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Abstract

We study the problem of inferring time-varying Gaussian Markov random fields,
where the underlying graphical model is both sparse and changes sparsely over
time. Most of the existing methods for the inference of time-varying Markov ran-
dom fields (MRFs) rely on the regularized maximum likelihood estimation (MLE),
that typically suffer from weak statistical guarantees and high computational time.
Instead, we introduce a new class of constrained optimization problems for the
inference of sparsely-changing Gaussian MRFs (GMRFs). The proposed optimiza-
tion problem is formulated based on the exact ¢, regularization, and can be solved
in near-linear time and memory. Moreover, we show that the proposed estimator
enjoys a provably small estimation error. We derive sharp statistical guarantees in
the high-dimensional regime, showing that such problems can be learned with as
few as one sample per time period. Our proposed method is extremely efficient in
practice: it can accurately estimate sparsely-changing GMRFs with more than 500
million variables in less than one hour.

1 Introduction

Contemporary systems are comprised of massive numbers of interconnected components that interact
according to a hierarchy of complex, unknown, and time-varying topologies. For example, with
billions of neurons and hundreds of thousands of voxels, the human brain is considered as one of
the most complex physiological networks [18} 22} 28 30, 37]]. The temporal behavior of today’s
interconnected systems can be captured via time-varying Markov random fields (MRF). Time-varying
MREFs are associated with a temporal sequence of undirected Markov graphs G;(V, E;), where V
and E, are the set of nodes and edges in the graph at time ¢. The node set V' represents the random
variables in the model, while the edge set E, captures the conditional dependency between these
variables at time ¢. A popular approach for the inference of MRFs is based on the maximum-likelihood
estimation (MLE): to obtain a model based on which the observed data is most probable to occur [42].

Despite being known as theoretically powerful tools [20}39], MLE-based methods suffer from several
fundamental drawbacks which render them impractical in realistic settings. First, they often suffer
from notoriously high computational cost in massive problems, where the number of variables to be
inferred is in the order of millions, or more. Second, they struggle to incorporate sparsity amongst
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their components, which is pervasive in large-scale systems. In particular, while sparsely-changing
MREFs can in theory be accurately estimated using sparsity-promoting regularizers (such as ¢, penalty),
most of the existing methods resort to relaxed or weaker variants of such regularization (such as ¢;
penalty), thereby suffering from inferior statistical guarantees.

To address the aforementioned challenges, we propose a class of constrained optimization problems
that achieve superior statistical and computational guarantees, compared to the regularized MLE,
for the inference of time-varying Gaussian MRFs (GMRFs). Our approach departs from the usual
wisdom in statistics and machine learning that inference problems with nonconvex ¢y terms are
intractable, and convex proxies should be used instead. In particular, we show that the inference of
sparsely-changing Gaussian MRFs can be solved efficiently via nonconvex ¢, penalties.

Notations. The ‘" element of a time-series vector v; is denoted as V5 the (4,7 )th element of
a time-series matrix V; is denoted as V},;;. For a vector v, the notation v;.; is used to denote the
subvector of v from index i to j. For a vector v, the notations ||v]| o, ||v]|2, ||v]|0 denote the £+, norm,
{5 norm, and the number of nonzero elements, respectively. Moreover, for a matrix M, the notations
| M|l2, | M||oos [|M||1 /1, [|M]|oo /oo refer to the induced 2-norm, induced co-norm, £ /¢, norm, and
{oo /oo norm, respectively. Moreover, we define || M o = || M|]1/1 — Zle | M;;|. For a vector v
and matrix M, the notations supp(v) and supp(M ) are defined as the sets of their nonzero elements.

Given two sequences f(n) and g(n), the notation f(n) < g(n) implies that there exists a constant
C' < oo that satisfies f(n) < Cg(n), and f(n) < g(n) implies that f(n) < g(n) and g(n) < f(n).

All proofs are deferred to the supplementary file.

