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Abstract

We study the bilinearly coupled minimax
problem: min, max, f(z) + (y, Az) — h(y),
where f and h are both strongly con-
vex smooth functions and admit first-order
gradient oracles. Surprisingly, no known
first-order algorithms have hitherto achieved

the lower complexity bound of Q((\/IL;: +

\/‘% ﬁ—;’) log(2)) for solving this prob-

lem up to an € primal-dual gap in the general
parameter regime, where L., Ly, fiy, [ty are
the corresponding smoothness and strongly
convexity constants.

We close this gap by devising the first optimal
algorithm, the Lifted Primal-Dual (LPD)
method.  Our method lifts the objective
into an extended form that allows both the
smooth terms and the bilinear term to be
handled optimally and seamlessly with the
same primal-dual framework. Besides opti-
mality, our method yields a desirably sim-
ple single-loop algorithm that uses only one
gradient oracle call per iteration. Moreover,
when f is just convex, the same algorithm
applied to a smoothed objective achieves the
nearly optimal iteration complexity. We also
provide a direct single-loop algorithm, using
the LPD method, that achieves the iteration

complexity of O(y/ &= + % + 14/ %) Nu-

merical experiments on quadratic minimax
problems and policy evaluation problems fur-
ther demonstrate the fast convergence of our
algorithm in practice.
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1 INTRODUCTION

Smooth minimax optimization has gained renewed in-
terest driven by a wide spectrum of applications in
machine learning, especially those arising in adversar-
ial training, generative adversarial networks, and re-
inforcement learning. A plethora of first-order algo-
rithms have been developed in the classical and re-
cent literature, ranging from convex to nonconvex set-
tings, from deterministic to stochastic oracles, from
single-loop to multiple-loop schemes. However, our
theoretical understanding of the iteration complexity
of minimax optimization is far from complete even
in the canonical strongly-convex-strongly-concave (SC-
SC) setting. In particular, the optimal dependence on
the condition numbers of different blocks of variables
has not been fully characterized.

Consider the smooth convex-concave minimax prob-
lem (a.k.a. saddle point problem):

minmax ¢(x,y), (1)

z oy

where ¢(x,y) is pg-strongly convex in z and p,-
strongly concave in y. Let L., Ly, Ly, be the corre-
sponding gradient Lipshitz constants with respect to
different blocks of variables. To find an e-approximate
saddle point, Zhang et al. (2019) recently showed that
any first-order algorithm with the linear span assump-
tion requires at least

Q(( Z+ﬁ+iy) log (i)) 2)

Y

calls to a gradient oracle for ¢(z,y). Notably, the lower
iteration complexity bound applies to even the class of
bilinearly coupled quadratic minimax problems, which
was used to construct the hard instance.

In the special parameter regime when L, = L, = Ly,
:= L and p; = py := p, this lower bound is matched
by several popular algorithms including the extragra-
dient and optimistic methods (Korpelevich [1976; Ne-
mirovski [2004; Gidel et al. |2018; Mokhtari et al. |2020))
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and the accelerated dual extrapolation (Nesterov et al.
2018)), with iteration complexity of O((L/u)log(1/¢)).

However, in the general parameter regime, despite sev-
eral recent attempts (Cohen et al.2020; Lin et al.2020;
Wang et al. |2020; Zhang et al.|2021b]), no known algo-
rithms have yet exactly matched the lower bound. For
instance, the algorithm in Lin et al. (2020]) achieves an
upper complexity bound of O((L/\/m) log®(1/e)).
One of the best-known results is obtained in
Wang et al. (2020), that gives the complexity
of O(/(La/tts) + (L Lay/patty) + (Ly/11) log(1/e)),
where O hides a polylogarithmic factor in problem pa-
rameters and £ = max{L,, Ly, L,}. These advances
all rely on carefully designed multi-loop algorithms.

We close this gap for a class of SC-SC minimax prob-
lems with bilinear coupling (Bi-SC-SC). Specifically,
we consider problems of the general form:

minmax [¢(z,y) = f(z) + (y, Az) — h(y),  (3)

zeX yey

where f(x) is L,-smooth and u,-strongly convex, h(y)
is Ly-smooth and p,-strongly convex, X and ) are
closed convex sets. We assume access to first-order
gradient oracles of f and g as well as the matrix A.
Note that the lower bound in also holds for this
class of problems. This class of problems by itself has
found numerous applications in machine learning, as
detailed in Section 21

The main challenge in designing an optimal algorithm
is that the objective consists of two different classes
of functions: smooth convex terms f and h, and bi-
linear coupling (y, Ax). These two classes are tradi-
tionally optimized using conceptually different algo-
rithms. On one hand, accelerated gradient methods
(like AGD, Nesterov et al. |2018) are optimal at solv-
ing smooth strongly convex problems like min, f(x)
or miny h(y). On the other hand, bilinear problems
of the form, min, max, (y, Az) or the like (with addi-
tional proximal-friendly terms), are optimally solved
using a seemingly different class of algorithms such
as primal-dual methods; see e.g., Chen et al. (1997)),
Bauschke et al. (2011)), Chen et al. (2014), Chambolle
et al. (2016), and He et al. (2016)), just to name a few.
Such a conceptual difference makes it hard to design
an algorithm that achieves optimal dependence on the
smoothness and strong convexity parameters of each
of the three terms in the objective.

1.1 Owur Contributions

We introduce a new algorithm that reconciles these
different components by lifting the objective to an ex-
tended saddle point formulation. Our key idea hinges
on the recent interpretation (Lan et al.|2018]) of accel-
erated gradient descent for convex minimization as a

variant of primal-dual method for an equivalent min-
imax problem. Based on the reformulation, we can
handle both the smooth terms and bilinear coupling
term under the same umbrella of primal-dual method.
We make the following key contributions.

e We provide the first optimal algorithm for
the class of bilinearly coupled SC-SC minimax
problems, called the lifted primal-dual (LPD)
method, achieving the iteration complexity of
O((\/Tattz + | All/ /iy + /Ty 1iy) l0g(1/2))
(Theorem [2)), tightly matching the lower bound.
The LPD method is also single-loop, using only
one gradient oracle call per iteration, which is
more desirable in practice.

e For bilinearly coupled convex-strongly-concave
(Bi-C-SC) minimax problems where f is only con-
vex, namely, u, = 0, we can apply the LPD
method to a smoothed objective ¢(z,y) + Ae||z||?,
which transforms the objective into a SC-SC one
(Nesterov 2005). The LPD method is the first
to achieve optimal complexity up to logarithmic
factors in this setting (Remark as shown in Ta-
ble[I] However, smoothing might not be desirable
in practice (see Section. To this end, we design
a direct algorithm by selecting appropriate step-
sizes in LPD. This achieves an iteration complex-
ity that is suboptimal but the best among those
not using smoothing (Theorem 3).

Detailed comparisons with existing algorithms are pre-
sented in Table [l

1.2 Related Work

Below we highlight key distinctions of our work to the
most closely related literature. Our list of related work
is by no means comprehensive. There exists optimal
algorithm for the case when both f and h are just con-
vex (g =ty =0) (Chen et al. 2014} 2017)). However,
when either of f or h is strongly convex it is not readily
clear how to optimally solve the problem.

Bilinear coupling with simple terms. Existing
work on bilinearly coupled minimax problems primar-
ily focuses on the case when f and/or h are proximal-
friendly, i.e., it is easy to compute the proximal opera-
tor. If both f and h are proximal-friendly and strongly
convex, then the primal-dual method (Chambolle
et al. |2016) and accelerated forward-backward algo-
rithm (Palaniappan et al.|2016) already achieve the op-
timal rate O(([|All/ /B tty) log(1/€)) (Xie et al. 2021).
If only h is proximal-friendly and f is smooth, but
both are strongly convex, Chambolle et al. (2016)) pro-
vides a linearly convergent but sub-optimal algorithm.
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Table 1: Gradient oracle complexity of first-order methods for solving bilinearly-coupled smooth minimax prob-
lem upto an ¢ primal-dual gap. We define £ := max(L,, ||A|,L,). *Each term of this tight lower bound
is implicitly implied by existing lower-bounds for special cases of the Bi-C-SC problem (Nesterov et al. [2018;

Ouyang et al. 2021)).

Method

# Loops Gradient Complexity

Strongly-Convez—Strongly-Concave (Bi-SC-SC)

MP/EG, OGDA (Mokhtari et al. [2020)
MP Bal. (App. , MP RL (Cohen et al. [2020)

Proximal Best Response (Wang et al. [2020)

DIPPA (Xie et al. 2021)
Lifted PD (Theorem l

Lower bound (Zhang et al. [2019)

L, A L,
+All+ y) 1

Single O( min(jiz, ) ) 08 (%)

Single 052 + =+ ) log (1)

Multi Oy 5=+ /) s (1)
Multi (5((%53)%—1—\/l%—i-(i%i:)%)log(%)
Single Oy 2= + \/‘%Jr ) log (1)

N/A Q(y/ £+ AL 4\ /2) log (1)

Convex—Strongly-Concave (Bi-C-SC)

MP/EG, OGDA (Mokhtari et al. |2020)
PDHG-type (Zhao [2019)

DIAG (Thekumparampil et al. [2019)
Lifted PD (Theorem |

Lifted PD 4 Smoothing (Remark

Lower bound®

Single O (LatlAlrLy )

Multi O(f= + /22 log(1))
Multi o(/E (f + ALy 10g? (1)
Single - O(y/ 2=+ 1AL 4 /)
Single o(\er AL 4 [ToY g (1)
N/A Q(\/7+jﬂ+ 2 Jog(1))

Our work differs from this line of results as we do not
require computing the proximal operators of neither
f nor h, but instead only their gradients. One excep-
tion is DIPPA, a complex multi-loop algorithm (Xie et
al. [2021)), which achieves O((((LyLy/ptotty)( L/ tts +
Ly /i) + All/ /fifiy) log(1/€)) complexity un-
der the same setting (Bi-SC-SC) as the one we
study. Additionally, for the special case of quadratic
Bi-SC-SC problem, Wang et al. (2020) provides
a recursive multi-loop algorithm which achieves a
sub-optimal iteration complexity of O((\/Ly/ps +

AN/ /Tty + /Ly [ 11y) (L] prapry)°) log(1/¢)), where
L =max(Ly, Lyy = || All, Ly).

