
Iterative Supervised Learning for Regression with Constraints
Tejaswi K. C. and Taeyoung Lee

Abstract—Regression in supervised learning often requires the
enforcement of constraints to ensure that the trained models
are consistent with the underlying structures of the input and
output data. This paper presents an iterative procedure to
perform regression under arbitrary constraints. It is achieved by
alternating between a learning step and a constraint enforcement
step, to which an affine extension function is incorporated. We
show this leads to a contraction mapping under mild assumptions,
from which the convergence is guaranteed analytically. The
presented proof of convergence in regression with constraints is
the unique contribution of this paper. Furthermore, numerical
experiments illustrate improvements in the trained model in
terms of the quality of regression, the satisfaction of constraints,
and also the stability in training, when compared to other existing
algorithms.

I. INTRODUCTION

Enforcing constraints on supervised learning is critical when
the underlying structures of the data should be respected in
the trained model, or when it is required to overcome a bias in
the data set. For instance, in [1], constraints caused by length,
angle, or collision are studied with projection when predicting
the motion of a physical system with neural networks. In [2],
fairness with respect to protected features, such as race or
gender, is addressed in socially sensitive decision making.
Further, it has been illustrated by [3] that the performance
of deep learning can be improved by integrating the domain
knowledge in the form of constraints. As such, imposing
constraints is desirable in injecting our prior knowledge of the
model, which is encoded indirectly in the data, to supervised
learning explicitly.

One of the common techniques to implement constraints is
augmenting the loss function with an additional penalty on
the violation of the constraints, as presented by [4] and [5].
On the other hand, constraints have also been implemented
directly as hard constraints that should be satisfied strictly.
Imposing hard constraints on deep neural network is presented
by [6] after customizing large-scale optimization techniques.
Alternatively, [7] handles output label restrictions through
a Lagrangian based formulation. Both of these approaches
based on additional regularization terms or hard constrained
optimization involve the process of actively adjusting model
parameters in training. In other words, the possibly conflicting
goals of regression and constraint enforcement should be
addressed simultaneously. This may hinder the efficiency of
the training procedure, while making it susceptible to various
numerical issues.

Recently, an iterative procedure has been proposed by
[8], where the constraints are enforced by adjusting the

Mechanical and Aerospace Engineering, The George Washington University,
Washington DC 20052 kctejaswi999@gmail.com,tylee@gwu.edu

The research was partially supported by NSF under the grants CNS-1837382,
CMMI-1760928 and by AFOSR FA9550-18-1-0288.

target, instead of manipulating the model parameters di-
rectly, thereby addressing the aforementioned challenges. The
desirable feature is that any supervised learning technique
developed without constraint consideration can be adopted
in conjunction with nonlinear constrained optimization tools.
However, this approach is heuristic in the sense that there
is no analytical assurance for convergence through iterations,
while its performance is illustrated with several numerical
examples. In fact, it is challenging to present a convergence
property in any supervised learning with constraints.

The main objective of this paper is to establish a certain
convergence guarantee in regression with constraints. Towards
this end, we utilize the procedure of adjusting the target
to satisfy constraints. More specifically, the ideal target is
projected to the intersection between the set of possible outputs
from the chosen model and the set of feasible outputs. Then
the model parameters are optimized to the adjusted target,
and these two steps are repeated. The proposed approach is
motivated by the alternating projections [9], [10] and Dykstra’s
algorithm [11]. In particular, the two steps of iterations in
adjusting the target, and in training the model are considered
as certain projection operators, from which convergence is
established by the Banach fixed point theorem [12].

The desirable feature is that we have a certain assurance of
convergence in regression with constraints. Another interesting
feature is its general formulation: as discussed above, this
framework can be integrated with any supervised learning
technique. And, it further addresses the challenges of adjusting
the model parameters to the satisfaction of the constraints,
while performing regression simultaneously. One downside
is that we cannot enforce the constraint strictly as hard
constraints, but there is a design parameter that provides a
trade-off between regression and constraint satisfaction.

