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Abstract

We propose a broadly applicable variational
inference algorithm for probabilistic mod-
els with binary latent variables, using sam-
pling to approximate expectations required
for coordinate ascent updates. Applied to
three real-world models for text and im-
age and network data, our approach con-
verges much faster than REINFORCE-style
stochastic gradient algorithms, and requires
fewer Monte Carlo samples. Compared to
hand-crafted variational bounds with model-
dependent auxiliary variables, our approach
leads to tighter likelihood bounds and greater
robustness to local optima. Our method is
designed to integrate easily with probabilis-
tic programming languages for effective, scal-
able, black-box variational inference.

1 Introduction

Variational inference is widely used to estimate the
posterior distributions of hidden variables in proba-
bilistic models (Wainwright and Jordan, 2008). Varia-
tional bounds are usually optimized via coordinate as-
cent variational inference (CAVI, Jordan et al. (1999))
algorithms which iteratively update single (or small
blocks of) variational parameters. Although CAVI up-
dates can be effective for simple models composed from
conjugate priors (Blei et al., 2003), for many models
the expectations required for exact CAVI updates are
intractable: they may require complex integrals for
continuous variables, or computation scaling exponen-
tially with the number of dependent discrete variables.

Variational algorithms for models with non-conjugate
conditionals have been derived via hand-crafted auxil-
iary variables that induce looser, but more tractable,
bounds on the data log-likelihood (Jordan et al., 1999;
Winn and Bishop, 2005). Such bounds typically re-
quire complex derivations specialized to the paramet-
ric structure of specific distributions (Jaakkola and

Jordan, 1999; Gan et al., 2015), and thus do not easily
integrate with general-purpose inference systems.

To address these limitations, Paisley et al. (2012),
Wingate and Weber (2013) and Ranganath et al.
(2014) have explored stochastic gradient algorithms
that directly optimize a reparameterized bound involv-
ing the log-likelihood gradient or score function, as
in the classic REINFORCE policy gradient (Williams,
1992). Due to its simplicity and generality, it has
become the “standard” variational inference algo-
rithm for a number of probabilistic programming lan-
guages including Edward and TensorFlow Probabil-
ity (Tran et al., 2016, 2018), WebPPL (Goodman and
Stuhlmüller, 2014; Ritchie et al., 2016), Pyro (Bing-
ham et al., 2019), and Gen (Cusumano-Towner et al.,
2019). REINFORCE has also been called black box
variational inference (BBVI, (Ranganath et al., 2014))
because it can be applied to different probabilistic
models without specialized derivations. We use these
two terms interchangably. Unlike other black-box vari-
ational methods (Kucukelbir et al., 2017) that re-
quire specific variable reparameterizations (Kingma
and Welling, 2014), BBVI provides unbiased gradients
for all models including the many practically impor-
tant models with discrete latent variables. But as we
demonstrate in this paper, even for models of mod-
erate size and using control variates, REINFORCE-
based variational inference typically requires a large
number of iterations (and Monte Carlo samples) for
convergence due to its high-variance issue.

In this paper we analyze the poor convergence be-
havior of previous BBVI methods in more detail, and
contrast it with a Monte Carlo variant of the clas-
sic CAVI algorithm. Our Monte Carlo CAVI updates
have strong asymptotic guarantees (Ye et al., 2019)
while showing good convergence behavior even when
few samples are used; in experiments, BBVI typically
requires about one hundred times more computation
to infer posteriors of comparable quality. We demon-
strate the potential of Monte Carlo CAVI for black-box
inference by applying it to diverse models of text and
image and network data. Dramatically, in addition



to being easier to derive and implement, Monte Carlo
CAVI updates are superior to previous hand-crafted
variational inference algorithms in predictive accuracy
and robustness to initialization.