Beyond bilinear coupling. Beyond bilinear cou-
pling, most existing work either treat the objective as
a whole or consider special couplings. In the SC-SC
setting with a general coupling , there are many al-
gorithms which achieve linear convergence; one of the
first such algorithm is the Extragradient (EG) method
(Korpelevich [1976; Tseng [1995)). Here, Gradient De-
scent Ascent (GDA) achieves an iteration complexity

of O(k2,,.1log(1/e)) (Facchinei et al. 2007, Chapter

12), while Mirror-Prox (MP/EG) (Nemirovski 2004)),
Dual Extrapolation (DE) (Nesterov et al. 2006; Nes-
terov 2007), and Optimistic Gradient Descent Ascent
(OGDA) (Daskalakis et al. |2017; Gidel et al. |2018;
Mokhtari et al. [2020) achieve an iteration complex-
ity of O(kmaxlog(1/€)), where kmax = L/ min(pg, fty).
Further, the above complexities can be improved (re-
placing Kmax With Ly /e + Lay /\/lzfly + Ly / py) with
proper balancing of distance functions (see Appendix
[F). This improved complexity can also be attained
by a modified MP via relative Lipschitzness (we re-
fer to as MP RL)(Cohen et al. 2020). Two multi-
loop algorithms: Minimax-APPA (Lin et al.[2020)) and
Catalyst-type method (Alkousa et al.[2020), which are
based on accelerated minimization methods, achieve
the iteration complexities of O((L/\/Hizfty) log®(1/¢))
and O(y/Ly /11y (/Lo /it + Lay/\/Fialty) log*(1/€)),
respectively. The state-of-the-art complexity for gen-
eral coupling is achieved by a multi-loop algorithm
(Wang et al. [2020)), but there is a gap to the known
lower bound of ; see Table |1] and Section
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Convex-Strongly-Concave minimax problems.
As an example of special couplings, if the coupling is
linear only in x but nonlinear in y, and f is proximal-
friendly and convex and h is smooth and strongly
convex, Juditsky et al. (2011) and Hamedani et al.
(2021)) achieve O((||All/\/#yE+(Ly/py)) log(1/e)) and
O((IIAll+Ly)//p€) complexities, respectively, under
our setting. In the same setting as these works, (Zhao
2019)) provides a PDHG-type algorithm which works
even when the coupling is non-linear instead of our bi-
linear one (y, Az). This leads to a sub-optimal (in €)
complexity of O(Ly /=-+ || A/ /fiye++/Ty [ 11, 108(1/2))
for our Bi-C-SC setting. For minimax problems that
are not necessarily SC-SC, recent works (Du et al.
2019; Azizian et al. 2020a; Yang et al.[2020a) show that
linear convergence can still be achieved under addi-
tional assumptions. A recent work (Thekumparampil
et al.[2019) discussed general convex-concave minimax
problems with one-sided strong convexity (i.e., C-SC
setting) and obtained a O(1/4/€) complexity (see Ta-
ble . In principle, any of the known algorithms (Lin
et al. |2020; Mokhtari et al. |2020; Wang et al. |2020;
Yang et al. [2020b; Xie et al. [2021) for the Bi-SC-SC
setting (3) can be applied to solve Bi-C-SC problem af-
ter a smoothing transformation (Nesterov2005)). How-
ever, due to their sub-optimality in the original Bi-SC-
SC case itself, their complexities for C-SC case are sub-
optimal as well. We omit discussions of other minimax
optimization settings as they are less relevant.

1.3 Notations

We use (z,y) to denote the inner product between
vectors z and y, and ||z|| to denote Euclidean norm
of . For a convex set X, Px(-) denotes its pro-
jection operator. We use the standard big-O O and
Q notations. [Iteration complexity or (gradient) com-
plexity of an algorithm is the number of iterations
or gradients used by it find an e-approximate sad-
dle point (&, ), which means that its primal-dual gap
maxy ¢(Z,y) — ming, ¢(z,9) < e. Standard definitions
of L-smoothness, u-strong convexity, Fenchel/convex
conjugate, Bregman divergence and its distance gen-
erating function, and proximal operators are given in

Appendix [A]
2 PROBLEM AND APPLICATIONS

We are mainly interested in the bilinearly coupled
strongly-convex—strongly-concave (Bi-SC-SC)  mini-
maz problem of the form . Throughout, we make
the following assumption.

Assumption 1. f is L;-smooth and p,-strongly con-
vex, and h is L,-smooth and p,-strongly convexr on the
entire Fuclidean space.

In addition, we assume that sets X and ) are closed
convex and the projection onto these sets is easily com-
putable. Functions f and h have well defined gradient
on X and Y and they can be accessed through gradient
oracles. Two distinctions that differ from most exist-
ing work are (i) no requirement on computing proximal
operator of either f or h, and (i7) the linear coupling
term. This type of problems find numerous applica-
tions in machine learning. Below we list only a few.

2.1 Quadratic Minimax Problems

Quadratic minimax problems are fundamental prob-
lems which arise in numerical analyses (Bai et al. [2003;
Benzi et al. [2005; Bai|2009; Wang et al.|2020), optimal
control problems (Rockafellar [1987; Liu et al. 2015),
and constrained matrix games (Xie et al.|2021). They
also appear naturally when solving subspace proxi-
mal sub-problems of Sequential Subspace Optimiza-
tion for quadratic saddle-point problems (Choukroun
et al. 2020)), and when solving sub-problems of mini-
max (cubic regularized) Newton method (Huang et al.
2020; Schéfer et al. [2020; Zhang et al. [2020). Here
f(z) = 2T Bz and h(y) = y' Cy correspond to posi-
tive definite (p.d.) matrices B > 0 and C' > 0. Thus
the minimax objective is quadratic in x and y:

¢(z,y) =2 Br+y' Az —y" Cy. (4)

Despite their simplicity, quadratic minimax problems
are not trivial to solve (Zhang et al. 2021a)). Fur-
ther, even nonconvex-nonconcave minimax problems
can behave like an Bi-SC-SC problem near a strict lo-
cal saddle point (Azizian et al. 2020b).

2.2 Robust Least Squares

Consider the robust least squares problem (El Ghaoui
et al. |1997; Yang et al. 2020a)) with a coefficient ma-
trix A and noisy vector y, where y is corrupted by a
deterministic perturbation ¢ of a bounded norm p:

i Az — y||?, where § =y — yo.
mmm&lmrépll x —y||*, where § =y —yo

The corresponding penalized version of the objective
is a Bi-SC-Concave minimax problem if A is p.d.:

min max ¢(z,y) == [[Az = ylI* = Ally = yol* -

Selecting A > 1, we get a Bi-SC-SC problem.

2.3 Policy Evaluation

Bi-SC-SC arise in policy evaluation problem in rein-
forcement learning (Du et al.|2017,[2019) when finding
minimum the mean squared projected Bellman error
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(MSPBE). Empirical estimator of minimum MSPBE
has the form:

1 2 Pinn2

where A, b, C' are defined as follows. Suppose we have
a trace of n tuples of current-state s;, action a;, next-

state s¢y1, and reward r, under some policy 7 on some
MDP. Then we define b =1/n)"} ¢,

IR 1«
A== oo —10ie1) ", and =~ oy
t t

where ¢; is the feature of state s, v is the discount
factor. In practice, inverting C' can be computation-
ally costly. Therefore, one may resort to solving the
following minimax reformulation, eliminating the need
for matrix inversion.

1
minmax 216 — w40 - (5wl —wTh)  (6)

This is a Bi-SC-SC problem if C' is positive definite.

Note that, all these problems becomes a Bi-Convex—
Strongly-Concave (Bi-C-SC) or Bi-Strongly-Convex—
Concave (Bi-SC-C) problem, if the Hessian of convex
quadratic of the primal or dual variables, respectively,
becomes positive semi-definite.

3 BUILDING BLOCKS

We present known results that serve as the intuition
behind the design of Algo. We first revisit the
primal-dual method (Chambolle et al. 2016), which is
originally designed to solve bilinearly coupled minimax
problems with simple terms whose proximal operators
are easy to compute. After that we discuss how this
method can be used to minimize smooth convex objec-
tives with accelerated convergence (Lan et al. [2018)).

3.1 Primal-Dual method
Consider the bilinearly coupled minimax problem:

minmax F(z)+ (y, Az) — H(y) (7)

with a unique solution z* = (z*,y*). Additionally,
let r and s be 1-strongly convex distance generating
functions (d.g.f.) that induce Bregman divergences
Vi (z) and V2 (y). Then, we assume that F' and H
are relatively .- and p,-strongly convex with respect
to V. (x) and V (y), respectively. We also assume
the access to their Bregman proximal operators, with
respect to the corresponding divergences.

The PD method can be viewed as an approximation of
proximal point method (PPM) (Rockafellar|1976]). We

emphasize this connection as the analyses of our main
results closely follow that of PPM (Lemmall]). Readers
who are familiar with this connection may skip to after
Lemma [I] The PPM updating rule is as follows:

(Th+1, Y1) = arg min arg max

1 T 1 S
{%vgm +F(@) + (. As) — H(&) — -V, <y>} |

This is equivalent to the implicit update rule

1
Tr4+1 = argmxin <ATyk+1,l‘> + nivwrk (.T) + F(l‘)

. 1 S
Yi+1 = argmin — (Azpgr,y) + ;Vy‘k (y) + H(y).
Y

This is a conceptual rule and not an implementable
one because finding 1 requires the gradient at yx41
and vice versa. It is easy to prove that iterates of PPM
linearly converges to the solution of . We provide a
proof in Appendix for completeness.

Lemma 1. The iterates of the PPM for the prob-
lem (@) satisfy (llo* — xx||*/n0 + lly* — yxll*/ny) <

2exp(=K/(1 + &) (Vi (27) /1 + Vi, (") /0y) for all
K >0, where k = 1/ min(pyng, fyny)-

PD method is the following approximation of PPM:
Ykt1 =Yk + 0(yr — yr—1)

. ~ 1 .
Trp1 = argmin <ATyk+1, z) + TTV””’“ () + F(x)

. 1 S
Yr+1 = argmin — (Azpy1,y) + ;Vy‘k (y) + H(x)
Yy

(8)
where 0 = 1/ and v < 1 + min(ugns, pyny). Differ-
ent from PPM, the PD method uses a pseudo-gradient
ATk, 1 computed at the extrapolated . 1, instead of
the actual gradient ATyk_H at yi+1, to update xp41.
This approximation leads to an implementable algo-
rithm with the same linear convergence as PPM.
Theorem 1 (Chambolle et al. [2016). If \/pe/ poynz =

ty/ hany =1/2||Al| and y—1 = yo, then the iterates
of the PD update rule satisfy the same conclusion

as Lemma with k=2||A||/ /Bty -

For completeness, we provide a proof in Appendix[B.2]
The PD method obtains the optimal iteration com-
plexity of O(||Alllog(1/¢)/\/Bzty) (Xie et al. 2020;
Han et al. [2021). We also note that some versions
of the PD method can also be interpreted as an ezxact
PPM update using the the Bregman divergence corre-
sponding to the bilinear operator A (He et al. |[2012).

3.2 Accelerated Convex Minimization

In this section, we illustrate that the PD method
can also be deployed to optimally solve strongly con-
vex and smooth minimization problems. Consider the
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problem: min, f(z), where function f is L-smooth and
u-strongly convex, and the optimal solution is x*.

First, we reformulate it into the following minimax
problem by introducing a dual variable u and lifting it
into a larger variable space (z,u):

min | f(@) = max & el + (@w) - @], ()

T

where
flx) = f(z) - gllfv||2, I (u) = max (u, z) — f(z).

Here f* is the Fenchel/convex conjugate of f. Fol-
lowing the definition, we have f(x) is (L — p)-smooth
and convex. A proof is provided in Appendix for
completeness. Then its dual f* is (L — p)~! strongly
convex with respect to Euclidean norm (Beck [2017).

