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ABSTRACT

Social media content routinely incorporates multi-modal design to
covey information and shape meanings, and sway interpretations
toward desirable implications, but the choices and impacts of using
both texts and visual images have not been sufficiently studied. This
work proposes a computational approach to analyze the impacts
of persuasive multi-modal content on popularity and reliability,
in COVID-19-related news articles shared on Twitter. The two as-
pects are intertwined in the spread of misinformation: for example,
an unreliable article that aims to misinform has to attain some
popularity. This work has several contributions. First, we propose
a multi-modal (image and text) approach to effectively identify
popularity and reliability of information sources simultaneously.
Second, we identify textual and visual elements that are predic-
tive to information popularity and reliability. Third, by modeling
cross-modal relations and similarity, we are able to uncover how
unreliable articles construct multi-modal meaning in a distorted,
biased fashion. Our work demonstrates how to use multi-modal
analysis for understanding influential content and has implications
to social media literacy and engagement.
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Canadian physician Dr. Bruce Aylward, an
aide to WHO director-general Dr.Tedros
Adhanom, sat down for a video interview
with RTHK about the coronavirus outbreak
where he was asked whether the
organization would "consider Taiwan's
membership."
His response

Popular

== Unreliable

WHO accused of 'carrying China's water'
after official refuses to acknowledge ...
&

Figure 1: Our method performs article popularity and reli-
ability classification using multi-modal cues. We highlight
salient regions for the model’s predictions using a gradient-
based visualization technique [41]. In this example, our
model associates the star in the Chinese flag, along with
part of the title that has negative tone, with the tweeted ar-
ticle being unreliable. On the other hand, the forehead of a
WHO officer (B. Aylward) and a part of the tweet text have
been associated with the article being popular.

(WWW 22 Companion), April 25-29, 2022, Virtual Event, Lyon, France. ACM,
New York, NY, USA, 11 pages. https://doi.org/10.1145/3487553.3524647

1 INTRODUCTION

From campaigns to advertising, social media content routinely
incorporates multi-modal design choices that combine texts and
images to effectively covey information, shape meanings, and sway
interpretations toward desirable implications. Compared to textual
and linguistic analyses, how the different compositions of written
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words and visual elements were created and disseminated on so-
cial media has not been sufficiently studied. This work situates
in the context of prevalent online misinformation in the ongoing
COVID-19 pandemic. Increased isolation and the anxiety about the
pandemic drastically changed our lives — particularly, the increased
use of social media can result in fast spreading of false content,
make users more susceptible to misinformation, and create unique
challenges to detect and debunk untruth [47]. This study attempts
to reveal how the subtle multi-modal content elements are associ-
ated with the propagation of information from online news outlets
that manipulate facts or shape misinterpretations.

In this work, we focus on two aspects of persuasive information,
popularity and reliability. While inferring content reliability alone
may seem enough to identify problematic content and prevent its
spread, popularity is another aspect yet often overlooked. Besides
allowing us to investigate content creation strategies to persuade
the audience and propagate misinformation, estimating content
popularity can also help with timely debunking and prevention
of the spread of misinformation. For example, one can prioritize
content estimated to become popular for manual fact-checking,
when slow and costly expert evaluation is a part of the process.

Popularity and reliability of news articles shared on social media
have been studied before as separate topics. Efforts on predicting
popularity of news articles often rely on hand-crafted content fea-
tures [1, 2, 34] and early engagement statistics [4, 27, 56]. Prior
work focuses on textual content, and does not investigate in what
way accompanying visuals contribute to popularity, even though
modern media is often multi-modal. However, work in media stud-
ies and communication theory suggests images play a critical role
in conveying meaning and are a powerful rhetoric tool [8, 30, 33].
In contrast to text, images are eye-catching and concisely paint a
rich context. For instance, images can imply associations between
people and qualities [18, 48], and use juxtaposition or contrast to
suggest desirable properties or undesirable outcomes [55]. Because
images are powerful, they can both make content popular, and also
carry out an agenda and mislead. Since most news sources use
special meta-tags to specify which image should be shown with
the shared article on social media (e.g. Twitter), analyzing their
target-specific imagery may help us better understand the relative
contribution of visuals in COVID-19 (mis-)information on these
platforms. However, to the best of our knowledge, no prior work
examines popularity of COVID-19-related imagery.

Prior work on predicting reliability, on the other hand, focuses on
detecting fake news using article content [13, 36] and social context
features [29, 32, 39, 43, 52, 53, 57]. Nevertheless, detection methods
that employ social context heavily rely on meta-data beyond the
content itself. For example, network-based models (e.g. [32, 57])
utilize social network graphs which usually requires extensive data
collection, pre-processing and computation efforts. Models that
make use of user-based features (e.g. [43]) do not generalize well
onto spreaders who have little to no previous social interaction.
Finally, efforts that utilize multi-modal content (image and text) suf-
fer from lack of interpretability, and fail to explain the link between
reliability and high-level concepts in the input.

