When there is no adversarial corruption, Theorem 11
immediately follows by selecting « as a free parameter.

4.2.2 Proof strategy for Theorem 12

The overall proof strategy follows that of Section 3.2.2 for mean estimation. We highlight the
differences here.
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Lemma 4.4 (Lemma 10 from [SCVIR]). For a (a,p1,p2,p3,pa)-resilient set S with respect to
(8,%,7) and any 0 < & < «, the following holds for any subset T C S of size at least an and for
any unit vector v € R%:

1 22—«
‘m > )yl p)| < = POV, (34)
(@4,y:)€T
1 22—«
[l (v,2;)> — 02| < “—poor, (35)
z, €T
1 22—«
m (v,z;) | < 3 P30y , and (36)
z, €T
i Z (‘—JET )2_ 2| < 22—« 9 (37)
(xi,y:)ET

This technical lemma is critical in showing that the sensitivity of one-dimensional statistics is

bounded by the resilience of the dataset, such that the sensitivity of Dg(3) for a resilient S is
bounded by

)

p§>p1 + (/NS (B - B)|

« an

Ds(8) D ()] < C'(1+

for some constant C” and for any neighboring dataset S” as shown in Eq (47). The desired sensitivity
bound is local in two ways: it requires S to be resilient and (1/7)||SY2(8— )| = O(p1). Under the
assumption that p3/a = O(1) with a small enough constant, this achieves the desired bound A =
O(p1/(an)) with 3 € B, g and 7 = O(p1). The standard utility analysis of exponential mechanisms
shows that the error of (1/7)||SY2(8 — B)|| = O(p1) can be achieved when 9@ ~¢xP1 < ¢ which
happens if n = Q((d + log(1/¢))/(ex)) with a large enough constant. The TEST step checks the
two localities by ensuring that DP conditions are met for the given dataset.

Outline. Analogous to the mean estimation proof, the analyses of utility and safety test build upon
the universal analysis of HPTR in Theorem 15. For linear regression, we show in Sections 4.2.3-4.2.5
that the assumptions of Theorem 15 are met for a resilient dataset and the choices of constants
and parameters: p = p1, ¢g = 31.8, ¢; = 10.2, 7 = 42p;, A = 110p;/(an), T = 42py, k* =
(2/e)log(4/(6¢)), and a large enough constant ¢z, and assume that o < ¢ and p; < ¢ for small
enough constant c. A proof of Theorem 12 is provided in Section 4.2.6, and Theorem 11 immediately
follows by selecting o as a free parameter.

The above resilience properties also imply the following useful resilience on the SB = {(yi —
6Txi)2}i:[n} for any vector J.

Lemma 4.5 (Resilience of residual square). Let Sgo0d = {(5 € R?, y; € R)}ipn) be (@, p1, p2, 3, pa)-
resilient with respect to (B,%,7). Let p* = max{p1, p2, pa}. Then we have

1. for any T € Sgpoa of size |T| > (1 — a)n and any vector B e Re,

1

] Yo i Blw) = (v ISV2BE =B <o (r F =B - BN (3%)

(wiy:)€T
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2. and for any 0 < & < o and T € Sgooq of size |T| > an, we have

1 2—-«a

7] Y i BTm)? = (v + 5B - B < ——r (vt I=2B =B (39)
(ziy:)€T
Proof. The proof follows directly from resilience properties of Eq. (28), (29) and (31). O

4.2.3 Resilience implies robustness

To show that the assumption (d) in Theorem 15 is satisfied, we use the robustness of one-dimensional
variance o, (M, o) (Lemma 4.6) and show that Dg(f3) is a good approximation of (1/7)||2Y2(3—p)||
(Lemma 4.8).

Lemma 4.6. For an ((2/11)«, «, p1, p2, p3, pa)-corrupt good set S with respect to (3,%,7), and any
unit norm vector v € R%, we have 0.90, < 0y(Mya) < 1.10,.

Proof. This follows from Lemma 3.5. U

Lemma 4.7. For an ((2/11)a, o, p1, p2, p3, p4)-corrupt good set S with respect to (3,%,7), and any
unit norm vector v € R, we have 0.99y < 4 < 1.017.

Proof. Analogous to the proof of Lemma 4.4, for any fixed /3, we have

1 . TE2 _ 1/2/a _ 3VIN2
Bl 2 04 9P 4 1=
| 328, Sgo0a i — 1 B = (v +IZ12(8 = B)II)?
- (1- (%/5.5)0()71 i
Ty 0= 7B — 0+ IV2(8 B
(1—(2/5.5)a)n

@ (1 (2/5.5)a)np*(y +|IBV2(8 - B)I)? 4 (2/1an - 2p*(y + I=12(8 = B)I1)*/((2/11)a)
- (1—(2/5.5)a)n (1—(2/5.5)a)n

—

®) * /200 _ 2V(\2
< A" (y+H XA =87, (40)

where (a) follows from Lemma 4.5, and (b) follows from our assumption that o < ¢ for some small
enough constant c. B B

Let F(B) = Wl,a\ Zielsg,a (yi — x} B)?. We know 42 = ming F'(8) < F(B), which, together with
Eq. (40) implies

A2 < (L+4p" )% < 1.020147

when p* < ¢ for some ¢ small enough.
Also we have

> (1= 4p")(y+ 228 = B)I)? = (1 — 4p™)7* > 0.9801+.

when p* < ¢ for some ¢ small enough. O
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Lemma 4.8. For an ((2/11)04,q,pl,pg,pg,p4)—cqrrupt good set S with respect to (f,%,7), if B €
Brs and T = 42p; then | [|SV2(3 — B)||/v — Ds(B) | < 0.157 4+ 1.1p; < 10.2p;.

Proof. By Lemma 4.1, Lemma B.2 and resilience Eq. (28) and Eq. (29), we have

1 TA
W, DieN, e (v, zi(y; — =; B)) " .
max 2 = - ||z - 8|
CHIIS Oy
1 T,...T 5 T N
W, 5.al Zie}\/,u bio <U ziz; (B—B)+v l’mi) vTE(8 - B)
= max o — — max ——=
v:lv||<1 Oy v:lv||<1 Oy
T 1 T A T 1
v (‘Nvﬁa‘ZiENuBaxixi _2> (/8_/8) v ‘N’UBQ‘ZiENUBaxini
< max T — + e —
vilJv]|<1 Oy Ov

< | X wed -GBS S

‘Nv7ﬁ7a‘ ZEN 3 ‘ U7B7a’ iENU,B,a

v,B,

< pa| BB =Bl + p1v -

Together with Lemma 4.6, this implies

~ A~

0.9Ds(8)y — p1y < Hzl/z(ﬂ B B)H 1.1Dg(B)5 + p1v '

L+ p2 - 1—p2
Assuming ps < 0.013, we have 0.86Dg(8) — 1.1p; < H21/2(5— B)H /v < 1.15Dsg(f) + L.1p1.
Since Dg(B) < 7, we get the desired bound. O

4.2.4 Bounded Volume

~

We show that the assumption (a) in Theorem 15 is satisfied for robust estimate Dg(f3).

Lemma 4.9. For p = p1, ¢o = 31.8, ¢; = 10.2, 71 = 42p;, A = 110p1 /(an), and ca > log(67/12) +
log((co + 2¢1)/c1), we have (7/8)7 — (kK* +1)A > 0,

VOl(Br+(k*+1)A+c1p,S)
Vol(B 7 /8)r—(k*+1)A—c1p,S)

Vol({6 : [SY2(3 = B)II/v < (co + 2¢1)p}) P
Vol({0 : [|[S1/2(8 — B)|| /7 < c1p}) a '

cod

(&

IN

, and

Proof. The proof is similar to the proof of Lemma 3.7. The second part of assumption (a) follows
from the fact that

Vol({ii: |EV2(B = B)|| < r}) = ca|Z|r?

for some constant ¢4 that only depends on the dimension and selecting ¢y > log((co+2¢1)/c1). The
first part follows from our choices of ¢y, ¢1, 7, A and the following corollary.
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Corollary 4.10 (Corollary of Lemma 4.8). If § € By, and T = 42p; then ! IS12(8 - B)||/y —
Ds(f)| < 14.2p1.
U

4.2.5 Resilience implies bounded local sensitivity

We show that resilience implies the assumption (b) in Theorem 15 (Lemma 4.14). Assuming
(k* +1)/n < a/2, we show a set S’ with at most k* data points arbitrarily changed from S has
bounded local sensitivity. This implies that S is a ((1/5.5)a+ (k* /n), «, p1, p2, p3, p4)-corrupt good
set with respect to (3,3, 7).

Lemma 4.11. For an ((1/5.5)a + &, a, p1, p2, p3, pa)-corrupt good set S" with respect to (8,%,7),
a < (1/11)a, and any unit norm v € R, we have 0.90, < 0,(M,q) < 1.10,.

Proof. This follows from Lemma 3.9. U

Lemma 4.12. For an ((1/5.5)a + &, a, p1, p2, p3, pa)-corrupt good set S" with respect to (8,%,7),
and any unit norm vector v € R%, we have 0.99y < 4 < 1.017.

Proof. This proof follows from the proof of Lemma 4.7. ]

Lemma 4.13. For an ((1/5.5)a + &, @, p1, p2, p3, pa)-corrupt good set S with respect to (8,%,7)
and & < (1/11)a, if B € Byg then we have |[SY2(3—B)||/v < 1.1p1 +1.15¢ and ‘DS’(B)—HZI/z(ﬂ—
B)I/~v] < 1.1py + 0.15¢.

Proof. 1t follows from the proof of Lemma 4.8. U
Lemma 4.14. For A = 110p;/(an), 7 = 42p1, and an ((1/5.5)c, «, p1, p2, p3, p4)-corrupt good S,
if
log(1
n:WE&@@%
ae

with a large enough constant then the local sensitivity in assumption (b) is satisfied.

Proof. We follows the proof strategy of Lemma 3.11 in Section 3.2.5. Consider a dataset S” which is
at Hamming distance at most (1/11)an from S and corresponding partition (T/v,B,a’N/v,B,a7 B/U,B,a)
of §" for a specific direction v. By resilience property of the tails in Eq. (34) and Eq. (35),
Lemma B.1, and Lemma B.2, we have for any v € R? with unit norm [v|| = 1 and any 3 € R,

T 1 T A
VT el Zie%’ﬁyaﬁsgood <(:13@3:Z -X)(B-8)+ xﬂh)

.5,
o)
_ 1 A
< |lz-12 s 3 (;U;UT - 2) B-B8) ||+ (41)
v,B,a €T . NSgood
v,5,a g
5172 1 S wm
|T/ 5 M Sgood| . o
Uvﬁva Zen’é,amsgood
2p2 1/2 2 2p1
< >3 — B 42
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where Sgo0q is the original uncorrupted resilient dataset. Similarly, we have

T 1 T A
VTS (wia] — %) (8 — B) + zims
|Bv 3 aﬂSgOOd‘ ZEBU A,anSgOOd ( v 2 2 A 2 1
& P2 1sV2(8 — B)|| + —2

7y = /1o 1/10)a !
This implies
o <$i$iT(5 - B) + 113@'772‘) ol (:Ei:EiT(ﬁ - B) + $i77i>
min — max
ieﬁ’é’amsgood Oy ieB;’B’amSgood Oy
44,01 44,02
< I=12(8 = B)I - (43)

Analogous to Lemma 3.11 , for a neighboring databases S’ and S”, the corresponding middle sets
N’ v.fo 20d N v.f.o differ at most by one entry. Denote those entry by z and n} =y, — (8,2}) in
N, 5.0 and 27 and 7] in N” - Then, from Eq. (43), we have

"UT ((az'az’T - x//ﬂfﬁT) (B — 5) + xmz — x//n;/> <44ﬁ%7 44,02 ”21/2@ ﬁ)H) Ov s

which implies that

1 R 1 A
i eyl I G CR R Rl oy v gl DI CEACRTORERY)

: 1"
N 5o

T G R G CR ) I

<
- (1-(4/55)a)n \ «
By resilience properties in Eq. (28) and Eq. (29), and Lemma B.2, Lemma 4.1, and the fact that

N"@ N Seood is at least of size (1 — a)n, we have for the data points in Né”é’a N Seood;

T 1 T A
VN AS IE:MAWA msomlﬁﬁxi(ﬁ‘—ﬁ)+ﬂmna
v,B3,a good v,B3,a g

- < (L4 p2)|IZY2(8 - B + p1v -

By Eq. (42), for any 2! € /\/';’B N Stad (where Spaq = 5"\ Sgo0d) We have

g

T 1 T 3
vl ( 12T (B — B) + a:”ni’) VT See0dl Zz’eTU”B NSg00d <33233@ B-5)+ xmi)
Oy Oy

(B2 1 1)1 - ) + 222

2201

IN
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Since [Spad| < (1.5/5.5)an and « < ¢ for some small enough constant ¢, we have

v s s E’ENZ;@,Q (xiﬂfiT(ﬂ - B)+ iﬂmz')

Oy

B v s ZieNL”B’aﬂSbad (xixiT(ﬂ —B)+ xmi)
= O-v +

”T7(1_(4/E.5)a)n Zie}\//l’)’ﬁyaﬂsgood (xﬂfiT(ﬂ - B)+ wmi)

Oy

(6p2 + (1.5/5.5)) |52 (3 — B)|| + 6p17 125
< T 4/55)a (Wt )23 = )+ p17)
< Tpy+ (L+a+T7p)|SV2(8 - B (45)

Analogous to Eq. (19), by using resilience properties in Egs. (29) and (30), we have

/ 1 1
|Uv2 - 0-112| = (1 — (4/55)a)n Z <U7$i>2 - Z <U7$i>2

:L‘iE./\/—l/}’B’ Z‘LE./\/;ZB7
64112 - p3o?
a?(1—(4/5.5)a)n

By Egs. (45), (44), and (46), we have

Dy (8) = D (8)

o @

UTW ZiEN’ A (3}23}2—(5 — B) + :Ei’rh-) UTWTIA\ Ziej\/'// A <:EZ:EZT(5 — B) + :Eim')
S max v,5,a v, B, _ o v,B,a v, B .
vifjofl=1 oy oy
vl (4(1—(4/3@@71 2iieN (22T (8= B) +2im) — cr=rabmyay Sien ; (wial (8- B) + wn))
< max i - o
T wfell=1 oY
v! IN”IA | DaieN (%%T(B —B)+ xini) o
+ max e s /111 B //11//
viljv]|=1 Oy oY Oy
- 44p, N 44p 12128 - B)|
- 0.9-0.99(1 — (4/5.5)a)na ~ 0.9-0.99(1 — (4/5.5)a)na v

64117 - p3 - 0.02y oA
7 1 7 w25 — A7
T 0.9%a2(1 — (4/5.5)a)n - 0.992,2 (7orr+ L+ @+ T)I212(5 - 9] ) (47)

- <0.12 N 0.016> [=12(3 — B)| N <9ﬂ N 0.07p1>

an an v an an
/2045 _
o 02 50
an 5 an

where the last three inequalities follow from our assumptions that a < ¢ and ps < ¢, p% <ca,py <c
with a small enough constant ¢ and Lemma 4.12. From Lemma 4.13, we know if 8 € B, +13)A,5;
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we have ||S1V2(5 — B)||/y < 1.1p1 4 1.15(7 + (k* + 3)A). We show that ||2Y/2(3 — B)|| < 50p17 for
the choices of A, k*, 7 and n:

L 901 log(1/(4¢))

L1py + L15(7 + (k* +3)A) < 49p
gan

< 50p1,

where A = 110p; /(an), 7 = 42py, k* = (2/¢) log(4/(6¢)), e < log(4/6¢) and n > C"log(1/(6¢))/ (e @)
for some large enough universal constant C’ > 0. This implies

Dg(8) - Der(B)] <~

=A.

