
Proceedings of the 14th International Symposium on Process Systems Engineering – PSE 2021+ 
June 19-23, 2022, Kyoto, Japan © 2022 Elsevier B.V. All rights reserved. 

Dynamic Operability Analysis for the Calculation 
of Transient Output Constraints of Linear Time-
Invariant Systems 
San Dinha, Fernando V. Limaa* 

aWest Virginia University, Morgantown, West Virginia, 26506, U.S.A 
*Fernando.Lima@mail.wvu.edu  

Abstract 
In this work, a dynamic operability mapping is developed to find an operable funnel for 
a linear time-invariant dynamic system. The existing operability mapping method to 
find this funnel is computationally expensive, which makes it unsuitable for online 
control applications. A novel two-step calculation procedure is proposed, which 
includes an offline computation of the nominal funnel by constructing a convex hull of 
the manipulated variable projections, followed by an online update that adjusts the 
funnel to an operable region based on the current state information. As a result, a 
dynamic funnel that contains all achievable outputs regardless of the process 
disturbances and measurement noises is obtained in the form of transient output 
constraints for model predictive control implementation.  
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1. Introduction 
Process operability is defined as the design and control ability to achieve desired 
performance from the given available inputs regardless of the realization of the 
disturbances (Gazzaneo et al., 2020). If the operability analysis is able to be carried out 
along with the operation of a process, not only the achievable portions of the desired 
outputs are known, but also the feasible output constraints can be provided for model 
predictive control to guarantee feasibility (Lima and Georgakis, 2009). However, the 
currently available operability analysis involves an exhaustive generation of the input 
combinations, and thus this approach may quickly become intractable. 

In this paper, the achievable output sets at all values of the disturbances are formulated 
as a set of time-dependent polyhedra, which is referred to as the dynamic operable 
funnel. To avoid confusion between control theory and process operability concepts, 
external output constraints are defined here as the constraints on the output variables 
that are given by the physical nature of a process, such as thermodynamic and 
equipment’s safety limits. In the application to online model predictive control, the 
dynamic funnel provides the transient output constraints to keep the process from 
moving toward an inoperable region, and the online calculation must be done efficiently 
to assure a sufficient time for the controller to solve for an optimal path.  

In particular, the dynamic operable funnel of a linear time-invariant dynamic process is 
proven to be defined as a polyhedron. Also, the ability of the current process to move 
toward its stable operating region is quickly verified following Phase I of the simplex 
algorithm for linear programming, and the operable region in the presence of external 
output constraints can be obtained via the convex hull of suitable geometric duals with 
respect to a feasible solution (Muller and Preparata, 1978). Therefore, the remaining 
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challenge is constructing the dynamic operable funnel in a tractable manner. In the 
proposed framework, the funnel calculation is divided into two steps: the first step is 
computing the funnel offline before the full state information arrives; and the second 
step is updating the funnel online according to the full state information that becomes 
available. The preliminaries and concepts necessary to define the proposed approach are 
detailed next. 

2. Dynamic Operability Problem Background 
2.1. Preliminaries 

Consider the following discrete-time linear time-invariant dynamic system: 

𝑥𝑥(𝑘𝑘 + 1) = 𝐴𝐴𝐴𝐴(𝑘𝑘) + 𝐵𝐵𝐵𝐵(𝑘𝑘) + 𝐺𝐺𝐺𝐺(𝑘𝑘);  𝑥𝑥(0) = 𝑥𝑥0 (1) 

𝑦𝑦(𝑘𝑘) = 𝐶𝐶𝐶𝐶(𝑘𝑘) + 𝐷𝐷𝐷𝐷(𝑘𝑘) + 𝑣𝑣(𝑘𝑘) (2) 

in which 𝑥𝑥(𝑘𝑘) ∈ ℝ𝑛𝑛𝑥𝑥 ,𝑢𝑢(𝑘𝑘) ∈ ℝ𝑛𝑛𝑢𝑢  𝑎𝑎𝑎𝑎𝑎𝑎 𝑦𝑦(𝑘𝑘) ∈ ℝ𝑛𝑛𝑦𝑦  are the vectors of state variables, 
input/manipulated variables and output/controlled variables, respectively; 𝑤𝑤(𝑘𝑘) ∈ ℝ𝑛𝑛𝑤𝑤 
and 𝑣𝑣(𝑘𝑘) ∈ ℝ𝑛𝑛𝑣𝑣 are the zero-mean multivariate Gaussian distributed vectors with the 
respective positive definite covariance matrices, Σ𝑤𝑤 ∈ ℝ𝑛𝑛𝑤𝑤×𝑛𝑛𝑤𝑤 and Σ𝑣𝑣 ∈ ℝ𝑛𝑛𝑣𝑣×𝑛𝑛𝑣𝑣. The 
initial time 𝑘𝑘 = 0 is defined to be the current time instead of the time in which the 
process begins, and the initial state variables, 𝑥𝑥0, are assumed to be given by a state 
observer.  