Using data collected from social media pertaining to the COVID-
19 crisis, we attempt to characterize the elements of persuasion. In
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this work, “persuasion” refers to the communication tactics man-
ifested as multi-modal (textual or visual) elements which articles
use to reach their audiences and convey a particular message. We
use popularity as a proxy measure of persuasiveness, and reliability
relates to the agenda, i.e. the purpose of the persuasion (agenda
to convey accurate or misleading information). We examine both
popularity and reliability of COVID-related content, where “pop-
ularity” is captured by how frequent an article shared on social
media, and “reliability” refers to the credibility of the online news
outlets previously identified in prior work [11]. We seek to answer
the following questions:

e RQ1: To what extent do textual and visual signals in a tweet
predict the popularity and reliability of news articles shared
on social media?

e RQ2: What textual and visual elements are predictive of
the popularity and reliability of shared news? How can we
identify the predictive signals?

e RQ3: How does the combination of textual and visual ele-
ments in unreliable and reliable sources differ?

To address these questions, we first develop a multi-modal ap-
proach using visual and textual cues from news-sharing tweets.
We learn a shared feature space optimizing jointly for both pop-
ularity and reliability classification tasks, and use this space to
visualize parts of the input that are salient (informative) for the
model’s predictions, as well as to show how these salient parts
change across two tasks and their classes. We finally formulate a
cross-modal retrieval task to discover whether reliable and unre-
liable sources combine visual and textual elements differently to
construct multi-modal meaning.

Our work is the first empirical study that analyzes the popularity
and reliability aspects of multi-modal persuasive COVID-19-related
content using a multi-task approach. Our method outperforms other
multi-modal baselines on both popularity and reliability prediction
tasks. We find that multi-modal data better enables detection of
misleading or popular content, but the relative importance of visual
and textual features varies: for instance, visual features are more
important for reliability classification. One important finding is that
unreliable content constructs multi-modal meaning in a biased and
distorted fashion, as the results show that a multi-modal represen-
tation model trained on unreliable articles does not translate well to
reliable ones. Finally, articles from unreliable sources often feature
visuals or mentions of national symbols, certain lab/medical equip-
ment, charts, and comics. Our work can be used in high-school
curricula to develop critical media literacy skills, to gauge bias in
publicly funded news media, or to construct balanced presentation
of news in search engines and social media feeds.

2 RELATED WORK

Multi-modal learning on general data. A plethora of recent
work investigates the ways of integrating information from differ-
ent modalities for tasks such as image captioning [20, 24, 60], but
while captioning assumes the same objects are shown and men-
tioned, this is rarely the case in news articles where images and text
serve complementary roles. We discuss multi-modal approaches
for the tasks relevant to our problem setting, below.
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Popular Unpopular Total
Red 934 1,149 2,083 (8.0%)
Orange 2,163 1,917 4,080 (15.7%)
Yellow 5,187 5,181 10,368 (39.8%)
Green 4,457 4,958 9,415 (36.1%)
Satire 80 32 112 (0.4%)
Total 12,821 13,237 26,058 (100%)

Table 1: Number of articles in our collection by domain cod-
ing [11] and popularity. [11] uses Red, Orange, Yellow and
Green to denote the tendency of news sources to elicit fake
news and misinformation (Red being the highest) and Satire
to denote self-describing satirical sources. Red, Orange and
Green are used in experiments.

Reliability and bias prediction. Predicting reliability of news arti-
cles on social media has seen interest in recent years, especially after
the 2016 elections [35]. Some work requires manual fact-checking
data from experts at the article-level granularity [42, 44], which is
costly, slow and not scalable. Thus, [14] shifted the attention to
source reliability. Following their approach, we use source-level reli-
ability labels given in [11] for the articles in our dataset. Prior work
has mostly examined cues from text and social context. [36] per-
forms fake news detection using hand-crafted content features (e.g.
number of paragraphs). [43] combines implicit (e.g. age, political
orientation) and explicit (e.g. registration time, follower count) user
features for fake news detection. Research efforts on bias prediction
and persuasion in visual content is relatively recent and limited.
[18, 19, 48, 59] examine how politicians’ portrayal can be used to
predict personal qualities, electability, and bias of the news source.
[48, 58] predict political ideology from images that politicians share
on social media or that news articles choose to include. However,
none of this work pertains to the COVID-19 crisis. The COVID-19
topic poses a challenge in that it is fairly narrow, thus the type
of imagery will be limited, and the same images might often be
reused and thus not be discriminative. Finally, multi-modal learning
has also been used to analyze social media. [15, 16] fuse features
and statistics from different modalities using an attention mech-
anism to perform rumor detection. [21] learn a feature space to
capture explicit correlations between image and text by employing
a multi-modal variational autoencoder. [54] learn event-agnostic
multi-modal features for fake news detection performing event dis-
crimination as an auxiliary task. [28, 51] utilize recent multi-modal
transformer architectures to detect hateful memes. In contrast to
these works, we use multi-modal cues in a multi-task setting to
perform article popularity and reliability classification tasks, in the
unique context of COVID-19 misinformation. Importantly, these
works only perform classification, but do not examine the elements
of misinformation. In other words, they do not explain which parts
of images/text are important, do not reveal the associations between
high-level visual concepts (e.g., a star) and reliability, and crucially,
the different ways images and text are combined to convey meaning.
We show our approach outperforms [21]’s.

