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Abstract

While low-precision optimization has been widely

used to accelerate deep learning, low-precision

sampling remains largely unexplored. As a con-

sequence, sampling is simply infeasible in many

large-scale scenarios, despite providing remark-

able benefits to generalization and uncertainty es-

timation for neural networks. In this paper, we

provide the first study of low-precision Stochastic

Gradient Langevin Dynamics (SGLD), showing

that its costs can be significantly reduced with-

out sacrificing performance, due to its intrinsic

ability to handle system noise. We prove that

the convergence of low-precision SGLD with full-

precision gradient accumulators is less affected

by the quantization error than its SGD counter-

part in the strongly convex setting. To further en-

able low-precision gradient accumulators, we de-

velop a new quantization function for SGLD that

preserves the variance in each update step. We

demonstrate that low-precision SGLD achieves

comparable performance to full-precision SGLD

with only 8 bits on a variety of deep learning tasks.

1. Introduction

Low-precision optimization has become increasingly popu-

lar in reducing computation and memory costs of training

deep neural networks (DNNs). It uses fewer bits to represent

numbers in model parameters, activations, and gradients,

and thus can drastically lower resource demands (Gupta

et al., 2015; Zhou et al., 2016; De Sa et al., 2017; Li et al.,

2017). Prior work has shown that using 8-bit numbers in

training DNNs achieves about 4× latency speed ups and

memory reduction compared to 32-bit numbers on a wide

variety of deep learning tasks (Sun et al., 2019; Yang et al.,

2019; Wang et al., 2018b; Banner et al., 2018). As datasets

and architectures grow rapidly, performing low-precision
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optimization enables training large-scale DNNs efficiently

and enables many applications on different hardware and

platforms.

Despite the impressive progress in low-precision optimiza-

tion, low-precision sampling remains largely unexplored.

However, we believe stochastic gradient Markov chain

Monte Carlo (SGMCMC) methods (Welling & Teh, 2011;

Chen et al., 2014; Ma et al., 2015) are particularly suited

for low-precision arithmetic because of their intrinsic ro-

bustness to system noise. In particular: (1) SGMCMC ex-

plores weight space instead of converging to a single point,

thus it should not require precise weights or gradients; (2)

SGMCMC even adds noise to the system to encourage ex-

ploration and so is naturally more tolerant to quantization

noise; (3) SGMCMC performs Bayesian model averaging

during testing using an ensemble of models, which allows

coarse representations of individual models to be compen-

sated by the overall model average (Zhu et al., 2019).

SGMCMC is particularly compelling in Bayesian deep

learning due to its ability to characterize complex and multi-

modal DNN posteriors, providing state-of-the-art general-

ization accuracy and calibration (Zhang et al., 2020; Li et al.,

2016; Gan et al., 2017; Heek & Kalchbrenner, 2019). More-

over, low-precision approaches are especially appealing in

this setting, where at test time we must store samples from a

posterior over millions of parameters, and perform multiple

forward passes through the corresponding models, which

incurs significant memory and computational expenses.

In this paper, we give the first comprehensive study of

low-precision Stochastic Gradient Langevin Dynamics

(SGLD) (Welling & Teh, 2011), providing both theoreti-

cal convergence bounds and promising empirical results

in deep learning. On strongly log-concave distributions

(i.e. strongly convex functions for SGD), we prove that

the convergence of SGLD with full-precision gradient ac-

cumulators is more robust to the quantization error than its

counterpart in SGD. Surprisingly, we find that SGLD with

low-precision gradient accumulators can diverge arbitrarily

far away from the target distribution with small stepsizes.

We identify the source of the issue and develop a new quan-

tization function to correct the bias with minimal overhead.

Empirically, we demonstrate low-precision SGLD across

different tasks, showing that it is able to provide superior
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generalization and uncertainty estimation using just 8 bits.

We summarize our contributions as follows:

• We provide a methodology for SGLD to leverage low-

precision computation, including a new quantization

function, while still guaranteeing its convergence to

the target distribution.

• We offer theoretical results which explicitly show how

quantization error affects the convergence of the sam-

pler in the strongly convex setting, proving its robust-

ness to quantization noise over SGD.

• We show SGLD is particularly suitable for low-

precision deep learning over a range of experiments,

including logistic regression, Bayesian neural networks

on image and text classification.

In short, low-precision SGLD is often a compelling alter-

native to standard SGLD, improving speed and memory

efficiency, while retaining accuracy. Moreover, SGLD is ar-

guably more amenable to low-precision computations than

SGD. Our code is available here.

2. Related Work

To speed up SGLD training, most existing work is on dis-

tributed learning with synchronous or asynchronous commu-

nication (Ahn et al., 2014; Chen et al., 2016; Li et al., 2019).

Another direction is to shorten training time by accelerating

the convergence using variance reduction techniques (Dubey

et al., 2016; Baker et al., 2019), importance sampling (Deng

et al., 2020) or a cyclical learning rate schedule (Zhang

et al., 2020). To speed up SGLD during testing, distillation

techniques are often used to save both compute and memory

which transfer the knowledge of an ensemble of models to a

single model (Korattikara et al., 2015; Wang et al., 2018a).

Low-precision computation has become one of the most

common approaches to reduce latency and memory con-

sumption in deep learning and is widely supported on new

emerging chips including CPUs, GPUs and TPUs (Micike-

vicius et al., 2018; Krishnamoorthi, 2018; Esser et al., 2020).

Two main directions to improve low-precision training in-

clude developing new number formats (Sun et al., 2019;

2020) or studying mixed-precision schemes (Courbariaux

et al., 2015; Zhou et al., 2016; Banner et al., 2018). Re-

cently, one line of work applies the Bayesian framework

to learn a deterministic quantized neural network (Soudry

et al., 2014; Cheng et al., 2015; Achterhold et al., 2018; van

Baalen et al., 2020; Meng et al., 2020).

Low-precision computation is largely unexplored for

Bayesian neural networks, despite their specific promise

in this domain. Su et al. (2019) proposes a method to train

binarized variational BNNs, and Cai et al. (2018) devel-

ops efficient hardware for training low-precision variational

BNNs. The only work on low-precision MCMC known

to us is Ferianc et al. (2021), which directly applies post-

training quantization techniques from optimization (Jacob

et al., 2018) to convert BNNs trained by Stochastic Gradi-

ent Hamiltonian Monte Carlo (Chen et al., 2014) into low-

precision models. We instead study training low-precision

models by SGLD from scratch, to accelerate both training

and testing.

3. Preliminaries

3.1. Stochastic Gradient Langevin Dynamics

In the Bayesian setting, given some dataset D, a model with

parameters θ ∈ R
d, and a prior p(θ), we are interested in

sampling from the posterior p(θ|D) ∝ exp(−U(θ)), where

the energy function is

U(θ) = −
∑

x∈D
log p(x|θ)− log p(θ).

When the dataset is large, the cost of computing a sum over

the entire dataset is expensive. Stochastic Gradient Langevin

Dynamics (SGLD) (Welling & Teh, 2011) reduces the cost

by using a stochastic gradient estimation ∇Ũ , which is an

unbiased estimator of∇U based on a subset of the datasetD.