4.2.6 Proof of Theorem 12

We show that the sufficient conditions of Theorem 15 are met for the choices of constants and
parameters: p =d, p = p1, co = 31.8, ¢; = 10.2, 7 = 42p;, and A = 110p; /(an). We can set ¢y to
be a large constant and will only change the constant factor in the sample complexity. The assump-
tions (a), (b), and (d) follow from Lemmas 4.9, 4.14, and 4.8, respectively. The assumption (c)
follows from

110p1 1.2p1e B (co — 3eq)pe

an = 32(cod + (£/2) +1og(16/(3C)))  32(cap + (¢/2) + log(16/(¢))) ’
for large enough n > C’(d + log(1/(6¢)))/(ce). This finishes the proof of Theorem 12 from which
Theorem 11 follows immediately.

A =

4.3 Step 3: Achievability guarantees

We provide utility guarantees for popular families of distributions studied in the private or robust
linear regression literature: sub-Gaussian [DIKS19, Gao20, ZJS19, CWZ19, Wan18] and hypercon-
tractive [ZJS19, KKM18, CATT20, JLST21, BP21, PSBR18]. Similar to mean estimation, the
resilience we need scales with the variance. For sub-Gaussian distributions, this requires a lower
bound on the variance of the form o < ¢I' for the sub-Gaussian proxy I'. For the k-th moment
bounded distributions, we require hypercontractivity.

4.3.1 Sub-Gaussian distributions

The most common scenario in linear regression is when both the input x; and the noise n; are sub-
Gaussian as we defined in Eq. (21) and independent of each other. The next lemma shows that the
resulting dataset is (O(alog(1/a)),0(alog(1/a)), O(ay/log(1/a)), O(alog(1/a)))-resilient, which
follows from the covariance resilience of sub-Gaussian distributions.

Lemma 4.15 (Resilience for sub-Gaussian samples). Let Dy be a distribution of x; € R? which is
zero mean sub-Gaussian with covariance ¥ and sub-Gaussian proxy 0 < I' < X for some constant c.
Let Dy be a distribution of n; € R which is a zero mean one-dimensional sub-Gaussian with variance
72 and sub-Gaussian prozy Vi < cy* for some constant c. A multiset of i.i.d. labeled samples
S = {(zi,y:) 7, is generated from a linear model with noise n; independent of x;: y; = z, B+n; ,
where the input x; and the independent noise n; are i.i.d. samples from D1 and Dy. There exist
constants c1 and ca > 0 such that, for any o € (0,1/2), if n > c1((d+1og(1/¢))/(alog(1/a))?) then,
with probability 1—¢, S is (o, coarlog(1l/a), caarlog(1l/ar), cacrr/log(1/a), coalog(1/ar))-resilient with
respect to (3,3,7).
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_1/2$' d o

" | € R¥! By definition,
i/
we know Z; can be seen as samples from a zero mean sub-Gaussian distribution with covariance
L(441)x(a+1)- By [JLT20, Corollary 4] and union bound, we know if n = Q(d+log(1/¢))/(a log(1/a))?
then there exists a constant C; such that with probability 1 — ¢, for any T'C S and |T'| > (1 — a)n
and any unit vector u € R4, v € R?, we have

Proof. This follows from [JL'T20, Corollary 4]. Let Z; := [ >

u' Z Lat1yx(a+1) | u| < Cralog(l/a) (48)

|T| z, €T
vl > on VPS4 | v| < Cralog(l/a) , and (49)

|T| z, €T

n
‘T’ Z —1| < Cralog(1/a) . (50)
un ET
Let u := [ Zl ] where u; € R? and up € R and ||uy]|? + u3 = 1. Then Eq. (48) is equivalent to
2

2u 2
1/2,.  Tsy—1/2 2 1/2,,
<|T| E X ry X Idxd> up + ul |T| E X m + |T| g

1€l €T €T
< Cralog(l/a) . (51)
By Eq. (49) and (50), we know

, ‘ZE V2] 572 — Tagxg)u
€T

o \T!Z

< Cralog(1/a)|u|?

< Chalog(l/a)uj

This means

2U2

—Cralog(1/a)(1 + [Jui||® +ud) < ul ] Z S22 < Cradog(1/a)(1 + |ut)® + u2) . (52)

€T

For any unit vector w € R?, let u; = 0.5w. Thus, we have u% = 0.75. Eq. (52) implies

1 1
w’ ZE Y2

\T! < Chalog(l/a) (53)

for some constant Co. This proves the first resilience in Eq. (28). The second, third and fourth re-
silience properties in Egs. (29), (30) and (31) follow from [DHL19, Lemma 4.1], [JL'T20, Corollary 4]
and a union bound.

O

The above resilience lemma and Theorem 12 imply the following optimal utility guarantee.
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Corollary 4.16. Under the hypothesis of Lemma 4.15, there exists a constant ¢ > 0 such that for
any o € (0,¢), a sample size of

_ H(d+]log(1/¢) | d+log(1/(6¢))
"= O((alog(l/a))2 + ae > ’

a sensitwity of A = O(log(1/a)/n), and a threshold of T = O(alog(l/a)) with large enough
constants are sufficient for HPTR(S) with the distance function in Eq. (26) to achieve

SIEV2(5 - ) = Ofalog(1/a). (54)

with probability 1 — (. Further, the same guarantee holds even if a-fraction of the samples are
arbitrarily corrupted as in Assumption 2.

The sample complexity is nearly optimal. Even for DP linear regression without robustness,
HPTR is the first algorithm for sub-Gaussian distributions with an unknown covariance ¥ that up
to log factors matches the lower bound of n = Q(d/a? + d/(ag)) assuming ¢ < 1 and § < n~1~%
for some w > 0 from [C'WZ19, Theorem 4.1]. For completeness, we provide the lower bound in
Appendix C. An existing algorithm for DP linear regression from [C'WZ19] is suboptimal as it
require X to be close to the identity matrix, which is equivalent to assuming that we know .

The error bound is nearly optimal under a-corruption, namely HPTR is the first robust estima-
tor that is both differentially private and also achieves the near-optimal error rate of (1/7)||%Y/2(3—
B)|| = O(alog(1/a)), matching the known information-theoretic lower bound of (1/~)[|S2(5 —
B = Q(«) [Gao20] up to a log factor. This lower bound holds for any robust estimator that is
not necessarily private and regardless of how many samples are available. If privacy is not required
(i.e., e = ), a similar guarantee can be achieved by, for example, [DIXS19].

4.3.2 Hypercontractive distributions with independent noise

We assume z; and 7; are independent and (k, k)-hypercontractive and (&, k)-hypercontractive, re-
spectively, as in Definition 3.14. For the necessity of hypercontractive conditions for robust linear
regression, we refer to [ZJ519, Section F.5]. The next lemma shows that the the resulting dataset
has a subset of size at least (1 — a)n that is (O(a),O(a!=1/%), O(a'=2/%), 0(a!=1/k), O(al=2/F))-
resilient.

Lemma 4.17 (Resilience for hypercontractive samples). For some integer k > 4 and positive scalar
parameters k and i, let D1 be a (k, k)-hypercontractive distribution on x; € R® with zero mean and
covariance ¥ = 0. Let Dy be a (R, k)-hypercontractive distribution on n; € R with zero mean and
variance v2. A multiset of labeled samples S = {(z;,y;)}, is generated from a linear model:
Y = xiTﬁ + n;, where the input x; and the independent noise n; are i.i.d. samples from Dy and
Dy. For any o € (0,1/2) and any constant cs > 0, there exist constants ¢; and co > 0 that only
depend on c3 such that if

d k2a2=2/k(1 +1/k?)dlog d N k%(1 + &%)dlog d>

n =z Cl<g2(1—1/k)a2(1—1/k) t 24Tk, 2 o2k (55)

then S is (c3a, o, cokrial = V/ECTVR cok2k2a =202/ cokral =VRCE cok2 20 =2/RC=2/R) - corrupt
good with respect to (B,3,~) with probability 1 — (.
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Proof. Since of z; and n; are independent, we know

(v tm )| = [|(0. 22| B [ ta] < it

This implies v~ 1% ~1/2zn is a k-th moment bounded distribution with covariance Iy 4. By Lemma 3.15,

under the sample complexity of (55), with probability 1 — 8¢, there exists a subset Sgooq C S such
that [Sgood| > (1 — a)n and there exists a constant C' such that for any subset T C Sgp0q and
|T) > (1 — 10cx)|Sgo0d |, we have

1 1
[ Z —x 2,
ier

< Ckriya Ve (56)

This proves the first resilience in Eq. (28). The second resilience in Eq. (29), third resilience in
Eq. (30) and fourth resilience in Eq. (31) follow directly from Lemma 3.15. O

The above resilience lemma and Theorem 12 imply the following utility guarantee. HPTR is
naturally robust against (1/5.5 — c3)a-corruption of the data. Choosing appropriate constants, we
get the following result.

Corollary 4.18. Under the hypothesis of Lemma 4.17, there exists a constant ¢ > 0 such that for
any o < ¢ and k220 =2k < ¢, it is sufficient to have a dataset of size

d +k2a2—2/'f(1+1/&2)dlogd_+ /<;2(1+&2)dlogd_+ d-+log(1/5)) (57
C20-1/k) o 2(1=1/k) (2-4/k g2 a2/k e ’ )

n=0(

a sensitivity of A = O(1/(na'/*)), and a threshold of T = O(a'~Y*) with large enough con-
stants for HPTR(S) with the distance function in Eq. (26) to achieve (1/7)||SY2(8 — B)|| =
O(k:/-i/%ozl_l/kg“_l/k) with probability 1 — (. Further, the same guarantee holds even if a-fraction
of the samples are arbitrarily corrupted as in Assumption 2.

The error bound is optimal under a-corruption: namely the error bound (1/7)[|SY2(8 - B)| =
O(a'~1/¥) matches the lower bound (1/7)[|Y2(5—8)| = Q(a!~1/*) by [BP21] where the noise 7; is
(1, k)-hypercontractive and independent of z;, which is also (1, k)-hypercontractive. For complete-
ness, we provide the lower bound in Appendix C. HPTR is the first algorithm that guarantees both
differential privacy and optimal robust error bound of O(al_l/ k) for hypercontractive distributions.
If only robust error bound under a-corruption is concerned, [ZJ519] also achieves the same opti-
mal error bound, but does not provide differential privacy. Further, in this robust but not private
case with e = oo, our sample complexity improves by a factor of a?/* upon the state-of-the-art
sample complexity of [ZJS19, Theorem 3.3] which shows that n = O(d/a?) is sufficient to achieve

(1/NIEV2(B = B)|| = O(at717k).
Remark. Suppose k, s, &, and ¢ are ©(1). HPTR achieves (1/7)||2Y2(3 — 8)| = O(a'~/*) with

n = O(d/(e22/*) 4+ (d 4 log(1/6))/(ce)) samples, where O hides logarithmic factors in d. The
first term cannot be improved as it matches the first term of a lower bound of n = Q(d/a? %/% +
d/(a*=*¢e)) from [C'WZ19, Theorem 4.1], which holds even for standard non-robust sub-Gaussian
(which is (e, k)-hypercontractive for any k € Z and a constant ¢; that depends only on k) linear
regression with independent noise (see Appendix C for a precise statement). However, we do not
have a matching lower bound for the second term. To the best of our knowledge, HPTR is the first
algorithm for linear regression that guarantees (e, d)-DP under hypercontractive distributions with

independent noise.
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4.3.3 Hypercontractive distributions with dependent noise

We assume z; and 7; may be dependent and marginally (k, k)-hypercontractive and (&, k)-hypercontractive,
respectively, as defined in Definition 3.14. In this case, the first resilience p; that determines the
error rate increases from O(a'~*) to O(a'=2/F) as a result of the input and the noise being po-

tentially correlated. The next lemma shows that the the resulting dataset has a subset of size at
least (1 — a)n that is (O(a),0(a'=2/¥), O(a'=2/%), 0(a~1/*), O(a'~?/*))-resilient.

Lemma 4.19 (Resilience for hypercontractive samples with dependent noise). For some integer
k > 4 and positive scalar parameters k and R, let Dy be a (k, k)-hypercontractive distribution on
x; € R with zero mean and covariance ¥ = 0. Let Dy be a (&, k)-hypercontractive distribution
on n; € R with variance v2. A multiset of labeled samples S = {(xi,y;)}", is generated from a
linear model: y; = x; B+ n;, where {(x;, 1i) }icn) are i.i.d. samples from some distribution D whose
marginal distribution for x; is Dy, the marginal distribution for n; is Do, and E[z;n;] = 0. For any
a € (0,1/2) and c3 > 0, there exist constants c1 and co > 0 that only depend on c3 such that if

(58)

d k2o k(1 4+ 1/k*)dlogd  r*(k* + 1)dlogd
n oz Cl<C2(1—1/k)a2(1—1/k) + (24 k22 + Ak ) )

then S is (c3a, «, czknkal_z/kg_z/k, 02k2/42041_2/kg“_2/k, czknal_l/kﬁ_l/k, czk2k2a1_2/kg_2/k)—corrupt
good with respect to (B,3,~) with probability 1 — (.