Numerical experiments demonstrate that the proposed
approach improves the regression performance in the similar
level of constraint violation. More importantly, it exhibits
more consistent results over five-fold validations. As such, the
proposed convergence proof is actually beneficial in numerical
implementations.

II. ITERATIVE LEARNING WITH CONSTRAINTS

A. Problem Formulation

Consider a regression problem where we should predict
the ideal output y ∈ Rn given the inputs X ∈ Rn×d. Here n
denotes the number of points in the dataset, and d corresponds
to the number of features in each data point. Let the model for
supervised learning be denoted by ŷ = f(X, θ), where θ ∈ Rp
are the model parameters and ŷ ∈ Rn is the output predicted
by the current model parameters. The goal of regression is to
identify the optimal model parameters θ∗ that minimize a given

loss function, L(y, ŷ), L : Rn × Rn → R. In addition, we
enforce constraints on the predicted output so that it belongs
to a feasible set denoted by C ⊂ Rn, i.e., ŷ ∈ C. Thus, the
optimization problem for regression with constraints can be
formulated as

θ∗ = arg min
θ
{L(y, ŷ) | ŷ = f(X, θ), and ŷ ∈ C} .

Alternatively, this can be reorganized into an optimization
on the output space as

z = arg min
ŷ

{L(ŷ, y) | ŷ ∈ B ∩ C} , (1)

θ∗ = arg min
θ
{L(z, ŷ) | ŷ = f(X, θ), θ ∈ Rp}. (2)

where B = {ŷ | ŷ = f(X, θ), θ ∈ Rp} is the set of all possible
outputs under the current model. In other words, (1) is to find
an alternative optimal target z ∈ Rn that is closest to the
ideal target y under the restriction of the given constraint
and the model bias. Next, in (2), the model parameters are
optimized such that the predicted output matches to the optimal
target z, not the ideal target y. The intriguing feature is
that the supervised learning in (2) corresponds to the usual
supervised learning without constraints, as the constraints
are enforced indirectly through (1). As such, any supervised
learning scheme can be utilized for (2). For (1), standard tools
in nonlinear constrained optimization can be applied.

B. Iterative Learning Algorithm with Constraints

In [8], this problem is tackled by a clever combination of two
iterations, which is verified by various numerical examples. But
it might be heuristic in the sense that no convergence property
is established. Here we propose the following alternative
iterative scheme for (1) and (2), summarized by Algorithm 1,
which provides a certain convergence property in regression.
Here, α, β are non-negative parameters in the adjustment step,
and Ni is the total number of iterations of this procedure.

Algorithm 1 Regression with constraints
Input: y ∈ Rn, {α, β} ∈ R, Ni ∈ Z

1. ŷ1 = arg minŷ {L(ŷ, y) | ŷ ∈ B} # Initial training
2. for i = 1 to Ni − 1 do
3. if ŷi /∈ C then
4. zi = arg minz

{
L(z, (1− α)y + αŷi) | z ∈ C

}
Infeasible adjustment

5. else
6. zi = arg minz

{
L(z, y) | L(z, ŷi) ≤ β, z ∈ C

}
Feasible adjustment

7. end if
8. ŷi+1 = arg minŷ

{
L(ŷ, zi) | ŷ ∈ B

}
Unconstrained training

9. end for
Output: ŷNi

In the first step of initial training, supervised learning
is performed without considering the constraint. The next
iterations are composed of two parts of target adjustment and
unconstrained training, and the target adjustment step has two
sub-cases depending on the output of the previous step. In
particular, the most critical step is when the output of the
trained model does not satisfy the constraint. In the step 4,
denoted by infeasible adjustment, the target is adjusted to
minimize L(z, (1 − α)y + αŷi). That is, we find a feasible
target z ∈ C that is closest to a point on the line connecting
y and ŷ in terms of the loss function.