1.1 Warm-up: Regularized MLE for Sparsely-changing GMRFs

Consider a multivariate zero-mean Gaussian process { X; }_, with distribution
1
P(Xt):exp{_2<®t7XtXtT>+<77taXt>_A(/Jt;et)} (1

fort =0,...,T where A : R?X9 — R is the log-partition function used to normalize the distribution.
Without loss of generality, we assume that the mean is zero. At any given time ¢, a sequence of

data samples {Xt(i)}f\;tl is collected from (I). The inference of time-varying GMRFs reduces to

estimating the time-varying precision matrix ©; from the data samples {X t(j') } éV:tl. Moreover, the
edge set of the Markov graph G; coincides with the off-diagonal nonzero elements of ©; [45]].

We first illustrate the fundamental drawbacks of the ¢; -regularized MLE for time-varying GMRFs
with sparsely-changing structures. The sparse precision matrices can be estimated via the following
regularized MLE, also known as time-varying Graphical Lasso (GL) [11,116]:

T
{61}/ = arg %itn tz_; <<@t, ) —log det(@t)>

T T
+71Z||@t\|off+’}’22||@t =01l (2a)

t=0 t=1
st. ©;, =0 t=0,1,...,T (2b)

where EA]t € R4*4 is the sample covariance matrix at time ¢. Without loss of generality, we assume
that the samples have zero mean. Example 1 below shows that (2) may lead to poor estimates.

Example 1. Consider a scenario where {©,}}_, € R?*5*2> are randomly generated symmetric and
sparse matrices. At each timet = 0,...,4, the precision matrix ©; has exactly 30 off-diagonal
elements with value one in its upper-triangular part, and the remaining off-diagonal entries are set to
zero. Moreover, the diagonal entries Oy.;; are chosen as 1+ ki Oy.5. At every time, 5 nonzero off-

diagonal elements are changed to zero, and 5 zero elements are set to one. The sample covariance ¥,
is obtained by collecting 500 samples from the Gaussian distribution with the constructed precision
matrices. Figure|[ld|illustrates a heatmap of the mismatch error, i.e., the total number of mismatches
in the sparsity patterns of the true and estimated precision matrices and their differences, for different
values of the regularization coefficients. It can be seen that after an exhaustive search over the



regularization coefficient space, the best achievable mismatch error is in the order of 50. Thus, the
estimated parameters reveal little information about the true structure of the time-varying GMRF.
Moreover, Figure [ID] depicts the concatena-
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The above example shows the inferior statis- (a) (b)
tical performance of the time-varying GL as
an instance of a regularized MLE method for
sparsely-changing GMRFs. In addition to its
subpar statistical performance, time-varying
GL suffers from expensive computational complexity: a general-purpose interior-point algorithm for
solving time-varying GL has a prohibitive per-iteration complexity of O(T'd®) [10]. More recent
algorithms for solving time-varying GL have lower per-iteration complexity of O(Td?) [32].
However, these methods suffer from a slow (sublinear) convergence rate of O(1/¢), increasing the
overall complexity to O(T'd?/¢) in order to obtain an e-accurate solution. Thus, there is an inherent
tradeoff between the quality of the solution found and the computational time required, with the
performance deteriorating sharply as the number of precision digits increase. Solvers with such
computational complexity may fall short of practical use in the large-scale settings. We now discuss
the proposed method, which finds optimal solutions to the relevant optimization problems in strongly
polynomial time.

Figure 1: (a) The heatmap of the mismatch error. (b)
The true and estimated nonzero elements of the precision
matrix.

2 Proposed Approach

The proposed framework is based on exact solutions to a class of tractable discrete ¢y-problems, thus
circumventing bias and other drawbacks of the standard ¢; -approximations, while guaranteeing the
scalability of the proposed method. As a general framework, we study the optimization problem:

T T
min (177)2”675“0"_72||®t_@t71||0 (32)
t=0 t=1
st 10 = F*(Z0)[laojoo < Mo t=0,1,...,T (3b)
0, € R¥xd t=0,1,....T (3¢)

where the optimal solutions {(:)t};fzo are the estimates of the precision matrices of the sparsely-

changing GMREF, it € R¥*9 is the sample covariance matrix at time ¢, and F* (+) is an approximate
backward mapping of the model. In particular, we use the approximate backward mapping proposed
in [46], see §4.1]for a formal definition.