Notice that this new minimax problem is in the form
(7), with bilinear coupling matrix A = I, u-strongly
convex function F(z) = 4[z[? and l-relatively
strongly convex function H(u) = f*(u) with respect to
the Bregman divergence V%c (u) generated by f* itself.

Then, if we instantiate the PD update rule for this
problem, we obtain the updates:

ﬂk+1 = ur + 0(uk — uk,l)
1

T o — 2 ?

Tre1 = argmin (i, o) + Sl +
: « Lo

Uppr = argmin — (zyp1,u) + 7 (u) + ;Vu} (w)
(10)
Corollary 1 (of Theorem[l)). Letu_y =uy = V f(zo).
Then the iterates of the PD update rule (10) with step-
sizes 1g =1/\/p(L —p), nu=+/p/(L —p) and 0=
(1+ /u/(L—p)~t, for problem (9) satisfies ||z* —

rx|]? < Oexp(=K/2vk — 1)||2* — x0||?) for all K >
0, where k = L/ p.

A proof is in Appendix [B:4 Note that this matches
the optimal convergence rate achieved by accelerated
gradient descent (AGD, Nesterov et al. 2018)).

Finally, we show that Bregman proximal update rule
in admits an elegant implementation based on the
gradients, which resembles AGD.

Lemma 2. For problem @, iterates xj of the
PD wupdate rule are the same as the iterates
xy of the following wupdate rule when (u_1,up)=

(Vf@q)avf@o))-
Vi1 = Viae) + 0(Vf(zy) — Vi(zr_1))

Tpt1 = (2 — nz%kJrl)/(l + Nz pt) (11)
Ty = (@ + Mu@rt1) /(1 +10)

A proof is in Appendix This close connection
between the PD method and AGD was first identi-
fied in Lan et al. (2018). The above analysis based
on the primal-dual interpretation is conceptually much
simpler than the more opaque estimate sequence (Nes-
terov et al.[2018]) or Lyapunov-based (Lan|2012)) analy-
ses of AGD. Note that the above update rule is slightly
different from the one used in Lan et al. (2018]). The
latter uses an extrapolated primal iterate Zy41 to up-
date dual iterate ug11, whereas we use an extrapolated
dual iterate ug41 to update the primal iterate xgyq.

4 LIFTED PRIMAL-DUAL
METHOD

The previous section indicates that both bilinear min-
imax problems and smooth strongly convex minimiza-
tion problems can be optimally solved using the same
PD method after appropriate reformulation. Natu-
rally, this suggests that the PD method has the po-
tential to solve the Bi-SC-SC problem of our interest:

min ma [f(x,y) = f(x) + (y, Az) — h(y)], (12)

which consists of a bilinear term (y, Az) and two
smooth strongly-convex functions f and h.

Our strategy to solve is to first transform the
objective into a form where the proximal operators
are easy to compute and then solve this new objective
using the PD method. Introducing dual variables w
and v for f and h, respectively, the Bi-SC-SC problem
can be equivalently reformulated (or lifted) as

IIél)l(I’lv yrg%i ®(x,y;u,v), where (13)

Oz, y3u,0) = [ = f*(u) + (u,2) + (a/2) 2]
+(y, Az) = [(1y/2)ly]* + (v,9) =B (v)],  (14)

—

*(u) := max (u,x) —

f=f@) = (na/2)]|2|?], and

B*(v) := max (v,y) — [b:= h(z) — (1y/2) |1y (15)

[~

By Fenchel duality, it follows that ¢(z,y) =
min, max, ®(z,y;u,v) (Lemma4c)). Note that both
f* and h™ are strongly convex. Intriguingly, the first
three terms, the middle three terms, and the last
three terms in are all of the form 7 and hence
amenable to the Primal-Dual approach. To this end,
we introduce the following the PD update to each of
the four variables with their respective stepsizes, Breg-



N =

Kiran Koshy Thekumparampil, Niao He, Sewoong Oh

Algorithm 1 LPD: Lifted Primal-Dual algorithm

Required: X, Y, (f, Ly, i), (A [Al]), (R, Ly, py), K,
{(nr,kvn%kvnu,kvnv,kaek)}g 0
Initialize (x_1,y-1) = (z0,%0) € X X Y
Set f=f— (/2 - I, h =N — (1, /2)] - |I?,
Q—hy,l) = (&oﬂo) = (anQO)
for0<k<K-1do
Tpy1 = T + O (T — 2p—1) ,
Y1 = Yk + O (Ye — Yr-1),
Yx,k+1 =V f(xy) +0(Vf(zy) — V(1)) ,
Vykr = Vh(y,) + 0x(Vh(y,) - Vh(y, ,))
whi1 = Pa((@r — 0o g (AT Gr1 + Var1))/
(L4 1 setty)) B
Y1 = Py((ye + 0y (AZk1 — Vyut1))/
(1 + 7,k tty))
Tpp1 = (@ + Nuk Tha1)/ (4 Nuk)
Y1 = Wp, + Mok Y1) /(1 + 10k)
end

return (xK,yK,zK,yK)

man divergences, and extrapolation steps.

(1 +0)(xr, yx) — O(Th—1,Yr—1)
(14 0)(ug, vg) — O(up—1,vr-1)

. T~ ~
Tpt1 = argmin <A Yht+1 + Ukt1, x> +
x

(Thr1, Yr1) =
(Upg1, Vpg1) =

lz = 2xl* /200 + palll® /2

Y1 = argmin — (AT Tpi1 + Vg1, y) + (16)

ly — Z/k:||2/277y + /~Ly||y||2/2
. * f
i = axgmin — (0,) + £ () + VE (),

Vgpt1 = arg mvin — (Yr41,v) + 1 (v) + Vg (v) /10

We show that the above update rule can be easily im-
plemented using Algorithm |1} which we call the Lifted
Primal-Dual (LPD) method.

Lemma 3. For problem , iterates (xy,yr) of the
PD update rule is the same as the iterates (T, yx)
of Algorithm |1}, when (u_1,uo) = (Vf(z_1),Vf(zg)),
(v—1,v0) = (VS (y_,), VL (y,))-

We omit the proof of the above lemma as it is sim-
ilar to that of Lemma Note that we update the
variables in the order (z,y) — (z,y), where variables
in tuples are simultaneously updated. However, any
update ordering can be shown to achieve similar guar-
antees as we show, by using appropriate extrapolation
steps and stepsize choices. We extrapolate all the vari-
ables and gradients (in step [3| of Algorithm (1)) before
the x and y updates (steps [4| and [5| of Algorithm

to make our analysis a bit symmetric, hence simpler.
However, depending on the order in which we update
each of the variables we may not have to extrapolate
all the variables. For example, if we update variables
in the order z — y — = — y, we only have to use (a)
the extrapolated yx1 and 61’]@4,1 for updating =, and
(b) the extrapolated V,, 41 for updating y.

5 CONVERGENCE ANALYSIS

Now we provide the main theoretical results.

Strongly-Convex—Strongly-Concave Case. LPD
achieves the optimal iteration complexity for solv-
ing Bi-SC-SC problem in . Define the follow-
ing condition numbers: kg = Ly/pa, Ky = Ly/py,
Koy = ||A|l/\/Bztty, and define the meta-condition

number: K = /Ky — 1+ 264y + /Ky — 1 . Let 2™, y*
be the optimal solution. For any candidate solution
(z,y) € X x ), we measure the suboptimality with,

A2,y) = fay(pallz = 2% + mylly — y*[1%)-

Theorem 2 (Informal, cf. Corollary . For any k >
0, set the parameters

y=14+r"1 0, =1/,
Nk = (Ve — 1+ Q’Qxy)il/ﬂx )
k= (2hgy + m)_l/ﬂy’
Nug = (Ve =171 nop = (Vg = 1)

Then for any K > 0, output of Algorithm 1| satisfies

(17)

A, y")
(K-1) 1
(ﬁ ))((771,0 *

1 L .
(—— + =y — goll?)

My,0 Tv,0
Note that the parameter choices in the above theorem
are iteration (k) invariant. The gradient complexity of

L. —
< exp(— M) |z* — 2ol|® +
n

u,0

Algorithm [I] is
|A .
— -1+ 1A —J — l g (18)
Hz Mmﬂy

which is optimal and matches the lower-bound (Zhang
et al. 2019)) for Bi-SC-SC problem up to loga-
rithmic factors in the problem parameters. The lift-
ing of the objective function allows the PD method to
be jointly applied to the smooth convex terms (as il-
lustrated in Section and to the bilinear minimax
terms (as illustrated in Section, achieving this op-
timal rate (Zhang et al. |2019)). Comparisons to other
algorithms are given in Table [I}
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We emphasize that LPD inherits the computational
and conceptual simplicity of the PD methods. The
former leads to a single-loop algorithm, which is much
simpler than other state-of-the-art complex multi-loop
methods with sub-optimal guarantees (Lin et al. 2020;
Wang et al. 2020; Xie et al. 2021). The latter leads to
a more transparent analysis, based on the simple anal-
ysis of the PD methods (Theorem , which is based
on an even simpler analysis of PPM (Lemma [1f).

Note that we do not directly adapt the original guar-
antee of the PD method (Chambolle et al. 2016). Our
analysis has to be different since the naive application
of the existing algorithm and analysis will depend on
an effective strong convexity parameter (in (x,v)) of
min(pg,1/(Ly — py)), an effective strong concavity pa-
rameter (in (y,u)) of min(uy,1/(Ly — pt2)), and a Lip-
schitz constant which is equal to the largest eigenvalue
of the matrix effective coupling matrix [I, A;0,I]. This
leads to a sub-optimal guarantee. Hence, we propose
a different approach with a tighter analysis to achieve
the optimal rates.

Convex—Strongly-Concave Case. Consider the
Bilinearly-coupled Convex-Strongly-Concave (Bi-C-
SC) case, where f is merely convex, i.e. u; = 0.

Remark 1 (LPD + Smoothing (Nesterov|2005)). Let
o(x,y) be the objective of a Bi-C-SC problem. Then
we can apply LPD for Bi-SC-SC problems (Theorem@)
to the smoothed Bi-SC-SC objective ¢(x,y) + Ae||z||?
for some A > 0, and achieve an iteration complexity of

O(\/ Lo /e+|All/ \/HiygE+ /Ly 11y) log (1/€) for solving

the original Bi-C-SC problem.

The above result is optimal up to logarithmic factors.
The first term cannot be improved even for a pure min-
imization of convex f (Nesterov et al. 2018). Due to
a lower-bound of Q(||Al|/,/iz,€) for the same problem
when f = 0 (Ouyang et al.|2021)), the second term can-
not be improved. The third term cannot be improved
even for a pure maximization of strongly-concave h
(Nesterov et al. |2018).

However, smoothing might not be desirable in prac-
tice, because it requires bounded domains and fix-
ing the final target error ¢ in advance, and it is
hard to tune A (Nesterov 2005). We therefore de-
sign a direct algorithm by customizing the stepsizes
of LPD. Let Dy = maX,cxndom(s) ||z — 2ol and
Dy = maxycyndom(n) |[¥ — yoll. Note that the min
variable solution x* may not be unique.