Next, when the output of the trained model satisfies the
constraint, in the step of feasible adjustment, the target z is
moved closer to the original target y within a ball of radius
β measured in terms of the loss. Finally, the model is trained
with the adjusted target, and the whole procedure is repeated.

C. Convergence Property

Now we present a convergence property of Algorithm
1, which has motivated the proposed form of the objective
function in the infeasible adjustment step.

Denote norms on the Euclidean space by ‖·‖ : Rn → R,
with the L2 and the L1 norms represented by ‖·‖2, and ‖·‖1,
respectively. A projection operator PZ,L : Rn → Rn on the
set Z with respect to the loss L is defined as

PZ,L(x) = arg min
z
{L(z, x) | z ∈ Z} . (3)

In other words, x ∈ Rn is projected to z ∈ Z such that the
distance between x, z is minimized in terms of the loss L.

Consider a convex subset Z ⊆ X of a finite-dimensional
normed vector space (X, ‖·‖). There exists a unique projection
PZ,‖·‖(x) ∈ Z for each x ∈ X such that∥∥x− PZ,‖·‖(x)

∥∥ = inf {‖x− z‖ | z ∈ Z}

if the underlying geometric constraint is satisfied (see [13,
Proposition 3.2]). That is, PZ,‖·‖ should not be contained in
some non-degenerate line segment of ∂Z which is parallel to
some non-degenerate line segment in the boundary of the unit
‖·‖ ball.

Assumption 1. We make the following assumptions.
• The sets B and C are convex.
• The projection operator in B and C is Lipschitz, i.e.,

there exists a norm ‖ · ‖ and K > 0 such that
‖PA,L(x)− PA,L(y)‖ ≤ K ‖x− y‖ for all x, y ∈ Rn
where A = B or A = C.

When the loss function in the projection (3) is MSE, the
above two statements are actually equivalent [13].

Now we are concerned with convergence of the sequence,
(ŷi) ∈ B generated after the training step. In other words, we
wish to show that ŷi → ȳ as i→∞ for some ȳ ∈ Rn. The
convergence of Algorithm 1 is established as follows.

Theorem 1. Suppose α < 1/K2, where K ≥ 1 is the
Lipschitz constant introduced in Assumption 1. The iterations
of Algorithm 1 has a unique fixed point in B, which is the

limit of the sequence (ŷi) for an initial ŷ1 ∈ B, when β is
sufficiently small.

Proof. When β → 0, Algorithm 1 iterates between the
infeasible adjustment step and unconstrained training, and
it can be written as
• Affine extension: yα = (1− α)y + αŷi

• Adjustment: zi = PC,L(yα) =
arg minz

{
L(z, (1− α)y + αŷi) | z ∈ C

}
• Learning: ŷi+1 = PB,L(zi) =

arg minŷ
{
L(ŷ, zi) | ŷ ∈ B

}
Therefore, Algorithm 1 corresponds to a concatenation of two
projections as

ŷi+1 = PB,L(PC,L(h(ŷi))), (4)

where h : Rn → Rn is the affine extension function defined
as h(ŷi) = (1− α)y + αŷi.

Consider any two points ŷ1, ŷ2 ∈ B. We have∥∥PB,L(PC,L(h(ŷ1)))− PB,L(PC,L(h(ŷ2)))
∥∥

≤ K
∥∥PC,L(h(ŷ1))− PC,L(h(ŷ2))

∥∥
≤ K2

∥∥h(ŷ1)− h(ŷ2)
∥∥

≤ K2α
∥∥ŷ1 − ŷ2∥∥

If K2α < 1, then each iteration is a contraction mapping on
B with the metric induced by this norm, d(x, y) = ‖y − x‖.
Since (B, d) is a complete metric space, the series of iterations
has a unique fixed point ȳ = f(ȳ) according to the Banach
fixed point theorem [12]. Moreover, the sequence {ŷ1, ŷ2, . . .}
converges to ȳ for any ŷ1 ∈ B.