Proof. Since n; and z; are dependent, we can only bound k/2-th moment of 12122, By Holder
inequality, we have

E “<v,2‘1/2’y‘1wn>(k/2} < \/E [[(v, Z=122) [F] B [ly-1nlt] < #/25472.

The rest of the proof follows similarly as the proof of Lemma 4.17.
O

The above resilience lemma and Theorem 12 imply the following optimal utility guarantee
achieving an error rate of O(a'=%/).

Corollary 4.20. Under the hypothesis of Lemma 4.19, there exists a constant ¢ > 0 such that for
any o < ¢ and k220X =2k < ¢, it is sufficient to have a dataset of size

an(d—i—log(l/é) d N k2a?4k (1 4 1/k?)dlog d n /12(/%2+1)dlogd)
e C2(0-1/F) o 2(1-1/k) (2—4/k 252 Ak ’

a sensitivity A = O(1/(na®*)), and a threshold 7 = O(a!=2/F), with large enough constants for
HPTR(S) with the distance function in Eq. (26) to achieve (1/7)||SY2(3—B)| = O(krral=2/k¢=2/k)
with probability 1 — (. Further, the same guarantee holds even if a-fraction of the samples are ar-
bitrarily corrupted as in Assumption 2.

This error rate is optimal in its dependence in « under a-corruption. When 7; and x; are
dependent, [BP21] gives a lower bound of error rate (1/7)||SY2(8 — 8)|| = Q(7Ra'~2/¥) that holds
regardless of how many samples we have and without the privacy constraints. For completeness,
we provide the lower bound in Appendix C. If only robust error bound under a-corruption is
concerned, [ZJ519] also achieves the same optimal error bound, but does not provide differential
privacy. Further, in this robust but not private case with € = oo, our sample complexity improves
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by a factor of a2/* upon the state-of-the-art sample complexity of [ZJ519, Theorem 3.3] which
shows that n = O(d/a?) is sufficient to achieve (1/7)||ZY2(3 — B)|| = O(a'=2/F).

Remark. Suppose (,k,R, and k are ©(1). The sample complexity of HPTR is n = O((d +
log(1/6))/a?1=Yk) 4 d/(ae)). The first term has a gap of a~2/* factor compared to the first term
of a lower bound of n = Q(d/a?'=2/%) 4-d/(a'=%/k¢)) from [('WZ19, Theorem 4.1], which holds even
for standard non-robust sub-Gaussian DP linear regression. It remains an open question whether
this gap can be closed, either by a tighter analysis of the resilience for HPTR or a tighter analysis
for a lower bound.

On the upper bound, the gap comes from the fact that we are ensuring stronger resilience than
we need. From Theorem 11, we know that we require p; < ¢ and pg < ca, and from the optimal
error rate, we want p; < ca'=2/k The resilience we ensure in Lemma 4.19 is (a,p1 = al=2/k, P2 =
al=2/k pa = ol-V/k ) which is guaranteeing unnecessarily small py and p3. A similar slack was also
there in mean estimation, which did not affect the final sample complexity. In this case with linear
regression and hypercontractive distributions, it causes sample complexity to be larger. Tighter
analysis of the resilience which guarantees larger po and p3 can improve the the first term in the
sample complexity in its dependence on «, but cannot close the a2/¥ gap. On the lower bound,
we are using a construction of [C'WZ19, Theorem 4.1], which uses Gaussian distributions and an
independent noise. One could potentially tighten the lower bound with a construction that uses
hypercontractive distributions and a dependent noise.

For the second term, we provide a nearly matching lower bound of n = Q(min{d, log(1/9)}/ae)
to achieve (1/4)]|2Y2(8 — B)||2 < O(a? **) in Proposition 4.21 proving that it is tight when
d = exp(—0O(d)). To the best of our knowledge, HPTR is the first algorithm for linear regression
that guarantees (¢,0)-DP under hypercontractive distributions with dependent noise.

Proposition 4.21 (Lower bound of hypercontractive linear regression with dependent noise). For
any k > 4, let P, i, 42 be a distribution over (z;,1m;) € R? x R where x; is (k, k)-hypercontractive
with zero mean and covariance X, and 1; is (k, k)-hypercontractive with zero mean and variance ¥>.
We observe labelled examples a linear model y; = :L";-rﬁ—l—m with E[z;n;] = 0 such that f = E_lE[yixi] .
Let M. 5 denote a class of (€,0)-DP estimators that are measurable functions over n i.i.d. samples
S = {(xi,yi)}1_y from a distribution. There exist positive constants c¢,v,k = O(1) such that, for
e € (0,10),

o g 2—4/k
inf  sup iEpn[|rzl/2<B<s>—ﬂ>u2]zcmm{<d“g<<1 V‘”) ,1}.

BEM. 5 5-0,PEP, ;s o Y ne

Proof. We adopt the same framework as the proof of Proposition 3.18. We choose P to be P = Py ..
It suffices to construct index set V and indexed family of distributions Py such that dpv (P, Py) = «
and p(B,, By) >t where 3, is the least square solution of P,. By [ASZ21, Lemma 6], there exists
a finite set V € R? with cardinality |V| = 2% |jv|| = 1 for all v € V, and [jv — v'|| > 1/2 for all
v#v € V. Let fux(x) be density function of N(p, ). We construct a marginal distribution over
R? as follows,

a2, if o =—aky,
Dj(z) =14 «a/2, if o =a Yk, . (59)
(1—a)for,.,(x) otherwise,

It is easy to verify that Epy[z] = 0, Epy [zxT] = (1 — @)Igxq + at=2/kyy T and thus %Idxd =
Epv[zz'] < 2I4xq for a < 1/2. Furthermore, we have

Eonpy[] (w) [F] < (u,0)" + (1 —a)df = 0(1),
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where we use the fact that there exists a constant ¢; > 0 such that the k-th moment of Gaus-
sian distribution is bounded by ¢f. Since 3Igxq = Epv[zz'] < 2I4x4, we know z is (O(1),k)-

hypercontractive. We construct conditional distribution D"(y|x) as follows
ok

ylr =< o V/k ifr=a"
N(0,1) otherwise

if 1 = —a1/ky
1/k,,

Then we have

Bo = Epepplee’] ' Epyepy [oy]
_ Eprg [$$T]—1a1—2/kv
This implies t = minyzyey || By — B || > 1/2a1=2/k ming ey ||v—0'|| = Q(a'=2/F). We are left
to verify that n =y — (B,, z) is also hypercontractive:

_ 1 1.3k (K
Ellnff] = ala™* o Bpuppfrz "] oo " 4+ (1= a) Eponor,, 2] = O1)

where we used the fact that k-th moment of standard Gaussian is bounded by some constants
Cr >0 and k = O(1). It is easy to see that total variation distance drv (P, P” y) = .

Next, we apply the similar reduction of estimation to testing with this packlng V as in the proof
of Proposition 3.18. For (¢,d)-DP estimator B , using Theorem 3.19, we have

sup Epn[|[S(P)2(B(S) - B(P))|1?]

v

MZEP [IS(P)2(B(S) = BRI

vey

- MZP(HE P)2(B(8) = B(P)| = ¢)
= ‘ZP(Hﬁ BP,)| = t)

veV
§ 26d/2 . (%e—s[na] _ 1_(27€>
t
~ 1 + ed/2¢—clnal ’

where B(P) is the least squares solution of the distribution P, ¥(P) is the covariance of x from P,
and the last inequality follows from the fact that d > 2. The rest of the proof follows from [BD14,

Proposition 4]. We choose
1 (d 1 1—e*
a=_—min| o —¢log{ —==

and t = Q(a'~%/%) for € € (0,10), so that
sup Epn[[|[S(P)(B(S) — B(P))|]?] = o>~ 4/F .
Pep

This means that for all £ > 4 there exist some &,y = O(1) such that

d ANlog(1 — 6_5/5)>2_4/k 1}

ne

inf sup  Epa[[SV2(B(S) - B(P))|P] Z min { <

BeEM, 5 20 PEP, 1542

which completes the proof by noting that v = 9(1).
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5 Covariance estimation

In a standard covariance estimation, we are given i.i.d. samples S = {z; € Rd}iem drawn from a
distribution Py ¢ with zero mean, an unknown covariance matrix 0 < X € R4 and an unknown
positive semidefinite matrix ¥ := E[(2; ® z; — ¥°)(2; @ 2; — 2") '] € RT*?* where ® denotes the
Kronecker product. The fourth moment matrix ¥ will be treated as a linear operator on a subspace
Ssym C RY defines as Seym = {M b e R . M is symmetric} following the definitions and notations
from [DKKT18].

Definition 5.1. For any matriz M € R¥™9, let M° € R¥ denote its canonical flattening into a
vector in ]RdQ, and for any vector v € Rd2, let v* denote the unique matric M € R such that
M =,

This definition of ¥ as an operator on Sgyr, is without loss of generality, as in this section we
only apply ¥ to flattened symmetric matrices, and also significantly lightens the notations, for
example for Gaussian distributions. All d? x d? matrices in this section will be considered as linear
operators on Sgym, and we restrict our support of the exponential mechanism in RELEASE to be
the set of positive definite matrices: {3 € R¥?: % = 0}.

Lemma 5.2 ([DKIK 718, Theorem 4.12]). If Ps g = N(0,%) then Elz; ® z;] = X°, and as a matriz
in RT*% e have Vo i— )i (k—1)+e = Zi k20t 05 for all (4,5, k, £) € [d]*, and as an operator
on Sgym, we can equivalently write it as ¥ = 2(X ® ).

Further, we can assume an invertible operator ¥ and define the Mahalanobis distance for z; ®
z;, which is Dg(3,%) = [[w1/2(2" — ¥")|. For Gaussian distributions, for example, we have
Dy(2,%) = (1/V2)|27 1285712 — 14|, where || - || denotes the Frobenius norm of a matrix.
This is a natural choice of a distance because the total variation distance between two Gaussian
distributions is dpyv(N(0, %), N(0,%')) = O(|=282 Y2 — I5.4|lF) (see for example [KLSU19,
Lemma 2.9]). We want a DP estimate of the covariance ¥ with a small Mahalanobis distance
Dg,(fl, Y)). If the sample generating distribution is not zero-mean, we can either apply a robust
mean estimation with a subset of samples to estimate the mean or estimate the covariance using
zero mean samples of the form {z; — x; /21 bicn/2)-

~

5.1 Step 1: Designing the surrogate Dg(X) for the Mahalanobis distance

To sample only positive definite matrices, we restrict the domain of out score function to be Dy :
{¥ e R4 % - 0} — Ry, and assume Dx;(X) = oo for non positive definite 3.:

(V, 2> — Yy (Mya)

Dg(3) = ma ,
s(%) VeRdXd:VT:XV,HVIIF:l Py (Myq)

(60)

where we define the set My, similarly as in Section 3.1. We consider a projected dataset {(V, z;x; ) }ies
and partition S into three sets By, My, and Ty, where By, corresponds to the subset of
(2/5.5)an data points with smallest values in {(V, z;x ) }ies, Tv.a is the subset of top (2/5.5)an data
points with largest values, and My, is the subset of remaining 1—(4/5.5)an data points. For a fixed
symmetric matrix V € R™? with ||V r = 1, we define Sy (My,) = m D wieMy o (V,zix] ),

and Yy (Myq)? = m > e Mya (V,ziz]) — Ev(/\/lv,a))z, which are robust estimates of the

population projected covariance Xy = (V, 3) and projected fourth moment 1/1‘2/ = (Vb)T\I/Vb. Next,
we show that this score function Dg(3) recovers our target error metric Dy (3, %) = ||[U—1/2(%° —
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»)|| when we substitute Yy (Myq) and ¢y (My,) with population statistics Xy and vy, respec-

tively. This justifies the choice of Dg(X) as discussed in Section 3.1.
Lemma 5.3. For any 0 < X € R 0 < 3 and any invertible linear operator ¥ € RE*® op

Ssym, we have

(V,%) - Sy _1/2/%0 oy
— |12 — ||, 61
VeRdXd:\f'I}ra;XV,HVHF:l Yy H ( )H (61)
where Yy = (V, %) and %, = (V°) WV,

This follows immediately from Lemma 3.1.

5.2 Step 2: Utility analysis under resilience

The following resilience property of the dataset is critical in selecting A and 7, and analyzing utility.

Definition 5.4 (Resilience). For some o € (0,1), p1 € Ry, and pa € Ry, we say a set of n data
points Seood 15 (v, p1, p2)-resilient with respect to (X,V) if for any T C Sgooa of size |T| > (1 —a)n,
the following holds for all symmetric matriz V € R with ||V||p = 1:

‘% Z <V,:EZ:EZT> —(V, %) ‘ < myyv, and (62)
;€T
%Z ((Vimsal ) = (Vi) —w}| < v, (63)

z, €T

Note that covariance estimation for {x;} is equivalent to mean estimation for {z; ® z;}. We can
immediately apply the mean estimation utility guarantee in Theorem 9 to show that H\I/_l/ 2(2b —
)| = O(p1) can be achieved with n = O(d?/ea) samples.

Corollary 5.5 (Corollary of Theorem 9). There exist positive constants ¢ and C' > 0 such that for
any («, p1, p2)-resilient dataset S with respect to (X,V) satisfying o < ¢, p1 < ¢ and pa < ¢, and
p? < ca, HPTR with the distance function in Eq. (60), A = 110p;/(an), and T = 42p; achicves
[ W—1/2(5P — 59)|| < 32p1 with probability 1 — ¢, if

s o log(1/(60) o)
EQ

Under Assumption 1 on oerrupt-corruption and Definition 3.3 on corrupt good sets extended
to {z; ® z;}_,, it follows from Theorem 10 that the same guarantee holds under an adversarial
corruption.