Specifically, SGLD updates the parameter θ in the (k+1)-th
step following the rule

θk+1 = θk − α∇Ũ(θk) +
√
2αξk+1, (1)

where α is the stepsize and ξ is a standard Gaussian noise.

Compared to the SGD update, the only difference is that

SGLD adds an additional Gaussian noise in each step, which

essentially enables SGLD to characterize the full distribu-

tion instead of converging to a single point. The close

connection between SGLD and SGD makes it convenient

to implement and run on existing deep learning tasks for

which SGD is the typical learning algorithm.

3.2. Low-Precision Training

We study training a low-precision model by SGLD from

scratch, to reduce both training and testing costs. Specifi-

cally, we follow the framework in prior work to quantize

the weights, activations, backpropagation errors, and gra-

dients (Wu et al., 2018; Wang et al., 2018b; Yang et al.,

2019). We mainly consider the effect of weight and gradient

quantization following previous work (Li et al., 2017; Yang

et al., 2019). Please refer to Appendix A for more details.

3.2.1. NUMBER REPRESENTATIONS

To represent numbers in low-precision, one simple way is to

use fixed point, which has been utilized in both theory and
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practice (Gupta et al., 2015; Lin et al., 2016; Li et al., 2017;

Yang et al., 2019). Specifically, suppose that we use W bits

to represent numbers with F of those W bits to represent

the fractional part. Then there is a distance between con-

secutive representable numbers, ∆ = 2−F , which is called

quantization gap. The representable numbers also have a

lower bound l and an upper bound u, where

l = −2W−F−1, u = 2W−F−1 − 2−F .

As shown above, when the number of bits decreases, the

accuracy of number representation decreases. We use this

type of number representation in our theoretical analysis

and empirical demonstration following previous work (Li

et al., 2017; Yang et al., 2019).

Another common type of number representation is floating

point where each number has its own exponent part. Be-

tween fixed point and floating point, there is block floating

point which allows all numbers within a block to share the

same exponent (Song et al., 2018). We use block floating

point for deep learning experiments since it has been shown

more favorable for deep models (Yang et al., 2019).

3.2.2. QUANTIZATION

Having low-precision number representation in hand, we

also need a quantization function Q to convert a real-valued

number into a low-precision number. Such functions include

deterministic rounding and stochastic rounding. Particularly,

the deterministic rounding function Qd quantizes a number

to its nearest representable neighbor as follows:

Qd(θ) = sign(θ) · clip

(

∆

⌊ |θ|
∆

+
1

2

⌋

, l, u

)

,

where clip(x, l, u) = max(min(x, u), l). Instead, stochas-

tic roundingQs quantizes a number with a probability based

on the distance to its representable neighbor:

Qs(θ) =

{

clip
(

∆
⌊

θ
∆

⌋

, l, u
)

, w.p.
⌈

θ
∆

⌉

− θ
∆

clip
(

∆
⌈

θ
∆

⌉

, l, u
)

, w.p. 1−
(⌈

θ
∆

⌉

− θ
∆

)

.

An important property of Qs is that E[Qs(θ)] = θ, which

means the quantized number is unbiased. Qs is generally

preferred over Qd in practice since it can preserve gradient

information especially when the gradient update is smaller

than the quantization gap (Gupta et al., 2015; Wang et al.,

2018b). In what follows, we use QW and ∆W to denote

the weights’ quantizer and quantization gap, QG and ∆G to

denote gradients’ quantizer and quantization gap.

To do the gradient update in low-precision training, there

are two common choices depending on whether we store

an additional copy of full-precision weights. Full-precision

gradient accumulators use a full-precision weight buffer

to accumulate gradient updates and only quantize weights

before computing gradients. SGD with full-precision gra-

dient accumulators (SGDLP-F) updates the weights as the

following,

θk+1 = θk − αQG

(

∇Ũ(QW (θk))
)

,

where we use full-precision θk+1 and θk in the update, and

only quantize the weight for forward and backward propa-

gation (Courbariaux et al., 2015; Li et al., 2017).

However, gradient accumulators have to be frequently up-

dated during training, therefore it will be ideal to also rep-

resent it in low-precision to further reduce the costs. To

achieve it, we could instead do the update as follows,

θk+1 = QW

(

θk − αQG

(

∇Ũ(θk)
))

, (2)

where θ is always represented in low-precision. This update

of SGD is called using low-precision gradient accumulators

(SGDLP-L). Both full- and low-precision gradient accu-

mulators have been widely used: low-precision gradient

accumulators are cheaper and faster because of having all

numbers in low-precision, whereas full-precision gradient

accumulators generally have better performance because

of more precisely reflecting small gradient updates (Cour-

bariaux et al., 2015; Li et al., 2017).

4. Low-Precision SGLD

In this section, we first study the convergence of low-

precision SGLD with full-precision gradient accumulators

(SGLDLP-F) on strongly log-concave distributions (i.e. the

energy function is strongly convex) and show that SGLDLP-

F is less affected by the quantization error than its SGD

counterpart. Next we analyze low-precision SGLD with

low-precision gradient accumulators (SGLDLP-L) under

the same setup and prove that SGLDLP-L can diverge ar-

bitrarily far away from the target distribution with a small

stepsize, which however is typically required by SGLD to

reduce asymptotic bias. Finally, we solve this problem by

developing a variance-corrected quantization function and

further prove that with this quantization function, SGLDLP-

L converges with small stepsizes.

4.1. Full-Precision Gradient Accumulators

As shown in Equation (1), the update of SGLD is simply

a SGD update plus a Gaussian noise. Therefore the low-

precision formulation for SGD in Section 3.2 can be nat-

urally extended to SGLD training. Similar to SGDLP-F,

we can do low-precision SGLD with full-precision gradient

accumulators (SGLDLP-F) as the following:

θk+1 = θk − αQG

(

∇Ũ(QW (θk))
)

+
√
2αξk+1, (3)
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which can also be viewed as SGDLP-F plus a Gaussian

noise in each step. However, the Gaussian noise turns out

to help counter-effect the noise introduced by quantization,

making SGLDLP-F more robust to inaccurate number repre-

sentation and converging better than SGDLP-F as we show

later in this section.

We now prove the convergence of SGLDLP-F. Our analysis

is built upon the 2-Wasserstein distance bounds of SGLD

in Dalalyan & Karagulyan (2019), where the target distri-

bution is assumed to be smooth and strongly log-concave.

We additionally assume the energy function has Lipschitz

Hessian following recent work in low-precision optimiza-

tion (Yang et al., 2019). In summary, the energy function U
has the following assumptions, ∀ θ, θ′ ∈ R

d, it satisfies











U(θ)− U(θ′)−∇U(θ′)⊺(θ − θ′) ≥ (m/2) ∥θ − θ′∥22 ,
∥∇U(θ)−∇U(θ′)∥2 ≤M ∥θ − θ′∥2 ,
∥∇2U(θ)−∇2U(θ′)∥2 ≤ Ψ∥θ − θ′∥2,

for some positive constants m, M and Ψ. We further as-

sume that the variance of the stochastic gradient is bounded

E[∥∇Ũ(θ) − ∇U(θ)∥22] ≤ κ2 for some constant κ. For

simplicity, we consider SGLD with a constant stepsize α.