Theorem 3 (Informal, cf. Corollary . Let

e, =1/(k+1)ns, 1/ne = 2L, + 16[|A|l /1y,
Unyre =1/(k+ Dy + kpy /2, 1/n, = 2(Ly — p1y) ,
Nuk =Nk =2/k, forallk>0. (19)

Then for any K > 0, output of Algorithm[1] satisfies
(a) if Dy < 00 and Dy < o0,

max $(Txc,y) — min $(z, ) <
16]|A|*D% | 2(Ly
py K (K +1)

2L, D2,
K(K+1)

_/Uy)D%
K(K+1)

(20)

_ K
where (Tg,Jg) 1= Zk:l ﬁ%(»’chyk),
(b) even if the feasible set is unbounded,
* 2
||2 < 2L$||$ xOH
K(K+1)
16141 =m0l 2(Ly o)l = w0
1, K(K +1) K(K+1)
(C) Zf Dy < 00, ¢p(x) =maXyey ¢($,y), (bd(x) =
mingex ¢(x,y), and we do a warm restart on variable
y with Ko = Q¢ (1) initial additional iterations, then

By iy — +

[§

(21)

_ ” 10L, HAH2 4||x* —UCOHZ
o 8l A2, 4D%
Ga(y") — ¢a(¥k) < (La + m )K(K+1).

This implies that, for Bi-C-SC problem, LPD has a
gradient complexity of

f \AH \/ﬁ

The LPD method achieves better complexities than
previous single-loop algorithms (Nesterov et al. [2006;
Mokhtari et al. 2020), PDHG-type algorithm (Zhao
2019), direct multi-loop algorithm (Thekumparampil
et al. [2019), and some smoothing-based multi-loop al-
gorithms (Lin et al. 2020} Wang et al. 2020; Xie et al.
2021)) (see Table[I). Earlier single-loop methods such
as Chambolle et al. (2016)) and Hamedani et al. (2021)
achieve O(1/K?) rate only under the restriction that
L, =0. This showcases the generality and simplicity
of our LPD method, as it is the first single-loop algo-
rithm (to the best of our knowledge) which achieves
O(1/K?) rate for this problem. It is not known if
better rates than in the above theorem are achievable
with a direct single-loop algorithm without using the
smoothing technique, like in Lifted PD 4+ Smoothing
(Remark[I)). As discussed after Remark[I] direct algo-
rithms such as the one above are more desirable.

Prox-friendly terms: We point out that LPD can
be extended to solve more general (possibly nons-
mooth) minmax problems with the same guarantees:

minmax F(x) + f(z) + (y, Az) — h(y) — H(y), (23)
TeX yey
where F' and H are convex and we have access to their

proximal operators and f, h satisfy our Assumption
We give the details of extension in Appendix [B.6]
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Figure 1: LPD method (ours) achieves a faster linear convergence rate than competing algorithms in Strongly-
Convex—Strongly-Concave synthetic quadratic minimax (a-b) and policy evaluation (c) problems. LPD method
(ours) also achieves a faster O(1/K?) convergence rate than competing single-loop algorithm in Convex—Strongly-

Concave policy evaluation problem (d).

6 EXPERIMENTAL RESULTS

In this section we compare our LPD method with some
competing single-loop non-smoothing-based direct al-
gorithms when solving both synthetic and real-world
problems. More details of the experiments are pro-
vided in Appendix [F] First, we compare our LPD
method with Mirror Prox (MP) (Mokhtari et al.|2020)),
Balanced Mirror Prox (MP Bal.) (see Appendix [F)),
and Relative Lipschitzness-based Mirror Prox (MP
RL, Cohen et al. 2020) when solving Bi-SC-SC prob-
lems. We only compared our (single-loop) algorithm
with other single-loop algorithms, because multi-loop
algorithms such as in Wang et al. (2020)) and Xie et
al. (2021)) are typically challenging to implement and
tune. To the best of our knowledge, there are no pub-
licly available implementations for these algorithms.

Quadratic Problem: First, we consider synthetic
quadratic problems of the form . We randomly
generate the matrices B, A, C in such a way that
Ky = Ly/pte = Ky = Ly/py and gy = [|A|l/\/Bafty =
VFEz. In Figure we plot the primal-dual gap against
the number of iterations (K) of different algorithms
when solving such a problem with x, = 256.0. We see
what LPD achieves a faster linear convergence than
other methods. In Figure we plot K/ log(A3/A%)
against k, where Ax = ||xx — 2| + |lyx —y*|>. We
vary Kk, from 5.96 to 656.84. As expected from theory,
in this log-log scale plot, slope of the LPD curve is
close to 1/2 since A% < O(exp(—K/ /k;)) for LPD,
and slope of other algorithms are close to one since
A% < O(exp(—K/k;)) for other algorithms.

Policy Evaluation: Next, we consider policy evalu-
ation problems of the form @ We consider the same
MountainCar (Sutton et al.2018) reinforcement learn-
ing problem used in Du et al. (2017)), and use the same
copy of policy trace {(s¢,as, St41,7¢) 71 used by Du
et al. (2017) to construct the MSPBE minimization
problem. We create the feature vectors ¢, by applying

PCA to the state vectors s; to whiten them. This re-
duces their dimension from 300 to 200. Finally setting
p = 1.0, results in a highly ill-conditioned Bi-SC-SC
problem with x, =1.0, k5, = 24.35, and k, = 19387.07.
In Figure we plot the primal-dual gap against
the number of iterations (K) of different algorithms
when solving this problem. We observe that, our LPD
method achieves much faster linear convergence than
all other algorithms. Note that MP is better than LPD
for small K, because in this regime the O(1/K) con-
vergence rate of MP dominates its primal-dual gap.

Finally, we compare our LPD method with MP
(Mokhtari et al. [2020), when solving a Bi-SC-C prob-
lem.

SC-C Policy Evaluation: We consider the same
minimum MSPBE estimation problem as above. How-
ever we directly use the 300 dimensional state vectors
s¢ as its feature vector ¢;. This results in a Bi-SC-C
problem. Note that Bi-SC-C objective is the negative
of the objective of a Bi-C-SC problem, which means
that we can solve it using LPD with stepsize choice
given in Theorem [2] In Figure [Id] we plot the primal-
dual gap against the number of iterations (K) of LPD
and MP methods when solving this problem. As the-
ory predicts, we observe that the LPD method achieves
a much faster O(1/K?) convergence rate than O(1/K)
convergence rate of MP.

7 CONCLUSION

We studied Bi-SC-SC problem and provided an op-
timal single-loop algorithm: the Lifted Primal-Dual
(LPD) method to solve it. The LPD method is de-
signed using simple building blocks of the Primal-Dual
method and lifting, leading to its generalizability, sim-
plicity, and transparent analysis. Further, we also pro-
vide two related algorithms—one optimal (upto loga-
rithmic factors) and another single-loop—to solve Bi-
C-SC problem.
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Supplementary Material:
Lifted Primal-Dual Method for
Bilinearly Coupled Smooth Minimax Optimization

A DEFINITIONS AND STANDARD RESULTS

A.1 Convexity and Smoothness

Definition 1. We say that a function is u-strongly convex if
flaxz; + (1 — @)zs) < af(xr) + (1 — o) f(z2) — ga(l —a)||zy — x2||?, for any a €[0,1],
f(x2) > flxr) + (f(21), 20 — x2) + g||:v1 — 252, or equivalently

(f'(@1)(@1) = f'(@1)(@2), 21 — @2) > pllwy — 22|

for all x1 and x4, where at any point z, f'(z) € df(x) is some sub-gradient of the function in its (Frechet)
sub-differential Of (x) at that point. Further we say that a function (merely) convez if it is 0-strongly convex.

For a differentiable function f, its gradient at any point x is denoted by V f(z).
Definition 2. We say that a function is L-smooth if it is differentiable and

flxe) < f(z1) + (Vf(x1), 22 — 22) + %ng - :E1H2, or equivalently (V f(x1) — Vf(x2),z1 — x2) < Lz — x2||2

for all z1 and x5, where where at any point x, V f(x) is gradient of the function at that point x.

A.2 Fenchel/Convex Conjugate and Duality

Definition 3. Let f be a convex function. Then its Fenchel/convex conjugate f* is defined as f*(u) :=
max, (u,z) — f(x)

Lemma 4 (Kakade et al. [2009; Nesterov et al. |2018|). Fenchel/convex conjugate satisfy the following properties.
(a) If f is an L-smooth and convex function, then f* 1/L-strongly convex.

(b) If f is an L-smooth and convex function, then V f(z) = arg ming (x,u) — f*(u).

(c) If f is a convex function, (f*)* is f

(d) If f is an L-smooth and convez function and v =V f(x) then x = argmin, (u,z) — f*(z) € O(f*)(u).

A.3 Proximal Operator

Definition 4. For a convex function, F', its proximal operator proan(:E) (parameterized by some n > 0) is
defined as

. 1~
prox, p(r) = arg msz(x) + 2—n||;l: —z|? (24)

A.4 Bregman Divergence, and Relative Lipschitzness and Relative Convexity

Definition 5. Let r be a strongly convex function. Then Bregman divergence V.I(Z) w.r.t. to the distance
generating function (d.g.f.) r is defined as the

Vi(@) =r(@) —r(x) = (F(2), T —2) (25)

where ' (x) € Or(x) is a sub-gradient of r at x.
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Lemma 5. Let r be a o-strongly convex function. Then Bregman divergence VI (T) w.r.t. to the d.g.f. r satisfies
VI(@) > (0/2)]|7 — ||

Lemma 6. If f L-smooth convezr function, uw = Vf(z) and ug = Vf(zo), then 5|u — uol? < VJ: (u) =
Vi (z0) < L/2||x — 20

Proof. By Lemma |4l f* is 1/L-strongly convex. Then using Lemma [5| and Lemma |4| we can show that.

%Ilu —uo|* < Vi (u) = £ (u) — f*(uo) — (f*'(uo),u — uo) (26)
= ((u,z) — f(x)) = ((uo, z0) — f(0)) — (w0, u — uo) (27)

= f(x0) — f(x) — (u, 20 — x) (28)

= f(x0) — f(z) — (Vf(x),20 — ) (29)

=V (x) (30)

< %Hx—xOHZ (31)

O

Definition 6. We say that a function is relatively p-strongly convex w.r.t. to a Bregman divergence V' (generated
by a strongly convex d.g.f. r) if

flazy + (1 = a)zz) < af(z1) + (1 — ) f(22) — pa(l — )V, (z2), for any a € [0,1],
f(x2) > fx1) + (f'(z1), m2 — m2) + pV,] (x2) , or equivalently
(f'(@1)(@1) = f(@1)(22), 21 — w2) > 2uV (22)

for all 1 and x4, where at any point x, f'(x) € Of(x) is some sub-gradient of the function in its (Frechet) sub-
differential Of (x) at that point. Further we say that a function (merely) relatively convex w.r.t. to the Bregman
divergence V" if it is relatively 0-strongly convex w.r.t. V' .