Corollary 5.6 (Corollary of Theorem 10). There exist positive constants ¢ and C' > 0 such that
for any ((1/11)a, o, p1, p2)-corrupt good set S with respect to (X, W) satisfying a < ¢, p1 < ¢ and
p2 < ¢, and p3 < ca, HPTR with the distance function in Eq. (60), A = 110p1/(an), and T = 42p;
achieves |[U—1/2(3> — $0)|| < 32p; with probability 1 — , if

o P los(1/(60) )

- EQ
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5.3 Step 3: Near-optimal guarantees

Covariance estimation has been studied for Gaussian distributions under differential privacy [KKV17,
KLSU19, AAAK20] and robust estimation under a-corruption [[.Y20, DK 19, CGRI8, Rous),
7J519]. Note that from Lemma 5.2, we know that ¥ = 2(X ® ) and the Mahalanobis distance
simplifies to Dy (2, %) = ||2Y/25871/2 — 1, 4|/ for Gaussian distributions.

5.3.1 Gaussian distributions

For Gaussian distributions, the second moment resilience in Eq. (62) is satisfied with p; = O(alog(1/a))
and the 4th moment resilience in Eq. (63) is satisfied with py = O(alog?(1/a)).

Lemma 5.7 (Resilience for Gaussian). Consider a dataset S = {x; € R4} | of n i.i.d. samples
from N(0,%). If n = Q((d? +1og(1/¢))/(e?log(1/c))) with a large enough constant, then there
exists a constant C' > 0 such that S is (a, Calog(1/a), Calog?(1/a))-corrupt good with respect to
(3,0 = 2¥ ® %) with probability 1 — (.

Proof. Since x is Gaussian, by Lemma 5.2, we have ¥ = E[(z ® 2 — X*)(z @ 2 — ¥*)T] = 22 @ .
We can write ¢ = 2Tr(V I EVY) = 2(V, V).

Lemma 5.8 ([LY20, Lemma B.1] and [DHL19, Fact 4.2]). Let § > 0 and o € (0,0.5). A dataset S =
{z1,22, -+ ,xn} consists of ni.i.d. samples from N'(0,Lgxq). Ifn = Q ((d* +1log(1/¢))/(a?log(1/w)))
with a large enough constant, then there exists a universal constant C1 > 0 and Cy > 0 such that
with probability 1 — ¢, for any subset T C S and |T| > (1 — a)n, we have

H\T! D @i~ T
z; €T

‘ < Cialog(l/a) , and

IN

|T| Z xz ® x; — Idxd) (LZ'Z X x; — Idxd) — 2 gsa @ Lixa Cgalog(l/a)2

z, €T

By Lemma 5.8, we know with probability 1 — ¢, for any subset 7' C S and |T'| > (1 — a)n, we
have

(E_l/zl"i) ® (S 22) — Ty
2 €T

H|T| ‘ < Chalog(l/a) .

This is equivalent to

‘ vHT ! TPosT )@ @) - (V) Ty < Cialog(l/a),

7|

xET

for any ||V||p = 1. This implies

< Cialog(1/a)[(V")T(E@ D),

) o X @em) - () (S0 %) 1,
z, €T

which is also equivalent to, for some constant C'

< T > wiw] > (V,2)| < Calog(l/a)\/2(V,2VY) ,

z, €T
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which proves the first resilience Eq. (62) in Definition 5.4.
Similarly, by Lemma 5.8, we have

1 _ _ _ _ T
m Z (Z 124 @ 9124, — szd) (Z 120 @ 012, — szd) — 2 a QIgall < Cgalog(l/a)2 .
z, €T

This is equivalent to for any ||V||r = 1,

1 2
(m S (Vs @ n T e~ Ty - 2‘ < Chalog(l/a)?.
z, €T

This implies

2
‘% Z <Vb,$i ® x5 — 2"> 20"z ® Z)V"‘ < Chalog(1/a)? (V,2VE) |
z; €T

which is also equivalent to, for some constant C'

‘% Z (<‘/7 $Z$ZT> —(V,%) )2 — 2Tr(VTZVZ)‘ < 2Calog(l/a)? (V,2VE) ,
z, €T

which proves the second resilience Eq. (63) in Definition 5.4.
O

The second and fourth moment resilience properties of Gaussian distributions in Lemma 5.7,
together with the utility analysis of HPTR, in Corollary. 5.6, implies the following utility guarantee.

Corollary 5.9. Under the hypotheses of Lemma 5.7 there exists a constant ¢ > 0 such that for any
a € (0,¢), a dataset of size

_ o @ +log(1/¢) | d® +1og(1/(5C))
"= O( a?log(1/a) " Qe > ’

a sensitivity of A = O(log(1/a)/n), and a threshold T = O(alog(1/a)) with large enough constants
are sufficient for HPTR(S) with a choice of distance function in Eq. (60) to achieve

[=71288 72— Tallr = Ofalog(l/a)), (66)

with probability 1 — (. Further, the same guarantee holds even if a-fraction of the samples are
arbitrarily corrupted as in Assumption 1.

This Mahalanobis distance guarantee (for the Kronecker product, {z; ® z;}, of the samples)
implies that the predicted Gaussian distribution is close to the sample generating one in total varia-
tion distance (see for example [KLSU19, Lemma 2.9]): dpv(N(0,3), NV (0,%)) = O(||2~1/25n-1/2—
Lixdllr) = O(alog(1l/a)). This relation also implies that the error bound is near-optimal under
a-corruption, matching a lower bound up to a factor of O(log(1/c)). Even if DP is not required and
we are given infinite samples, an adversary can move « fraction of the probability mass to switch a
Gaussian distribution into another one at Mahalanobis distance HZl_l/ 22221_1/ 2 Lixdllr = Q).
Hence, we cannot tell which of the two distributions the (potentially infinite) samples came from.

The sample complexity is near-optimal, matching a lower bound up to a factor of O(log(1/«))
when § = e=©(@)_ For a constant ¢, HPTR requires n = O(d?/(a? log(1/a))+d?/(ag)+log(1/8) /(ag)).
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This nearly matches a lower bound (that holds even if there is no corruption) on n to achieve the
guarantee of Eq. (66): n = Q(d?/(alog(1/a))? + min{d?,log(1/6)}/(calog(1/a)) + log(1/8)/e).
The first term follows from the classical estimation of the covariance without DP, and matches
the first term in our upper bound up to a O(log(1/«)) factor. The second term follows from ex-
tending the lower bound in [KLSU19] constructed for pure differential privacy with 6 = 0 and
matches the second term in our upper bound up to a O(log(1/a)) factor when § = e=©(@). The
last term is from [[XV17] and has a gap of O(1/«) factor compared to the third term in our upper
bound, but this term is typically not dominating when ¢ is large enough: 6 = e~ 0@ We note
that a slightly tighter upper bound is achieved by the state-of-the-art algorithm in [AAAK20] that
only requires O(d?/(alog(1/a))? +d?/(calog(1/a)) +log(1/8)/€). The state-of-the-art polynomial
time algorithm in [[KMS'21] requires no assumptions on ¥ but the sample complexity is larger:
n = 0(d?/(alog(1/a))? + d*polylog(1/8) /(ca log(1/a)) + d*/*polylog(1/4) /¢).

If privacy is not concerned (i.e., ¢ = oo), HPTR achieves the error in Eq. (66) with n =
O(d?/a*log(1/a)) samples. There are polynomial time estimators achieving the same guarantee
[LY20, DKIKT19]. The gap of log(1/a) to the lower bound in the error can be tightened using
algorithms that are not computationally efficient as shown in [CGRI18, Rougs].

Remark. When we only have a sample size of n = O(d/a?), our analysis does not provide any
guarantees. However, for robust covariance estimation under a-corruption, one can still guarantee
a bound on a weaker error metric in spectral norm: |[|[S~1/285712 14| = O(alog(1/a)) [2JS19,
Theorem 3.4]. There is no corresponding differentially private covariance estimator in that small
sample regime. A promising direction is to apply HPTR framework, but designing a score function
for this spectral norm distance that only depends on one-dimensional robust statistics remains
challenging.

6 Principal component analysis

In Principal Component Analysis (PCA), we are given i.i.d. samples S = {z; € R}, drawn
from a zero mean distribution Ps; with an unknown covariance matrix . We want to find a
top eigenvector of ¥, u € argmax|,|=1 v Sv, privately. The performance of our estimate @ is
measured by how much of the covariance is captured in the direction « relative to that of wu:
Dx(1) = 1 — (4 Xa/u’ Yu), where u is one of the top eigenvector of . When the mean is not

zero, this can be handled similarly as in covariance estimation in Section 5.

6.1 Step 1: Designing the surrogate score function Dg(1)
It is straightforward to design a score function of Dg : S(4~Y — R, where S(*~1) is the unit sphere
in RY,

@TE(Mﬁ,a)ﬂ
MaxX,cpd: |y =1 V' B(Mu,a)v

Dg(a) = 1— (67)

where My, , C S is the subset of data points corresponding to the smallest (1—(2/3.5)a)n values in
the projected set Sy = {(f,2;)*}sies and L(Myo) = (1/|Maa|) > rieMy . z;r; . Note that when
we replace ¥ (M o) with the population covariance matrix X, we recover the target error metric
of Dy (@) =1 — (4" Xa/ mMax| (=1 v ¥w). For this choice of Dg(@), the support of the exponential
mechanism is already compact, and we do not restrict it any further, say, to be in B;g. This
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simplifies the HPTR algorithm and also the analysis as follows. We define

UNSAFE, = {S/ C R¥"| 35" ~ §" and 3E such that PQNT(E,AYS,,)('& € E) > e Pinr g (€ E)

or P (it € B) > e Por_, g (i € E)} :

L ENED)

Note that sine the support is the same for all S, we can achieve a stronger pure DP with § = 0
in the exponential mechanism. However, we still need § > 0 in the TEST step. HPTR for PCA
proceeds as follows:

1. PROPOSE: Propose a target sensitivity bound A = 80p2/(an).
2. TEST:

2.1. Compute the safety margin m = mings dg (S, S’) such that S” € UNSAFE, /5.
2.2. If m = m + Lap(2/e) < (2/¢)log(2/6) then output L, and otherwise continue.

3. RELEASE: Output @ sampled from a distribution with a pdf:
A € A
Teas (@) = — exp <——DS(U)) ;

from SU=Y = {4 € R?: ||a|| = 1} where Z = [y exp{—(eDg(a))/(4A)} di.

The choice of po depends on your hypothesis on the tail of the sample generating distribution,
and « depends on the target accuracy as guided by Theorem 13 (or the fraction of adversarial
corruption in the case of outlier robust PCA setting in Theorem 14). The target privacy guarantee
determines (g, 9).

6.2 Step 2: Utility analysis under resilience

The following resilience properties are critical in selecting the sensitivity A and also in analyzing
the utility.

Definition 6.1 (Resilience for PCA). For some p1 € Ry, ps € Ry we say a set of n data points
Seood = {z; € Rd}?zl is (o, p1, p2)-resilient with respect to 3 for some positive semidefinite 3 €
R4 if for any T C Sgooa of size |T| > (1 — a)n, the following holds for all v € R with ||v|| = 1:

1
] Z (v,2)| < p1oy, and (68)
z, €T
1
‘T’ Z <Uaxz>2 012) < p2 012) : (69)
z; €T

where 02 = v' Y.

We refer to Section 3.2 for the explanation of how resilience is fundamentally connected to sensi-
tivity. For an example of a Gaussian distribution, the samples are (o, O(a+/log(1/a)), O(alog(1/a)))-
resilient (with a large enough n). We show next how resilience implies an error bound for HPTR,
which is O(alog(1/a)) for Gaussian distributions.
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Theorem 13. There exist positive constants ¢ and C such that for any («, p1, p2)-resilient set S
with respect to some Y and satisfying o < pa < ¢, HPTR Section 6.1 for PCA with the choices
of the distance function in Eq. (67) and A = 80pa/(an) achieves 1 — (0" Xa/||X]]) < 20py with
probability 1 — , if

< C<log(1/(54))+d10g(1/02)> .

B EQ (70)

We discuss the implications of this result in Section 6.3 for specific instances of the problem.
Under Assumption 1 on qcorrupt-corruption of the data and Definition 3.3 on the corrupt good sets,
we show that HPTR is also robust against corruption.

Theorem 14. There exist positive constants ¢ and C such that for any ((2/7)c, «, p1, p2)-corrupt
good set S with respect to some ¥ satisfying o < rhos < ¢, HPTR in Section 6.1 for PCA with the
choices of the distance function in Eq. (67) and A = 80py/(an) achieves 1 — (4" X4 /||2]]) < 20p2
with probability 1 — (, if

n

- C<log(1/(54))+d10g(1/pz)> ‘

B EQ (71)

We provide a proof of the robust and DP PCA in Section 6.2.2, where Theorem 13 follows
immediately by selecting « as a free parameter. As the HPTR Section 6.1 for PCA is significantly
simpler, we do not apply the general analysis in Theorem 15 and instead we prove The above
theorem directly. To this end, we first show a bound on sensitivity and next show that safety test
succeeds with high probability in Section 6.2.1.

6.2.1 Resilience implies bounded local sensitivity

Given the resilience properties of a corrupt good set S, we show that the sensitivity of Dg(u) is
bounded by A.

Lemma 6.2. Suppose o < ¢ for some small enough constant c. For A = 80ps/(an), and a
((2/7)a, &, p1, p2)-corrupt good S, if

. Q<log(1/(5C))>,

aE
with a large enough constant then the for all S’ within Hamming distance k* = (2/¢)log(4/(¢9))
from S, we have

mas |Dsi (@) — Dor(@)] < A (72)

for all unit vector 4 and all neighboring dataset S”.