We use stochastic rounding for quantizing both weights and

gradients as it is generally better than deterministic rounding

and has also been used in previous low-precision theoretical

analysis (Li et al., 2017; Yang et al., 2019).

Theorem 1. We run SGLDLP-F under the above assump-

tions and with a constant stepsize α ≤ 2/(m +M). Let

π be the target distribution, µ0 be the initial distribution

and µK be the distribution obtained by SGLDLP-F after K
iterations, then the 2-Wasserstein distance is

W2(µK , π) ≤ (1− αm)KW2(µ0, π) + 1.65(M/m)(αd)1/2

+min

(

Ψ∆2
W d

4m
,
M∆W

√
d

2m

)

+

√

(∆2
G +M2∆2

W )αd+ 4ακ2

4m
.

This theorem shows that SGLDLP-F converges to the accu-

racy floor min
(

Ψ∆2
W

d
4m , M∆W

√
d

2m

)

given large enough num-

ber of iterations K and small enough stepsize α. Besides, if

we further assume that the energy function is quadratic, that

is Ψ = 0, then SGLDLP-F converges to the target distribu-

tion asymptotically. This matches the result of SGDLP-F

on a quadratic function which converges to the optimum

asymptotically (Li et al., 2017). Our theorem also recovers

the bound in Dalalyan & Karagulyan (2019) when the quan-

tization gap is zero (we ignore 1.65M in the denominator

in their bound for simplicity).

However, when the energy function is not quadratic, the

convergence of SGLDLP-F to the target distribution has

a O(∆2
W ) rate whereas SGDLP-F to the optimum has a

O(∆W ) rate (Yang et al., 2019)1. Recall that ∆W = 2−F

where F is the number of fractional bits, our result suggests

that asymptotically, SGLD only needs half the number of

bits as SGD needs to achieve the same convergence accu-

racy! Our comparison between SGLD and SGD also fits

into the literature in comparing sampling and optimization

convergence bounds (Ma et al., 2019; Talwar, 2019) (see

Appendix E for more details). In summary, our theorem

implies how sensitive SGLD is to the quantization error, and

actually suggests that sampling methods are more suitable

with low-precision computation than optimization methods.

4.2. Low-Precision Gradient Accumulators

As mentioned before, it will be ideal to further reduce the

costs using low-precision gradient accumulators. Mimick-

ing the update of SGDLP-L in Equation (2), it is natural to

get the following update rule for SGLD with low-precision

gradient accumulators (SGLDLP-L),

θk+1 = QW

(

θk − αQG

(

∇Ũ(θk)
)

+
√
2αξk+1

)

. (4)

Surprisingly, while we can prove a convergence result for

SGLDLP-L, our theory and empirical results suggest that it

can diverge arbitrarily far away from the target distribution

with small stepsizes.

Theorem 2. We run SGLDLP-L under the same assump-

tions as in Theorem 1. Let µ0 be the initial distribution

and µK be the distribution obtained by SGLDLP-L after K
iterations, then

W2(µK , π) ≤ (1− αm)KW2(µ0, π) + 1.65(M/m)(αd)1/2

+min

(

Ψ∆2
W d

4m
,
M∆W

√
d

2m

)

+A+
(

(1− αm)K + 1
) ∆W

√
d

2
,

where A =

√

(α∆2
G
+α−1∆2

W
)d+4ακ2

4m
.

Since the term A contains α−1 in the numerator, this theo-

rem implies that as the stepsize α decreases, W2 distance

between the stationary distribution of SGLDLP-L and the

target distribution may increase. To test if this is the case,

we empirically run SGLDLP-L on a standard Gaussian dis-

tribution in Figure 1. We use 8-bit fixed point and assign 3

of them to represent the fractional part. Our results verify

that SGLDLP-L indeed diverges from the target distribution

with small stepsizes. In the same time, SGLDLP-F always

converges to the target distribution with different stepsizes,

aligning with the result in Theorem 1.

One may choose a stepsize that minimizes the above W2

distance to avoid divergence, however, getting that optimal

1Their bound O(∆2
W ) is stated for the squared norm therefore

we take its square root to compare with our W2 distance bound
which is stated for the norm.
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Algorithm 1 Variance-Corrected Low-Precision SGLD (VC

SGLDLP-L).

given: Stepsize α, number of training iterations K, gra-

dient quantizer QG and quantization gap of weights ∆W .

for k = 1 : K do

update θk+1 ← Qvc
(

θk − αQG

(

∇Ũ(θk)
)

, 2α,∆W

)

end for

output: samples {θk}

categorical distribution over {∆W ,−∆W , 0} to get it,

Cat(µ, v) =















∆W , w.p. v+µ2+µ∆W

2∆2
W

−∆W , w.p. v+µ2−µ∆W

2∆2
W

0, otherwise

(5)

Now we show how to use this categorical distribution to pre-

serve the correct mean and variance for quantized θk+1. We

do so considering two cases: when the Gaussian variance

2α is larger than the largest possible stochastic rounding

variance ∆2
W /4, Qvc first adds a small Gaussian noise and

uses a sample from Equation (5) to make up the remain-

ing variance; in the other situation, Qvc directly samples

from Equation (5) to achieve the target variance. The full

description of Qvc is outlined in Algorithm 2.

Our variance-corrected quantization function Qvc always

guarantees the correct mean, E [θk+1,i] = θk,i−α∇Ũ(θk)i,
and further guarantees the correct variance Var [θk+1,i] =
2α most of the time except when v = 2α < vs. However

that case rarely happens in practice, because the stepsize has

to be extremely small. Besides, our quantization is simple

to implement and its cost is negligible compared to gradient

computation. Although Qvc only preserves the correctness

of the first two moments (i.e. mean and variance), we show

that this does not affect the performance much in both theory

and practice.

We now prove that SGLDLP-L using Qvc, denoting VC

SGLDLP-L, converges to the target distribution up to a

certain accuracy level with small stepsizes.