Since 𝑤𝑤(𝑘𝑘) and 𝑣𝑣(𝑘𝑘) are assumed to be zero-mean with Gaussian distributions, the 
states and the outputs are also multivariate Gaussian random variables with the 
respective means 𝑥̅𝑥(𝑘𝑘) and 𝑦𝑦�(𝑘𝑘). The sequences of covariance matrices for the states, 
Σ𝑥𝑥(𝑘𝑘), and the outputs, Σ𝑦𝑦(𝑘𝑘), are: 

Σ𝑥𝑥(𝑘𝑘 + 1) = 𝐴𝐴Σ𝑥𝑥(𝑘𝑘)𝐴𝐴𝑇𝑇 + 𝐺𝐺Σ𝑤𝑤𝐺𝐺𝑇𝑇; Σ𝑥𝑥(0) = 0𝑛𝑛𝑥𝑥×𝑛𝑛𝑥𝑥  (3) 

Σ𝑦𝑦(𝑘𝑘) = 𝐶𝐶Σ𝑥𝑥(𝑘𝑘)𝐶𝐶𝑇𝑇 + Σv (4) 

When a random vector 𝑝𝑝 ∈ ℝ𝑛𝑛𝑝𝑝  is a Gaussian random vector with a mean 𝑝̅𝑝 and a 
covariance matrix Σ𝑝𝑝, its 95% highest density region, 𝐻𝐻𝐻𝐻𝐻𝐻(𝑝𝑝), is the following 
ellipsoid with the scale 𝑙𝑙𝑝𝑝2 equals to the inverse cumulative distribution function of the 
chi-squared distribution with 𝑛𝑛𝑝𝑝 degrees of freedom: 

𝐻𝐻𝐻𝐻𝐻𝐻(𝑝𝑝) = �𝑝𝑝|(𝑝𝑝 − 𝑝̅𝑝)𝑇𝑇Σ𝑝𝑝−1(𝑝𝑝 − 𝑝̅𝑝) ≤ 𝑙𝑙𝑝𝑝2; 𝑙𝑙𝑝𝑝2 = 𝐼𝐼𝐼𝐼𝑣𝑣𝜒𝜒2(95%;𝑛𝑛𝑝𝑝)� (5) 

2.2. Dynamic operability sets 

The Available Input Set at the discretized time 𝑘𝑘 (𝐴𝐴𝐴𝐴𝑆𝑆𝑘𝑘) is defined as the set of all 
feasible sequences of manipulated variables from the initial time 0 to time 𝑘𝑘.  

𝐴𝐴𝐴𝐴𝑆𝑆𝑘𝑘 = �𝑢𝑢𝑘𝑘 = [𝑢𝑢(0)𝑇𝑇 ,𝑢𝑢(1)𝑇𝑇 , … ,𝑢𝑢(𝑘𝑘 − 1)𝑇𝑇]𝑇𝑇|𝑢𝑢𝑘𝑘,𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑢𝑢𝑘𝑘 ≤ 𝑢𝑢𝑘𝑘,𝑚𝑚𝑚𝑚𝑚𝑚� (6) 

The Expected Disturbance Set (𝐸𝐸𝐸𝐸𝑆𝑆𝑘𝑘𝑑𝑑) is the set of all realizations of the disturbances, 
d, at the time k. The two sources of disturbances assumed here are the 𝑤𝑤(𝑘𝑘) and 𝑣𝑣(𝑘𝑘), 
which can take any real values due to their Gaussian distributions. Their values are 
constrained to their respective 95% highest density regions as follows: 
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𝐸𝐸𝐸𝐸𝑆𝑆𝑘𝑘𝑑𝑑 = �𝑑𝑑(𝑘𝑘) = [𝑤𝑤(𝑘𝑘) 𝑣𝑣(𝑘𝑘)]𝑇𝑇�
𝑑𝑑(𝑘𝑘)𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(Σ𝑤𝑤−1, Σ𝑣𝑣−1)𝑑𝑑(𝑘𝑘) ≤ 𝑙𝑙𝑑𝑑2

𝑙𝑙𝑑𝑑2 = 𝐼𝐼𝐼𝐼𝑣𝑣𝜒𝜒2(95%;𝑛𝑛𝑤𝑤 + 𝑛𝑛𝑣𝑣) � (7) 