Definition 7. We say that a convex function, f is relatively smooth w.r.t. to a Bregman divergence V" (generated
by a strongly convex d.g.f. r)

f(xo) < for) +(Vf(21), 22 — 22) + LV, (12) , 0r equivalently (Vf(xz1) — V f(x2),x1 — x2) < 2LV (x2)

Definition 8. For a convex function, F, its relative proximal operator pronF(x) (parameterized by some n > 0)
w.r.t. to a Bregman divergence V" (generated by a strongly convex d.g.f. v) is defined as

1 ~
prox, p(z) = arg miin F(x)+ 5‘/;(3:) (32)

A.5 Minimax Problems

Lemma 7. Let ¢(x,y) be convex-concave objective. Then ¢(Z,y*) — ¢p(x*,7) > 0 for all (Z,y) € X x Y, if
(z%,y") € argmingex yey ¢(z,y).

Proof. Notice that the LHS above is positive since

o(@,y") — o(z",9) = (6(F,y") — ¢(=", y")) + (¢(z", y") — d(2", 7))
= (¢(@,y") —ming(z,y")) + (max $(z",y) — ¢(z",9))
>0 (33)
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B SUPPORTING RESULTS

B.1 Proximal Point method: Proof of Lemma [II

Proof. Since F (H) is p-relatively strong convexity w.r.t. v (s) and (zx11,yx+1) satisfies PPM rule (8), we can
use mirror descent lemma ] to get

1 1 1
Fappr) — F(z) + (A gk, w1 — ) < n—V[k (z) — (777 + Ha)Vy, () — FVJk (Tr+1)
1 1 1
H(yrs1) — H(y) — (Azpy1,Yrs1 —y) < U*Vysk (y) — (777 +uy) Vo, (y) — ﬁiv‘;’“ (Yr+1) (34)
Yy Yy Yy

Separately, using convexity and concavity of (y, Azx) w.r.t. z and y, we get

D41, Y) — (@, Yrt1) < Flarg1) — F(2) + (AT Ypgr, g1 — @) + (A2ks1, Yorr — y) + H(yrsr) — H(z) (35)

Summing three equations and setting (z,y) = (z*,y*) we get

* * 1 r * 1 r * 1 s * 1 s *
(i1, y") = 0" ypr) < — Vi (@7) = (— 4 pa) Vi, (@7) + =V (6") = (— + 1)V, (47) (36)
Nz Nx My Ty
Notice that the LHS above is positive by Lemma[7} that is
P(zhr1,y") — A(2", Ypg1) > 0 (37)

Let us define v := 1+ !, where we define also £ := 1/ min(n, iz, Nyfty). Now multiplying both the sides of
with 7%, and using v < 1 + min(ny g, Nyfy) We get

0 < Y (d(xps1,y") — (z*, Yrs1))

k+1 k+1

k k
s’;—vr (") = vy @)+ v () - TV (). (38)

T Th41 ] Yk+1
N Ty My

Now summing the above equation from £ =0 to k = K — 1, we get that
K K
¥ ¥ 1 1
Vi @) + Vi () < =V (@) + =V (v"). (39)
nI K ny YK n$ 0] ny Yo
Finally, dividing both sides using 27v* and using the 1-strongly convexity of » and s and Lemma a) we get

277K

Lo — a4y — el < 2 @) + 2 ) (40)
— T — Tk —Y —Ykll > € Y
e Ty Ne U

Finally we get the desired result using the fact that v"! =1/(1+x71) =1—-1/(1 + k) <exp(l/x + 1). O

B.2 Primal Dual Method: Proof of Theorem [I]

Since the PD method is an approximation of PPM, former’s analysis closely follows that of the latter (proof of
Lemma [1f).

Proof. Since F (H) is p-relatively strong convexity w.r.t. r (s) and (zx11,yx+1) satisfies PPM rule (8), we can
use mirror descent lemma [J] to get

- 1 1 1
Fagpr) — F(z) + (A gk, w1 — ) < ;ka (z) — (77 + Ha) iy, () — n—V;k (Tr+1)
1 1 1
H(yry1) — H(y) — (Azpy1, Yp1 — y) < U*Vysk (y) — (777 +uy) Vo (y) — ﬁiv‘;’“ (Yr+1) (41)
Yy Yy Yy

Separately, using convexity and concavity of (y, Azx) w.r.t. z and y, we get

D41, Y) — (@, Yrt1) < Farg1) — F(@) + (AT Ypgr, 1 — @) + (A2ks1, Yorr — y) + H(yesr) — H(z) (42)
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Summing above three equations and setting (z,y) = (z*, y*) we get

* * 1 r * 1 T * 1 s * 1 s *
¢(xk+l7y ) - ¢($ 7yk:+1) < 7mG (il' ) - (7 + M$)V1A+1( ) + 7Vyk(y ) - (7 + Ny)Vyk+1( ) +
Nz Nz Ny 77y

_ N
(AT (Yhs1 — Urs1), Thg1 — T°) — ;ka (1) — *V " (Yrt1) (43)

We can further expand out the last four term in the above inequality as follows. Using gx+1 = yx + 0(yx — Yk—1)
(equation ) and Cauchy-Schwarz inequality we get

(AT (Y41 = Urr1)s @1 — %) = Ok (yh—1 — vk, Ak — 7)) — (W — Yrr1, A(Tpg1 — 2%)) +
0 (Yk—1 — Yk, A(Tpi1 — 7))
<0 (Yk—1 — Yk, Alzr — 27)) = (Yo — Yr41, A(Tpy1 — 7)) +
0] Allery
9 llyx—

fl|A
OIAN, o,y — (44)

_ 2
ykl|” + 2,

for some o = +/pte/pty. Using Lemma a) and 1-strong convexity of f* we get that

1 r 2

_EV” (Tg11) < ST — x| (45)
1 1

==V (Wht1) < —5—llyrr1 — wl? (46)
Ty 2771/

Summing equations ([44)), and (46), and using % = %, [t <|JA|l, /4= = 5 and 9”AH 9@ <

A /2 = 2 we get

(AT (g1 = Uha1)s Tpg1 — ) — *V L (Thg1) — *V » (Ykt1)

< O(Yr—1 — Yk, Al — %)) — (yr — yk+17A(93k+1 —z")) +

1 4] 2 | Allex 1
_(— 07?4 — 2 - o 2
(2% 2ay)||$ — x| + 5 lyxe — yr—1ll o0, yrr1 — Yl
<O (yk—1— Y, Alzr — 7)) — (Y& — Y1, A(Tp11 — 7)) +
Alla Alla
A AL (47)

Notice that the LHS of is positive by Lemma that is ¢(zr+1,y*) — d(*, Yyg+1) > 0. Summing equations
and ,and using the above fact we get

0 < o(@rs1,y") — A(T™, Yrt1)

sim@ﬂ4i+mW*<w+5@@—@+%WS<H

Tri1 y My Ykt1
0 (-1 — Yr> Az — %)) — (Y — Yrr1, AlTprr — 7)) +
[| Allex | Al
GTyHyk — e — Tyﬂykﬂ — yil? (48)

Let us define v := 1+« ™!, where we define also # := 1/ min(ng e, Nypty) = 2||All//Fafly- Now multiplying both
the sides of with 4%, and using v < 1 + min(ng iz, nypy) and 0 = 1/ we get

k k1 k k1
0 Snfzvz?k(x ) — o Vi (@) + TTyVy,c(y ) — " Vi ")
Y em1 — Y Alme — %)) = ¥F (e — Yot Alzegr — 7)) +

Al Alla
Y L L (19)
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Now summing the above equation from £ =0 to k = K — 1 and using y_; = yo, we get that

PYK r * ’YK s * 1 r * 1 s *
EVIK@U )+ Tyvyk(y ) < njvfo(w )+ %Vyo(y ) +
K-1 . A o k-1l Allay . 2
v (k-1 —yr, Alxxg — %)) +7" " ——lyx —yx—1l (50)

2

Using Cauchy-Schwarz inequality, Hg‘ai” = 9@ Z—y < ||All4 /Z—y = ﬁ, Lemma (a) we can show that
Y T T T

K71<

Yk—-1 — Yk, Alrg — 2%)) — yi|?

Al
v et Aoy ! = [

1Al . Al 1 |A]Je
<~ oo ek~ 12+~ = Uyg — yx—1ll> = v —Llyx — yr-1l?
Yy

- 2
< k1l

* (12
< - )

lzx —

1
< K - K12
<y grllex =

1
< K vr *
> 2ny 2 (z7) (51)

Summing equations and , and dividing both sides of the resulting equation using 2v% and using the
1-strongly convexity of r and s and Lemma (a) we get

1 1 2y~ K 2y~ K
e =2kl + =y — wl? < ——V, (@) +
20, My Nz ¢

" Vi (") (52)

Finally we get the desired result by using the choice v = 1 4+ min(nz e, Nypty) = 1 + k™1, which implies that
Yl =1/ +r)=1-1/(1+k) <exp(l/k+1). O

B.3 Proof of Lemma

Lemma 8. If f is p-strongly convex and L-smooth, then f = f — || - ||*/2 is convex and (L — p)-smooth.

Proof. Tt can be easily proved by noticing that

<Vi(z) — Vi(’f),xf@ = (Vf(x) - Vf(@),z—2Z)+ (—px + pz,x — T)
< (L —p)llz — 22 (53)

Similarly we can also easily show that (Vf(z) — Vf(Z),z — ) >0 O

B.4 Proof of Corollary

We omit the proof of Corollary [I] since it is very similar to that of Theorem Only additional step is to
upper-bound V%) (u*) by (Ly — piz)||wo — 2*[|?/2 using u* = V f(2*) and ug = V f(z) and Lemma

B.5 Proof of Lemma [2]
Proof. We want to prove that xj, iterates of (repeated below)
Upt1 = ug + 0(up — up—1)

1
whr = argamin (g 1,0) + 5ol + 5l — P (54)

. . I
Uj41 = argmin — (Tra1,u) 4+ f7(w) + fVuik (u)

u
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and (repeated below)
Vit = V(@) +0(V £ () = VS (2i-1))
Thgr = (@ — N2 Vis1) /(L + 7o) (55)
Typq = (@ + Nurrr) /(14 14)

are equivalent under the given condition. For this we will prove a stronger condition which additionally states
that up, = V f(z;) for all k = —1,0,1,....

We prove this by induction. Let us initialize both the updates using xy. For the base case it is easy to see that
when u_1 =uo =V f(z_,) = Vf(zy) = Vf(zo).