First, we establish a deterministic guarantee on the estimation error of the optimal solution to (3).

Theorem 1 (Estimation error and sparsistency). Let 0 < v < 1. Foreveryt =0, ..., T, define S; as
the set of indices corresponding to the nonzero elements of the true precision matrix O}, and define
Dy as the set of indices corresponding to the nonzero elements of ©f — O;_,. Assume that

OF — F*(3y) L SAVOSEST,

‘ o0

° 2)\,5 S min(m)egt ‘@;U y VO S t S T,
02\ +2M1 < min(ivj)ept |®;” — Lmj Vo<t <T.

Then, the following statements hold for every 0 <t < T
Sparsistency supp ((:)t) = supp (©]) and supp ((:)t — (:)t,l) = supp (@;" — ;11).
Estimation error ||©; — O} lloc /oo < 2A; and 10; — O7l2 < 2¢/[S:| A



Theorem [I] presents a set of conditions under which the proposed estimation method achieves
sparsistency and small estimation error. The first condition entails that the true precision matrix ©7 is
a feasible solution to (3). The second and third conditions imply that there is a non-negligible gap
between the zero and nonzero elements of the true parameters and their temporal changes. In §4 we
present additional bounds specific to our choice of backward mapping.

Theorem 2 (Computational complexity). Given ﬁ*(it), the optimization problem (3) can be solved
to optimality in at most O((dT)?) time and memory on a single thread.

Theorem [2 shows that the optimization problem (3)) can be solved efficiently and in strongly poly-
nomial time despite its non-convex nature. As will be explained later, our choice of approximate
backwards mapping [46] requires inverting 7" + 1 matrices, each with size d x d, thereby increasing
the overall complexity to O((dT')? +T'd?). If T < d, the complexity of the our method is dominated
by that of the matrix inversion, which is unavoidable, even if the sample covariance matrix coincides
with its true analog (since we still need to invert them to obtain the true precision matrices).

Our solution method for (3)) relies on the element-wise decomposability of (3): we decompose (3)) into
smaller subproblems over different coordinates of {©;}~_,. Then, we show that the optimal solution
to each subproblem can be obtained by solving a shortest path problem on an auxiliary weighted
directed acyclic graph (DAG). The details of the solution method are presented in §5] Moreover, the
proposed algorithm is easily parallelizable, leading to better runtimes in practice.

Example 1 (continued). Figure[2 depicts the _ y
performance of the proposed method, compared w R
to the regularized MLE with vi = 0.14 and | w’”‘*“@«ﬂ,‘a“f"“w’”—"‘ﬂﬁf i Py
Y2 = 0.16 (corresponding to the smallest mis- o “
match error) for the instances generated in Ex- ‘

ample 1. The regularization parameter -y in the

Mismatch error
V.

objective function of () is set to 0.2. Moreover, B e
Sor simplicity, we set \g = -+ = Ay = \. Fig- R P e *
ure[2da demonstrates that the proposed method () (b)

enjoys a significantly smaller mismatch error,
for a wide range of . On the other hand, Fig-
ure[2b shows that the synthetic bias caused by
the {1 penalty in the regularized MLE is allevi-
ated via the proposed method.

Figure 2: (a) The mismatch error of the proposed
method for different values of A\ compared to the regular-
ized MLE. (b) The true and estimated nonzero elements
of the precision matrix.