In short, the Lipschitz properties of Assumption 1 ensures
that each iteration is a contraction. The critical question is
how we can ensure the Lipschitz property of the projection
operators.

Corollary 1. The convergence of Algorithm 1 is guaranteed
as described in Theorem 1 for the following loss functions.
• For the mean squared error (MSE) given by L(z, y) =

1
n

∑n
k=1(zk − yk)2, the algorithm converges for the

parameter α ∈ [0, 1).
• For the mean absolute error (MAE) given by L(z, y) =

1
n

∑n
k=1 |zk − yk|, the algorithm converges for the

parameter α ∈ [0, 0.25).

Proof. For MSE, the projection in (3) corresponds to

PZ,L(y) = arg min
z

{
1

n

n∑
k=1

(zk − yk)2

∣∣∣∣∣ z ∈ Z
}

= arg min
z

{
‖z − y‖22 | z ∈ Z

}
,

which is equal to minimization with respect to the standard
Euclidean norm, ‖·‖2. The proximity map for a closed convex
set in the Hilbert space with Euclidean inner product satisfies
the condition ‖Px− Py‖ ≤ ‖x− y‖ [9], [13]. Since its
Lipschitz constant is K = 1, according to Theorem 1,
Algorithm 1 converges for α ∈ [0, 1).

Next, for the MAE loss, the projection becomes

PZ,L(y) = arg min
z

{
1

n

n∑
k=1

|zk − yk|

∣∣∣∣∣ z ∈ Z
}

which is optimization with respect to the L1 norm, ‖·‖1. It
is shown by [14] that the Lipschitz constant is K = 2 with
respect to the L1 norm. Hence convergence is guaranteed if
α ∈ [0, 0.25).

Corollary 1 is the main result of this paper establishing
the convergence of iterative algorithm for regression with
constraints. The key idea which facilitated it is selection
of the objective function of the infeasible adjustment as
L(z, (1 − α)y + αŷi). Interestingly, for a specific choice of
the loss function, namely mean squared error (MSE) loss, it
is equivalent to the form of L(z, y) + 1

αL(z, ŷ) as described
below.

Remark 1. If the loss function is mean squared error, the
procedure in Algorithm 1 and the Moving Targets algorithm
in [8] are equivalent after adjusting the parameter α.

Proof. In the infeasible adjustment case of the Moving Targets,
a vector is obtained that considers the original label, y and
the current prediction, ŷ separately in the form of L(z, y) +
1
αL(z, ŷ). Since the main difference between the two algo-
rithms is in this formulation, we compare the corresponding
optimization problems. With L(z, y) = (1/n)

∑n
k=1(zk−yk)2

as the MSE loss, Algorithm 1 addresses

za = arg min
z

{
n∑
k=1

(zk − (1− αa)yk − αaŷk)2 | z ∈ C

}
Whereas the master step from Moving Targets is,

zm = argmin
z

{
n∑

k=1

(zk − yk)2 +
1

αm

n∑
k=1

(zk − ŷk)2 | z ∈ C

}
Here, the subscript a represents our algorithm while variables

with m as the subscript are from Moving Targets. The objective
functions in za, zm differ only by a scale if,

αa(αm + 1) = 1. (5)

Hence, the solutions that are obtained from them will be
identical, i.e., za = zm.

Next, we show that the proposed algorithm further exhibits
improved numerical properties in several examples, beyond
providing mathematical assurance.