Theorem 3. We run VC SGLDLP-L as in Algorithm 1. Be-

sides the same assumptions in Theorem 1, we further assume

the gradient is bounded E

[∥

∥

∥
QG(∇Ũ(θk))

∥

∥

∥

1

]

≤ G. Let

v0 = ∆2
W /4. Then

W2(µK , π) ≤ (1− αm)KW2(µ0, π) + 1.65(M/m)(αd)1/2

+min

(

ΨA

m
,
M

√
A

m

)

+

√

α∆2
Gd+ 4ακ2

4m
+

A

αm

+
(

(1− αm)K + 1
)√

A,

where A =







5v0d, if 2α > v0

max (2∆WαG, 4αd) , otherwise

Algorithm 2 Variance-Corrected Quantization Function

Qvc.

input: (µ, v, ∆) {Qvc returns a variable with mean µ
and variance v}
v0 ← ∆2/4 {∆2/4 is the largest possible variance

that stochastic rounding can cause}
if v > v0 then {add a small Gaussian noise and sample

from the discrete grid to make up the remaining variance}
x← µ+

√
v − v0ξ, where ξ ∼ N (0, Id)

r ← x−Qd(x)
for all i do

sample ci from Cat(|ri|, v0) as in Equation (5)

end for

θ ← Qd(x) + sign(r)⊙ c
else {sample from the discrete grid to achieve the target

variance}
r ← µ−Qs(µ)
for all i do

vs ←
(

1− |ri|
∆

)

· r2i + |ri|
∆ · (−ri + sign(ri)∆)

2

if v > vs then

sample ci from Cat(0, v − vs) as in Equation (5)

θi ← Qs(µ)i + ci
else

θi ← Qs(µ)i
end if

end for

end if

clip θ if outside representable range

return θ

This theorem shows that when the stepsize α → 0, VC

SGLDLP-L converges to the target distribution up to an error

instead of diverging. Moreover, VC SGLDLP-L converges

to the target distribution in O(√∆W ) which is equivalent

to the convergence rate of SGD with low-precision gradient

accumulators to the optimum (Li et al., 2017; Yang et al.,

2019). However, we show empirically that VC SGLDLP-L

has a much better dependency on the quantization gap than

SGD. We leave the improvement of the theoretical bound

for future work.

We empirically demonstrate VC SGLDLP-L on the stan-

dard Gaussian distribution under the same setting as in the

previous section in Figure 1. Regardless of the stepsize, VC

SGLDLP-L converges to the target distribution and approx-

imates the target distribution as accurately as SGLDLP-F,

showing that preserving the correct variance is the key to

ensuring correct convergence.

5. Experiments

We demonstrate the generalization accuracy and uncertainty

estimation of low-precision SGLD with full-precision gradi-
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Table 1. Test errors (%) on CIFAR with ResNet-18 and IMDB with LSTM.

Low-precision SGLD outperforms low-precision SGD across different

datasets, architectures and number representations, and the improvement

becomes larger when using more low-precision arithmetic.

CIFAR-10 CIFAR-100 IMDB

32-BIT FLOATING POINT

SGLDFP 4.65 ±0.06 22.58 ±0.18 13.43 ±0.21

SGDFP 4.71 ±0.02 22.64 ±0.13 13.88 ±0.29

CSGLDFP 4.54 ±0.05 21.63 ±0.04 13.25 ±0.18

8-BIT FIXED POINT

NAÈIVE SGLDLP-L 7.82 ±0.13 27.25 ±0.13 16.63 ±0.28

VC SGLDLP-L 7.13 ±0.01 26.62 ±0.16 15.38 ±0.27

SGDLP-L 8.53 ±0.08 28.86 ± 0.10 19.28 ±0.63

SGLDLP-F 5.12 ±0.06 23.30 ±0.09 15.40 ±0.36

SGDLP-F 5.20 ±0.14 23.84 ±0.12 15.74 ±0.79

8-BIT BLOCK FLOATING POINT

NAÈIVE SGLDLP-L 5.85 ±0.04 26.38 ±0.13 14.64 ±0.08

VC SGLDLP-L 5.51 ±0.01 25.22 ±0.18 13.99 ±0.24

SGDLP-L 5.86 ±0.18 26.19 ±0.11 16.06 ±1.81

SGLDLP-F 4.58 ±0.07 22.59 ±0.18 14.05 ±0.33

SGDLP-F 4.75 ±0.05 22.9 ±0.13 14.28 ±0.17

VC CSGLDLP-L 4.97 ±0.10 22.61 ±0.12 13.09 ±0.27

CSGLD-F 4.32 ±0.07 21.50 ±0.14 13.13 ±0.37

Table 2. ECE ↓ (%) on CIFAR with ResNet-18. VC

SGLDLP-L and SGLDLP-F achieve almost the same or even

lower ECE than full-precision SGLD whereas the ECE of

low-precision SGD increases significantly.

CIFAR-10 CIFAR-100

32-BIT FLOATING POINT

SGLD 1.11 3.92
SGD 2.53 4.97

CSGLDFP 0.66 1.38

8-BIT FIXED POINT

VC SGLDLP-L 0.6 3.19
SGDLP-L 3.4 10.38
SGLDLP-F 1.12 4.42
SGDLP-F 3.05 6.80

8-BIT BLOCK FLOATING POINT

VC SGLDLP-L 0.6 5.82
SGDLP-L 4.23 12.97
SGLDLP-F 1.19 3.78
SGDLP-F 2.76 5.2

VC CSGLDLP-L 0.51 1.39
CSGLD-F 0.56 1.33

Fixed Point We use 8-bit fixed point for weights and gra-

dients but full-precision for activations since we find low-

precision activations significantly harm the performance.

Similar to the results in previous sections, SGLDLP-F is

better than SGDLP-F and VC SGLDLP-L significantly out-

performs naÈıve SGLDLP-L and SGDLP-L across datasets

and architectures. Notably, the improvement of SGLD over

SGD becomes larger when using more low-precision arith-

metic. For example, on CIFAR-100, VC SGLDLP-L out-

performs SGDLP-L by 2.24%, SGLDLP-F outperforms

SGDLP-F by 0.54% and SGLDFP outperforms SGDFP by

0.06%. This demonstrates that SGLD is particularly compat-

ible with low-precision deep learning because of its natural

ability to handle system noise.

Block Floating Point We also consider block floating

point (BFP) which is another common number type and

is often preferred over fixed point on deep models due to

less quantization error caused by overflow and underflow

(Song et al., 2018). Following the block design in Yang et al.

(2019), we use small-block for ResNet and big-block for

LSTM. The Qvc function naturally generalizes to BFP and

only needs a small modification (see Appendix G for the

algorithm of Qvc with BFP). By using BFP, the results of all

low-precision methods improve over fixed point. SGLDLP-

F can match the performance of SGLDFP with all num-

bers quantized to 8-bit except gradient accumulators. VC

SGLDLP-L still outperforms naÈıve SGLDLP-L indicating

the effectiveness of Qvc with BFP. Again, SGLDFP-F and

VC SGLDLP-L outperform their SGD counterparts on all

tasks, suggesting the general applicability of low-precision

SGLD with different number types.

Cyclical SGLD We further apply low-precision to a recent

variant of SGLD, cSGLD, which utilizes a cyclical learning

rate schedule to speed up convergence (Zhang et al., 2020).

We observe that the results of cSGLD-F are very close to

those of cSGLDFP, and VC cSGLDLP-L can match or even

outperforms full-precision SGD with all numbers quantized

to 8 bits! These results indicate that diverse samples from

different modes, obtained by the cyclical learning rate sched-

ule, can counter-effect the quantization error by providing

complementary predictions.