3 Related Works

Time-varying MRF. In addition to the time-varying GL introduced in §1.1] a recent line of works
have studied the inference of smoothly-changing GMRFs [23] [15| 48], where a kernel averaging
technique combined with Graphical Lasso is used to estimate the smoothly-changing precision
matrices. However, these methods do not leverage the prior information about the sparsity of the
parameter differences. With the goal of addressing this deficiency, several works have studied
the inference of sparsely-changing MRF (also known as sparse differential networks) [43l 147, 127]].
However, the main drawback of these methods is that they only estimate the parameter differences,
and their theoretical guarantees are restricted to problems with two time steps (1" = 0, 1). Similarly,
regression-based approaches have been proposed for change point detection problems [24, |36] with
MRFs and two time periods, assuming the sparsity pattern of all entries of the precision matrices
change at the same time. In contrast, [44] studies the inference of sparse MRFs given an index
variable under the assumption that the sparsity pattern is invariant, whereas [14]] assumes that the
precision matrix is a linear function of the index variable.

Sparsity-promoting optimization. Optimization problems with ¢, terms are often deemed to be
intractable, and approximations are solved instead. Perhaps the most popular approach is the fused
lasso (34} |40, 38 [41]], which calls for replacing terms ||©;||o and ||©; — O;_1]|o with their ¢;-
approximations. Nonetheless, such approximations result in subpar statistical performance when
compared with exact £, methods [19,[29].



Exact or near-optimal methods for optimization problems of the form

H}Zm]p |9HO+Z Z 9i; (0 — 6;) )

=1 j=i+1

for given one-dimensional functions g;; : R — R, have also been studied in the literature. If functions
gi; are convex, then problem (4) admits pseudo-polynomial time algorithm [3| [7]. Moreover, convex
relaxations that deliver near-optimal solutions for () were proposed for the special case of convex
quadratic g functions [6]]; if, additionally, we have ¢ = 0 and u = oo, then problem @) is in fact
solvable in strongly polynomial time [5]. On the other hand, problem (4) is much more challenging
for non-convex g: if g(z) = 1 {z # 0}, as is the case in (3)), then problem (@) is NP-hard even if the
term ||0||o is dropped from the objective [17]. Nonetheless, as we show in this paper, problem () can
be solved efficiently in the context of time-varying MRFs, where g;; () = 0 whenever j > i + 1.

4 Statistical analysis

Theorem [T] presents a set of deterministic conditions under which the estimates from (3) enjoy zero
mismatch error and small estimation error. However, the formulation of (3) is contingent upon the
availability of an accurate backward mapping, and a choice of )\; that satisfies the conditions of
Theorem [I] In this section, we show how to efficiently design sample-efficient approximate backward
mappings, and select \; accordingly for the class of sparsely-changing GMRFs. Moreover, we use
the deterministic conditions of Theorem I to arrive at a non-asymptotic probabilistic guarantee for
the inference of time-varying GMRFs under different prior knowledge on their temporal behavior,
such as sparsity and smoothness.

4.1 Sparsely-changing GMRFs

Given the true covariance matrix >;, the backward mapping of time-varying GMRFs as defined in
takes the form F*(X,) = X; !, In light of this closed-form expression for the backward mapping,

a commonly-used approximation is ﬁ*(it) = fl{ ! where 3, = N ZNt X )X o is the sample
covariance matrix. However, in the high-dimensional settings where d > N, this approximate
backward mapping is not well-defined, since the sample covariance matrix is highly rank-deficient.

To address this issue, [46] propose a proxy backward mapping for high-dimensional settings:
consider the soft-thresholding operator ST, (M) : R4 — R4 where ST, (M);; = M;; —
sign(M;;) min{|M;;|, v} if i # j, and ST, (M)Z] = M,; if i = j. The approximate backward map-
ping is then given by F™* (Et) [ST (Et)] , which is well-defined, even in the high-dimensional
setting, with an appropriate choice of the threshold v [46]. We make the following assumption.

Assumption 1 (Bounded norm). There exist constant numbers k1 < 00, ke > 0, and k3 < 00 such
that, for everyt =0,...,T,

1Oclloe < 1, InE  [Bewlloc 2 Ko, [[Billoo/o0 < ria-
w:

Assumption [T implies that the true covariance matrices and their inverses have bounded norms.
Another key notion which plays an important role in our statistical guarantees is the weak sparsity of
the covariance matrices, as defined next.