Proof. The proof is similar to the proof of Lemma 3.11. We first assume (k* 4+ 1)/n < /7,
which requires n = Q(log(1/6¢))/(ce) with a large enough constant. This implies that S’ is a
((3/7)cv, @, p1, p2)-corrupt good set. The rest of this proof is under this assumption. Let 73 o(S") C
S be the subset of data points corresponding to the largest (2/3.5)an values in the projected
set S, = {(&,xi>2}xi65r. Recall that Sgooq is the original resilient dataset before corruption by
an adversary. From Lemma 3.4 and the fact that [Seooa N Taa(S7)] > (1/7)an, it follows that
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(1/]Sg00a N %’Q(S/)’)inesgoodn%,a (@, 2:)% < (1 + (2p2)/((1/7)a))o2, where o5 = Va'Xd. This

implies

. N 2 2p2 2
miesgriljlmﬁya ()™ < <1 * (1/7)(1)07:‘ ’ (73)

Let Mg q(S") be the remaining subset of S’ with (1—(2/3.5)a)n smallest values in {((@, :))? }iepn)-
Mio(S") and My (S”) can differ at most by one data point. Let ' and z” be the unique pair
of data points that are in My, o(S") and My (S”), respectively. If there is no such pair, then the
two filtered subsets are the same and the following claims are trivially true.

If <ﬂ,:17”>2 < maXy, e, (S") <&,xi>2 < Mmilges,, 0470 () (ﬂ,$i>2, we have | (ﬂ,x’>2—<ﬂ,:p”>2 | <
(1 + 14py/a)o?, where 02 = aT¥a. If (4,2")* > MaX,,em, () (U, z;)?, then z is at most
(@,2")? < min,, ¢ Sgo0dMTa.a(S") (11, 2;)?, where equality holds if the smallest point in the top subset en-
ters Mg, (S"). This also implies | (@, 2/)* — (4, 2")* | < (1+14pa/a)o?. Let 02 = v (M, (S"))v
and 072 = v YX( My o(S"))v, then for any v = 1,

(2

1 1
o7 o2 = |7 > el - 2wl |
(1 - (2/35)a)n i €Moy,20(S") (1 B (2/35)a)n T, €My 20(5")
92 2 14
< 2oy (w210 22)0ey
n n o

for o < ¢ small enough. Then for the local sensitivity, we have

2 _ 0_/12

"2 12
U U 0 94

u u

2 "2
maX”U”:l (o mavaH:l Oy

|Dsi(@) — Dsn(@)| <

12

‘ ag
maX|y|—1 0

‘ g

g< l4p2> DY N 1.111T2ag< l4p2>”EH
0.9]=]] © 0.92Z[2 n ’

IN

a a
where we used the resilience in Eq. (69) with small enough ps < ¢ such that 0.9v"¥v < 02 <
L.1v"Yv and 0.9v" %o < ¢/2 < 1.1v" Xv (which follow from Lemma 6.4). When py < «, this is
bounded by |Dg/@t) — Dgn ()| < 80p2/(an) = A.

O

Since the support is the same for all exponential mechanisms regardless of the dataset, sensi-
tivity bound immediately implies safety. The following lemma shows that we have sufficient safety
margin to succeed with probability at least 1 — ¢, since k* = (2/¢)log(4/(6¢)) and the threshold is

(2/2) log(2/9).
Lemma 6.3. Under the hypothesis of Lemma 6.2, for any S’ at Hamming distance at most k*
from S, we have S" € SAFE, ;.

6.2.2 Proof of Theorem 14

This proof is similar as the proof of a universal utility analysis in Theorem 15. First, we show
we pass the safety test with high probability. By Lemma 6.3, we know m > k* = 2/elog(4/(¢0)).
Then we have

DO [

P (output L) =P (m + Lap(2/¢) < (2/¢g)log(2/6)) <

(@'sa > (1-

Next, we assume the dataset passed the safety test and show that IP’ﬁNT(E AS) >

4p2)IX])) =2 1= ¢/2.
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Lemma 6.4. For an ((2/7)a, a, p1, p2)-corrupt good set S with respect to 3, then |4 Si—0 (Mg o)td| <
4pats T X,

Proof. We have

Sient, () — 02)
(1—-1(2/3.5)a)n

a7 S0 — @' S(Maa)i| =

. \2 N 2
| 2o ieMa 0 Sgo0a (U Ti)” — 03))] N | 2 ieMaaSyo0a (U Ti)” — 03))] 4)
- (1—(2/3.5)a)n (1—-1(2/3.5)a)n
For © € Mg o M Spaq, by Lemma 3.4, we have
Z' - (('ZAL,.Z'Z'>2—O'%)
N 2 2 Z€7:J,,ozmsgood u 2
U, x;)” —oz| < max , 0%
’ < Z> u‘ { ”77&704 m Sgood’ u
202073
< _P2Ta 75
- (1/35)a’ (75)
where in the last inequality, we applied our assumption that ps > a.
By the resilience property Eq. (69) on Mg o N Sgood, We also have
A 2
[Ma.o N Sgood] -
Plugging Eq. (75) and (76) into (74), we have
T o 2pp02 + (1 —(2/3.5)a)pa0?
T T 2
Ya—1u D(Mg < U U < 4pyos
i i =i B(Maa)il < 1-(2/35)a = 20
for o < ¢ small enough. O

This implies |Dx (@) — Dg(u)| < 4ps for an ((2/7)a, a, p1, p2)-corrupt good set S.

Let p(-) denote the uniform measure on the unit sphere. By the fact that for any 0 < r < 2,
a cap of radius 7 on the (d — 1)-dimensional unit sphere S(4~1) has measure at least (1/2)(r/2)%"
from, for example [[<'T'13, Fact 3.1], we have for some constant co > 0 and ps < 1/8,

p({v e R0 TS0 > (1 —4p0) |2, Jv]| = 1}) > (cos™H(1 - 4/)2)/2)d_1 > ec2dlos(l/e2) — (77)
By Lemma 6.4, the choice of A = 80py/(an), we have

P ISl —aTsa < 4]/

UnT(e,A,5) (

/ T(e,a,5) (1) dit
{veRd 0T Su>(1-4p2) |2, |lv]|=1}

> Vol{veRY:v'S0 > (1—4 Y, v =1 min r U

> Vol 2Bl =) i s

> Vol(S@—1) veRY: v 'Sv>(1-14 S vl =1 min r U

> Vol(8“ ) u(f > (=) ISIl =1) i (i)
1 £ 0TS (Mol

> Vol(S(@—1)) g—c2dlog(1/p2) — exp{ — — max 1 =V ue)”
1 aEN

> (d—1)y ,—cadlog(1/p2) — _ =

> Vol(S )e - XP { 0 } ,
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and similarly,

P Il - TS > 20023 )

A
<
=
P28
T
=

ma T(e,A,5) (1)

ur~r X
(€.4.5) < ae{veRe:w T Su< (1-2002) |2, lv]=1}

< Vol(8@-D) L —zan(2002—4p2) S|/ (3200 121

1 { QEN }
—_— e —
7 P 20

A\

S
£
)
=

This implies

Py (A —a"2a < 4po|2])) can
fo BN AL > S dlog(1/pa)
© <PQNT(5,A,S) ()‘1 R = 20/)2“2”) 40 2dlog(1/p2)
If we set n = (log(l/C)tilog(l/pz)) we get
Pirr. a5 (A1 =020 < 4pa))

— > 2,
]P)/ELNT(E,A,S) ()\1 —u' X > 20p2)\1) C

which completes the proof.

6.3 Step 3: Achievability guarantees

We provide utility guarantees for private PCA for sub-Gaussian and hypercontractive distributions.

6.3.1 Sub-Gaussian distributions

Using the resilience of sub-Gaussian distributions with respect to (4 = 0,3) in Lemma 3.12, which
is the same as the resilience properties we need for PCA in Definition 6.1, Theorem 14 implies the
following corollary.

Corollary 6.5. Under the hypothesis of Lemma 3.12 with i = 0 and any PSD matriz ¥ € R4,
there exist universal constants ¢ and C > 0 such that for any a € (0,¢), a dataset of size

(dtleg(1/¢) | log(1/(5¢)) + dlog(1/(alog(1/a)))
n=0 <<alog<1/a>>2 " o > ’

and sensitivity of A = O(log(1/a))/n) with large enough constants are sufficient for HPTR(S) in
Section 6.1 for PCA with the choices of the distance function in Eq. (67) to achieve

TR

1- = < Calog(1l/a) , (78)

with probability 1 — (. Further, the same guarantee holds even if a-fraction of the samples are
arbitrarily corrupted as in Assumption 1.

The error bound is near-optimal under a-corruption, matching a lower bound up to a factor of
O(log(1/a)). HPTR is the first estimator that guarantees (e,d)-DP and also achieves the robust
error rate of 1—4 " %4/||2|| = O(alog(1/a)), nearly matching the information theoretic lower bound
of 1—a"Ya/||3|| = Q(a). This lower bound, which can be easily constructed using N'(0,I+aeje] )
and V(0,1 + 016263— ), holds for any estimator that is not necessarily private and regardless of how
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many samples are available. If privacy is not required, near-optimal robust error rate can be
achieved by outlier-robust PCA approaches in [[KSKO20, JLT20].

The sample complexity is near-optimal, matching a lower bound up to a factor of O(log(1/«))
when § = ¢ ©@ . Even for DP PCA without corrupted samples, HPTR is the first estimator
for sub-Gaussian distributions to nearly match the information-theoretic lower bound of n =
Q(d/(alog(1/a))? + min{d,log((1 — e¢)/8)}/(ealog(1/a))) to achieve the error in Eq. (78). The
first term is unavoidable as even without DP and robustness, when the data comes from a Gaussian
distribution, estimating the principal component up to error alog(1/a) requires Q(d/(alog(1/a))?)
samples (Proposition 6.7). The second term in the lower bound follows from Proposition 6.6, which
matches the second term in the upper bound up to a factor of O(log(1/a)) when § = e=©(?)
and ¢ > 0. Existing DP PCA approaches from [CSS13, KT13, DTTZI14] are designed for ar-
bitrary samples not necessarily drawn i.i.d., and hence require a larger samples size of n =
O(d/a?+d">\/log(1/8)/(ae)) ii.d. samples from a Gaussian distribution to achieve the guarantee
in Eq. (78), where O hides polylogarithmic terms in 1/ and 1/¢.

Remark. Rank-k PCA under a-corruption from a Gaussian dataset is of great practical interest.
An outlier-robust PCA algorithm in [KSKO20, Appendix D] outputs an orthonormal matrix U €
R¥*% achieving

Te(U, SU) — Te(UTS0) = O(aTr(U) SU) + vk 2alog(1/a)) ,

where Uy, € argmaxyry_y, , UTSU and v? = MaXy craxd ||V p=1,V=VT rank(v)<k (Vs ZVE). It is a
promising direction to design a DP rank-k PCA algorithm by applying the HPTR framework that
can achieve a similar error rate. It is not immediate how to design an appropriate score function
for general rank k, and a simple technique of peeling off rank-one components one-by-one (using
the rank-one PCA with HPTR) will not achieve the target error bound.

Proposition 6.6 (Lower bound for private sub-Gaussian PCA). Let Px, be the set of zero-mean sub-
Gaussian distributions with covariance ¥ € R¥>*?, Let Mc s be a class of (€,0)-DP, d-dimensional
estimators of the top principal component of ¥ using n i.i.d. samples from P € Ps;. Then, for
e € (0,10), there exists a universal constant ¢ > 0 such that

1_ a(S)TEﬂ(S)} > C'min{d/\log((l_6_6)/5),1} '

ne

inf sup Egopn
4EM. 5 520, PPy, (]

Proof. We adopt the same proof strategy as the proof of Proposition 3.18 for mean estimation. By
[AS721, Lemma 6], there exists a finite index set V C R% with cardinality |V| = 2% |jv|| = 1 for
all v € V and |[v — /|| > 1/2 for all v # v’ € V. For each v € V, we define ¥, := Iy + avv’
and P, := N(0,3,) for some a € (0,1/2). It is easy to see that Ijwg < 2, =< 3I;x4/2 and the top
eigenvector of ¥, is v. For v #v' € V, we know \|E;1/2EUE;1/2 — Lixallr = O(a). By [KLSUI19,
Lemma 2.9], this implies drv (N (0,%,),N(0,%))) = O(«a).

Since |[v —v'[| > 1/2, we have

TIDYRIN 1+ a(v,v)? a o

Dy ,(v)=1-— = > > .
2, (V) S]] 1+a 81+a) 12

The principal component estimation problem can be reduced to a testing problem with this
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al—2/k

packing V. For (e,0)-DP estimator @, using Lemma 3.19, let t = “<5—, we have
N 1 N
sup Egepn[Ds(d)] > = Y Egpp[Ds, ()]
PePs, |V| ey
1
= — P, (Ds (u) >t
‘V‘ Z ( Ev(u) > t)
veV
d/2 (1 _—e[nal _ _ 0
e e —
z " (2 l—e ) 7

1 + ed/2¢—¢lnal

where the last inequality follows from the fact that d > 2. The rest of the proof follows from [BD14,

Proposition 4]. We choose
1 . [d ol 1—e*
o= —min< - —¢,lo
ne 2~ 98\ Taoes

sup Eg.pn[Dy, (4)] 2 o
PePx

so that

This implies, for t = «/12 and ¢ € (0, 10),

inf sup  Egpn[Dx(0)] = min{ e

d Nlog((1—e8)/9) 1}
WeMe 5 ¥3-0, PePs; ’ 7

which completes the proof. O

It is well known that even for Gaussian distribution, learning the principal component up to
error a requires Q(d/a?). We provides a lower bound proof here for completeness.

Proposition 6.7 (Sample Complexity Lower bound for PCA). Let Py be the set of zero-mean
Gaussian distributions with covariance ¥ € R¥4. Let My be the class of estimators of the d-
dimensional top principal component of ¥ using n i.i.d. samples from P € Px. There exists a
universal constant ¢ > 0 such that

A~ T ~
inf su Egopn |1 — M > ¢-min ﬁ 1, .
R p )
WeMa 330, PePs; 13| n

Proof. The following proposition will help us prove a minimax lower bound on estimating ||X|. Let
us first define some notations.