Content popularity prediction. Some work models engagements
on social media and number of page views [4, 27, 56]. Other meth-
ods purely rely on content, hypothesizing it is the ultimate drive
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Popular Unpopular | Total
Reliable 3,066 (.004, .010) 3,097 (.0,.0) | 6,163
Unreliable 3,097 (.003,.008) 3,066 (.0,.0) | 6,163
Total 6,163 6,163 12,326

Table 2: Number of articles by reliability and popularity in

the experiment dataset. Descriptive statistics of popularity

measure £ within each group reported as (mean, stdev).

for popularity. For example, [2] use textual features such as topic,
sentiment and named entities mentioned in the article. [34] shows
article titles reveal strong signals for popularity but its dataset is
limited to two news sources. Some recent work investigates pop-
ularity of a specific type of content such as images [9, 61, 63] and
videos [3, 17, 50]. Most of these works, except [3, 61], are uni-modal
(visual) only, not multi-modal. Our work learns from multi-modal
cues to predict article popularity, within a multi-task framework,
from content only and no meta-data, using a dataset of 95 news
sources. We experimentally compare against [3] and demonstrate
superior performance.

3 DATASET

Our dataset is constructed using a list of pandemic-related tweets
curated by Chen et al. 2020 [5], and reliability coding of news do-
mains proposed in Grinberg et al. 2019 [11]. In their work, Grinberg
et al. 2019 use red, orange, yellow and green to denote likelihood
of news sources to spread misinformation, and satire to denote
self-described satirical sources. After we retrieve tweet objects
for tweets given in [5], we only keep tweets that include a link
to one of the domains in [11]. After data collection, we obtain a
set of articles S = {Aj, Ay, ..., AN} where each article A; is rep-
resented as a set of tweets which shared that particular article.
Lastly, we crawl article URLs to retrieve their titles and images.
We specifically check for twitter:title (og:title as fallback)
and twitter:image (og:image as fallback) meta-tags since they
are utilized by the news source to denote the title and the image
to appear within a news-sharing tweet. We will share the URLs of
images and the split into reliable/unreliable tweets and images as
an extension of [5]’s dataset.

Popularity labels: The first task we want our model to perform
is binary article popularity classification. Thus, we come up with a
popularity measure which makes use of retweet and like counts of
tweets that shared the same article (raw popularity), and follower
counts of authors posted those tweets (audience size):

ZteAi retweet + tlike
Pa; = (1)
[ZteA,— Q(tauthor)] +

where tretweet and tj;xe denote number of retweets/likes for tweet
t in set A;, Q the number of followers of a Twitter user, and A is a
smoothing constant to prevent the score from being inflated when
audience count is small. The top 20% articles are taken as popular
and the bottom 20% are taken as unpopular. All popular articles have
a popularity measure P greater than zero, and P for all unpopular
articles is zero.

Choosing A: Setting the right value for A is important as it
affects the calculated # values and thus the set of popular articles
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Figure 2: (A) Multi-task architecture for multi-modal popularity and reliability classification. Features from both modalities
extracted through convolutional layers are fused to perform both tasks simultaneously. (B) Cross-modal relation modeling.
Visual and text features from the same article are embedded in a metric space to understand how image-text composition
varies in un/reliable articles. Note: The feature extraction module does not share weights between the two architectures.

(top 20%). One should expect that, with an appropriate choice of A,
the distribution of audience size in popular articles and in articles
that gained some popularity (i.e. # > 0) should be similar as the
former is a subset of the latter. Otherwise, the chosen A could be
favoring articles with small/large audience as having higher #.
After experimenting with different values, we set A to 10% as it
makes these two article sets’ audience distributions similar.!

Reliability labels: Data points are also assigned binary reli-
ability labels. To this end, domain codings in our data collection
need to be collapsed into two categories: reliable and unreliable.
After a careful review of [11]’s domain labeling strategy, we strip
yellow and satire sources out as they cannot be perfectly associ-
ated with eliciting misinformation. We consider articles from green
sources as reliable, and articles from either red or orange sources
as unreliable. Lastly, we undersample reliable articles to balance
our experiment dataset, and split it into fixed train/val/test with
70/10/20 ratio. Even after undersampling, our dataset is still much
larger than [62] (2,017 vs 12,326 articles). Table 1 shows the number
of articles that fall into each category in our data collection (before
reliability label assignment) and Table 2 shows descriptive statistics
of the experiment dataset. We use the latter in the classification
experiments to answer RQ1&2, and a subset of the initial data col-
lection (Table 1) in the cross-modal relation experiments to answer
RQ3.