Expected Calibration Error Besides generalization per-

formance, we further report the results of expected cali-

bration error (ECE) (Guo et al., 2017) to demonstrate the

uncertainty estimation of low-precision SGLD. In Table 2,

we observe that SGLDLP-F and VC SGLDLP-L achieve al-

most the same or even lower ECE than full-precision SGLD,

showing the ability of SGLD to give well-calibrated predic-

tions does not degenerate due to using low-precision. VC

SGLDLP-L sometimes gives lower ECE than SGLDLP-

F which may be due to the regularization effect of low-

precision arithmetic. Moreover, cSGLD in low-precision

not only achieves the best accuracy but also has the best

calibration, further suggesting that diverse samples obtained

by a cyclical learning rate schedule have a positive effect on

quantization. In contrast, the ECE of low-precision SGD

increases significantly compared to full-precision SGD, im-
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Table 3. Test errors (%) on ImageNet with ResNet-18. The im-

provement of SGLD over SGD becomes larger in low-precision

than in full-precision.

TOP-1 TOP-5

32-BIT FLOATING POINT

SGLD 30.39 10.76
SGD 30.56 10.97

8-BIT BLOCK FLOATING POINT

SGLDLP-F 31.47 11.77
SGDLP-F 32.23 12.09

plying that the quantization error makes the standard DNNs

even more overconfident, which might lead to wrong deci-

sions in real-world applications.

SGLDLP-F vs VC SGLDLP-L We have provided two

variants of low-precision SGLD for practical use. In general,

SGLDLP-F has better performance while VC SGLDLP-L

requires less computation, making them suitable for dif-

ferent cases. When the computation resources are very

limited, e.g. on edge devices, VC SGLDLP-L is preferred

for saving computation while when the resources are able

to support full-precision gradient accumulators, SGLDLP-F

is preferred for better performance.

5.3. ImageNet

Finally, we test low-precision SGLD on a large-scale im-

age classification dataset, ImageNet, with ResNet-18. We

train SGD for 90 epochs and train SGLD for 10 epochs

using the trained SGD model as the initialization. In Ta-

ble 3, we observe that the improvement of SGLD over SGD

is larger in low-precision (0.76% top-1 error) than in full-

precision (0.17% top-1 error), showing the advantages of

low-precision SGLD on large-scale deep learning tasks. We

could not achieve reasonable results with low-precision gra-

dient accumulators for SGD and SGLD, which might be

caused by hyper-parameter tuning.

6. Conclusion

We provide the first comprehensive investigation for low-

precision SGLD. With full-precision gradient accumulators,

we prove that SGLD is convergent and can be safely used

in practice, and further show that it has a better dependency

of convergence on the quantization gap than SGD. More-

over, we reveal issues in naÈıvely performing low-precision

computation in SGLD with low-precision gradient accumu-

lators, and propose a new theoretically guaranteed quan-

tization function to enable fully quantized sampling. We

conduct experiments on a Gaussian distribution and a logis-

tic regression to empirically verify our theoretical results.

Besides, we show that low-precision SGLD achieves com-

parable results with full-precision SGLD and outperforms

low-precision SGD significantly on several Bayesian deep

learning benchmarks.

MCMC was once the gold standard on small neural net-

works (Neal et al., 2011), but has been significantly limited

by its high costs on large architectures in deep learning. We

believe this work fills an important gap, and will accelerate

the practical use of sampling methods on large-scale and

resource-restricted machine learning problems.

Moreover, low-precision SGLD could broadly be used as

a drop-in replacement for standard SGLD, as it can confer

speed and memory advantages, while retaining accuracy.
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A. Quantization Formulation

We follow the quantization framework in prior work (Wu et al., 2018; Wang et al., 2018b; Yang et al., 2019) to quantize

weights, activations, backpropagation errors, and gradients, as outlined in Algorithm 3.

Algorithm 3 Low-Precision Training for SGLD.

given: L layers DNN {f1 . . . , fL}. Stepsize α. Weight, gradient, activation and error quantizers QW , QG, QA, QE .

Variance-corrected quantization Qvc, deterministic rounding Qd, stochastic rounding Qs and quantization gap of weights

∆W . Data batch sequence {(xk, yk)}Kk=1. θfpk denotes the full-precision buffer of the weight.

for k = 1 : K do

1. Forward Propagation:

a
(0)
k = xk

a
(l)
k = QA(fl(a

(l−1)
k , θlk)), ∀l ∈ [1, L]

2. Backward Propagation:

e(L) = ∇
a
(L)
k

L(a(L)
k , yk)

e(l−1) = QE

(

∂fl(a
(l)
k

)

∂a
(l−1)
k

e
(l)
k

)

, ∀l ∈ [1, L]

g
(l)
k = QG

(

∂fl

∂θ
(l)
k

e
(l)
k

)

, ∀l ∈ [1, L]

3. SGLD Update:

full-precision gradient accumulators: θfpk+1 ← θfpk − αQG

(

∇Ũ(θk)
)

+
√
2αξ, θk+1 ← QW

(

θfpk+1

)

low-precision gradient accumulators: θk+1 ← Qvc
(

θk − αQG

(

∇Ũ(θk)
)

, 2α,∆W

)

end for

output: samples {θk}

B. Proof of Theorem 1

Our proofs in the paper follow Theorem 4 in Dalalyan & Karagulyan (2019), which provides a convergence bound of

Langevin dynamics with noisy gradients. We state the result of Theorem 4 in Dalalyan & Karagulyan (2019) below.

We consider Langevin dynamics whose update rule is

θk+1 = θk − α (∇U(θk) + ζk) +
√
2αξk+1. (6)

The noise in the gradient ζk has the following three assumptions:

E

[

∥E [ζk|θk]∥22
]

≤ δ2d, E

[

∥ζk −E [ζk|θk]∥22
]

≤ σ2d, ξk+1 is independent of (ζ0, · · · , ζk),

where δ > 0 and σ > 0 are some constants. Under the same assumptions in Section 4, we have the convergence bound for

the above Langevin dynamics.

Theorem 4 (Theorem 4 in Dalalyan & Karagulyan (2019)). We run the above Langevin dynamics with α ≤ 2/(m+M).
Let π be the target distribution, µ0 be the initial distribution and µK be the distribution obtained by the Langevin dynamics

in Equation (6) after K iterations. Then

W2(µK , π) ≤ (1− αm)KW2(µ0, π) + 1.65(M/m)(αd)1/2 +
δ
√
d

m
+

σ2(αd)1/2

1.65M + σ
√
m
.

Buit upon this theorem, we now prove Theorem 1.

Proof. We write the SGLDLP-F update as the following

θk+1 = θk − αQG(∇Ũ(QW (θk))) +
√
2αξk+1

= θk − α (∇U(θk) + ζk) +
√
2αξk+1
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where

ζk = QG(∇Ũ(QW (θk)))−∇U(θk)

= QG(∇Ũ(QW (θk)))−∇Ũ(QW (θk))

+∇Ũ(QW (θk))−∇U(QW (θk)) +∇U(QW (θk))−∇U(θk).

Since E[∇Ũ(x)] = ∇U(x) and E[Q(x)] = x, we have

E [ζk|θk] = E

[

QG(∇Ũ(QW (θk)))−∇Ũ(QW (θk))
∣

∣

∣
θk

]

+E

[

∇Ũ(QW (θk))−∇U(QW (θk))
∣

∣

∣
θk

]

+E [∇U(QW (θk))−∇U(θk)|θk]
= E [∇U(QW (θk))−∇U(θk)|θk] .