2 Binary-Variable Models

We consider probabilistic models that generate obser-
vations x via binary latent variables z sampled from
some joint distribution p(z, x) = p(z)p(x | z). Specif-
ically, we take three real-world models as running ex-
amples. The first one is deep noisy-OR Bayesian net-
works that have been used to capture topic interac-
tions within documents (Murphy, 2012; Liu et al.,
2016; Ji et al., 2019). Like the logical OR operator,
the noisy-OR conditional distribution (Horvitz et al.,
1988) assumes the state of a binary variable zi is in-
dependently influenced by the state of each parent:

p(zi = 0 | zP(i)) = exp
(︂
−
∑︂

k∈P(i)
wk→i · zk

)︂
. (1)

Similarly, observed word tokens x in the bottom layer
are generated by their latent topic ancestors z via the
noisy-OR relation as well, whose dependence can be
determined by any directed acyclic graph.

The second type of models are sigmoid belief networks
(Neal, 1992), which are layered binary generative mod-
els where the activation probability of each node is de-
termined by the sigmoid function σ(x) = 1

1+exp(−x) .

The activation zi,j of node j in layer i depends on the
states of nodes in the preceding layer zi+1:

p(zi,j = 1 | zi+1) = σ(wT
i,jzi+1 + cj). (2)

Here, the possibly sparse weight vector wi,j determines
which parents directly influence the activation of zi. In
our experiments, two layers of binary latent variables
are used to generate pixel values x at the finest scale.

Finally, we consider a simplified version of the non-
parametric relational model of Miller et al. (2009),
where each entity i is described by a set ofD hidden bi-
nary features zid ∼ Bernoulli(ρ). The probability that
undirected link xij between entities i and j is present
depends on the number of shared features:

p(xij = 1 | z) = Φ
(︂
w0 +

∑︂D

d=1
wdzidzjd

)︂
. (3)

Here, Φ is the CDF of the standard normal distribu-
tion, or probit function. Real-valued weight wd con-
trols the change in link probability when entities share
feature d, and Φ(w0) is the (small) probability of link
occurrence for entities that share no features.

import torch1
from pyro import plate, sample2
from pyro.distributions import Bernoulli3

4
class BN(torch.nn.Module):5
  def __init__(self, params):6
    super(BN, self).__init__()7
    self.b, self.W1, self.c1, self.W2, self.c2 = params8
    self.D_H2, self.D_H1 = self.W2.shape9

10
  @abstractmethod11
  def squash_fun(self, x):12
    raise NotImplementedError13

14
  def model(self, data):15
    dat_axis = plate('dat_axis', data.shape[0], dim=-2)16
    top_axis = plate('top_axis', self.D_H2, dim=-1)17
    mid_axis = plate('mid_axis', self.D_H1, dim=-1)18
    bot_axis = plate('bot_axis', data.shape[1], dim=-1)19
    with dat_axis, top_axis:20
      z_top = sample('z_top', Bernoulli(21
                     probs=self.squash_fun(self.b)))22
      wz_top = torch.matmul(z_top, self.W2) + self.c223
    with dat_axis, mid_axis:24
      z_bot = sample('z_bot', Bernoulli(25
                     probs=self.squash_fun(wz_top)))26
      wz_bot = torch.matmul(z_bot, self.W1) + self.c127
    with dat_axis, bot_axis:28
      sample('x', Bernoulli(29
             probs=self.squash_fun(wz_bot)), obs=data)30

31
class NoisyOrBN(BN):32
  def squash_fun(self, x):33
    return torch.ones([]) - torch.exp(-x)34

35
class SigmoidBN(BN):36
  def squash_fun(self, x):37
    return torch.sigmoid(x)38

Figure 1: Pyro specification of three-layer Bayesian net-
works. By defining different squashing functions (line 33
and 37), the noisy-OR topic model and sigmoid belief net-
work may be easily created from the abstract base class.