4 MODELS

Popularity and reliability classification. We describe our multi-
task architecture (see Fig. 2A) to perform the binary popularity
classification (T1) and source reliability classification (T2) tasks
simultaneously given inputs:

. Atii” ¢: Title of the article in the generated preview,

. Ati“’eet: Concatenated user-generated content of top-5 tweets
(retweet+like) sharing the article; we oversample if |A;| < 5,

. Ai.mag ®: Image of the article in the generated preview.

! The audience distribution is highly skewed (mean: 430,381, median: 13,824 within
the initial 69,591 articles, and mean: 686,180, median: 52,743 among the 48,562 articles
that gained at least one like or retweet.

As the language used in article titles is likely different than in
tweets (e.g. tweets are more informal), we hypothesize these two
should not share the word embedding space. We train two separate
Word2Vec [31] models offline using article titles (¢) and tweet texts
(¢). Both Word2Vec models embed a token into a 128-D space
(¢, ¥ : X — R1?8). Finally, we represent titles and tweet texts as
a sequence of Word2Vec embeddings, preserving token order and
padding with 0 € R128 to the length of the longest sequence. Our
model employs [22]’s Text-CNN architecture on top of these 128-D
representations. Concisely, our textual feature extractors (G, H)
employ 1-D filters of size {3, 5, 7}, 128 filters for each. We apply
max-pooling over filter outputs, resulting in one scalar per filter,
and feature extractors G : Afitle — R384 and ¢ . Atweet _, R384
We compare to alternative text representations in Sec. 5. For images,
we employ ResNet-50 [12] pre-trained on ImageNet [7] as feature
extractor (F : Ai™ma9¢ — R2048) ‘We concatenate text and image
modalities to perform T1 (popularity) and T2 (reliability prediction)
using two classification branches (Fig. 2) and a multi-task binary
cross-entropy loss:

L(0) = L,(0) + L1, (0) (2a)
L1,(0) = = > yplog(py) + (1-yp) log(1—fp)  (2b)
L3,(0) == )" yrlog(p,) + (1 -y, log(1- ) (20)

where y, € {0,1} and y, € {0, 1} denote ground-truth popularity
and reliability labels respectively, and p, = p(§p, = 1|6) and
pr = p(§r = 1]0) denote predictions.

The intuition for using convolutions for text is that popularity
and reliability may be inferrable from local patterns in the text.
Thus, learning convolutional filters that match these patterns may
be easier than modeling the entire text autoregressively. We show
in Sec. 5 that our method outperforms both [3] and [21], which use
bi-directional LSTM for text encoding. Convolutions also facilitate
our interpretation of pattern importance.

We train our model with an initial learning rate of 1 x 107 and
decrease it by x0.1 if validation loss does not improve in the last
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T1: Popularity T2: Reliability

IMAGE+DOC2VEC-
FusionN
ImaGgeE+Doc2VEc-GRU
BIELSKI & TRZCINSKI [3]
KHATTAR ET AL. [21]

63.1% (£ .010)  61.9% ( .010)

65.0% (£.008)  63.4% (+ .009)
69.8% (£.009)  73.1% (% .009)
70.3% (£ .032)  69.2% (£ .009)
OURS (SINGLE-TASK) 70.8% (% .008) 78.0% (£ .009

OURS (MULTI-TASK) 71.2% (% .008) 78.0% (£ .008
Table 3: Comparison of classification performance (mean
accuracy, + standard error) between our multi-task architec-
ture and other baselines. The best method is shown in bold,
and the second-best is underlined.

four epochs. We use early stopping to terminate training if the vali-
dation loss does not improve in the last six epochs. We use the Adam
[23] optimizer with default parameters of 1 = 0.9, f2 = 0.999.

Cross-modal relation modeling. We next describe our architec-
ture (Fig. 2B) for learning a cross-modal embedding space wherein a
paired (belonging to the same article) visual and textual data resides
closer than an unpaired one. This embedding enables analysis of the
link between modalities in terms of the message they convey, and
the different ways in which multi-modal meaning is constructed in
articles with different labels. We employ an ImageNet pre-trained
ResNet-50 followed by a linear transformation as the image em-
bedding branch (¥ : Ai™39¢ — R512) and two Text-CNNs followed
by a concat and a linear transformation as the text embedding
(G : Atitle x ptweet _, p512) Outputs of these branches are then
L2-normalized to place embeddings on the surface of a 512-D unit
hypersphere. To optimize our model, we minimize an N-pairs loss
[46]:

L= Z Lirip(Ai Aj) (3a)
A;,Aj € minibatch, i#j

Lirip(Ai Aj) = [[IF (AT"9) — G (ALt atweety|2 (3p)
— 1T (A7) - G (A AL P +als

where L;rjp denotes the triplet loss [40] commonly used for
learning cross-modal representations. For each article in a mini-

batch, we take the article image (A;mag e) as anchor, paired text

(Al?itle, Aﬁweet) as positive and all other article texts (Aj.”le, A;Weet)
from minibatch as negatives (hence N-pairs), and accumulate the
loss for each negative that violates the margin a. We use the same
hyperparameters and training strategy as for popularity and relia-
bility classification, and set the margin « to 0.5.