By the assumption, we know that

∥∇U(QW (θk))−∇U(θk)∥22 ≤M2 ∥QW (θk)− θk∥22 ,

then it follows that

∥E [ζk|θk]∥22 = ∥E [∇U(QW (θk))−∇U(θk)|θk]∥22
≤ E

[

∥∇U(QW (θk))−∇U(θk)∥22
∣

∣

∣
θk

]

≤M2
E

[

∥QW (θk)− θk∥22
∣

∣

∣
θk

]

≤M2 · ∆
2
W d

4
.

Let f : R→ R
d denote the function

f(a) = ∇U(θk + a(QW (θk)− θk)).
By the mean value theorem, there will exist an a ∈ [0, 1] (a function of the weight quantization randomness) such that

f(1)− f(0) = f ′(a).

So,

E [ζk|θk] = E [∇U(QW (θk))−∇U(θk)|θk]
= E

[

∇2U(θk + a(QW (θk)− θk))(QW (θk)− θk)
∣

∣θk
]

= E
[

∇2U(θk)(QW (θk)− θk)
∣

∣θk
]

+E
[(

∇2U(θk + a(QW (θk)− θk))−∇2U(θk)
)

(QW (θk)− θk)
∣

∣θk
]

= E
[(

∇2U(θk + a(QW (θk)− θk))−∇2U(θk)
)

(QW (θk)− θk)
∣

∣θk
]

.

Now, by the assumption ∥∇2U(x)−∇2U(y)∥2 ≤ Ψ∥x− y∥2, we get

∥E [ζk|θk]∥2 =
∥

∥E
[(

∇2U(θk + a(QW (θk)− θk))−∇2U(θk)
)

(QW (θk)− θk)
∣

∣θk
]∥

∥

2

≤ E
[∥

∥

(

∇2U(θk + a(QW (θk)− θk))−∇2U(θk)
)

(QW (θk)− θk)
∥

∥

2

∣

∣θk
]

≤ E
[∥

∥∇2U(θk + a(QW (θk)− θk))−∇2U(θk)
∥

∥

2
∥QW (θk)− θk)∥2

∣

∣θk
]

≤ E [Ψ ∥a(QW (θk)− θk)∥2 ∥QW (θk)− θk)∥2|θk]
≤ ΨE

[

∥QW (θk)− θk∥22
∣

∣

∣
θk

]

≤ Ψ∆2
W d

4
.
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This combined with the previous result gives us

∥E [ζk|θk]∥2 ≤ min

(

Ψ∆2
W d

4
,
M∆W

√
d

2

)

.

Now considering the variance of ζk,

E

[

∥ζk −E [ζk|θk]∥22
]

≤ E

[

∥ζk∥22
]

≤ E

[

∥

∥

∥
QG(∇Ũ(QW (θk)))−∇Ũ(QW (θk))

∥

∥

∥

2

2

]

+E

[

∥

∥

∥
∇Ũ(QW (θk))−∇U(QW (θk))

∥

∥

∥

2

2

]

+E

[

∥∇U(QW (θk))−∇U(θk)∥22
]

≤ ∆2
Gd

4
+ κ2 +M2 · ∆

2
W d

4
.

Recall that to apply the result of Theorem 4 in Dalalyan & Karagulyan (2019), we need

E

[

∥E [ζk|θk]∥22
]

≤ δ2d, E

[

∥ζk −E [ζk|θk]∥22
]

≤ σ2d.

We set δ and σ to be

δ = min

(

Ψ∆2
W

√
d

4
,
M∆W

2

)

, σ2d =
∆2

Gd

4
+ κ2 +M2 · ∆

2
W d

4
=

(∆2
G +M2∆2

W )d+ 4κ2

4
.

Since ζk is independent of the Gaussian noise ξi, for i = 0, . . . , k + 1, we have shown that the assumptions in Theorem 4

in Dalalyan & Karagulyan (2019) are satisfied. Thus we apply the result in Theorem 4 and get

W2(µK , π) ≤ (1− αm)KW2(µ0, π) + 1.65(M/m)(αd)1/2 +
δ
√
d

m
+

σ2(αd)1/2

1.65M + σ
√
m

≤ (1− αm)KW2(µ0, π) + 1.65(M/m)(αd)1/2 +
δ
√
d

m
+

√

σ2αd

m

= (1− αm)KW2(µ0, π) + 1.65(M/m)(αd)1/2 +min

(

Ψ∆2
W d

4m
,
M∆W

√
d

2m

)

+

√

(∆2
G +M2∆2

W )αd+ 4ακ2

4m
.

Note that we ignore the 1.65M in the denominator to further simplify the bound.

C. Proof of Theorem 2

Proof. Recall that the update of SGLDLP-L is

θk+1 = QW

(

θk − αQG(∇Ũ(θk)) +
√
2αξk+1

)

.

To utilize the result in Dalalyan & Karagulyan (2019), we introduce an intermediate dynamic ψk+1 = θk−αQG(∇Ũ(θk))+√
2αξk+1. Therefore θk = QW (ψk) and

ψk+1 = θk − αQG(∇Ũ(θk)) +
√
2αξk+1

= QW (ψk)− αQG(∇Ũ(QW (ψk))) +
√
2αξk+1

= ψk − α(∇U(ψk) + ζk) +
√
2αξk+1
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where

ζk =
ψk − θk

α
+QG(∇Ũ(θk))−∇U(ψk)

=
ψk − θk

α
+QG(∇Ũ(θk))−∇Ũ(θk) +∇Ũ(θk)−∇U(θk) +∇U(θk)−∇U(ψk).

Similar to the previous proof in Section B, we know that

E [ζk|ψk] = E [∇U(θk)−∇U(ψk)|ψk] = E [∇U(QW (ψk))−∇U(ψk)|ψk] ,

so

∥E [ζk|ψk]∥2 ≤ min

(

Ψ∆2
W d

4
,
M∆W

√
d

2

)

,

and it suffices to set δ the same as in Section B. On the other hand, the variance will be bounded by

E

[

∥ζk −E [ζk|ψk]∥22
]

≤ E

[

∥

∥

∥
QG(∇Ũ(θk))−∇Ũ(θk)

∥

∥

∥

2

2

]

+E

[

∥

∥

∥
∇Ũ(θk)−∇U(θk)

∥

∥

∥

2

2

]

+E

[

∥

∥

∥

∥

ψk − θk
α

+∇U(θk)−∇U(ψk)

∥

∥

∥

∥

2

2

]

≤ ∆2
Gd

4
+ κ2 +E

[

∥∇F (ψk)−∇F (θk)∥22
]

,

where F (θ) = 1
2α ∥θ∥

2
2 − U(θ). Observe that since U is m-strongly convex and M -smooth, and α−1 ≥M/2, F must be

α−1-smooth, and so

E

[

∥ζk −E [ζk|ψk]∥22
]

≤ ∆2
Gd

4
+ κ2 +

1

α2
E

[

∥ψk − θk∥22
]

≤ ∆2
Gd

4
+ κ2 +

∆2
W d

4α2
.