Definition 6.8 (Definition 3.1 in [DIKS17]). For a distribution A on the real line with probability
density function A(x) and a unit vector v € R?, consider the distribution over R™ with probability
density function Py(x) = A(v' z) exp(—||z — (v x)v||3/2) - (2r)~(@=1)/2

Proposition 6.9 (Proposition 7.1 in [DKS17]). Let A be a distribution on R such that A has
mean 0 and x*(A,N(0,1)) is finite. Then, there is no algorithm that, for any d, given n <
d/(8x*(A, N(0,1))) samples from a distribution D over R? which is either N(0,1) or P,, for some
unit vector v € R%, correctly distinguishes between the two cases with probability at least 2/3.
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To apply Proposition 6.9, let A be Gaussian distribution N'(0, 14+«a). Through simple calculation,
it can be shown that x?(N(0,1),N(0,1 + a)) = \/11_7 — 1 < a? whenever o < 1/2. Then for the

first case in Proposition 6.9, |X|| = ||I|| = 1, the second case has ||3|| = 1+ «, and Proposition 6.9
implies there exists absolute constant ¢ such that

inf sup Eg.pn 1—@ > c-min \/E,l .
A $-0,PePy Il n

Since we can turn a principal component estimator u(S) into an estimator of ||X|| through n
additional fresh samples to estimate u(S)"Xu(S) up to a minor multiplicative error O(1/y/n).
This implies there exists a universal constant ¢ > 0 such that

A~ T A
inf su Egopn |1 — M > ¢-min g 1, .
R p )
WeMa 330, PePs; 13| n

6.3.2 Hypercontractive distributions

In this section, we apply our results on hypercontractive distributions in Definition 3.14. Using
the resilience of hypercontractive distributions with respect to (4 = 0,3) in Lemma 3.15, which is
the same as the resilience properties we need for PCA in Definition 6.1, Theorem 14 implies the
following corollary.

Corollary 6.10. Under the hypothesis of Lemma 3.15 with k > 3, p = 0 and any PSD matriz
¥ € R¥™9, there exist universal constants ¢ and C' > 0 such that for any o € (0,¢), a dataset of size

n =0 d N k2a2—2/kdlogd k2dlog d N log(1/(6¢)) + dlog(l/a1—2/k)
= C2(1-1/k) q2(1-1/k) (2=4/k 2 o2k o= 7

and sensitivity of A = O(al_z/k/n) with large enough constants are sufficient for HPTR(S) in
Section 6.1 for PCA with the choices of the distance function in Eq. (67) to achieve

AR

1w 2 a2k
DI (79)

with probability 1 — (. Further, the same guarantee holds even if a-fraction of the samples are
arbitrarily corrupted as in Assumption 1.

The error bound is optimal under a-corruption up to a constant factor. HPTR is the first estima-
tor that guarantees (£, §)-DP and also achieves the robust error rate of 1 — 4 Xa/||2|| = O(a!~=%/F),
matching the information theoretic lower bound of 1 — @' X4 /||| = Q(a'~2/*). This lower bound
can be easily constructed using the construction in Eq. (59), where two hypercontractive distri-
butions are at total variation distance O(«) and the top principal component of one distribution
achieves an error lower bounded by 1 — @' Xa/||%|| = Q(a'~%/*). Even if privacy is not required,
there is no outlier-robust PCA estimator matching this optimal error rate for general k.

The sample complexity is n = O(d/a*=V/*) 4 (d + log(1/6))/(ea)) for constant ¢, k, and «,
where O hides logarithmic factors in 1 /a and d. Even for DP PCA without corrupted samples,
HPTR is the first estimator for hypercontractive distributions to guarantee differential privacy.
The information-theoretic lower bound is n = Q(d/a?=2/%) 4 min{d,log((1 — e~¢)/8)}/(ae)) to
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achieve the error in Eq. (79). The first term is unavoidable even without DP and robustness, when
the data comes from a Gaussian distribution, because estimating the principal component up to
error ol =%/* requires Q(d/a?(1=2/F)) samples (Proposition 6.7). There is a gap of factor O(a~%/%)
compared to the first term in our upper bound. Since the sample complexity lower bound in
Proposition 6.7 is constructed using Gaussian distributions, it might be possible to tighten it
further using hypercontractive distributions. The second term in the lower bound follows from
Proposition 6.11, which matches the last term in the upper bound up to a factor of O(log(1/))
when 6 = e 9@ and ¢ > 0. To the best of our knowledge, HPTR is the first algorithm for PCA
that guarantees (g,d)-DP under hypercontractive distributions.

Proposition 6.11 (Lower bound for hypercontractive private PCA). Let Ps; be the set of zero-
mean hypercontractive distributions with covariance ¥ € R Let M s be a class of (€,0)-DP
estimators using n i.i.d. samples from P € Ps;. Then, for e € (0,10), there exists a constant ¢ such
that

vt s e [1 aTza] § Cmin{(dAlog(u_e—a)/cs))l‘”k,l}_ (50)

aEMs,é E>O,P€'PE a HEH ne

Proof. We use the same construction as the distribution of x in the proof of Proposition 4.21. By
[AS721, Lemma 6], there exists a finite index set V € R? with cardinality [V| = 2% ||| = 1 for
all v € V and [jv —¢|| > 1/2 for all v #v' € V. For each v € V and « € (0,1/2), we construct the
density function of distribution P, as defined in Eq. (59). Let X, denote the covariance matrix of
P,. The proof of Proposition 4.21 shows that ¥, = (1 — a)Ijxq + al=2/kyy T, drv(P,, P)) = a and
that P, is (O(1), k)-hypercontractive.

Since |lv —v'|| > 1/2, we know (v,v’) < 7/8 and we have

Dy (6) =1 — UTE;v L 1—a+al=2/k (v,v’>2 . al—2/k N al—2/k |
v 15| 1 —a+al=2/k 8(1 — o+ al=2/k) 12

for a < ¢ small enough.
Next, we apply the reduction of estimation to testing with this packing V. For (g,0)-DP

al—2/k

estimator 4, using Lemma 3.19, let ¢ = “<5—, we have
. 1 .
sup Eg.pn[Dx(0)] > 7ZES~PJL[DEU(U)]
PePyx, | | ey
1 .
= =5 > P(Ds, (@) > 1)
|V| veY
/2 (l —e[nal _ 0 )
e e —
z " 2 l1—e 7

1+ ed/2g—e[nal

where the last inequality follows from the fact that d > 2.
The rest of the proof follows from [BD 14, Proposition 4]. We choose

a—imin ill—e—:lo -~
" ne 2 08 T ses

sup Eg.pn[Dy, (4)] = =2k
PeP

so that

64



This means, for t = (1/12)a!~2/* and ¢ € (0, 10),

e 1-2/k
Bt o Eam (D) = min { <d/\log((1 ¢ >/5>> 71},
weMe 5 pep ne

which completes the proof. O

7 Conclusion

We provide a universal framework for characterizing the statistical efficiency of statistical estima-
tion problems with differential privacy guarantees. Our framework, which we call High-dimensional
Propose-Test-Release (HPTR), is computationally inefficient and builds upon three key components:
the exponential mechanism, robust statistics, and the Propose-Test-Release mechanism. The key in-
sight is that if we design an exponential mechanism that accesses the data only via one-dimensional
robust statistics, then the resulting local sensitivity can be dramatically reduced. Using resilience,
which is a central concept in robust statistics, we can provide tight local sensitivity bounds. These
tight bounds readily translate into near-optimal utility guarantees in several statistical estimation
problems of interest: mean estimation, linear regression, covariance estimation, and principal com-
ponent analysis. Although our framework is written as a conceptual algorithm without a specific
implementation, it is possible to implement it with exponential computational complexity following
the guidelines of [BGS21] where a similar exponential mechanism with PTR was proposed and
an implementation was explicitly provided.

To protect against membership inference attacks, significant progress was made in training
differentially private models that are practical [ACG 16, YNB™21, AGG21]. To protect against
data poisoning attacks, a recent work utilizes robust statistics with a great success [HIKXSO21].
In practice, however, we need to protect against both types of attacks, to facilitate learning and
analysis from shared data. Currently, there is an algorithmic deficiency in this space. Efficient
algorithms achieving both differential privacy and robustness against adversarial corruption are
known only for mean estimation [LIKIKO21]. Tt is an important direction to design such algorithms
for a broad class of problems, including covariance estimation, principal component analysis, and
linear regression.

Further, these computationally efficient algorithms typically require more samples. For sub-
Gaussian mean estimation with known covariance X, an efficient approach of [LIKXKO21] requires
O(d/a? + d*?/(ear)) samples under a-corruption and (e,5)-DP to achieve an error of ||S~1/2(j —
1)|| = O(a). HPTR only requires O(d/a?+d/(ca)) samples. It remains an important open question
if this d'/2 gap is fundamental and cannot be improved.

Acknowledgement

This work is supported by Google faculty research award, NSF grants CNS-2002664, 11S-1929955,
DMS-2134012 and CCF-2019844 as a part of Institute for Foundations of Machine Learning (IFML)
and CNS-2112471 as a part of Al Institute for Future Edge Networks and Distributed Intelligence
(AI-EDGE).

65



References

[AAAK20]

[ACG+16]

[ADK*19]

[AGGT21]

[AM20]

[AM21]

[AMB19]

[ASZ21]

[BAM20]

[BD14]

[BDKU20]

[BDMNO5]

[BGST21]

[BKSW19]

[BP21]

Ishaq Aden-Ali, Hassan Ashtiani, and Gautam Kamath. On the sample complex-
ity of privately learning unbounded high-dimensional gaussians. arXiv preprint
arXw:2010.09929, 2020.

Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal
Talwar, and Li Zhang. Deep learning with differential privacy. In Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security, pages
308-318, 2016.

Kareem Amin, Travis Dick, Alex Kulesza, Andrés Munoz Medina, and Sergei Vassil-
vitskii. Differentially private covariance estimation. In NeurlPS, pages 14190-14199,
2019.

Rohan Anil, Badih Ghazi, Vineet Gupta, Ravi Kumar, and Pasin Manurangsi. Large-
scale differentially private bert. arXiv preprint arXiv:2108.01624, 2021.

Marco Avella-Medina. The role of robust statistics in private data analysis. CHANCE,
33(4):37-42, 2020.

Marco Avella-Medina. Privacy-preserving parametric inference: a case for robust statis-
tics. Journal of the American Statistical Association, 116(534):969-983, 2021.

Marco Avella-Medina and Victor-Emmanuel Brunel. Differentially private sub-gaussian
location estimators. arXiv preprint arXiv:1906.11923, 2019.

Jayadev Acharya, Ziteng Sun, and Huanyu Zhang. Differentially private assouad, fano,
and le cam. In Algorithmic Learning Theory, pages 48-78. PMLR, 2021.

Victor-Emmanuel Brunel and Marco Avella-Medina. Propose, test, release: Differen-
tially private estimation with high probability. arXiv preprint arXiv:2002.0877/, 2020.

Rina Foygel Barber and John C Duchi. Privacy and statistical risk: Formalisms and
minimax bounds. arXiv preprint arXiv:1412.4451, 2014.

Sourav Biswas, Yihe Dong, Gautam Kamath, and Jonathan Ullman. Coinpress: Prac-
tical private mean and covariance estimation. arXiv preprint arXiv:2006.06618, 2020.

Avrim Blum, Cynthia Dwork, Frank McSherry, and Kobbi Nissim. Practical privacy:
the sulq framework. In Proceedings of the twenty-fourth ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database systems, pages 128-138, 2005.

Gavin Brown, Marco Gaboardi, Adam Smith, Jonathan Ullman, and Lydia Zakynthi-
nou. Covariance-aware private mean estimation without private covariance estimation.

arXiv preprint arXiw:2106.15329, 2021.

Mark Bun, Gautam Kamath, Thomas Steinke, and Steven Z Wu. Private hypothesis
selection. In Advances in Neural Information Processing Systems, pages 156-167, 2019.

Ainesh Bakshi and Adarsh Prasad. Robust linear regression: Optimal rates in polyno-
mial time. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of
Computing, pages 102-115, 2021.

66



[BS19)

[BST14]

[CAT+20]

[CGRIS]

[CH12]

[CSS13)]

[CWZ19)

[DHL19]

[DKK*17]

[DKK™18]

[DKK™*19]

[DKS17]

[DKS19]

Mark Bun and Thomas Steinke. Average-case averages: Private algorithms for smooth
sensitivity and mean estimation. arXiv preprint arXiv:1906.02830, 2019.

Raef Bassily, Adam Smith, and Abhradeep Thakurta. Private empirical risk mini-
mization: KEfficient algorithms and tight error bounds. In 2014 IEEE 55th Annual
Symposium on Foundations of Computer Science, pages 464-473. IEEE, 2014.

Yeshwanth Cherapanamjeri, Efe Aras, Nilesh Tripuraneni, Michael I Jordan, Nicolas
Flammarion, and Peter L. Bartlett. Optimal robust linear regression in nearly linear
time. arXiv preprint arXiv:2007.08137, 2020.

Mengjie Chen, Chao Gao, and Zhao Ren. Robust covariance and scatter matrix esti-
mation under huber’s contamination model. The Annals of Statistics, 46(5):1932-1960,
2018.

Kamalika Chaudhuri and Daniel Hsu. Convergence rates for differentially private statis-
tical estimation. In Proceedings of the... International Conference on Machine Learning.
International Conference on Machine Learning, volume 2012, page 1327. NIH Public
Access, 2012.

Kamalika Chaudhuri, Anand D Sarwate, and Kaushik Sinha. A near-optimal algorithm
for differentially-private principal components. The Journal of Machine Learning Re-
search, 14(1):2905-2943, 2013.

T Tony Cai, Yichen Wang, and Linjun Zhang. The cost of privacy: Optimal rates
of convergence for parameter estimation with differential privacy. arXiv preprint
arXww:1902.04495, 2019.

Yihe Dong, Samuel Hopkins, and Jerry Li. Quantum entropy scoring for fast robust
mean estimation and improved outlier detection. In Advances in Neural Information
Processing Systems, pages 6067-6077, 2019.

Ilias Diakonikolas, Gautam Kamath, Daniel M. Kane, Jerry Li, Ankur Moitra, and
Alistair Stewart. Being Robust (in High Dimensions) Can Be Practical. arXiv e-prints,
page arXiv:1703.00893, March 2017.