5 EXPERIMENTS

We describe the experiments conducted in order to answer our
research questions with empirical evidence.

RQ1: Multimodal prediction of popularity and reliability. The
first experiment aims to verify the appropriateness of the archi-
tecture we use, by comparing it with several other multi-modal,
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single-task baselines described below. We train two instances for
each baseline, one for each task.

e IMAGE+Doc2VEc-Fusion: Uses 128-D Doc2Vec [26] em-
beddings for article title and tweet texts, then fuse them with
the image feature for classification, similar to [48].

e ImaGE+Doc2VEc-GRU: Employs two GRU [6] cells, Title-
GRU and TweetGRU, as write function for messages passed
from document embeddings to the image feature, then uses
the average final GRU states to classify.

¢ BreLskI & TRzCINSKI [3]: A popularity classification method
that uses self-attention on visual and textual features before
fusion.

e KHATTAR ET AL. [21]: A reliability classification method
that learns cross-modal correlations at the bottleneck layer
of a multi-modal variational autoencoder.

Table 3 summarizes the results. We observe that learning task-
specific document representations (as done by [3], [21] and our
method), instead of using task-agnostic document embeddings (Doc2Vec
is trained on our data but in unsupervised fashion), leads to better
exploitation of the textual modality and stronger performance for
both tasks. Our method is the best single-task method for both
tasks, outperforming prior art, in part due to the use of convolu-
tions (discussed previously). The success of our model addresses
RQ1 and indicates that popularity and reliability can indeed be
estimated from content alone (textual and visual features) with
reasonable accuracy, without needing to rely on meta-data (net-
work features). We also observe our proposed multi-task approach
improves T1 accuracy by 0.4%, indicating that even though these
two tasks seem unrelated, optimizing them jointly enables learning
more informative feature representations.

RQ2: Predictive signals from texts and images. We conduct
another experiment to identify which source(s) of information are
useful in predicting article popularity and source reliability. We use
the single-task version of our architecture, i.e. OURS (SINGLE-TASK),
to see each input’s effect separately for each task. Results in Table
4 show that tweet text is the most important source of information
for popularity classification, while title and image are significantly
weaker (see appendix for hashtag/mention effect experiment). One
possible explanation could be that articles may share very similar
titles and images regardless of popularity as all of them are related
to the same topic, COVID-19. For example, images that portray the
US President holding a news conference can be found on both sides
of popularity.

On the other hand, while the article title is the most important
input for source reliability, all inputs carry useful signals. Adding
tweets to the inputs improves performance over title only by 3.6%,
and adding the image adds an additional 3.4% in accuracy. These
results may indicate news sources have a unique way of conveying
information through images and titles, and this distinction persists
among user-generated content shared along with articles.

Experiments in this section answer RQ2, concluding that tweet
text and article title are the most important sources of information
for T1 and T2, respectively.
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T1: Popularity T2: Reliability

Unal, et al.

Top-10 Tokens

IMAGE ONLY

TITLE ONLY

TWEET ONLY

TiTLE + TWEET ONLY
IMAGE + TITLE + TWEET

54.2% (+ .008)  62.2% (+ .009)
54.8% (+.008)  71.0% (+ .009)
70.6% (£ .008)  67.2% (+ .010)
70.7% (£ .009)  74.6% (% .008)
70.8% (+ .008)  78.0% (= .009)
Table 4: Importance of inputs for popularity (T1) and reli-
ability (T2). The method with the best accuracy is bolded,
second-best is underlined, and third-best is italicized.
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Figure 3: Per-token attention scores in example titles, scores
sorted in descending order of unreliability importance. Fig-
ure best viewed in color, zoom. See appendix for original
titles.

Visualizing important regions. One advantage of having a multi-
task architecture is that one can pinpoint important parts of the
inputs for each task within the same model, because the exact
same input representation is used to perform different tasks. In this
work, we combine Grad-CAM [41] and SmoothGrad [45] to visual-
ize important regions for the model’s predictions and show how
these regions change across tasks and their classes (popular/not,
reliable/not).