This is essentially replacing the M2 in the previous analysis with α−2. It suffices to set σ2d =
∆2

G
d

4 + κ2 +
∆2

W
d

4α2 .

Supposing the distribution of ψK+1 is νK , applying Theorem 4 in Dalalyan & Karagulyan (2019) will give us the rate of

W2(νK , π) ≤ (1− αm)KW2(ν0, π) + 1.65(M/m)(αd)1/2 +min

(

Ψ∆2
W d

4m
,
M∆W

√
d

2m

)

+

√

(α∆2
G + α−1∆2

W )d+ 4ακ2

4m
.

We also have

W2(µk, νk) =

(

inf
J∈J (x,y)

∫

∥x− y∥22 dJ(x, y)
)1/2

≤ E

[

∥θk+1 − ψk+1∥22
]

1
2 ≤ ∆W

√
d

2
.

Combining these two results, we get the final bound

W2(µK , π) ≤W2(µK , νK) +W2(νK , π)

≤ (1− αm)KW2(ν0, π) + 1.65(M/m)(αd)1/2 +min

(

Ψ∆2
W d

4m
,
M∆W

√
d

2m

)

+

√

(α∆2
G + α−1∆2

W )d+ 4ακ2

4m
+

∆W

√
d

2

≤ (1− αm)KW2(µ0, π) + 1.65(M/m)(αd)1/2 +min

(

Ψ∆2
W d

4m
,
M∆W

√
d

2m

)

+

√

(α∆2
G + α−1∆2

W )d+ 4ακ2

4m
+
(

(1− αm)K + 1
) ∆W

√
d

2
.



Low-Precision Stochastic Gradient Langevin Dynamics

D. Proof of Theorem 3

Proof. Recall that the update of VC SGLDLP-L is

θk+1 = Qvc
(

θk − αQG(∇Ũ(θk)), 2α,∆W

)

.

We ignore the variance of QG since it is relatively small compared to the weight quantization variance in practice. Qvc is

defined as in Algorithm 2 and we have E [θk+1|θk] = θk − α∇U(θk).

Let ψk+1 = θk − αQG(∇Ũ(θk)) +
√
2αξk+1 then it follows that

ψk+1 − θk+1 = θk − αQG(∇Ũ(θk)) +
√
2αξk+1 − θk+1,

and

ψk+1 = ψk − α(∇U(ψk) + ζk) +
√
2αξk+1

where

ζk =
ψk − θk

α
+QG(∇Ũ(θk))−∇U(ψk)

=
ψk − θk

α
+QG(∇Ũ(θk))−∇Ũ(θk) +∇Ũ(θk)−∇U(θk) +∇U(θk)−∇U(ψk).

Note that E[ψk − θk] = 0. Similar to the previous proof in Section B, we know that

∥E [ζk|ψk]∥22 = ∥E [∇U(θk)−∇U(ψk)|ψk]∥22 ≤M2
E

[

∥ψk − θk∥22
∣

∣

∣
ψk

]

.

When 2α > v0 =
∆2

W

4 , we have that

E

[

∥ψk − θk∥22
∣

∣

∣
ψk

]

= E

[

∥

∥

∥

(

θk−1 − αQG(∇Ũ(θk−1))
)

+
√
2αξk −Qd

(

θk−1 − αQG(∇Ũ(θk−1)) +
√
2α− v0ξk

)

− sign(r)c
∥

∥

∥

2

2

∣

∣

∣

∣

ψk

]

.

Let

b = Qd
(

θk−1 − αQG(∇Ũ(θk−1)) +
√
2α− v0ξk

)

−
(

θk−1 − αQG(∇Ũ(θk−1)) +
√
2α− v0ξk

)

,

then |b| ≤ ∆W

2 and

E

[

∥ψk − θk∥22
∣

∣

∣
ψk

]

= E

[

∥

∥

∥

(

θk−1 − αQG(∇Ũ(θk−1))
)

+
√
2αξk −

(

θk−1 − αQG(∇Ũ(θk−1)) +
√
2α− v0ξk

)

− b− sign(r)c
∥

∥

∥

2

2

∣

∣

∣

∣

ψk

]

= E

[

∥

∥

∥

√
2αξk −

√
2α− v0ξk − b− sign(r)c

∥

∥

∥

2

2

∣

∣

∣

∣

ψk

]

≤ E

[

∥

∥

∥

√
2αξk −

√
2α− v0ξk − b

∥

∥

∥

2

2

∣

∣

∣

∣

ψk

]

+E

[

∥sign(r)c∥22
∣

∣

∣
ψk

]

≤ E

[

∥

∥

∥

∥

∣

∣

∣

√
2αξk −

√
2α− v0ξk

∣

∣

∣
+

∆W

2

∥

∥

∥

∥

2

2

]

+ v0d

≤ (
√
2α−

√
2α− v0)2E[∥ξk∥22] + (

√
2α−

√
2α− v0)∆WE[∥ξk∥2] + 2v0d

≤
(

(
√
2α−

√
2α− v0)2 + (

√
2α−

√
2α− v0)∆W + 2v0

)

d.
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Since 2xy ≤ x2 + y2, we get

(
√
2α−

√
2α− v0)∆W ≤ (

√
2α−

√
2α− v0)2 +

∆2
W

4
= (
√
2α−

√
2α− v0)2 + v0.

The expression can be further simplified to be

E

[

∥ψk − θk∥22
∣

∣

∣
ψk

]

≤
(

2(
√
2α−

√
2α− v0)2 + 3v0

)

d.

We also note that √
2α−

√
2α− v0 =

2α− (2α− v0)√
2α+

√
2α− v0

=
v0√

2α+
√
2α− v0

≤ v0√
2α
,

then the expectation becomes

E

[

∥ψk − θk∥22
∣

∣

∣
ψk

]

≤
(

v20
α

+ 3v0

)

d.

Since 2α > v0, it follows that

E

[

∥ψk − θk∥22
∣

∣

∣
θk

]

≤ (2v0 + 3v0) d = 5v0d.

Let A = 5v0d. Then we obtain

∥E [ζk|ψk]∥22 ≤M2 ·A,

and

∥E [ζk|ψk]∥2 ≤ Ψ ·A.

Therefore, it suffices to set

δ = min
(

ΨA,M
√
A
)

.

We now consider the variance which will be bounded by

E

[

∥ζk −E [ζk|ψk]∥22
]

≤ E

[

∥

∥

∥
QG(∇Ũ(θk))−∇Ũ(θk)

∥

∥

∥

2

2

]

+E

[

∥

∥

∥
∇Ũ(θk)−∇U(θk)

∥

∥

∥

2

2

]

+E

[

∥

∥

∥

∥

ψk − θk
α

+∇U(θk)−∇U(ψk)

∥

∥

∥

∥

2

2

]

≤ ∆2
Gd

4
+ κ2 +

1

α2
E

[

∥ψk − θk∥22
]

≤ ∆2
Gd

4
+ κ2 +

A

α2
.