Tlias Diakonikolas, Gautam Kamath, Daniel M Kane, Jerry Li, Ankur Moitra, and Al-
istair Stewart. Robustly learning a gaussian: Getting optimal error, efficiently. In Pro-
ceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 2683-2702. SIAM, 2018.

Tlias Diakonikolas, Gautam Kamath, Daniel Kane, Jerry Li, Ankur Moitra, and Alistair
Stewart. Robust estimators in high-dimensions without the computational intractability.
SIAM Journal on Computing, 48(2):742-864, 2019.

Ilias Diakonikolas, Daniel M Kane, and Alistair Stewart. Statistical query lower bounds
for robust estimation of high-dimensional gaussians and gaussian mixtures. In 2017
IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS), pages
73-84. IEEE, 2017.

Ilias Diakonikolas, Weihao Kong, and Alistair Stewart. Efficient algorithms and lower
bounds for robust linear regression. In Proceedings of the Thirtieth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 2745-2754. SIAM, 2019.

67



[DL09)

[DL19]

[DL21]

[DMNS06]

[DNMR14]

[Don82]

[DR14]

[DTTZ14]

[FGWC16]

[Gao20]

[Har13]

[HKSO21]

[HLY?21]

[HLZ20]

[Hop20]

Cynthia Dwork and Jing Lei. Differential privacy and robust statistics. In Proceedings
of the forty-first annual ACM symposium on Theory of computing, pages 371-380, 2009.

Jules Depersin and Guillaume Lecué. Robust subgaussian estimation of a mean vector
in nearly linear time. arXiv preprint arXiv:1906.03058, 2019.

Jules Depersin and Guillaume Lecué. On the robustness to adversarial corruption
and to heavy-tailed data of the stahel-donoho median of means. arXiv preprint
arXiw:2101.09117, 2021.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise
to sensitivity in private data analysis. In Theory of cryptography conference, pages
265-284. Springer, 2006.

Christos Dimitrakakis, Blaine Nelson, Aikaterini Mitrokotsa, and Benjamin IP Rubin-
stein. Robust and private bayesian inference. In International Conference on Algorith-
mic Learning Theory, pages 291-305. Springer, 2014.

David L Donoho. Breakdown properties of multivariate location estimators. Technical
report, Technical report, Harvard University, Boston., 1982.

Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy.
Foundations and Trends in Theoretical Computer Science, 9(3-4):211-407, 2014.

Cynthia Dwork, Kunal Talwar, Abhradeep Thakurta, and Li Zhang. Analyze gauss:
optimal bounds for privacy-preserving principal component analysis. In Proceedings of
the forty-sixzth annual ACM symposium on Theory of computing, pages 11-20, 2014.

James Foulds, Joseph Geumlek, Max Welling, and Kamalika Chaudhuri. On the
theory and practice of privacy-preserving bayesian data analysis. arXiv preprint
arXw:1603.07294, 2016.

Chao Gao. Robust regression via mutivariate regression depth. Bernoulli, 26(2):1139—
1170, 2020.

Moritz Hardt. Robust subspace iteration and privacy-preserving spectral analysis. In
2013 51st Annual Allerton Conference on Communication, Control, and Computing
(Allerton), pages 1624-1626. IEEE, 2013.

Jonathan Hayase, Weihao Kong, Raghav Somani, and Sewoong Oh. Defense against
backdoor attacks via robust covariance estimation. In International Conference on
Machine Learning, pages 4129-4139. PMLR, 2021.

Ziyue Huang, Yuting Liang, and Ke Yi. Instance-optimal mean estimation under dif-
ferential privacy. arXiv preprint arXiv:2106.00463, 2021.

Sam Hopkins, Jerry Li, and Fred Zhang. Robust and heavy-tailed mean estimation
made simple, via regret minimization. Advances in Neural Information Processing
Systems, 33, 2020.

Samuel B Hopkins. Mean estimation with sub-gaussian rates in polynomial time. Annals
of Statistics, 48(2):1193-1213, 2020.

68



[HR12]

[HR13]

[HRRS86]

[Hub64]

[JLST21]

[JLT20]

[KKM18]

[KLSU19]

[KMS*21]

[KOV15]

[KSKO20]

[KST12]

[KSU20]

[KT13]

Moritz Hardt and Aaron Roth. Beating randomized response on incoherent matrices.
In Proceedings of the forty-fourth annual ACM symposium on Theory of computing,
pages 1255-1268, 2012.

Moritz Hardt and Aaron Roth. Beyond worst-case analysis in private singular vector
computation. In Proceedings of the forty-fifth annual ACM symposium on Theory of
computing, pages 331-340, 2013.

Frank R Hampel, Elvezio M Ronchetti, Peter J Rousseeuw, and Werner A Stahel.
Robust statistics: the approach based on influence functions, volume 196. John Wiley
& Sons, 1986.

Peter J. Huber. Robust Estimation of a Location Parameter. The Annals of Mathe-
matical Statistics, 35(1):73 — 101, 1964.

Arun Jambulapati, Jerry Li, Tselil Schramm, and Kevin Tian. Robust regression re-
visited: Acceleration and improved estimation rates. arXiv preprint arXiv:2106.11938,
2021.

Arun Jambulapati, Jerry Li, and Kevin Tian. Robust sub-gaussian principal component
analysis and width-independent schatten packing. Advances in Neural Information
Processing Systems, 33, 2020.

Adam Klivans, Pravesh K Kothari, and Raghu Meka. Efficient algorithms for outlier-
robust regression. In Conference On Learning Theory, pages 1420-1430, 2018.

Gautam Kamath, Jerry Li, Vikrant Singhal, and Jonathan Ullman. Privately learning
high-dimensional distributions. In Conference on Learning Theory, pages 1853-1902,
2019.

Gautam Kamath, Argyris Mouzakis, Vikrant Singhal, Thomas Steinke, and Jonathan
Ullman. A private and computationally-efficient estimator for unbounded gaussians.
arXw preprint arXw:2111.04609, 2021.

Peter Kairouz, Sewoong Oh, and Pramod Viswanath. The composition theorem for
differential privacy. In International conference on machine learning, pages 1376-1385,
2015.

Weihao Kong, Raghav Somani, Sham Kakade, and Sewoong Oh. Robust meta-learning
for mixed linear regression with small batches. Advances in Neural Information Pro-
cessing Systems, 33, 2020.

Daniel Kifer, Adam Smith, and Abhradeep Thakurta. Private convex empirical risk min-
imization and high-dimensional regression. In Conference on Learning Theory, pages
25—1. JMLR Workshop and Conference Proceedings, 2012.

Gautam Kamath, Vikrant Singhal, and Jonathan Ullman. Private mean estimation of
heavy-tailed distributions. arXiv preprint arXiv:2002.09464, 2020.

Michael Kapralov and Kunal Talwar. On differentially private low rank approxima-
tion. In Proceedings of the twenty-fourth annual ACM-SIAM symposium on Discrete
algorithms, pages 1395-1414. SIAM, 2013.

69



[KV17]

[Leill]

[LKKO21]

[LL20]

[LRV16]

[LY?20]

[MASN16]

[Mir13]

[MTO7]

[NRS07]

[PSBR18]

[Rou85]

[SCV1§|

[Shalb]

[Shel9]

[Smill]

Vishesh Karwa and Salil Vadhan. Finite sample differentially private confidence inter-
vals. arXiv preprint arXiv:1711.03908, 2017.

Jing Lei. Differentially private m-estimators. Advances in Neural Information Process-
ing Systems, 24:361-369, 2011.

Xiyang Liu, Weihao Kong, Sham Kakade, and Sewoong Oh. Robust and differentially
private mean estimation. arXiv preprint arXiv:2102.09159, 2021.

Guillaume Lecué and Matthieu Lerasle. Robust machine learning by median-of-means:
theory and practice. The Annals of Statistics, 48(2):906-931, 2020.

Kevin A Lai, Anup B Rao, and Santosh Vempala. Agnostic estimation of mean and
covariance. In 2016 IEEE 57th Annual Symposium on Foundations of Computer Science
(FOCS), pages 665-674. IEEE, 2016.

Jerry Li and Guanghao Ye. Robust gaussian covariance estimation in nearly-matrix
multiplication time. Advances in Neural Information Processing Systems, 33, 2020.

Kentaro Minami, HItomi Arai, Issei Sato, and Hiroshi Nakagawa. Differential privacy
without sensitivity. In Advances in Neural Information Processing Systems, pages 956—
964, 2016.

Darakhshan J Mir. Differential privacy: an exploration of the privacy-utility landscape.
Rutgers The State University of New Jersey-New Brunswick, 2013.

Frank McSherry and Kunal Talwar. Mechanism design via differential privacy. In
48th Annual IEEE Symposium on Foundations of Computer Science (FOCS’07), pages
94-103. IEEE, 2007.

Kobbi Nissim, Sofya Raskhodnikova, and Adam Smith. Smooth sensitivity and sam-
pling in private data analysis. In Proceedings of the thirty-ninth annual ACM symposium,
on Theory of computing, pages 75-84, 2007.

A. Prasad, A. S. Suggala, S. Balakrishnan, and P. Ravikumar. Robust estimation via
robust gradient estimation. arXiv preprint arXiv:1802.06485, 2018.

Peter J Rousseeuw. Multivariate estimation with high breakdown point. Mathematical
statistics and applications, 8(37):283-297, 1985.

Jacob Steinhardt, Moses Charikar, and Gregory Valiant. Resilience: A criterion for
learning in the presence of arbitrary outliers. In 9th Innovations in Theoretical Com-
puter Science Conference (ITCS 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik, 2018.

Ohad Shamir. The sample complexity of learning linear predictors with the squared
loss. Journal of Machine Learning Research, 16:3475-3486, 2015.

Or Sheffet. Old techniques in differentially private linear regression. In Algorithmic
Learning Theory, pages 789-827. PMLR, 2019.

Adam Smith. Privacy-preserving statistical estimation with optimal convergence rates.
In Proceedings of the forty-third annual ACM symposium on Theory of computing, pages
813-822, 2011.

70



[Sta81]

[Vad17]

[VS09]

[Wan18]

[WFS15]

[YNB*21]

[ZJS19]

Werner A Stahel. Robuste schdtzungen: infinitesimale optimalitdt und schdtzungen von
kovarianzmatrizen. PhD thesis, ETH Zurich, 1981.

Salil Vadhan. The complexity of differential privacy. In Tutorials on the Foundations
of Cryptography, pages 347-450. Springer, 2017.

Duy Vu and Aleksandra Slavkovic. Differential privacy for clinical trial data: Prelimi-
nary evaluations. In 2009 IEEE International Conference on Data Mining Workshops,
pages 138-143. IEEE, 2009.

Yu-Xiang Wang. Revisiting differentially private linear regression: optimal and adaptive
prediction & estimation in unbounded domain. arXiv preprint arXiv:1803.02596, 2018.

Yu-Xiang Wang, Stephen Fienberg, and Alex Smola. Privacy for free: Posterior sam-
pling and stochastic gradient monte carlo. In International Conference on Machine
Learning, pages 2493-2502. PMLR, 2015.

Da Yu, Saurabh Naik, Arturs Backurs, Sivakanth Gopi, Huseyin A Inan, Gautam
Kamath, Janardhan Kulkarni, Yin Tat Lee, Andre Manoel, Lukas Wutschitz, et al.
Differentially private fine-tuning of language models. arXiv preprint arXiv:2110.06500,
2021.

Banghua Zhu, Jiantao Jiao, and Jacob Steinhardt. Generalized resilience and robust
statistics. arXiv preprint arXiw:1909.08755, 2019.

71



Appendix: Complete Proofs

A General case: utility analysis of HPTR

We prove the following theorem that provides a utility guarantee for HPTR output 6 measured in
Dy(6,0).

Theorem 15. For a given dataset S, a target error function Dy : RP x RP — R, probability
¢ € (0,1), and privacy (¢,0), HPTR achieves D¢(é,0) = cop for some p > 0 and any constant
co > 3cy with probability 1 — C if there exist constants c1,c2 > 0 and (A € RT,p € RY) such that
with the choice of k* = (2/¢)log(4/(6¢)), T = (co + c1)p, the following assumptions are satisfied:

(a) (Bounded volume) (7/8)1 — (k* +1)A > 0,

VOl(BT+(k*+1)A+Clp,S)
Vol(B(7/8)r - (k*+1)A-c1p,5)
Vol({8 : Dg(6,0) < (co + 2¢1)p})
Vol({6 : D4(6,0) < c1p})

IN

e?? | and

60217

(b) (Local sensitivity) For all S" within Hamming distance k* from S, maxgn.g ||Dgr(f1) —
Dg ()|l < A for all i € Bry(x=43)A,5

(¢) (Bounded sensitivity) A < o5 (C2p+((ceo/_2§—ci-112)€g€(16/ 5y ond

(d) (Robustness) |D¢(9,9) — Ds(0)| < c1p for all § € B, 5.

The parameter p € R4 represents the target error up to a constant factor and depends on
the resilience of the underlying distribution Py 4 that the samples are drawn from. We explicitly
prescribe how to choose the parameter p for each problem instance in Sections 3, 4, 5, and 6.
Following the standard analysis techniques for exponential mechanisms, we show that the output
concentrates around an inner set {é : D¢(é, 0) < cop}, by comparing its probability mass with an
outer set {6 : D¢(é, 0) > c1p}. This uses the ratio of the volumes in the assumption (a) and the
closeness of the error metric and D(é) in the assumption (d). When there is a strict gap between
the two, which happens if ep/A > p+log(1/¢) as in the assumption (c), this implies D¢(é, 0) < cop
with probability 1 — {. We provide a proof in Section A.2.

A major challenge in analyzing HPTR is in showing that the safety test threshold k* =
(2/e)1og(4/(6¢)) is not only large enough to ensure that datasets with safety violation is screened
with probability 1—4§/2 but also small enough such that good datasets satisfying the assumptions (a),
(b), and (c) pass the test with probability 1 — (/2. We establish this first in Section A.1.