Let uz , = Vf(zz_,) and uj = Vf(z;3), and x; iterates of the both the rules match for k= 0,1,...,k. Then
clearly, ux41 = 6;6_5_1. This implies that x4 iterates are the same for both the rules.
Next we will prove that ug41 = V f(z;, ). Note that ugp1 = argmin, — (zrq1,u)+ f*(u) + W%V%C (u). However,

Vui,: (w) = f*(u) = f*(ur) = ((f*)"(ur),u — ug) is not defined unless we fix a sub-gradient (f*) (uz) € Of* (i) at
uy,. For making the rules equivalent we set (f*)’(ux) = z,. Note that z;, € 9f" (u) since up, = V f(z;,) (Lemma
d)) Then w1 = V f(zy,,), since

ks = angmin — (o) + () + -V (1)
= argmin — (mug i+ () (ne), ) + (1 m) ()
= arg min — (g1 + T, w) + (1 +n00) £ () (56)

and by Lemma (4| I(b up+1 = Vf(xy, ) is a valid and only solution (because of strong convexity of f*) to the
above optimization, where x; ,, = (2}, + Nu®r+1)/(1 + 7). Hence, we prove the equivalence between the rules
by induction. O

B.6 Extension of LPD to a problem with additional proximal-friendly terms

LPD can be extended to solve more general (possibly nonsmooth) minimax problems with the same guarantees:

minmax F(z)+ f(z) + (y, Ax) — h(y) — H(x), (57)

zeEX yeY

where F' and H are convex (and possibly non-smooth) and we have access to their proximal operators and
[, h satisfy Assumption [l The only change we need to make is to replace the xj41 and yg41 update steps in
Algorithm 2] with

T4l = arg Imrél/_rvl <ATﬂk+1 + Uk41, JU> +
|l = zl|* /200 + poll2]?/2 + F (=)
Yk+1 = arg ;Ilelg — (A g1 + Vg1, y) + (58)

ly = yill?/2ny + pyllyll?/2 + H(z).

Then the same guarantees as Corollaries [2] and [3| holds for this update. We omit the analysis since it is similar
to the proof of Theorem [4

B.7 Mirror-Descent lemma

Lemma 9 (Nesterov et al. 2018). Let r be strongly convex, F be p-(relatively) strongly w.r.t. to v, and

1
Tpy = arg n;in (9,2) + F(z) + EVQZ’]c (z) (59)
then
1 T 1 T 1 '
(9: @41 — ) + Flap) — Fo) < EV“ () — (5 + Vi, (@) — 5ka (Tk+1) (60)
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Algorithm 2 O-LPD: Original Lifted Primal-Dual algorithm

Required: X’ y7 (f7 La:a ,U/Jv)a (A7 ||A||>7 (h7 L.U’My)’ K’ {(nw,kan%h Nk Tk ak)}i{zi()l
Initialize (x_1,y-1) = (zo,y0) € X X Y

Set f=f— (/21> h=h— (1, /2)|| - |I* (2_1,y_,) = (20, ¥,) = (0, ¥0)

for 0<k<K-1do

Tpr1 = Tk + Ok (T — Ti—1) 5 Ykt1 = Yk + Ok(Yr — Yk-1),

U1 = Up + Op(up — Up—1), Vky1) = Vg + Op (v — V1)

1 = arg Mingex (A" Jer1 + Unr1, ) + g [lo — zx|® + & |22

Yp+1 = argmingey — (ATp41 — Vg1, Y) + 277;,6 ly — yel® + %H?JHQ

. . s

Up41 = argming — (wpq1, ) + [ (u) + Vi, () /0
V1 = argming — (Y1, 0) + b (0) + Vir (0) /1,
end

return (T, Yi, UK, Vi)

C ALGORITHM FOR BILINERALY-COUPLED SMOOTH MINIMAX
PROBLEM

First we will prove a general result for Bilineraly-coupled smooth minimax problem. Then we specialize it to the
Bi-SC-SC and Bi-C-SC cases.

As mentioned in the main text we first apply the follow reformulation to .

minmax [g(z,y) = f(@) + (y, Az) — h(y) (61
T yey
_ gg}}gleagnﬂnmfx[g(x’ym’ v) = —f(u) + (u, z) + %wa + (y, Az) — %HZJHQ — (v, y) + h* (v)] (62)

where

Pl max )= [f = £@) = (/) )] (63)
W)= max (o) = b= hz) = (a2 o] (64

Note that by Lemma |8 f is convex and (L, — p)-smooth, and h is convex and (L, — j1,)-smooth. Then by
Lemma a) f7is 1/(Ly — pe)-strongly convex, and h* is 1/(Ly — p1,)-strongly convex.

Instead of analyzing the Algorithm [I} we analyze the original update rule ([16) (Algorithm [2)) which is a con-
ceptually easier implementation of LPD. By the following lemma we show that Algorithm (1| and Algorithm [2| of
these are equivalent, when initialized appropriately.

Lemma 10 (Same as Lemma D . Let us initialize Algom'thmwith (z_q,zy, g—l’go) = (z0, 0, Yo, Y0), Algorithm

@ with (u_1,up,v_1,v0) = (Vf(z_1), Vf(zg), VR(z_,), Vh(zy)), and both the algorithms with the same (xo,yo).
Then for problem , iterates (zg,yi) of the Algom'thm and Algorithm are the same.

Proof. We omit the proof since we can easily prove it using the same techniques as used in the proof of Lemma
O

We prove the follow Theorem for characterizing the output of Algorithm

Theorem 4. Let there exists positive numbers Ap, Qg k, Qy i, Ouk, Oy for all k = —1,0,1..., such that
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Ak—1 = Op Ak,
|A]l 1 1 1
Op(— + —) + || Al < , Oy K —— 65
k(ay,k Oéch) | All oz, k41 T o (Lo = 2) (65)
|A]l 1 1 1
On(— + —) + Aoy o1 < —,  ay < —— (66)
Qy Qy vkt Ny, k ! Mo,k (Ly — fiy)
/\k+1 < min <77x,k+1(1 + naf,k,ux) 7 77y,k+1(1 + ny,kﬂy) 7 nu,k-‘rl(l + nu,k) : nv,k-i-l(l + Wv,k)) (67)
A N,k N,k N,k Nk

for all k =0,1,.... Then the following is true for any K =1,2,..., x € X,y € Y, u, v

K—-1
D A[® (@1, yi s vhg1) — (2, Yry1; k1, v)]
k=0

Ao o Al Allow xi1 2, Ao o AxlAllay k1 5
< _ _ AR e K41y, _ _ ) _
ST |z — zol| 5 |z — k| + 20 ly —oll 5 ly —yx|® +
Ao o f AK I Ao oo MK oo
— Vi (u) — Vi (u) + Va (v) — VE (v) (68)
The,0 N, K Tv,0 T, K

Note that proof of Theorem [4] closely follows the steps used in the proof of Lemma

Proof. Let x € X and y € ). Using Steps 4| and |5| (Algorithm [2)) and Lemma@twice—once with g = AT gpq1 +
Upt1, F = (pz/2)]| - ||> + F and r = || - [|*/2, and second time with ¢ = —AZj1 + Vg1, F = (py/2)| - > + H
and r = || - [|?/2—we get

(ATGhs1 + ks, g1 — @) +%(Ilzk+1ll2 = [lz]*) + F(2x41) — F(x)
<

1 Mo
5z = 2il]* = | = zia|® = lown — 2el®) = Sollz — 2 |® (69)
N,k 2
~ ~ X
(—AZpi1 + Vg1, Ykt1 — T) +7y(”yk+1H2 — lylI*) + H(yrs1) — H(y)
I
< (ly = well® = lly = vrra I = llynrs — wel®) = Zlly — yrsa|1? (70)
Qny,k 2
Note that f* and A" are l-strong convex w.r.t themselves. Again using Step |§| (Algorithm and Lemma
|§| twice—once with ¢ = —xg41, F = f‘ and r = f‘, and second time time with ¢ = —yxy1, F = A" and
r = h*—we get
* * 1 i* i* i* i*
<*xk+1vuk+1 - u) Jri (Uk+1) - i (u) < Nk (Vu (u) - Vuk+1 (u) - Vuk (uk+1)) - Vuk+1 (u) (71)
) . 1. . . .
(Ukt1, Vk41 —0) + 0" (vkg1) — A7 (v) < -~ (Vir (v) = Vi (0) = Vit (og41)) = Vi, (0) (72)
v,
Adding the above four equations and using the definition gapz’w(szrhwkH) = O(Tpy1,Y; U, Vkt1) —

O(z, Yp+1; Uk+1, V), where z = (z,y) and w = (u,v)

8ap, o 2kt 1, Wht1) = P(Tpp1, Y5 us Vky1) — P(T, Yyt U1, )

1 o 2 9
< e + )lle —xk - Th1 — Tl +

skl = (4 Bl = i |? = g —

L 2 1 Hy 2 1 2

=Ykl = (— + )Y — Yk - k+1 — Yk||” +

2 1y — el (Qny,k 5 MY =y 2ny,klly 1= Ul

1 _ 5 1 * 1 _ g
— Vi (u) = (—— + DVigp, () — — Vi (up41) +
N,k N,k N,k

1 1 . 1,
- (Ve (v) = (nv,k + )V, (v) = mvﬁ (Vk41) +

Ykt1 = Ukt 1, A(@rr1 — @) + — Wkt — ¥, A1 — Tag1)) +
(U1 = Ug41, Thyr — ) + (Vkt1 — Ukt 1, Ykl — ¥) (73)
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We can further expand out the last four term in the above inequality as follows. Using Step |3| (Algorithm [2)) and
Cauchy-Schwarz inequality we get

Yk+1 = Yrt1, A(@ry1 — ) = Ok (Yr—1 — Yk, A(@k — 7)) — (Y — Y1, A(@Tp1 — @) +
Or (Yr—1 — Yr, A(Tpp1 — 1))

< Ok (Yk—1 — Y, Az — ) — (Y — Yr+1, A(Tp1 — ) +
O || All vy, Ox

2 Al 2
Yk—1 — Ykl|” + — || Tk+1 — Tk 74
— P+ Gy ek = o (74)

for some oy, ;; > 0. Similarly we can show that

— (Y1 — ¥ A@pg1 — Tp1)) < =0k (i — v, A(zp—1 — 21)) + W1 — ¥, Azl — Tpg1)) +

Or | All vk 2, OxllAll 2
REARLIE Lt b = _ 75
5 |zr—1 — 2| + 20y lyr+1 — rll (75)
(U1 — Ukg1, Thp1 — ) < Op (Up—1 — Uk, Ty — &) — (U — Up41, Thg1 — T) +
05y i 9 O 2
: 11— — 76
5 lug—1 —url|” + S r |2k+1 — 2| (76)

(Vkt1 = Ukt 1, Ut1 — Y) < Ok (V-1 — Uk, Y& — Y) — (Vk — V1, Ykt1 — Y) +
Oroy
2

O

2
— 7
2000 1 lyk+1 — yxll (77)

lve—1 — vel* +

for some cvy ;s > 0, oy ) > 0, and a1, > 0. Using Lemma a) and 1/(L; — pg)- and 1/(L,, — p1,))-strong convexity
of f* and A", respectively we get that

1 5 1 2
——Vi (u < _||u —u 78
oV (1) € — g — ] (78)
1 * 1
- VA (v < |lopg1 —wvi]? 79
o Vo (Ug+1) < (L ﬂLy)ll k1 — Ukl (79)