Grad-CAM uses gradient information to build class-discriminative
localization maps. It calculates an importance score for each feature
map by performing global average pooling on back-propagated
gradients and then takes linear combinations of forward feature

Popular boris, i, hanks, mail, johnson, vp, 2, &, declares, %
Unpopular wuhan, smartnews, toll, yahoo, positive, chinese,
worldtruthtv, research, report, lines

Reliable stay, social, hong, home, face, wearing, workers, que,
safe, care
Unreliable wire, caller, mail, donald, hedge, aag, president,

mike, bernie, white
Table 5: Top-10 tweet tokens in each task class.

maps using their importance scores. To prevent rapid gradient fluc-
tuations within local structures, SmoothGrad computes a stochastic
approximation to Gaussian smoothing by averaging gradients for
multiple noisy versions of the input. As our feature extractors for
textual inputs are also CNNs, we use the same technique to visualize
important parts of the input text.

For article titles (Fig. 3), we observe that sentence fragments
which can be associated with oppression (e.g. “censoring” and “sup-
press” in [e, g]), conspiracy (e.g. “china falsified”, “secretly” and
“spying,” in [a, ¢, d]), decline in economic activity (e.g. “shares crash”
and “sales crash” in [f, h]) or ridiculing and portraying COVID-19
as a hoax (e.g. “billion-jillion” and “might lower” in [b, i]) become
important for classifying an article as unreliable. On the other hand,
China-related tokens are linked to unpopularity (e.g. “Wuhan”,
“China”, “Chinese” in [c, f, g]). Interestingly, our model puts very
little attention on title when classifying an article as reliable or
popular, and relies on other inputs.

Next, Fig. 4 shows smoothed Grad-CAM output for 18 article
images. For each image, from top to bottom, we show important
regions for classifying an article as popular, unpopular, reliable,
and unreliable, respectively. In the top row, we show images with
Chinese flag [a-d], charts [e-g], and comics [h-i]. We observe that
stars in Chinese flag are used to predict these images coming from
unreliable sources [a-d]. In [e-g], charts are consistently associated
with unreliability and often with popularity, signaling that unreli-
able sources use chart visuals while talking about economic impact
of the pandemic and these visuals attract the audience. Similarly in
[h-i], comics are associated with being both popular and unreliable,
revealing another successful strategy used by unreliable sources to
make their articles more noticeable when shared on Twitter.

In the second row of Fig. 4, we show images with 3-D models of
coronavirus [j-Kk], pipettes and needles [l-o], and large texts [p-r],
all associated with being unreliable. In [l-0], however, pipettes and
needles are also tied to popularity, probably because the types of
unreliable articles these images can belong to (e.g. anti-vaccine,
COVID being lab-made) draw people’s attention more easily.

Finally in Table 5, we report the 10 tweet tokens with largest
average attention score in each task class. Results show that while
prevention-related tokens are associated with the shared article
being reliable, political tokens are mostly tied to being unreliable.
It is also clear that certain emojis indicate article popularity.

RQ3: Difference in cross-modal relationship between reliable
and unreliable domains. The social media posts we examine
construct meaning from multiple modalities, i.e. tweet, title and



Visual Persuasion in COVID-19 Social Media Content: A Multi-Modal Characterization

WWW ’22 Companion, April 25-29, 2022, Virtual Event, Lyon, France
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Figure 4: Salient image regions for predicting different classes (popular/not, reliable/not), highlighted with smoothed Grad-CAM.
A combination of signs and symbols were observed in images from unreliable sources, e.g., national symbols [a-d], charts [e-g],
comics [h-i], 3-D models of coronavirus [j-k], pipettes and needles [1-0], and large texts [p-r].

image. We next examine how the textual and visual components
relate to each other, and how their relationship differs between
reliable and unreliable samples. We learn two separate cross-modal
embedding spaces (using Fig. 2(B) but different training data) for
each domain: one using only reliable (green) and another using
only unreliable articles (red, Table 1). These models allow us to
compare similarity across modalities (e.g. find the text that most
closely matches an image). Rather than absolute performance of
these models for cross-modal retrieval, we are interested in how
they generalize across domains. If a model trained on domain A
performs poorly when the test domain is switched from A to B, this
may be because domain A contains a distortion or bias the model
can exploit.

Table 6 shows the results. Regardless of which domain we train
on, performance is inflated when the training and test domains are
the same, and drops when testing on a different domain (drop shown
in the last column). However, this performance drop is much larger
when training on red (unreliable) articles—performance drops dras-
tically when the test domain switches from red to green, i.e. the
model does not generalize to the green (reliable) domain. On the
other hand, cross-domain performance decrease is much smaller for
the model trained on green articles. Thus, the image-text association
in the unreliable domain is much less general compared with that in

Test Domain
Red Green Cross-domain diff.
- 3-way:.516 | 3-way: .471 —.045 (—8.72%)
‘S | Red 5-way: .363 | 5-way:.317 —.046 (—12.67%)
g 10-way: .215 | 10-way: .174 | —.041(—19.07%)
% 3-way: 489 | 3-way: .493 —.004 (—0.81%)
'S | Green | 5-way:.338 | 5-way:.346 —.008 (—2.31%)
= 10-way: .198 | 10-way: .207 —.009 (—4.35%)

Table 6: K-way cross-modal retrieval test results. Numbers
in parentheses indicate relative gain/loss for cross-domain
testing.

the reliable domain. In other words, the image-text association
in the unreliable domain is more biased. This finding relates to
RQ3. We complement it with another measurement and discussion
in the next section.