Definition 1 (Weak sparsity). Given 0 < ¢q < 1 and dimension d, define sq(q,d) &

d
max; 5y |[Ee]if|7.

Assuming that s4(0, d) < d, Assumptionreduces to the covariance matrix being sparse. Moreover,
in many cases, a sparse inverse covariance matrix leads to weakly sparse covariance matrices. For
instance, if ©; has a banded structure with small bandwidth, then it is known that the elements of
=0, ! enjoy exponential decay away from the main diagonal elements [12} 21]. Under such
circumstances, one can verify that sq(q,d) < 1 7 for some constant C' > 0 and p < 1. More
generally, a similar statement holds for a class of i 1nverse covariance matrices whose support graphs
have large average path length [8, O]]; a large class of inverse covariance matrices with row- and
column-sparse structures satisfy this condition. Theorem [3]states that the proposed method results in



high-quality solutions provided that the number of samples NV, is sufficiently large with respect to the
weak sparsity of the covariance matrices.

Theorem 3. Consider a sparsely-changing GMRF and let ( = max{log,(T + 1),1}. Given an
2
arbitrary T > ( + 2, let Ny 2 s4(q,d) ™27 logd, for some 0 < q < 1. Then, with the approximate

backward mapping F*(3;) = [ST,,.(3,)]~", and parameters v, =< w/%fd and M\t < 4/ Tlf\’,fd, the

estimates {ét}tT:O obtained from (3) satisfy the following statements for allt = 0,1,...,T, with
probability of at least 1 — 4d~7+¢+2;

Sparsistency We have supp ((:)t) = supp (O;) and supp (C:)t — 0,4

= supp (O — O7_1).

Estimation error ||(:)t—®f||oo/oo§ \/ %fd and |©,—O7||r < %ﬁogd.

Theorem 3]is a direct consequence of Theorem|[T]and provides, to the best of our knowledge, the first
non-asymptotic guarantee on the inference of sparsely-changing GMRFs with an arbitrary length of
time horizon T'. In particular, it shows that the proposed optimization (3)) guarantees small estimation
error and zero mismatch error for sparsely-changing GMRFs, provided that /V; scales logarithmically
with the dimension of the precision matrices. In the static setting (7' = 0), the derived bound recovers
the existing results on the sample complexity of learning static GMRFs [25} 133} 135]).

4.2 Sparsely-and-smoothly-changing GMRFs

In many applications, such as financial markets and motion detection in video frames, the associated
graphical model should be learned “on-the-go”, as the data arrives with a continuously changing
graphical model. Under such circumstances, one may have access to few (or even one) samples at
each time.

Suppose that the precision matrices change smoothly over time. Such smooth changes can be
modeled via a continuous function ©(z) : [0,1] — R?*¢ with uniformly bounded element-wise

second derivatives [O(z);;]” = %, such that ©f = ©(¢/T') [13, 48]. If ©(t) > al for
every t € [0,1] and some a > 0, then the covariance matrix 3(t) = ©(¢)~! is well-defined and
smooth. Then, the problem of inferring the time-varying GMRF reduces to estimating a sequence of
precision matrices {©(0),0(1/T),...,0(1)} given the samples X; ~ N (0,%(¢/T)). To alleviate
the scarcity of samples, [[15} 48] leverage the smoothness of the precision matrices, by taking the
weighted average of the samples over time, where the weights are obtained from a nonparametric

kernel. In particular, consider the weighted sample covariance matrix itw

¢
Sw 1 s—1
Y = ;ZOw(s,t)Es, where w(s,t) = ThK< Th ) ®)

and K (+) is a symmetric nonnegative kernel that satisfies a set of mild conditions which hold for
most standard kernels, including the (truncated) Gaussian kernel. These conditions are delineated in
the appendix. Next, we present the counterparts of Assumption [I]and Definition|[I|for sparsely-and-
smoothly-changing GMRFs.