III. NUMERICAL SIMULATION

A. Constrained Learning Problem

We evaluate the performance of the proposed algorithm with
various datasets, parameter values, and loss functions. First,
we underscore that this section is meant to be an exercise
in understanding an algorithmic procedure, and the resulting
output is supposed to be interpreted as purely technical results.
The type of constraints considered in this section is called
fairness constraints in socially sensitive decision making (see

TABLE I
PARAMETERS

α

Weight on ŷ w.r.t y Algorithm 1, αa Moving Targets, αm

Less 0.1 9
Equal 0.5 1
More 0.9 1/9

[15]), which is measured in the form of Disparate Impact
Discrimination Index as

DIDIr(z) =
∑
p∈P

∑
v∈Dp

∣∣∣∣∣∣ 1n
n∑
i=1

zi −
1

|Xp,v|
∑

i∈Xp,v

zi

∣∣∣∣∣∣ ≤ ε.
(6)

Here Dp is the set of values for the p-th protected feature, such
as gender or disability, from the set P , and Xp,v represents the
inputs whose p-th feature has value v. Roughly speaking, it
represents the difference between the mean of the output and
the mean conditioned by the protected feature, and the higher
DIDI, the more the dataset suffers from disparate impact. The
constraint on the DIDI value, ε, is taken to be a fraction (0.2)
of the DIDI value for the training set.

Three different datasets are considered for this regression
problem with fairness constraints:
• student dataset (n = 649 points, d = 33 attributes) for

Portuguese class from the UCI repository which has been
used to predict secondary school student performance
in [16]. We are going to protect the feature, sex, and
try to estimate the final grade of each student, G3, after
removing unrelated features.

• crime dataset also from the UC Irvine Machine Learn-
ing repository [17] which has n = 2, 215, d = 147.
Since the target variable is violentPerPop representing
per capita violent crimes, we want to impose fairness
constraints w.r.t. the protected feature race.

• blackfriday dataset which is available online at [18].
Considering computational challenges, we select a sample
of data from the start with size, n = 50, 000, among the
original training data (n ≈ 550, 000, d = 12). Here,
the goal is to estimate the amount of money spent,
Purchase, while ensuring that the predictions are fair
with respect to the protected feature, Gender. A new
attribute, Product_ID_Count, which is the value count of
Product_ID is introduced since it represents the number
of times a product has been purchased.

All the categorical features in the data are encoded into an
integer array using an Ordinal Encoder. Finally, obtained values
are normalized to be between 0 and 1 to ensure balanced
regression.

Next the values of parameters α, β are chosen as follows.
For the parameter α, three different values are chosen, and
the corresponding values of αm are calculated from (5) in
Remark 1. These are listed at Table I where as αa is increased,
more weight is assigned to ŷ that has been adjusted for the
constraint, compared with the original target y. Therefore,

there is more emphasis on the satisfaction of the constraint.
We choose β = 0.1 according to the empirical study presented
in [8].

For the machine learning model of regression, a gradient
boosted tree is chosen as it ensures repeatability. It also
achieves higher accuracy as well as better constraint satis-
faction. To study the convergence property, the algorithms
are executed for the total of Ni = 30 iterations. A five-fold
cross validation is performed to obtain a reliable estimate of
performance as well as the standard deviation. We utilize a
computer with Intel i7 CPU and Nvidia GK107 GPU with
16 GB RAM. To solve the optimization problems in the
adjustment step of Algorithm 1, we utilize the IBM software
CPLEX [19] for MSE and MAE. Additionally, we consider
the mean Huber loss (MHL) L(z, y) = 1

n

∑n
k=1 g(zk − yk),

where

g(x) =

{
x2, |x| ≤M
2M |x| −M2, |x| > M

(7)

with M = 0.1, which is implemented by CVXPY [20].

B. Numerical Results

Table II presents the results for varying loss functions,
datasets and α values. Performance is measured through the
regression coefficient R2, and the ratio C of DIDI (6) of the
predicted output to training data. We also compare between
our algorithm (denoted by A) and the Moving Targets (M)
for the corresponding α values from Table I. According to
Remark 1, both methods are equivalent for MSE. For the
blackfriday dataset, two cases of α are left out since they
could not be solved with the available computing resources.
The trade-off between constraint satisfaction and regression is
well reflected in Table II: as αa is increased, C decreases at
the cost of reduced R2.