3 Variational Inference for PPLs

Probabilistic programming languages (PPLs) provide
flexible but precise frameworks for defining probabilis-
tic models, and performing inference queries given ob-
served data. Fig. 1 shows the power of PPLs by defin-
ing noisy-OR topic networks and sigmoid belief net-
works with compact, integrated Pyro code. The grand
promise of PPLs is that given a generative model spec-
ification, appropriate inference code can be automati-
cally generated, enabling rapid model exploration even
for non-expert users. In this section, we develop a
Monte Carlo VI algorithm and show its effectiveness
against the REINFORCE variational gradients, which
is the standard variational algorithm for many PPLs.

3.1 Monte Carlo Coordinate Ascent VI

Exact posterior inference is intractable for models like
those in Sec. 2 due to the combinatorial number of
latent feature combinations. Mean field variational in-
ference algorithms seek an approximate posterior q(z)
from a tractable family with simpler dependencies by
maximizing the evidence lower bound (ELBO):

L(q) = Eq(z) [log p(z, x)− log q(z)] ≤ p(x). (4)



In this work, we make a “naive” mean-field approxima-
tion so that q(z) =

∏︁
i q(zi) is fully factorized. Coordi-

nate ascent variational inference (CAVI, Jordan et al.
(1999); Winn and Bishop (2005); Blei et al. (2017)) it-
eratively optimizes each factor of the variational den-
sity while holding all others fixed, producing iterations
that monotonically increase the ELBO and converge to
a (local) maximum.

Concretely, to update a variational factor q(zi), CAVI
requires the complete conditional p(zi | z−i, x) of zi
given all other latent variables z−i and the observa-
tions x. For binary latent-variable models, each q(zi)
is a Bernoulli distribution. The optimal value for its

logit τi ≜ log q(zi=1)
q(zi=0) equals

τi = Eq(z−i)

[︄
log

p(zi = 1 | z−i, x)

p(zi = 0 | z−i, x)

]︄
, (5)

where the expectation is with respect to the current it-
eration’s variational distributions q(z−i) =

∏︁
j ̸=i q(zj).

While CAVI provides a uniform way to optimize the
ELBO, it is not computationally tractable because for
non-conjugate conditionals like those in Eqs. (1,2,3),
computing the expectations in Eq. (5) requires enu-
merating the exponentially many joint configurations
of variables in the Markov blanket of zi. We propose a
Monte Carlo version of the classical CAVI algorithm,
which uses sampling to approximate the expectations
needed for optimal variational parameter updates:

τi ≈
1

M

M∑︂
m=1

log
p(zi = 1 | z(m)

−i , x)

p(zi = 0 | z(m)
−i , x)

(6)

=
1

M

M∑︂
m=1

log

p(zi = 1|u(m)
P(i))

∏︁
j∈C(i)

p(u
(m)
j |zi = 1, u

(m)
P(j))

p(zi = 0|u(m)
P(i))

∏︁
j∈C(i)

p(u
(m)
j |zi = 0, u

(m)
P(j))

,

where z
(m)
−i are samples drawn from q(z−i), u(m) ≜

{z(m)
−i ∪x}, and C(i) is the set of children of variable i.

The second line of Eq. (6) shows more explicitly how
the model structure is leveraged to avoid unnecessary
computations with variables outside the Markov blan-
ket. Importantly, the complexity of Monte Carlo CAVI
is linear in the number of samples even for models with
high-order dependencies.