Assumption 2 (Bounded norm). There exist constant numbers k1 < 00, ko > 0, and k3 < o0 such
that, for every t € [0,T],

10/ T)lloo < k1, oyt 15t/ T)wlloo = K2s [E(/T)llco/00 < K-

Jwlco=1

Definition 2 (Weak sparsity). Given 0 < ¢ < 1 and dimension d, define s.(q,d) &

d
max; sef0,1] 2 j—1 |[2(¢/T)]ij|7.

We now present the analog of Theorem [3|for sparsely-and-smoothly-changing GMRFs.

Theorem 4. Consider a sparsely-and-smoothly-changing GMRF with one sample per time, let
¢ = max{log,(T + 1),1}, and suppose that the sample covariance matrices are constructed

according to @) with h < T3, Given an arbitrary T > ¢ + 2, let T > s.(q, d)l%q(r log d)3/2.

Then, with the approximate backward mapping F *(it) = 8T, (i:g”) and parameters v; = ;}‘}% d
and My < ¥ ;}‘;% 4 the estimates {(:)t};";o obtained from (3)) satisfy the following statements for all

T =0,1,...,T with probability of at least 1 — d~"+¢+2;

6



Sparsistency supp (@t> = supp (O]) and supp ((:)t — (:)t,l) = supp (@;f — ;f_l).
Estimation error ||(:)t—(9;‘||oo/Do S/ 2% and 16: =07l </ %.

Theorem @ shows how the smoothness assumption on the true covariance matrix can be used
to construct the backward mappings using the samples collected during the entire time horizon,
thereby significantly reducing the sample complexity of learning time-varying GMRFs. In particular,
leveraging the smoothness of the covariance matrix can reduce the minimum required number of
samples from O (T log d) to O((log d)!-%). On the other hand, Theorem does not impose any lower
bound on T, and its estimation error decays faster in terms of the sample size.

5 Solution Method

In this section, we describe the proposed algorithm for solving (3. For the simplicity of notation,
we define the lower bound and upper bound matrices {; and wu; as ly,;; = [F*(2;)];; — A+ and

Ugij = [F*(11¢)]i; + A¢, forevery 1 < 4, j < d. The following fact plays a key role in our analysis.
T
Fact 1. An optimal solution {@t} of () satisfies for every1 <1 < j < d,
t=0

R . T T
(B} cargmin (1-9) Y 1Oy # 0} +9 3 1Ouy — Or 145 20} (6)
L (T t=0 t=1
s.t. ltﬂ'j S @t;ij S Ut;ij YO0 S t S T. (6b)

Fact[T implies that (3) decomposes into the smaller subproblems (6). Therefore, our main focus is
devoted to solving each subproblem independently. To further simplify the notation, we drop the
subscript ¢5 from (@) whenever it is chosen arbitrarily, and use 60; instead of ©;.;;.

Let OPT;_,;(-y) denote the truncated problem from time ¢ to j with the regularization coefficient ~y:

J J
fisg :{;ni}l (1= Z 1{6;, # 0} + v Z 1{0; — 0,1 # 0} (7a)
=i t=i t=i4+1
subject to I} <0, <wup Vi<t <y (7b)

Let the objective function for a candidate solution 6 be denoted as f;_,; (0); by convention, we
let f,,;(#) = 0 whenever j < i. Moreover, the optimal objective value and the set of optimal

solutions to OPT; -, ;(y) are respectively denoted as f;*, ; and ;" ;. Similarly, 5i—>j € AL, is used
to denote an optimal solution to OPT;_, (7). We omit the subscript ¢ — j whenever ¢ = 0 and

j = T. The t'" feasible interval is defined as Ay = [l;, u¢]. Accordingly, the notation Af, , refers to
def

ApHS:AtOAt+1ﬂ-~-ﬁAS.

5.1 Special case: vy =1

As the first step, we consider the special case v = 1, and provide an efficient algorithm (Algorithm|[T)
for solving OPTy_,7 (1), where the sparsity is only promoted on the parameter differences (and not
on the individual parameters). As will be shown later, Algorithm [T will be used as a subroutine in
our proposed algorithm for the general case 0 < v < 1. At a high level, Algorithm [T recursively
performs the following operations: at any given time 7, the algorithm looks into the future to find a
nonempty interval that is feasible for the longest possible time §. Then, it sets the subvector 6.5 to
an arbitrarily chosen element from this nonempty interval.