Next, the bold fonts in Table II represent the cases for
which our algorithm performs better than Moving Targets in a
statistically meaningful manner, and the italic fonts represent
the opposite case. The statistical importance is assumed to
occur when |µa − µm| ≥ σa + σm, i.e., the difference
between the mean figures is greater than the sum of their
standard deviations. It can be observed that our procedure
performs better in terms of both R2 and C in more cases for
both crime and blackfriday datasets. For the student
dataset, which is the smallest one (n = 649), the results are
mostly comparable.

Beyond the regression results summarized by Table II, the
advantages of the proposed approach are well illustrated by
investigating the learning process. Figures 1 and 2 presents
the evolution of R2 and C over iterations for crime and
blackfriday data, respectively. When αa is small (0.1),
both the algorithms yield very similar results as seen in Figures
1.(a) and (d).

However, once αa is increased to 0.5 and 0.9 for more
emphasis on constraint satisfaction, the proposed Algorithm 1
performs noticeably better. As shown in Figures 1.(b) and (e),
and also in Figures 2.(a) and (c), the proposed approach yields
a greater R2 with a lower C. Next, in Figures 1.(c) and (f), and

TABLE II
PERFORMANCE AFTER Ni = 30 ITERATIONS; SHOWN AS mean (std) OF 5 FOLDS

crime student blackfriday

Loss αa A M A M A M

MSE

0.1 R2 .550 (.013) .921 (.010) .645 (.002)
C .262 (.013) .325 (.044) .567 (.016)

0.5 R2 .494 (.012) .908 (.012) .620 (.001)
C .237 (.006) .289 (.027) .511 (.026)

0.9 R2 .368 (.004) .881 (.022) .481 (.003)
C .216 (.004) .241 (.006) .358 (.013)

MAE

0.1 R2 .520 (.016) .534 (.014) .891 (.018) .888 (.027) .645 (.003) .647 (.002)
C .260 (.014) .280 (.007) .331 (.054) .318 (.041) .582 (.018) .577 (.017)

0.5 R2 .467 (.019) .342 (.085) .874 (.019) .883 (.029) .624 (.002) .590 (.003)
C .239 (.013) .265 (.005) .333 (.054) .327 (.026) .478 (.018) .577 (.028)

0.9 R2 .383 (.062) .359 (.043) .799 (.051) .785 (.047) .502 (.002) .295 (.005)
C .220 (.011) .215 (.007) .278 (.026) .212 (.021) .256 (.010) .219 (.006)

MHL

0.1 R2 .530 (.013) .534 (.013) .921 (.011) .923 (.010) ——
C .272 (.008) .276 (.012) .326 (.048) .311 (.049) ——

0.5 R2 .493 (.010) .489 (.013) .907 (.013) .900 (.015) .620 (.001) .611 (.003)
C .248 (.007) .258 (.006) .289 (.035) .291 (.044) .511 (.026) .509 (.025)

0.9 R2 .368 (.004) .318 (.009) .882 (.022) .860 (.024) ——
C .217 (.002) .207 (.004) .241 (.006) .232 (.010) ——

0 5 10 15 20 25 30
Iterations

0.50

0.51

0.52

0.53

0.54

0.55

R
2
tr
(w

ith
 S
td
)

[('dataset', 'crime'), ('loss', 'mae')]

movtar 9.0
affine 0.1

(a) R2 for αa = 0.1, using MAE

0 5 10 15 20 25 30
Iterations

0.25

0.30

0.35

0.40

0.45

0.50

R
2
tr
(w
ith
 S
td
)

[('dataset', 'crime'), ('loss', 'mae')]

movtar 1.0
affine 0.5

(b) R2 for αa = 0.5, using MAE

0 5 10 15 20 25 30
Iterations

0.275

0.300

0.325

0.350

0.375

0.400

0.425

0.450

0.475

R
2

tr
(w

ith
 S

td
)