3.2 Comparison with REINFORCE

The REINFORCE method optimizes Eq. (4) via
stochastic gradient ascent, computing unbiased ELBO
gradients via Monte Carlo samples z(m) drawn from
q(z). To avoid constraints, for binary latent variables,
noisy gradient updates are parameterized via varia-
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Figure 2: Left: Graphical illustration of a toy noisy-OR
model with two latent nodes. Right: Contour plot of the
toy model’s ELBO as a function of the variational param-
eters q1 ≜ q(z1 = 1) and q2 ≜ q(z2 = 2), when the observa-
tion x = 1. The yellow star indicates the global optimum.
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Figure 3: ELBO (y axis) over iterations (x axis) on the toy
model. The initial values q1 = 0.5, q2 = 0.9 are selected
intentionally from the low-probability region in Fig. 5. As
expected, the ELBO of CAVI fluctuates in the first few
iterations, but then quickly moves to the optimum (red).
In contrast, the ELBO of BBVI updates drops frequently
across iterations even under the best learning rate (green).
The number of samples used for each method is 2.

tional logits τi:

∂L
∂τi

≈ 1

M

M∑︂
m=1

∂ log q(zi)

∂τi

⃓⃓⃓⃓
z
(m)
i

· (7)

(︁
log p(z

(m)
i | z(m)

−i , x)− log q(z
(m)
i )

)︁
.

Note that in Eq. (7), Rao Blackwellization is used to
analytically marginalize variables outside the Markov
blanket of the variable being updated, provably reduc-
ing variance (Ranganath et al., 2014).

Monte Carlo CAVI (CAVI for short) and REIN-
FORCE (BBVI for short) are both general-purpose
tools for inference. Both methods only require the
ability to sample from the (binary) variational distri-
bution and to evaluate (components of) the model log-
probability. As for the speed comparison with BBVI,
CAVI is twice as slow per iteration when the number
of samples is the same. That’s because CAVI evalu-
ates the log densities in Eq. (6) twice, assigning zi to
bothg 0 and 1, while BBVI only needs one of them in

Eq. (7), depending on the value of sample z
(m)
i .

But as shown in the toy example in Fig. 2, BBVI re-
quires much more iterations to converge to the same
optima than CAVI, even under the best learning rate
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e) BBVI: 2 sp & 2 cv sp
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f) BBVI: 3 sp & 2 cv sp

Figure 4: The probability that a gradient update of q would
increase the ELBO. Each point of the plots indicates the
current value of q1 and q2. a) the true gradient; b-d) niosy
gradients estimated with various numbers of samples; e-f)
noisy gradients with extra samples used to estimate the
baseline control variate (cv). The learning rate is 1.

tuned (Fig. 3). That is because comparing to the an-
alytic gradient that always increases the ELBO, the
randomness caused by Monte Carlo sampling in BBVI
may change the variational parameters in wrong direc-
tions, especially in areas around the global optimum
(Fig. 4). Note that adding the control variate is not
able to entirely solve this problem.

On the other hand, Fig. 5 shows CAVI behaves bet-
ter than BBVI under the same sampling budgets, in
the sense that most areas have higher probability of
ELBO improvement. The low-probability regions are
much farther away from the global optimum compar-
ing to the ones in BBVI. More importantly, unlike the
gradient-based BBVI method that has to follow the
gradient directions step by step, CAVI does not need
to tune the learning rate, and changes the variational
factor of each variable directly to the optimal point.
Because of this, even if q is initialized in the blue re-
gion unluckily, CAVI is able to escape from it in just a
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Figure 5: The probability that a coordinate update of q
would increase the ELBO. a) the regular coordinate ascent
update where expectations are computed numerically; b-d)
Monte Carlo CAVI using various numbers of samples.

couple of iterations and rapidly converge to the global
optimum, as illustrated in the red curve in Fig. 3.

4 Experiments

We compare the proposed algorithm with BBVI and
auxiliary-variable coordinate methods on the three
models described in Sec. 2. We use the same datasets
as in the original papers, and evaluate their average
test ELBOs using Monte Carlo sampling. We find that
our Monte Carlo CAVI method has multiple appealing
advantages over the baseline approaches.

4.1 Text Data and Noisy-OR Relations

As in Ji et al. (2019), we use the tiny 20 Newsgroups
dataset to test the inference performance, and follow
the same model structure that has 44 latent topic
nodes spanned in two layers, and 100 observed token
nodes. The edge weights are fixed to the values learned
through the variational training algorithm of the pa-
per, without the local model pruning.