Proposition 1. Greedy(l,u,0,T) returns an optimal solution {07 ***}T_, to 0PTo_,p(1). More-

over, the truncated solution {0{"**™}I_ is optimal for 0PTy_, ;(1).

5.2 Generalcase: 0 <y <1

Now, we present our main algorithm for the general case 0 < v < 1.



Algorithm 1 Greedy(l, u,7,T)

1: Output: Solution 65°°%7, the objective value fo"°5% to OPT, 7 (1), and the index set T" of

maximal nonempty intervals

SetT «+— T"'U {4};

Greedy T Greedy .
Return {6, Yers frsp s and T

2: Find largest § such that A”' ;= 0;

3: Set #%75°% = g for some np € A7 5

4: if § <T — 1 then

5:  Execute Greedy(l,u,d + 1,7T);

6: end ig 4 T Greed Greed

7: Set fT—)Ty = Zt:r-{-l ]]‘{at Y- at—l Y # O}’
8:

9:

Definition 3. The set Z;_,; = {i,i+ 1,...,j} is called a zero-feasible sequence if [, < 0 < uy,
forevery k € Z;_,;. Moreover, the zero-feasible sequence Z;_, ; is called maximal if it is not strictly
contained within another zero-feasible sequence.

Let Z;, ., Ziy—sjos-- - Ziy—j, be the set of all maximal zero-feasible sequences such that 0 <
i1 < j1 < ig < jJog < -+ < iz < jz < T, where Z is the number of maximal zero-feasible
sequences. If Z = 0, i.e., there is no zero-feasible sequence, then it is easy to see that Z?:o 1{6; #
0} = T + 1 for every feasible solution, and hence, Greedy(l, u, 0, T) leads to an optimal solution

to (7). Another special case is when ¢; = 0 and j; = T, in which case the optimal solution is 6 =0.
Therefore, without loss of generality, suppose that Z > 0 and either i1 # 0 or j; # T.

Our goal now is to obtain an optimal solution to (7)) by solving a shortest path problem over a weighted
directed acyclic graph (DAG) whose nodes correspond to the maximal zero-feasible sequences. In
particular, consider a weighted DAG G with the vertex set V = {0,1,..., 7, Z + 1}, where the
vertices k and [ are connected via a directed arc (k,[) if k& < I. Moreover, for every arc (k, 1), the
weight W(k,1) = 0if (k,1) = (0,1),i; =0or (k,l) =(Z,Z+1),jz =T, and

W (k1) =(1 =) (ir — jx — 1) + vf5 5020,y + 7Lk # 0} +y1{l # Z + 1} (8)

otherwise, where we define jo = —land iz =T + 1.

Algorithm 2 Algorithm for solving

Output: Optimal solution 6 and the objective value f* to 0PTo_7(7)
Find the maximal zero-feasible sequences;
Construct the DAG G with weights defined as ;

Find the shortest path p = (v, v, ..., v,) between the vertices 0 and Z + 1 in G;

n _ pGreedy
Set ‘93‘1,1.+1:ivi+1 1 =Y, iy, 1 and ¢

Return {#}7_, and f*

~

=0foreveryl =1,2,...,7;

L

S N hAwh=

Theorem 5. The shortest path from 0 to Z + 1 on G has value f*.

The above theorem implies that the optimal solution to (3) can be obtained via Algorithm[2]
Theorem 6. Problem (7)) can be solved in O(ZT) time and memory.

Since Z = O(T) and a solution to (3) requires solving O(d?) instances of (7), we find the total
complexity stated in Theorem Note however that if Z = O(1), then the overall complexity reduces
to O(T'd?), which is linear in the total number of variables. In the next section, we will show that the
practical runtime of the proposed algorithm is near-linear with respect to the number of variables.