[('dataset', 'crime'), ('loss', 'mhl')]

movtar 0.1111
affine 0.9

(c) R2 for αa = 0.9, using MHL

0 5 10 15 20 25 30
Iterations

0.23

0.24

0.25

0.26

0.27

0.28

0.29

D
ID

I t
r (

w
ith

 S
td

)

[('dataset', 'crime'), ('loss', 'mae')]

movtar 9.0
affine 0.1

(d) C for αa = 0.1, using MAE

0 5 10 15 20 25 30
Iterations

0.22

0.23

0.24

0.25

0.26

0.27

0.28

D
ID
I t
r (
w
ith

 S
td
)

[('dataset', 'crime'), ('loss', 'mae')]

movtar 1.0
affine 0.5

(e) C for αa = 0.5, using MAE

0 5 10 15 20 25 30
Iterations

0.20

0.21

0.22

0.23

0.24

0.25

D
ID
I t
r (
w
ith

 S
td
)

[('dataset', 'crime'), ('loss', 'mhl')]

movtar 0.1111
affine 0.9

(f) C for αa = 0.9, using MHL

Fig. 1. Comparison of our algorithm (blue) vs Moving Targets (red) for crime dataset; error bars represent standard deviation

in Figures 2.(b) and (d), it exhibits greater values of R2 while
being comparable in terms of the constraint satisfaction. More
importantly, the proposed approach displays more uniform
performances over five-fold validation as the standard deviation
is much lower, for example as illustrated by Figures 1.(b),
1.(c), and 2.(c). This suggests that the presented proof of
convergence is in fact beneficial in numerical implementations
as well, and the improved numerical properties in iterations
may be more important for the scalability of regression and
the complexity of constraints.

IV. CONCLUSIONS

We have proposed an iterative algorithm for regression with
constraints, composed of feasible/infeasible adjustments and
training. A convergence guarantee is also provided with an
affine extension function in the infeasible adjustment step.
Later, the results of numerical experiments are presented
with varying datasets and parameter values. The proposed
convergence proof in supervised learning with constraints
is the unique contribution, and it is further shown that the

0 5 10 15 20 25 30
Iterations

0.58

0.59

0.60

0.61

0.62

0.63

0.64

R
2
tr
(w
ith
 S
td
)

[('dataset', 'blackfriday'), ('loss', 'mae')]

movtar 1.0
affine 0.5

(a) R2 for αa = 0.5

0 5 10 15 20 25 30
Iterations

0.30

0.35

0.40

0.45

0.50

0.55

0.60

R
2

tr
(w

ith
 S

td
)

[('dataset', 'blackfriday'), ('loss', 'mae')]

movtar 0.1111
affine 0.9

(b) R2 for αa = 0.9

0 5 10 15 20 25 30
Iterations

0.450

0.475

0.500

0.525

0.550

0.575

0.600

0.625

0.650

D
ID

I t
r (

w
ith

 S
td

)

[('dataset', 'blackfriday'), ('loss', 'mae')]

movtar 1.0
affine 0.5

(c) C for αa = 0.5

0 5 10 15 20 25 30
Iterations

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

D
ID
I t
r (
w
ith

 S
td
)

[('dataset', 'blackfriday'), ('loss', 'mae')]

movtar 0.1111
affine 0.9

(d) C for αa = 0.9

Fig. 2. Comparison of our algorithm (blue) vs Moving Targets (red) for blackfriday dataset using MAE; error bars represent standard deviation

performances in all of the aspects of regression, constraint
satisfaction and training stability are improved over the existing
techniques. For future direction, we aim to study a convergence
guarantee in more generic, non-Lipschitz conditions, and even
for classification setups.

REFERENCES

[1] S. Yang, X. He, and B. Zhu, “Learning physical constraints with neural
projections,” arXiv preprint arXiv:2006.12745, 2020.