A.1 Large safety margin

In this section, we show in Lemma A.3 that under the assumptions of Theorem 15, we get a large
enough margin for safety such that we pass the safety test with high probability. We follow the
proof strategy introduced in [BGST21] adapted to our more general framework. A major challenge
is the lack of a uniform bound on the sensitivity, which the analysis of [BGST21] relies on. We
generalize the analysis by showing that while the data does not satisfy uniform sensitivity bound,
we can still exploit its local sensitivity bound in the assumption (b).
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The following main technical lemma is a counter part of [BGS ™21, Lemma 3.7], where we have an
extra challenge that the sensitivity bound is only local; there exists 0 far from 6 where the sensitivity
bound fails. We rely on the assumption (b) to resolve it. Let wg(B) £ [ exp{—(¢/4A)Dg (1) }dfi
be the weight of a subset B C RP. The following lemma will be used to show that the denominator
of the exponential distribution in RELEASE step does not change too fast between two neighboring
datasets.

Lemma A.1l. Under the assumption (b) and 6 € (0,1/2), for a dataset S" at Hamming distance
at most k* from S, if wg(Br—a,s7) > (1 — 0)ws/ (Brya,s1) then S” € SAFE, je2es .

Proof. We follow the proof strategy of [BGS 21, Lemma 3.7] but there are key differences due to
the fact that we do not have a universal sensitivity bound, but only local bound. In particular, we
first establish that under the local sensitivity assumption, B; g7 C Brya g for all S” ~ S, which
will be used heavily throughout the proof. Since Dg»(6) < Dg/(0) + A for all § € Btk 43)A,5, We
have B gr N By +43)a,s € Bria,s. We are left to show that By gv \ BT+(k*+3 As = 0, which
follows from the fact that (B s \ Brii=41.5,5) N Bryge+3)a,5) = 0 and Dgn(f) is a Lipschitz
continuous function. Similarly, it follows that B,_a ¢ € B, gv. In particular, this implies that
B; s C BT+(k*+3)A,S for any S” with dH(S/, S) < k*.
We first show that for any E C Brg one side of the (¢/2,4¢%/%5)-DP condition is met:
éN"(g,A,T,sf)(é € FE) < 66/2]P>9~r(5 .l SH)(G € E) + 4¢5/%5 for all §” ~ S’ where T(e,Ar,s) and
T(c,A,r,s7) are the distributions used in the exponential mechanism as defined in (3) respectively.
For B = B; g N B, g, we have
leE) = P, (d € ENB)+P;

O~r o A 7,87

(0 e E\ B)

0~T(e,A 7,57 0~T(e,A 7,57

(e ENB

9'\/’!‘(5 A,r,S")

(d € ENB)+P; (0 € E\ B)

O~r e A7, 517 O~r o A 7,87

©

@eENB

RN

P, e ENB

0~7(e,A,7,87)

P; e ENB

07 (e a,7,5)

~

O ek)+P;

<
- 0~T(e,n,r,87)

)
)
) X
) (9 ¢ BT,S”) :

0T (e, 7,501

The ratio is bounded due to the local sensitivity bound at S’ as

(HEEQB) ea/4wS”(BT,S”)
@eENB) ~ ws (Br,s7)

0~7 (e, a,7,87)

éNT(s,A,T,S”)
a/2w5’( 7,5")
wgr (Brs')

e€/2wsr( Brias) < /2(1425) |
wgr(Brgr) — ( )

where the second inequality follows from the fact that wgr(A) < e¥/%wg(A) for any set A C B, g/ U

Br sn C Bry(k+43)a,s and the third inequality follows from the fact that B, g» C By a g. From the

assumption on the weights, it follows that wg (B s)/wg (Br,s) < ws/(Brya,s)/ws (Br_a,s1) <

1/(1 —9) <1426 for 6 < 1/2. Similarly,

(0 ¢ B,gn) < Pgw(wms,) (0 ¢ B, ag)

wg (Br_a,s)
wg/(Br,51)

IN

IN

éN’“(s,A,T,s/)
wg (Br_a,s)

< 1- <1-
- wg (Brya,s)

<4d.
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Putting these together, we get P )(é € E) < e*/?P, (0 € E) + 4¢e°/26.

O~ (e,n 57 UCVNENET)

Next, we show the other side of the (£/2, 4e?/25)-DP condition: P,

O~T (e A,

E) + 4e%§ for all S’ ~ S. We need to show an upper bound on the ratio:

~

) 2P
>(9 €E)=e PGNT’(a,A,T,s>(9 <
(é e EnN B) (
e ENB) ~ wg (Brsr)

O~ (A 57

0~7(c,a,7,9)

IN

ws(Brs1)
Brs)
<« 2 ws(Brs) _ L+ 95/
B wS(BT—A,S) ( )
For the probability outside B; g,
PéNT(E,A,T,S”) (6 ¢ BT,S’) S éNT(s,A,T,S”) (6 E BT—l—A,S/ \ BT,S/)
< ws'(Brias \ Brs)
B wger (BT’SH)
< eE/QwS/(BT-‘rA,S/ \BT7S’)
- ?,US/(B7-7S//)
< 66/2wSI(BT+A,S’) - wS/(B7-7S/)

wg (Br-a s)
< 21 4+20-1) = 2775 .

where the first inequality follows from B, ¢» C B,y g, the second inequality follows from (B, g\
B;s) N Brsr C Brya s\ Brgr, the third inequality follows from the fact that B, ¢v C Brya s
and the local sensitivity assumption, and the last inequality follows from the weight assumption

and BT—A,S’ - BT,S’-
O

The next lemma identifies the range of the threshold k£* = O(7/A) that ensures safety.

Lemma A.2. Under the assumption (b), if there exists a g > 0 such that T — A(k* +g+1) >0
and

Vol(B « e
OB A(ke+1),5) =20 < Leens (81)
Vol(B;_A(k*+g+1),5)

then S" € SAFE (. 25/2,7) for all S" within Hamming distance k* from S.

Proof. Consider S at Hamming distance k away from S. From Lemma A.1 it suffices to show that
ws/(Br—a.s)/ws (Bryas) > 18 for & = (1/8)e™/25, which is equivalent to

ws(Brya,s \ Br-as)/ws/ (Bryas) <9
The denominator is lower bounded by

ws/(Brias) > ws(Br_a(sgs) = Vol(Br_a(1yg)s)e = AUT/EA)
—e(T—A(1+4g))/(44)

> Vol(Br_A(14g+k),5)€ ;
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where the last inequality uses the local sensitivity (the assumption (b)). The numerator is upper
bounded by

ws/(Brias \ Breas) < ws(Brigynas \ Broa,s) < Vol(Bryrpag)e T8/

where the first inequality uses the local sensitivity. Together, it follows that
wS/(BT+A7S’ \ BT—A7S/) VOI(BT+(I€+1)A7S)e_E(T_A)/(4A) - 5/ _ 165/25
ws(Bria,s) = Vol(B,_a(11gik).s)es—A0+)/(EA) = 8 =

as e_s(T_A)/(‘lA)/e‘e(T_A(H'g))/(‘lA) = ¢7¢9/% which implies safety.
O

We next show that k£* = O((1/¢)log(1/(6¢))) is sufficient to ensure a large enough safety margin
of m, — k* = Q((1/¢) log(1/Q)).

Lemma A.3. Under the assumptions (a), (b), and (c) of Theorem 15, for k* = (2/¢)log(4/(6¢)),
if dg(S',8) < (2/¢)log(4/(¢0)) then S' € SAFE(/2.5/2.7)-

Proof. Applying Lemma A.2 with k* = (2/¢)log(4/(0¢)) and g = (1/(8A))7, we require

Vol(ByA(k*+1),5) eTA < le_€/25-
VOI(B(7/8)T—A(I€*+1),S) 8

From the assumption (a), it is sufficient to have

TE 1
A G e
eXp{C?p 32A} s g

For A < (1¢€)/(32(cep + (¢/2) +10g(8/6))), which follows from the assumption (c), this is satisfied.
]
A.2 Proof of Theorem 15

We first show that we pass the safety test with high probability. Define the error event E as the
event that we output L in the TEST step. From Lemma A.3, we have m, > (2/¢)log(4/(6¢)) under
the assumptions (a), (b), and (c). This implies that

DO |y

P(E) = P(m,+ Lap(2/e) < (2/¢)log(2/6)) <

We next show that resilience implies good utility (once safety test has passed). We want the ex-
ponential mechanism to output an accurate 6 near 6 with high probability, i.e., IP’(;NT( o) (Dy(6,0) >
cop) < (/2. We omit the subscript in the probability for brevity, and it is assumed that randomness

is in the sampling of the exponential mechanism. We want to bound by (/2 the failure probability:

P(qu(é,@) > cop)
P(D¢(é, 0) < cip1)

IN

P(Dy(6,0) > cop)

Vol(B;.s) Maxg. 4 9)>cop L)
Vol({6 : Dy(60,6) < cip}) Mg, b 6.0)<e1p P(6)

)



as long as {0 : D¢(é,9) < ¢op} € B, g (otherwise we are under-estimating the volume), which
follows from the assumption (d); Dg(6) < (D¢(é, 0)+cip) < (co+c1)p=r.

Similarly, since 6 € B; s implies D¢(9, 0) <7+ c1p = (co + 2¢1)p, the volume ratio is bounded
by

Vol(B;.s) _ Vol({6 : Dy(8,6) < (co+ 2¢1)p})

_ ! < _ _ < eczp
Vol({6 : Dy(0,60) < c1p) Vol({6 : Dy(0,6) < c1p})

I

under the assumption (a). The probability ratio can be bounded similarly. From the assumption (d),
we have

>

)

maXé:D¢(é,9)2cop P(

< exp{ = 5o )y} < exp{ - STy

—
D>
N—

miné:D¢ (0,0)<cip P
When 2P~ (e(co=3¢1)p/(42))) < ¢ /2 we have the desired bound. This is guaranteed with our as-
sumption (c).

B Auxiliary lemmas

Lemma B.1. For any symmetric ¥ > 0 and vector u € R?,

(v, u) H —1/2
|-y H . 82
v:ﬁﬂ)ﬂ}z{l v Yo “ (82)
Proof. This follows analogously from the proof of Lemma 3.1. O

Lemma B.2. Let , A € R™4 be a symmetric matriz. If —clgng < S"YV2AS"Y2 — 154 < clixa
for some ¢ > 0, then we have for any u € R?,

I=~12(A = )|l < ¢S] (83)

Proof. Using the fact that —I g = M < Ijyg implies —Ijxg < M? < I;y4, for any symmetric
matrix M, we know

— Ly 2 STVA-D)S A=) 2 < Py (84)

which implies that
AN (A-D)x M A-0) <28 (85)

Thus, we know
127 2(A = S)ul? =u (A - 2)27HA - D)u < Pu' Su = A2 2u)? (86)
O
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C Existing lower bounds

Theorem C.1 (Lower bound for DP Gaussian mean estimation with known covariance [[XLSU19,
Lemma 6.7]). Let fi : R"™¢ — [~Ro, Ro|? be an (e,0)-differentially private estimator (with § <

\/E/(48\/§Rn\/log(48\/§Rn/\/3))) such that for every Gaussian distribution P = N(u,0%I1xq)
(for —Ro < pj < Ro where j € [d]) and

Esepr [[4() — plP] < o? < (87)

do
then n > s -

Theorem C.2 (Lower bound for DP covariance bounded mean estimation [KKSU20, Theorem 6.1]).
Suppose fi is an (£,0)-DP estimator such that, for every product distribution P € R? such that
E[P] = M, SUPy;||v||=1 ESL‘NP[(U?‘T - M>2] <1 and

Esepn [|(8) — ] < a? (55)
Then n = Q (d/(ea?))

Theorem C.3 (Lower bound on the error rate for hypercontractive linear regression with indepen-
dent noise[BP21, Theorem 6.1]). Consider linear model y = (B, x) +n, where optimal hyperplane
B is used to generate data, and the noise n is independent of the samples x. Then there exists two
distribution D1 and Do over R? x R such that the marginal distribution over R? has covariance
Y and is (kg, k)-hypercontractive yet |SV2(81 — Bo)|| = Q(/rEya! =), where By and By are the
optimal hyperplanes for D1 and Dy respectively, v < 1/oz1/k and the noise n is uniform over [—~,~].

Theorem C.4 (Lower bound on the error rate for hypercontractive linear regression with depen-
dent noise[BP21, Theorem 6.2]). There exists two distributions Dy, Dy over R? x R such that the
marginal distribution over R? has covariance ¥ and is ky, k-hypercontractive yet |SY2(8y — B2)|| =
Q(\/@yal_wk), where B1 and Pa are least square solutions for D1 and Ds, respectively, v < 1/al/k
and the noise is a function of the marginal distribution of R?,

Theorem C.5 (Lower bound for DP sub-Gaussian linear regression [C'WZ19, Theorem 4.1]). Given
i.i.d. samples S = {(x;,y;)}1y drawn from model y; = (8, 2;) + n;, where n; ~ N'(0,7%), B € © =
{BeR: 8| <1}, P(|z|| £ 1) =1, & = Elza "] is diagonal and satisfies 0 < 1/L < dApin(2) <
dAmax(X) < L for some constant L = O(1). Denote this class of distribution as Py e . Denote
M5 as a class of (¢,0)-DP algorithms. Then suppose € € (0,1), § € (0, n=(Hw)) for some fized
w > 0, then there exists a constant such that

inf E 1/2050Qy _ A2 2 (d d_2

inf sup Epo |[BV23(8) - B)IP| 2 e (5 + . (89)

- 2.2
BEM, s ¥-0,PEP, 0% n n<e

Theorem C.6 (Lower bound of linear regression [Shal5, Theorem 1)). A multiset of i.i.d. samples
S = {(xi,y:) Y is drawn from distribution P € R? x R in a class Ppy, where |y| <Y, ||z|| < 1
and B € Op ={B € R : ||3|| < B}. Then there exists a constant ¢ such that

R 2
s [(y ~(B(5),))" - min (v - <5,x>)2] > cmin {Y%BQ, o %} - (90)

7



Theorem C.7 (Lower bound of Gaussian DP covariance estimation [[XL.5U19, Lemma 6.11]). Let
Y R™4 5 O be an (¢,0)-DP estimator (where © is the space of all d x d PSD matriaces), and
for every N'(0,%) over R? such that 1/213q < ¥ < 3/214x4,

a2

E-nomr |I58) - ZI}] < 2. (1)

then n > Q(d?/(ea)).
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