We chose K-way retrieval to test generalization performance, as
in [49], for the following reason. Semantic discrepancy between im-
age and text of an article is generally large (e.g. an article image with
people wearing masks can be paired with several different texts), so
a retrieval quality metric used for semantically well-aligned modal-
ities (e.g. image and its caption), namely Recall@K, is not suitable
to assess performance. In K-way retrieval, for a query image, we
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Figure 5: MMD within green, within red, and between green
and red articles w.r.t. sample size, for image inputs (left), titles
(middle), and tweets (right). Discrepancy within green article
images is significantly smaller than it is within red article
images. On the other hand, we find no significant difference
in within-domain discrepancy for other input types.

choose paired text as positive, and randomly sample K — 1 article
texts as negatives, then check whether the positive is the closest to
the query image among K. All models get the same negative set for
the same query. The green training set is undersampled to match
the size of the red training set.

Homogeneity of reliable/unreliable content. In the previous
section, we found that unreliable content is more biased and gen-
eralizes worse than reliable content. One hypothesis is that this
bias is due to homogeneity of the unreliable content (i.e. the same
ideas being propagated, so embeddings trained on these do not
generalize to other data). We test this hypothesis by measuring
within-domain homogeneity. We measure how coherent the distri-
butions of tweets, titles and images are in reliable and unreliable
sources using maximum mean discrepancy (MMD) [10]. Given two
sets of observations X = {x1,x2,...xn} and Y = {y1,y2,.... ym}
drawn i.i.d. from two distributions p and g respectively, empirical
estimate of MMD is computed:

MMDYLX, Y] = [ 5T S k) +
, N(N-1) i j#i n

1 MM , N M
mzzk(yi,yj)—mZZk(xi,yj)] 4
- L

i j#i

where we use the Laplace kernel, k(x, x”) = e @lx=x"ll in our
experiments. We randomly sample 2N articles from each domain
(reliable or unreliable), divide them into two N-sized sets and cal-
culate MMD between these two sets, both of which are from the
same domain. We represent article images with their 2048-D fea-
tures extracted from a ResNet-50 pre-trained on ImageNet, and text
inputs with 128-D Doc2Vec embeddings. We repeat the sampling
process 250 times for each N value, and report average MMD.

Figure 5 shows how within-domain MMD changes for different
values of N; small MMD indicates large homogeneity. For N =
1,000, t-test results show that the image pool of reliable articles is
more homogeneous than of unreliable articles (#(498) = —7.46,p <
0.01). We found no significant difference in homogeneity between
tweet pools of reliable and unreliable articles (¢(498) = 1.17,p =
0.24), and between their title pools (t(498) = —0.34, p = 0.74). Thus,
unreliable sources are not more homogeneous than reliable ones,
indicating their bias has another cause.

Findings in this and the previous section answer our RQ3 and
show that unreliable and reliable articles construct meaning in
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different ways. However, generalization performance of a metric
learning (embedding) model trained on unreliable articles is much
worse than the one trained on reliable articles, indicating unreliable
articles are distorted and biased. This bias is not because unreliable
articles are more homogeneous (less diverse and broad) than reliable
ones.

6 CONCLUSION & DISCUSSION

We examined the elements of multi-modal information and mis-
information on social media. We showed that the popularity and
reliability of an article can be inferred with good accuracy from
visual and textual content alone, without relying on expensive
network or user features. We measured the impact of the visual
and textual channels, as well as which segments within them (re-
gions in images, words in tweets and titles) most contribute to the
persuasive power of the articles. For instance, national symbols
and conspiracy-related words become important for classifying
an article as unreliable. We showed unreliable articles use image-
text associations very differently to construct multi-modal rhetoric.
This has an important implication in relevant downstream tasks:
general-purpose image datasets and models cannot be readily used
for combating misinformation in multi-modal content unless ac-
counting for the bias. Our work is a step towards understanding
misinformative COVID-19-related content and demonstrate that
there are differential patterns of textual and visual elements in on-
line misinformation, which suggests media literacy educators and
online platforms should look at multiple modalities that shape user
experience and meaning in the shared media content.