4.1.1 Faster Convergence than BBVI

We compare the performance of different variational
methods on the test set, which contains 4,872 docu-
ments in total. The variational distribution q is all
initialized to 0.5. The trace plot of average ELBO is
shown in Fig. 6(a). Similar to the auxiliary-variable
coordinate algorithm in Ji et al. (2019), CAVI con-
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Figure 6: Improvement of average test ELBO (y axis) over iterations (x axis) on four different datasets. Unless specified
otherwise, we use 10 samples for both CAVI and BBVI. Our CAVI algorithm always converges to values higher than or
similar to those of the model-dependent auxiliary-variable methods. It also converges in a speed orders of magnitude
faster than BBVI, whose learning rate has been tuned for the best performance on each dataset. (a): CAVI behaves more
robustly than BBVI when the sampling budget drops from 10 (solid) to 2 (dotted). (b): CAVI behaves more robustly
than the auxiliary-variable method when the initialization changes from the marginal prior for each node (solid) to 0.5
(dotted). (c): Only on this very small dataset, BBVI with control variate (decaying average baseline) converges within
1,000 iterations. (d): CAVI is clearly better than the other methods on this larger network dataset.
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Figure 7: While the direct parallelization of CAVI (black)
fails to converge, trails with damping all end up in good
local optima similar to the sequential CAVI update (red).
Larger damping rate α helps to converge faster.

verges in about 10 iterations. The ELBO of the two
methods at convergence are also very close (CAVI
−14.51 v.s auxiliary variables −14.53). When the sam-
ple size drops from 10 to 2, the convergence speed of
CAVI only slows down slightly.

On the contrary, BBVI is still far from convergence
even after 1,000 iterations, just getting an average test
ELBO of −15.76 with the control variate, and −21.22
without. We believe the slow ELBO improvement of
BBVI is largely due to the low probability area around
the optimum point shown in the toy example of Fig. 4,
especially for the last few hundreds of iterations. In
addition, the dotted lines show that BBVI is much
more vulnerable to the change in sample size.

4.1.2 Parallel CAVI Updates via Damping

Coordinate algorithms update the parameters one at a
time, while holding all the others fixed. Comparing to
gradient-based methods that change all the parame-
ters together, this sequential setup naturally prohibits
CAVI from being embarrassingly parallelized. Similar

to Sun et al. (2013), we find reliable parallelization can
be achieved through damping. As shown in Eq. (8),
the damping update sets the vector of logits τ at it-
eration t + 1 as a linear combination of its value in
the previous iteration t, and the parallel coordinate
update for all variables:

τt+1 = (1− α) · τt + α · τparallel. (8)

The parallel updates across all dimensions share the
same set of Monte Carlo samples. Fig. 7 illustrates
that without damping, the ELBO of the parallel
update (black line) oscillates and never converges.
Damping helps avoid this problem, as shown by the
blue, green and yellow curves. We find that the damp-
ing rate α generally does not affect the ELBO at con-
vergence, but just slows down the convergence speed
slightly, as shown in Fig. 7.

4.2 Image Data and Sigmoid Relations

Following Gan et al. (2015), we build a fully-connected
network with three layers. The two layers at the top
have 100 nodes each, and the observed layer at bottom
corresponds to the binarized images. We use the test
set of MNIST, which contains 10,000 images each with
28×28 pixels. Edge weights of the network are learned
from the training set through the public code of Gan
et al. (2015) for coordinate-ascent variational training
using the Pólya-Gamma trick.

4.2.1 Robustness to Bad Initializations

As presented in Fig. 6(b), similar conclusions can be
drawn for this model. Moreover, the auxiliary variable
method (Gan et al., 2015) performs very badly when q



Input: bottom parts of the images (top row) are missing.