[2] R. Berk, H. Heidari, S. Jabbari, M. Joseph, M. Kearns, J. Morgenstern,
S. Neel, and A. Roth, “A convex framework for fair regression,” arXiv
preprint arXiv:1706.02409, 2017.

[3] A. Borghesi, F. Baldo, and M. Milano, “Improving deep learning models
via constraint-based domain knowledge: a brief survey,” arXiv preprint
arXiv:2005.10691, 2020.

[4] S. V. Mehta, J. Y. Lee, and J. Carbonell, “Towards semi-supervised learn-
ing for deep semantic role labeling,” arXiv preprint arXiv:1808.09543,
2018.

[5] M. Diligenti, S. Roychowdhury, and M. Gori, “Integrating prior
knowledge into deep learning,” in 2017 16th IEEE International
Conference on Machine Learning and Applications (ICMLA). IEEE,
2017, pp. 920–923.

[6] P. Márquez-Neila, M. Salzmann, and P. Fua, “Imposing hard con-
straints on deep networks: Promises and limitations,” arXiv preprint
arXiv:1706.02025, 2017.

[7] Y. Nandwani, A. Pathak, P. Singla, et al., “A primal dual formulation
for deep learning with constraints,” 2019.

[8] F. Detassis, M. Lombardi, and M. Milano, “Teaching the old dog
new tricks: Supervised learning with constraints,” arXiv preprint
arXiv:2002.10766, 2020.

[9] W. Cheney and A. A. Goldstein, “Proximity maps for convex sets,”
Proceedings of the American Mathematical Society, vol. 10, no. 3, pp.
448–450, 1959.

[10] S. Boyd and J. Dattorro, “Alternating projections,” EE392o, Stanford
University, 2003.

[11] H. H. Bauschke and J. M. Borwein, “Dykstra’s alternating projection
algorithm for two sets,” Journal of Approximation Theory, vol. 79, no. 3,
pp. 418–443, 1994.

[12] K. Ciesielski et al., “On Stefan Banach and some of his results,” Banach
Journal of Mathematical Analysis, vol. 1, no. 1, pp. 1–10, 2007.

[13] V. Balestro, H. Martini, and R. Teixeira, “Convex analysis in normed
spaces and metric projections onto convex bodies,” arXiv preprint
arXiv:1908.08742, 2019.

[14] D. G. De Figueiredo and L. Karlovitz, “On the radial projection in
normed spaces,” in Djairo G. de Figueiredo-Selected Papers. Springer,
1967, pp. 11–15.

[15] S. Aghaei, M. J. Azizi, and P. Vayanos, “Learning optimal and fair
decision trees for non-discriminative decision-making,” in Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 33, no. 01, 2019,
pp. 1418–1426.

[16] P. Cortez and A. M. G. Silva, “Using data mining to predict secondary
school student performance,” 2008.

[17] D. Dua and C. Graff, “UCI machine learning repository,” 2017.
[Online]. Available: http://archive.ics.uci.edu/ml

[18] Black friday dataset. [Online]. Available: https://www.kaggle.com/
sdolezel/black-friday

[19] IBM ILOG CPLEX, “V12. 1: User’s manual for CPLEX,” International
Business Machines Corporation, vol. 46, no. 53, p. 157, 2009.

[20] S. Diamond and S. Boyd, “CVXPY: A Python-embedded modeling
language for convex optimization,” Journal of Machine Learning
Research, vol. 17, no. 83, pp. 1–5, 2016.

http://archive.ics.uci.edu/ml
https://www.kaggle.com/sdolezel/black-friday
https://www.kaggle.com/sdolezel/black-friday

	Introduction
	Iterative Learning with Constraints
	Problem Formulation
	Iterative Learning Algorithm with Constraints
	Convergence Property

	Numerical Simulation
	Constrained Learning Problem
	Numerical Results

	Conclusions
	References