One major drawback of our approach is that it is not able to
associate important regions with high-level semantic concepts.
This requires a vocabulary of these concepts which is very hard
to construct considering our diverse dataset. It is currently not
feasible to compute a table like Table 5 for visual tokens, i.e. some
frequency-based statistic over common patterns appearing in im-
ages. Unfortunately, the state-of-the-art computer vision methods
are insufficient for this task in the space of COVID-related persua-
sion. One strategy for extracting visual tokens could be to run an
off-the-shelf object detection model on article images, then count
how frequently each object category is attended to by each of our
four task classes. However, we found that even large-vocabulary
detection models perform poorly on our data, and miss important
categories (e.g. medical equipment, flags, banners, etc.). Alterna-
tively, to avoid the need for semantic labels, we have experimented
with clustering of visual inputs, but semantic/topical similarity and
visual similarity are quite distinct, and visual similarity models (and
clustering) do not capture the theme of each image. For example,
images of a couple performing partner stunt at a park, a store front,
and a government building are grouped together. Because com-
puting semantically-aware representations for the specific domain
of COVID imagery is a full-fledged ML task, we leave it as future
work.
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A APPENDICES

In this section, we include an extra experiment to identify if hash-
tags/mentions have an effect on tweet texts being highly predictive
for popularity, sample detection results for a set of article images
outputted by a state-of-the-art object detector that builds on well-
cited models [37, 38] and trained on a large dataset [25] with 600
object categories, and original titles for the examples presented in
Figure 3.

Importance of hashtags and mentions. Having seen that tweet
texts carry the most information for popularity classification, one
can suspect that certain mentions and/or hashtags could be corre-
lated with popularity and the model might be learning to exploit this
correlation instead of focusing on the underlying message tweet
authors are trying to convey. For example, could it be that articles
shared by tweets mentioning “@realDonaldTrump” are mostly pop-
ular and the model just looks for this cue ignoring the rest? We
perform another experiment to see whether the model exploits such
hashtag and/or mention cues. In this experiment, the single-task
version of our model is trained to perform popularity classifica-
tion using tweet text as the only input. We train separate word
embedding models for each experiment, removing corresponding
elements from training data, as some words might only appear with
certain hashtags or mentions, and this would greatly affect where

Unal, et al.

that particular word will be embedded in the learned Word2Vec
space.

Table 7 shows trimming mentions and hashtags out of tweet does
not have a drastic effect on popularity classification performance.
Surprisingly, removing hashtags slightly improves performance.
One possible reason could be that common hashtags appearing
on both sides of popularity (e.g. #COVID19, #coronavirus) may
increase the noise and make the task harder. On the other hand,
removing mentions from tweets causes a slight decrease in perfor-
mance: this causes a loss of contextual information, since referring
to people with their Twitter handles is common practice (e.g. “{@re-
alDonaldTrump | @POTUS} holds a press conference ..” instead of
“President Trump holds a press conference ..”).

T1: Popularity
71.0% (+ .009)
70.0% (< .008)
70.2% (+ .007)
70.6% (< .008)
Table 7: Change in popularity classification accuracy when
hashtags and mentions are stripped out of tweet text.

TWEET wW/0 HASHTAGS

TWEET wW/0 MENTIONS

TWEET wW/0 HASHTAGS+MENTIONS
TWEET ONLY

Sample of detected objects in article images. One possible strat-
egy to extract visual tokens out of article images would be to apply
an off-the-shelf object detector with a large object dictionary and
group regions attended by our classification model based on their
labels assigned by the detector. However, we have seen that even a
state-of-the-art object detector fails to detect object categories that
seem important in COVID context. Figure 6 shows objects detected
by a state-of-the-art YOLO variant trained on the largest object
detection dataset in the literature, namely Open Images.

Original titles for examples presented in Figure 3 In Figure 3,
we presented 9 example of how attention is distributed among title
tokens for each task. However, we sorted tokens based on unreli-
ability attention score, which breaks the original token ordering
and cause loss of context. We include original article titles of these
examples, in the same order they appear in the figure (a-i).

a. REPORT: US Intelligence Confirms China Falsified Coron-
avirus Death, Case Data

b. What Will the Left Do When a Billion-Jillion Americans
Don’t Die of Coronavirus?

c. Origin of COVID-19 Discovered? China Now Admits To
Secretly Testing Deadly Coronaviruses At Wuhan Facility —
Watch Live

d. Sources: China increases spying on US to control coron-
avirus narrative

e. China Has Been Censoring Coronavirus Information for
Months

f. Under Armour Shares Crash, Blames China

g. Chinese Regime Deploys 1,600 Online Trolls To Suppress
Information On Coronavirus

h. China Mobile Phone Sales Crash Most On Record

i. The Coronavirus Death Rate Might Be Lower Than We
Think
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Figure 6: Detection results for a subset of article images. Solid boxes and attached labels denote the object instances and their
semantic classes detected by a YOLO variant, and dashed boxes denote object instances we expect to be detected. We observe
that flag instances were not detected [A, C, F], even though flag was one of the classes in the object detector’s vocabulary.
Similarly, it fails to detect goggles [B], gloves [B, G] and bottles [E], as well as most of the person instances [B] (all in the
vocabulary). Although both needle [E] and pipette [G] are out of dictionary classes, we anticipated them to be detected given
there are contextually and visually similar objects in the detector’s dictionary.
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