Prior marginal init: CAVI (top) v.s BBVI (bottom).

0.5 init: CAVI (top) v.s BBVI (bottom).

Figure 8: Examples of MNIST digit completion. CAVI
works better than BBVI under both initializations.

is uniformly initialized to 0.5 (dotted black line). The
result improves if we initialize q to be the marginal
prior of each node (solid black line), obtained via a
Monte Carlo estimate over one million samples.

In contrast, CAVI is not as sensitive to initialization.
As shown by the red lines in Fig. 6(b), CAVI performs
better than the auxiliary-variable method under both
initialization strategies. Examples of digit completion
in Fig. 8 also illustrate this difference clearly.

We believe the reasons for the performance difference
between CAVI and the auxiliary-variable method are
two-fold. First, the auxiliary-variable objective is a
lower bound of the ELBO, so it is expected that the
result will be worse than CAVI, which optimizes the
ELBO directly. Second, with more latent variables
added in, the optimization surface becomes more com-
plicated, so the data-augmented algorithm gets stuck
in bad local optima more easily. We find under re-
peated trials with random variable update orders, the
variance of the ELBOs at convergence is much larger
for the auxiliary-variable method than CAVI.

4.3 Link Data and Probit Relations

We test the performance on two datasets from the
original paper of Miller et al. (2009). The first one
is the country dataset, which describes various rela-
tions (such as “accusation” and “economic aid”) be-
tween 14 countries during 1950 to 1965 (Rummel,
1976). In particular, we use the “conference” rela-
tion, which consists of symmetric connections indi-
cating if two countries co-participate in any interna-
tional conference. We set D = 4, and model param-
eters wd = 2, w0 = −2, ρ = 0.5 are selected through
grid search. The features are initialized as the prior
value ρ. As shown in Fig. 6(c), on this very small

model, BBVI with control variate finally reaches the
same performance of CAVI after using over 10 times
more iterations. For a baseline comparison, we derive
an auxiliary-variable variational method based on the
trick of Probits from thresholded Gaussians (Albert
and Chib, 1993). See the appendix for full details.

The second relational dataset is the NIPS co-
authorship data by Globerson et al. (2007), where a
link indicates two individuals being coauthors of a
paper in one of the first 17 NIPS conferences. Fol-
lowing Miller et al. (2009) and Palla et al. (2012),
we pick the 234 most connected authors, and set
D = 10, wd = 2, w0 = −2, ρ = 0.1. On this larger
dataset, the advantage of CAVI over the auxiliary vari-
able method and BBVI is very obvious, as shown in
Fig. 6(d).

5 Discussion

We have developed a Monte Carlo variational inference
framework applicable to any probabilistic model with
binary latent variables. The proposed method con-
verges much faster than BBVI, and is less sensitive to
the sample size and initialization. Relative to model-
specific auxiliary bounds, our Monte Carlo CAVI al-
gorithm directly optimizes a tighter likelihood bound,
and is more robust to initialization in spite of being
simpler to derive and implement.

While this submission focused on models with binary
variables for simplicity, it is straightforward to gen-
eralize the Monte Carlo update of Eq. (6) to general
discrete variables with more domain values v:

q(zi = v) ∝ exp
{︂ 1

M

M∑︂
m=1

log p
(︂
zi = v | z(m)

−i , x
)︂}︂

(9)

= exp
{︂ 1

M

M∑︂
m=1

log p
(︂
zi = v | u(m)

P(i)

)︂
+

∑︂
j∈C(i)

log p
(︂
u
(m)
j | zi = v, u

(m)
P(j)

)︂}︂
.

Note that computational complexity grows linearly
with the number of discrete states.

We are exploring applications to other models with
non-binary discrete variables, and integrating Monte
Carlo CAVI updates into PPLs like Gen. We believe it
will provide a compelling alternative to previous black-
box variational methods as a scalable inference engine
for probabilistic programs.
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