Summing equations , , , , , , and up we get
1

1 Pz H
< B 2 Koy 2 o2 By 2
B9 (st ) € gl =l = (g + Bl = a4 oy = l? (o = el +
1 1 I 1 1 B
—Ve () — (— + 1)V, (w) + V2 (v) — +1HVE (v) +
-~ (u) (nu,k Wi (w) o~ L (v) (m,k Wi, ()

Ok (Ye—1 — Y, Ak — 2)) — (Y — Yr+1, A(Tpr1 — 7)) +

— Ok (i — ¥, Amp—1 — zk)) + (Y1 — ¥, Azl — Tpt1)) +
0y <uk_1 — Uk, Tk — 3;‘> — <uk — Uk4-1, Tht1 — 1‘> +

Ok (Vk—1 — Vi, Y — Y) — (Vk — Vi1, Y1 — Y) +

L2 o - G~ L o~ +

GkHAH#”yk — g1 = (an,k - Hk(ZlLil,L - 20411,,16)”'%+1 el

e mllum — el +

O, a;’k [og — vg—1]]* = WHWH - vi® (80)

: [l A 1 Al oo k41 1 LA 1 lAlloy k41 1 1
Assurmng ak(Qay,k + 200,k ) + 2 < 2N,k 9k(20¢w,k + 20y, ) + 2 < 2ny,k Qu ke < Nu,k+1(La —pz)’ and
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1
Qpp < ——— we get
vk = e (Dy—fiy) g

1 Lo 1 1 o
2 xr 2 2 Yy 2
a Zh+t1, Wk < T — x| — (— + =) ||z — x + —yel? - (—— + 22 —yrall? +
gap, o (2k+1, Wi41) 2%,kH | (2%16 5 )i sl 2ny’klly Y| (277y,k 5 Ny — yrsal
v ) - (e OV )+ V() - (—— + DVE () +
N,k N,k N,k T,k +
Ok (Yk—1 — Y, A(ze — 2)) — (Yr — Yrt1, AlXpyr — 2)) +
= Ok (yk — ¥, A(Tr—1 — 1)) + (Yot1 — Y, AT — Tpy1)) +
Ok (Uk—1 — U, T — &) — (Up — Upg1, Thg1 — T) +
Or (Vk—1 — Uiy Uk — ¥) — (Vk — Ukt 1, Y1 — ¥) +
Alla k Alla k41
0y, ” HQ z, ||37k _xk71||2 _ || || 2937 + H-TkJrl _kaQ +
Allay & Alloy k41
o A g Iy e
« Ay ke
O = s — | = =5 fuigs — ui]® +
« Ay k
O =5 o = vk |* = =5 [okr — i (81)

Multiplying both sides with Ag, and using 0x A\ = A\x—1 and

Akt1 < min (nw,k+1(1 + nw,kﬂx) : 77y,k+1(1 + ny,k:uy) 7 nu,k—&-l(l + 77u77€) ) nv,k-i-l(l + nv,k)> (82)
Ak N,k N,k N,k N,k
we get
Ak 2 Akt1 2 Ak 2 Akt1 2
Akga 241, Wk < x— x| — T—=Tp1l|"+ oY =Ykl — 55— Y — Yp+1l|” +

g0 (i1, we1) < 5 e 5 e | Ty gl = gy — gl
DY DY Mo o Abtl ¢ op*
—Va, (u) — Viyr () + Vi (v) — Vi +
nu,k Uk ( ) 77u,k+1 uk+1( ) ﬂv,k Vi ( ) 77u,k+1 vk+1( )

Ae—1 (Yk—1 — U, A(Tr — 2)) — Ak (Y — Y1, A(Tpp1 — 7)) +
— M1 (e — ¥ A1 — 1)) + Mk (W1 — ¥, Ak — Thg1)) +
A1 (Up—1 — Uk, Tk — ) — A (U — Ugt1, Thp1 — X) +

M1 (V=1 — Uk, Yk — Y) — Ak (Uk — Vg1, Ykt1 — ) +

Allag g Allag
o1 H H2 z, ”xk _ xk71||2 — s || || 2I, +1 ||xk+1 o xk”Q +
[Alloy [ Allay, k41
Ak—lTyHyk — gl = Ak%\\ykﬂ —ull® +
Qi k Ay ke+1
N L L AkTTJrHukH —ug|* +
Ay Ay k41
Ak—l%””k —opa|” - Ak%”%ﬂ — vg)? (83)
Summing the iterations of the above inequality for k = 0, ..., K —1 and without loss of generality setting A\_; = 0,
or r_—1 = o, Yy-—1 = Yo, U—-1 = Ug, and V-1 = Vg We get
K-1
)\0 /\K 2 >\O 2 )\K 2
Ak8AD, 4 (Zk+1, Wet1) < x—xo® — T—Tr|”+ Y —Yoll” — Y —ykl|” +
> Mg rsronn) < gl =l = 5o =il =l - 52y~
Ao o A f* Ao 1 ht AK ont
— Vi (u) — — Vi (u) + Ve (v) — Ve (v) +
gV (u) T e (1) oo 0 (v) o i (V)

A1 (Wr—1 — Y, Alxr — ) + Ak 1 (Yyx — v, Ak -1 — TK)) +
—Ax-1(Uk—1 — UK, Tk —T) — Ag—1 (Vk—1 — VK, Yk — Y) +

Alla Alla
e O g e BNy
(67 (0%
A1 2B g = ug—1]? = Ago1—2E og — v (84)

2
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Using Cauchy-Schwarz inequality we can show that

Ax—1]|A]|a Ar—1]|A
e e — e Al — o)) < ML e A e (e
Y,
Ax—1||A]e Ax—1||A
A1 i = Alecs =) < RO g Mol g )
AK—10y, Ax—1]|A
A1 (ug—1 — ug, ok — ) < o uge oy —ug |2 + LH”HZ‘K — x| (87)
2 2au,K
AK_10y Arx-1||A
A o1 - v o) £ O e AL e s

Summing equations , , , . and (| and then using OxAx = Ax—_1, Ox (50— AL =) +

204 K
Ao, /41 1 1A 1 ||A||0¢y,K+1 1
2 S T and HK( o K + 2av,1<) + 2 S 21y K’

we get

K-1

/\K Alla K
3 Mot (o, W) < oo — g - ML ey
k=0 .0
Ao 2 Ak Alloy k1 2
ly = woll* — ly — yxl
27’]%0 2
Ao o f* AK £ Ao ot AK e
— Vg (u) — Vi (0) + Vi (v) — Ve (v 89
o o (u) e e () oo (v) o i (V) (89)

D GUARANTEE FOR Bi-SC-SC PROBLEM

In this section we provide a guarantee for the output of Algorithm [1] in the Bi-SC-SC setting. We do this by
specializing Theorem [4] to this case.

Corollary 2 (Formal version of Theorem . Let®o =7T_1 = xo and Yy = Y_; = Yo. Additionally assume that
Nege = Nas My = Ny Muk = Tus Mok = o, and O =0 for all k =0,1,.... If we set

/ 2IIAII /
/Jac/J/y (%0)

N N 7 , 24

==/ 1+\/m) 777y:;y( Ly _ \/W) o= ( Hfz—l)_lam=( ?y—)_l
(91)
then for any K > 0, we can show that
el =+ S )+
< expl= TN (G + S5 P + G+ Pl —wl?) 2

Proof. We will first verify the parameter choices satisfies the required conditions of Theorem ] for some choice
of A, Oz ks Qy ey Qu i, Qi i for k= —1,0,1,....

Let Ay =% and 0, = 1/y where
L, 2] Al

L
y=14k"1, k= S -1+ 4 [ 2 -1 93
P vz by Hy (93)
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Clearly Ag_1 = 0)\;. Next we will verify which simplifies to the

<1+ min(%ﬂz’ My ey s Thes 77“) (94)

under our choice of A\x and k invariant stepsize choices. It is easy to see that

Ly — py 2||A Ly — L, — pg 2||A
Nar,uy ./,Ux,uy

Similarly we can also show that v < 1 4 min(ny Ly, My, 7).

Let « « Qi beinvariant to k and g . = /22, o = /B Q= ——E— Oy p = ———
z,ky Qy,ky Cu,ky Kok z,k oy y,k fe u,k \/ma v,k \/m
for all k =0,1,.... Next we verify conditions (65) and (66). We can show that

1 1 1
<

Qo ke = S = (96)
\/(Lr — o) \/(Lz — ) P Mk (L = pa)
and
A 1 A L, A L, 2||A|l 1
ek(qu —) + [|Allag k1 = ( 1Al + f*l) Ha 4] < pa( -1+ )= (97)
Oy k Oy k v M fy \ My 22 VB y N,k
Similar we can also show that,
IA|l 1 1 1
Op(— + —) + || 4]« <— S —FF— 98
k(%k %k) [ Allery k41 e (L =) (98)
Then according to Theorem [4] for any K >0,z € X, y € Y, u, v
K—1
VI (g1, Y Uy Vkg1) — P2, Y15 Upt1, V)]
k=0
1 fiz XAl 2, 1 2 fiy 7S A 2
< Dw—aol? - S A e Ly g2 - S A g
sl = ol =[BT e — a4y = ol - [
1 s 'YK s 1 . 'VK .
—Vig (w) = —Viige (u) + — V' (v) = — Vi (v) (99)
77'[1/ u 771) 771}
Setting © = 2%, y = y*, u = u* = Vf(2*) = argmin,, (z,u) — f*(u), v = v* = Vh(y*) = argmin, (y,v) — h*(v)
in we get
K—1

Y@ (Thr1, Y5 0%, Ves1) — DT, Y1 s Ung1, V7))

k=0
1 R 2, 1 . [E 214l .
< —lz* —wol? - /2" —zk|® + =y —wol® — [y —yx | +
g = ol = BT S =l 5l = woll = /5T S~

— Vi (u*) — — Vg (u*) + —VE (v*) — —VE (v*) (100)
7’]71/ 77u v 77'[)
Notice that the LHS above is positive, since by Lemma D(zpr1, ¥ u, Vh41) — (¥, Ypt1; Ukt1,v) > 0 for all
k=0,1,.... Then using this fact and Lemma [] four times, we get that

\/[T 277u (La: — Haz) 21 (Ly = 1y)
_ 1 LT *Nm 1 L1 */141
KL 2t y — Hyyos 2 101
< (G + e = ol + g + )y ) (101)
Using 1 — 2 < exp(—x) we get
1 1 K
=)<~ K <exp(——— 102
gl (G) =0- )" Sexp(——) (102)

Combining above two inequality gives us the desired result. 0
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E GUARANTEE FOR Bi-C-SC PROBLEM

In this section we provide a guarantee for the output of Algorithm [I]in the Bi-C-SC setting. We do this by
specializing Theorem [4] to this case.