It suffices to set σ2d =
∆2

G
d

4 + κ2 + A
α2 . Supposing the distribution of ψK+1 is νK , applying Theorem 4 in Dalalyan &

Karagulyan (2019) will give us the rate of

W2(νK , π) ≤ (1− αm)KW2(ν0, π) + 1.65(M/m)(αd)1/2 +min

(

Ψ ·A
m

,
M
√
A

m

)

+

√

α∆2
Gd+ 4ακ2

4m
+

A

αm
.

We also have

W2(µK , νK) =

(

inf
J∈J (x,y)

∫

∥x− y∥22 dJ(x, y)
)1/2

≤ E

[

∥θK+1 − ψK+1∥22
]

1
2 ≤
√
A.
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Combining these two results, we get

W2(µK , π) ≤W2(µK , νK) +W2(νK , π)

≤ (1− αm)KW2(ν0, π) + 1.65(M/m)(αd)1/2 +min

(

Ψ ·A
m

,
M
√
A

m

)

+

√

α∆2
Gd+ 4ακ2

4m
+

A

αm
+
√
A

≤ (1− αm)KW2(µ0, π) + 1.65(M/m)(αd)1/2 +min

(

Ψ ·A
m

,
M
√
A

m

)

+

√

α∆2
Gd+ 4ακ2

4m
+

A

αm
+
(

(1− αm)K + 1
)
√
A.

When 2α <
∆2

W

4 , since we assume that the gradient is bounded by E

[∥

∥

∥
QG(∇Ũ(θk))

∥

∥

∥

1

]

≤ G,

E[∥ψk − θk∥22] = E

[

∥

∥

∥

(

θk−1 − αQG(∇Ũ(θk−1))
)

− θk +
√
2αξk

∥

∥

∥

2

2

]

= E

[

∥

∥

∥

(

θk−1 − αQG(∇Ũ(θk−1))
)

− θk
∥

∥

∥

2

2

]

+E

[

∥

∥

∥

√
2αξk

∥

∥

∥

2

2

]

≤ max

(

2E

[

∥

∥

∥

(

θk−1 − αQG(∇Ũ(θk−1))
)

−Qs
(

θk−1 − αQG(∇Ũ(θk−1))
)∥

∥

∥

2

2

]

, 4αd

)

.

Using the bound equation (6) in Li & De Sa (2019) gives us,

E

[

∥

∥

∥

(

θk−1 − αQG(∇Ũ(θk−1))
)

−Qs
(

θk−1 − αQG(∇Ũ(θk−1))
)
∥

∥

∥

2

2

]

≤ ∆WαE
[∥

∥

∥
QG(∇Ũ(θk−1))

∥

∥

∥

1

]

≤ ∆WαG.

It follows that

E

[

∥ψk − θk∥22
]

≤ max (2∆WαG, 4αd) .

Let A = max (2∆WαG, 4αd). The rest is that same as in the case 2α > v0.

E. Comparison to SGD Bounds

There have been many works on comparing optimization and sampling algorithms since they serve as two main computational

strategies for machine learning (Ma et al., 2019; Talwar, 2019). For example, in Ma et al. (2019), the authors compare

the total variation distance between the approximate distribution and the target distribution (sampling bound), with the

objective gap (optimization bound). Following previous work, we compare our 2-Wasserstein distance bound with previous

SGD bounds. Previous low-precision SGD convergence bounds are shown in terms of the squared distance to the optimum
∥

∥θ̄K − θ∗
∥

∥

2

2
(Yang et al., 2019). In order to compare our bounds with theirs, we consider a 2-Wasserstein distance between

two point distributions. Let µK be the point distribution assigns zero probability everywhere except θ̄K and π be the point

distribution assigns zero probability everywhere except θ∗. Then we get

W2(µK , π) =

(

inf
J∈J (x,y)

∫

∥x− y∥22 dJ(x, y)
)1/2

≤ E

[

∥

∥θ̄K − θ∗
∥

∥

2

2

]
1
2

.
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From Yang et al. (2019), we know that E
[

∥

∥θ̄K − θ∗
∥

∥

2

2

]
1
2

is proportional to ∆W . Therefore, our 2-Wasserstein distance is

O(∆2
W ) whereas SGD’s 2-Wasserstein distance is O(∆W ), which shows SGLD is more robust to the quantization error.

F. Deterministic Rounding vs Stochastic Rounding

Compared to deterministic rounding, stochastic rounding is unbiased and thus can preserve gradient information even when

the gradient update is smaller than the quantization gap. In theory, deterministic rounding will make the convergence bound

worse due to its bias. For example, in Theorem 1, using deterministic rounding as the weight quantizer makes the bias

term becomes O(∆w), which is worse than the current O(∆2
w). In practice, stochastic rounding generally provides much

better results than deterministic rounding especially on deep neural networks (Gupta et al., 2015; Wang et al., 2018b). For

example, on CIFAR10 with 8-bit block floating point, we found that using deterministic rounding to quantize the weight in

SGDLP-L and SGLDLP-L gives test errors 7.44% and 7.37% respectively, which are much worse than using stochastic

rounding (SGDLP-L:5.86%, naÈıve SGLDLP-L: 5.85%, VC SGLDLP-L: 5.51%).

G. Algorithms with (Block) Floating Point Numbers

The qunatization gaps in floating point and block floating point change depending on the number values. Therefore, we need

to compute the qunatization gap in each step in order to apply our variance-vorrected quantization function Qvc. It is easy to

see that the qunatization gap can be computed as

∆W (µ)←
{

2E[µ]−W+2 where E[µ] = clip(⌊log2(max |µ|)⌋ , l, u) block floating point

2E[µ]−W where E[µ] = clip(⌊log2(|µ|)⌋ , l, u) floating point.
(7)

Deterministic rounding and stochastic rounding are defined using the above ∆W . Then we obtain Qvc function with (block)

floating point in Algorithm 5. This algorithm is the same as Algorithm 1 except the lines in red where we recompute the

quantization gap ∆ after adding Gaussian noise to make sure it aligns with the quantization gap of x. VC SGLDLP-L with

(block) floating point is outlined in Algorithm 4.

Algorithm 4 VC SGLDLP-L with (Block) Floating Point.

given: Stepsize α, number of training iterations K, gradient quantizer QG, deterministic rounding with (block) floating

point Qd, stochastic rounding with (block) floating point Qs, F bits to represent the shared exponent (block floating

point) or the exponent (floating point), W bits to represent each number in the block (block floating point) or the mantissa

(floating point).

let l← −2F−1, u← 2F−1 − 1
for k = 1 : K do

compute µ← θk − αQG

(

∇Ũ(θk−1)
)

compute ∆W (µ) following Equation (7)

update θk+1 ← Qvc (µ, 2α,∆W (µ))
end for

output: samples {θk}
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the same decay learning rate schedule as on CIFAR datasets. We collect 20 samples for SGLD. For cyclical learning rate

schedule, we use 1 cycles and collect 20 models.

H.4. ImageNet

We use batch size 256, learning rate 0.2 and weight decay 1e− 4. We use the same decay learning rate schedule as in He

et al. (2016) and collect 20 models for SGLD.