6 Numerical Analysis

In this section, we evaluate the performance of the proposed estimator in synthetically generated
massive datasets, and a case study on the correlation network inference in stock markets. We refer



the reader to the supplementary file for an extensive discussion of our simulations (e.g., the choice of
parameters, robustness analysis, and a comparison with other state-of-the-art methods). In all of our
simulations, the parameters 1, and \; are chosen directly from the data samples, i.e., without prior
knowledge of the true solution, via Bayesian Inference Criterion (BIC) [31} [13].

Case Study on Large Datasets We consider randomly generated instances of sparsely-changing
GMRFs, where the true inyerse covariangf; matrix is constructed as follows: at time ¢t = 0, we
set O = Ig + Z(i fes AU:3) where A(%9) is a sparse positive semidefinite matrix with exactly

two nonzero off-diagonal elements. For every (i,j) € S, we set Ag;j ) = AEZJ ) = —0.4 and

AEZW ) = A%’j ) —0.4. Clearly, A7) > 0, and hence, ©y > 0. In the first experiment, we fix
T = 10 and change the values of d. The number of nonzero elements in the individual precision
matrices and their differences are set to 3d and 0.04d, respectively. We evaluate the performance
of the proposed method in the high dimensional settings, where N; = d/2 for every t = 0,...,T.
Moreover, define TPR and FPR for the individual parameters and their differences as the true positive
and false positive values, normalized by the total number of nonzero and zero elements in the true
precision matrices and their differences, respectively. Clearly, both TPR and FPR are between 0 and 1,
with TPR = 1 and FPR = 0 corresponding to the perfect recovery of the sparsity patterns. Figure[7
depicts TPR, FPR, and the max-norm error of the estimated parameters, as well as the runtime of
our algorithm for different values of d with and without parallelization. It can be seen that both
TPR and FPR values improve with the dimension for the estimated parameters and their differences.
Moreover, with a single core, the runtime of our algorithm scales almost linearly with d2, which is
in line with the result of Theorem [2. Using 5 cores, the runtime of our algorithm is improved by
40% on average. Using 10 cores deteriorates the performance due to the shared memory limitations.
Using our algorithm, we reliably infer instances of sparsely-changing GMRFs with more almost 500
million variables in less than one hour.
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Figure 3: (a) TPR of the proposed method. (b) FPR of the proposed method. (c) The max-norm of estimation
error. (d) The runtime of the proposed algorithm with and without parallelization.

Case Study on Stock Market Finally, we illustrate the performance of our algorithm for the
inference of stock correlation network. In particular, we consider an investor seeking to understand re-
lationships between securities over time. Sparsity of the precision matrices guarantees interpretability,



while the sparsely-changing structure is imposed to identify sharp changes in market conditions, and
a need to rebalance the portfolio. We consider the daily changes for 214 securities from 1990/01/04
to 2017/08/10, with the total number of 6990 days (d = 214 and T' = 6990). Due to the continu-
ously changing nature of the stock correlation network, we will use the kernel averaging approach
introduced in Subsection Using the constructed sample covariance matrices, we estimate the
sparsely-changing precision matrix ©(¢/7") at discrete times ¢ € {30, 60, 90, . .., 6990}.

A drastic change in the correlation network signals a spike in the stock market, which may reflect the
market’s response to unexpected events. Figure[TT shows the number of changes in the estimated
network, for the choices of vy = 3, A\g = 0.16, and v = 0.9, together with the historical chart of
National Association of Securities Dealers Automated Quotations (NASDAQ) [1]]. It can be seen
that the major spikes in the estimated network can be attributed to the historical stock market crashes.
For instance, the spikes A, B, and C respectively correspond to the “early 1990s recession”, “dot-com
bubble”, and “global financial crisis”; see [4] for more details. Interestingly, the estimated network
can also detect other historical (but less severe) downturns in 2011 (point D) and 2016 (point E). In the
supplementary materials, we provide a more detailed analysis with different choices of parameters.
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