Corollary 3 (Formal version of Theorem . LetTo =2_1 =20 and Yoy =Y_, = Yo and

1 1 1 16|A)2 1 1 kp, 1 2 2
7:77*:21@""7;7:7"‘47*:211_# y Muk = 75 Tk = 77
N,k (k + 1)77:8 Nz Hy My, k (k + 1)773; 2 My ( Y y) k k

(103)
Let Dx = maxX,exndom(f) [|Z — To|| and Dy = maxyeyndom(n) |y — voll. Then for any K >0,
(a) if Dy < 00 and Dy < oo,
_ o oL 16].4) 2Ly — i)
. < x 2 2 Yy Yy 2 104

_ K
where (T, Y ) = 7}((1?“)21@:1 k(xr, ye) = (25, ,)-
(b) even if the domain is unbounded we can show that

AL,
K(K +1)

16]| Al

_ LORAIE ALy — py)
py K (K +1)

* 2

/’I’ * *
Ty =kl < lz* = @ol* + lz* = @ol® +

K _
where (lKayK) = ﬁ Dokt ko @eyk) = Uk, Uk)-
(¢) if ¢p(x) =maxyey d(x,y), and we do a warm restart on variable y using K§ = Q:(1) initial additional
iterations of the same algorithm, then

4L, B20AI17 L (Ly —py)  SIAJ2

KK +1) " pyK(K+1) oy MyK(KH))IIx*fonQ- (106)

Pp(Tr) = dp(27) < (

(d) if Dx < oo and ¢q(x) =mingex ¢(v,y), and we do a warm restart on variable y with K¢ = Q.(1) initial
additional iterations of the same algorithm, then

2412

4L,

K(K +1)

Proof. We will first verify the parameter choices satisfies the required conditions of Theorem [] for some choice
of A, 0z ks Oy ks Qu, Qi i for k= —1,0,1,....

Let A\ = (k+1) and 0, = k/(k + 1). Clearly A\—1 = 0A. Next we will verify which simplifies to the

k+2 k+1 k+2 k+1 k+2 k+1 k+2 k+1
£2 Al R O g, P2 EED ) ang B2 D
N, k+1 Nz ke My,k+1 Ny,k Nu,k+1 N,k Mo, k+1 Mo,k

(k+1)
(108)

under our choice of Ay and p, = 0. It is easy to verify that

B+l 11 k42

N,k Ne  Ne N, k41

k+1 1 k(k+1 1 k+1)(k+2 k+2

( )+(k+1)ﬂy:*+(7)m’/+(k+l)uy2—+( )( )My:

My.k "y 2 My 2 Ty, k+1
E+1 k(k+1 E+1)(k+2 k+2
g+(’f+1)=g+(k+1)z( N —

M.k 2 N, k+1
E+1 k(k+1 E+1)(kE+2 Ek+2
( )+(k+1):g+(k+1)2( )( _

Mok 2 2 N, k+1

_ _4]4] _ kuy _ _k _ k _
Let g, = Tt Dy Yk = AT Quk = 3050 Qvk = 300 50y forall k=0,1,....
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Next we verify conditions and . We can show that
k 1

wk < < = 109

k= T = 2Ly ferls (109)
and

Al 1 ko AA? | 2L, 4| A[> 2L, | 16]A[? 1
Op(— + —) + || Allag kg1 = —(—— + —) + < + = 110
k(ay,k au’k) 14lle k41 k+ 1( Epy k ) (k4+2)py — k+1  py(k+1)  nep (110)
Similar we can also show that,
k k 1

ke < < = 111

2(Ly — py) ~ 2(Ly —py)  Mop(Ly — 1y) (1)
and

Al 1 ko (k+Dpy | 2(Le — py) ks 2(Ly — py) | py 1
- — < -y o —
o o) Tk = == A = i = vy T2 g 0P

)

Then according to Theorem [4] for any K >0,z € X, y € Y, u, v

K1
Z (k+ 1)[®(zk+1, Y5 1w, V1) — P2, Yrr15 Uk 41, V)]
k=0
8[| A|l? s (K +1)16] A 2 2 2 M 2
< (Lo + — )z —xol|* — oz — 2k |” + (Ly — )y — woll* — (K +1)*~Z{ly — yx]||
(Lo + LA 2 - LS = mlly = ol - (5 + 1222 |

(113)

(a) We define that (T, Jse; Tirc Uic) = (Lpey (k+ 1) 710y (k + 1) (ks Yo o vk). Then (Tr, Te) = (2, y,)-
Then Ti = xx can be shown as follows

&K,1+n;$K_K—1 2

KT T gy KrioEt TR UK
(K —=2)(K—1) n 2(K —1) n 2K
T KK+ K2TERE ) KT T RE+D)E
_(K—S)(K—Z)x n 2(K—2)m 2(K_1)m . 2(K) -
T KK+ KT ERE+D)TE?2TRKE+) T T RK+)R
(114)
9 K
R kx, =T 115
K(K+1); Th= K (115)
Similarly, we can prove that 5, =y o Then we can lower-bound the LHS of the (113 using Jensen’s inequality,
convexity of ®(-, y;u,-), and concavity of ®(z,-;-,v) as follows.
K-1 K—-1
(D (b +D))@@r, y; w, k) — (2, Y3 Ure,0)] < D (k+ D[@(@hr1,y3 w0 11) = D(@, Y15 ups1,0)] - (116)
k=0 k=0

Notice that by Lemma[df(a), V f(z) = arg min, (z,u) — f*(u) and Vh(z) = argmin, (y,v) — h*(v). Thus we have
¢(Tr,y) — ¢(x,¥x) = minmax (T, y; VF(Tx ), v) = Dz, ¥ v, VA(YK))
< O(Tr,y; VI(Tk), k) — (@, Yk Uk, V(U )) (117)
Therefore summing equations and (116), then setting u = Vf(Tx), v = VA(Yx) = Vh(yx) — 1y¥x and
using we get

L,
$(Fx ) — D@ Tre) <

K(K +1)

16]|AJJ?

2(Ly — piy)
py K (K +1)

lz — 2ol + M — wol* +
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Finally maximizing both sides over x € X and y € ) we get

2a o IO 2L =)

mDX+MyK(K+1) X K(K+ ) v (119)

a T — mi I <
Iglegffﬁ(l“loy) gg;(laﬁ(fv,yx)_

(b) Setting z = a*, y = y*, u = u* = Vf(2*) = arg min,, (x,u)— f*(u), v =v* = Vh(y*) = argmin, (y,v)—h"(v)
in (113 we get
K—1
VP (@hs1,y™ 50", viet1) — ©(2", Y15 Upgr, 07))]
k=0

8||AH2

* * H *
< (Lo =—)la" = woll* + (Ly = my)lly™ = woll* = (K + 1)* L lly" = el (120)

Notice that the LHS above is positive, since by Lemma D(xpr1, ¥ U, V1) — P(2*, Ypt1; k41, v) > 0 for all
k=0,1,.... Then using this fact we get that

2L, 16] 4]
(K +1)2  py(K +1)

2(Ly — py)

Tl (121)

Ma™ = ol|* +

I
By — ycll® <

(c) Let y(x) = argmax, ¢(x,y), then y(x) is a || A||/py-Lipschitz continuous in = (Nesterov 2005)). Then we can
show that

15(x) = yoll* < 2/|g(2) = y*[I* + 2lly" — wol®
< 2[g(@) = §)* + 2lly" - wol

IIAII2 - .
lz = 2*1* +2]ly* — yol? (122)
Then using the above inequality and (118]) we get
0p(Tx) = ¢p(27) = max §(Tc, y) — maxo(a”, y)
2L 16]| A2 2(L, — )
< T * 2 * 2 _ 2
< ( ZLx 16”"4”2 (Ly_.uy) 4||A||2 )H.T* _ H2 4(L )Hy yO”Q
T OK(K+1) pyK(K+1) Hy py K (K +1) K(K+1)
(123)
From the above inequality it is clear that
- ALy 32)| 4% (Ly — py)  8[IA]? 2
_ *) < * 124
if
L 4l A]2 (Ly —1y) | A]° 2
ly™ = woll* < ( - + = )™ = o™ (125)
2(Ly — py)  py(Ly — py) Hy foy(Ly — py)

Because of (121)), we can find a yy satisfying the above inquality by running our algorithm from from (xg, yo) for

16]|A
K8 2 QA — )y % ¢ 2D o — ol + 2L, = )l =

\/ / 4||A||2 i ( Ny) ||A||2)Hx* — 20)12) (126)

Hy Hy
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iterations.
4 2L 16]| A2 4 2(Ly — py)
* » 2 < T =+ * 2 S St B ol P4 _
||y yKOH = ” (K+1)2 My(K+1)2)||x .’L'()” by (K+1) ||y yOH
L, 4[| A2 L, — All?
2(Ly = py)  py(Ly — py) Hy py (Ly — py)
Similarly using the above inequality and (118) we get
¢a(y*) — ¢a(yx) = ming(z, y*) — min é(z, yx)
< 6Tk, y") — ming(z, y)
2L, 16]A|l? 2(Ly — py)
e ) 2 128
SKE+D) YT KK +1) X K(K+1) Iy = wol (128)
From the above inequality it is clear that
4L 32||A||?
Dz D? 129
if
* Lz 8 A 2
ly* = oll® < ( AE )b, (130)

(Ly — hy)  py(Ly — piy)

Because of (121]), we can find a yg satisfying the above inquality by running our algorithm from from (zg, yo) for

16|| Al|2
K4 > Q( /AL, — )y % ¢ L, + 2R o o+ 22, — )l = ol
Yy
A 2
\/ Jz+ 548 g (13)

iterations.
4 2L, 16]| A2 4 2(Ly — py)
* 2 < * 2 + ey Py . 2
ly ngH > My((K+1)2 My(K+1)2)||I xo| iy (K—i—l) ly™ — voll
L, 8|| Al
< ¢S pe (132)

(Ly - My) My(Ly - My)

F BALANCED MIRROR-PROX AND ADDITIONAL EXPERIMENTAL
DETAILS FOR SECTION

For all the experiments we used the theory specified stepsize choices. Balanced Mirror Prox (which we shorten
as MP Bal.) is variant of the standard Mirror-Prox algorithm (folklore). For implementing MP Bal. first we
normalize the distance functions so that objective becomes 1-strongly convex in both the min variable z and
the max variable y. This modifies Lipschitz constants of the gradients as Ly < Ly /pty, Lay < Lay/ Vizly =
IAll//Bxtty, Ly < Ly/py. Finally, in this modified geometry (distance metrics), we run the standard MP
with the stepsize 1/ max(Ly, Lyy, Ly). Since we modified the Lipschitz constants of the gradients this leads to a

Ty
iteration complexity of O( L” + \/‘&

Appendix C of (Cohen et al. 2020).

+ )log( ). This result was also mentioned as a known folklore in

For experiments using quadratic minimax problems we use d = 5 and we generate B, A, C as follows. Let
A = diag(r® 71, ..., r% ). Then A4 = QUIANQANT B = BTB, B = Q5 1>A(Q(B MMT ¢ =CTC,
C= QEEVAQCENT  where QAN QA2 QB QB 2), QD QC 2) are 1.i.d. d x d orthonormal matrices
which are generated uniformly at random. For Figure [laj we set r = 2.0, and for Figure [1b| we vary r using the
values {1.25,1.5,1.75,2.0,2.25}.
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