The Achievable Output Set at a fixed disturbance 𝑑𝑑 (𝐴𝐴𝐴𝐴𝐴𝐴(𝑑𝑑)) is the set of all possible 
outputs at the discretized time 𝑘𝑘 given the linear system (1), (2) and the range of 
manipulated variables. A necessary condition for a process to be operable is that the set 
of achievable outputs regardless of the realizations of the process disturbances, 𝐴𝐴𝐴𝐴𝑆𝑆𝑘𝑘, 
has to be nonempty. The 𝐴𝐴𝐴𝐴𝑆𝑆𝑘𝑘 is defined as the intersection of all achievable output 
sets at fixed realizations of the disturbance:   

𝐴𝐴𝐴𝐴𝑆𝑆𝑘𝑘 = � 𝐴𝐴𝐴𝐴𝑆𝑆𝑘𝑘𝑑𝑑(𝑑𝑑) = �𝑦𝑦(𝑘𝑘)�
(1), (2) 𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠;
𝑢𝑢𝑘𝑘 ∈ 𝐴𝐴𝐴𝐴𝑆𝑆𝑘𝑘;𝑑𝑑(𝑘𝑘) ∈ 𝐸𝐸𝐸𝐸𝑆𝑆𝑘𝑘𝑑𝑑;�

𝑑𝑑∈𝐸𝐸𝐸𝐸𝑆𝑆𝑘𝑘
𝑑𝑑 

 (8) 

3. Calculation of Transient Output Constraints 
3.1. Offline computation of transient state funnel at nominal-valued disturbances  

The following assumptions are considered for the offline calculation of the dynamic 
funnel that can be later addressed in the online update: 𝑥𝑥0 = 0𝑛𝑛𝑥𝑥;𝐶𝐶 = 𝐼𝐼𝑛𝑛𝑥𝑥×𝑛𝑛𝑥𝑥;𝐷𝐷 =
0𝑛𝑛𝑥𝑥×𝑛𝑛𝑢𝑢;  𝑤𝑤(𝑖𝑖) = 0𝑛𝑛𝑤𝑤;𝑣𝑣(𝑖𝑖) = 0𝑛𝑛𝑥𝑥  ∀ 𝑖𝑖 ≤ 𝑘𝑘. The considered outputs are the predicted 
state variables before 𝑤𝑤(𝑘𝑘) and 𝑣𝑣(𝑘𝑘) are accounted for, and the 𝐴𝐴𝐴𝐴𝑆𝑆𝑘𝑘 has the form: 

𝐴𝐴𝐴𝐴𝑆𝑆𝑘𝑘 = {𝑥𝑥(𝑘𝑘)|𝑥𝑥(𝑘𝑘) = 𝐵𝐵�𝑘𝑘𝑢𝑢𝑘𝑘;𝑢𝑢𝑘𝑘 ∈ 𝐴𝐴𝐴𝐴𝑆𝑆𝑘𝑘} (9) 

where 𝐵𝐵�k = [𝐴𝐴𝑘𝑘−1𝐵𝐵 𝐴𝐴𝑘𝑘−2𝐵𝐵…𝐴𝐴𝐴𝐴 𝐵𝐵]. From the definition (6), the 𝐴𝐴𝐴𝐴𝑆𝑆𝑘𝑘 is a bounded 
convex polyhedron. From the formulation of (9), 𝐵𝐵�𝑘𝑘:ℝ𝑘𝑘×𝑛𝑛𝑛𝑛𝑛𝑛 → ℝ𝑛𝑛𝑥𝑥  is a linear 
transformation of the 𝐴𝐴𝐴𝐴𝑆𝑆𝑘𝑘 into the 𝐴𝐴𝐴𝐴𝑆𝑆𝑘𝑘, so that the 𝐴𝐴𝐴𝐴𝑆𝑆𝑘𝑘 is exactly the smallest 
convex hull that contains all the projections of the available input sequences on the state 
vector space. Additionally, for an achievable state 𝑥𝑥(𝑘𝑘) to be a vertex of the 𝐴𝐴𝐴𝐴𝑆𝑆𝑘𝑘, its 
preimage, 𝑢𝑢𝑘𝑘, must be a vertex of the 𝐴𝐴𝐴𝐴𝑆𝑆𝑘𝑘. Then the 𝐴𝐴𝐴𝐴𝑆𝑆𝑘𝑘 can be computed by taking 
the convex hull of the 2𝑘𝑘×𝑛𝑛𝑢𝑢 vertices of the 𝐴𝐴𝐴𝐴𝑆𝑆𝑘𝑘, which is the vector of the input 
sequence in which each element is either taken from the value of the lower bound 
𝑢𝑢𝑘𝑘,𝑚𝑚𝑚𝑚𝑚𝑚 or the upper bound 𝑢𝑢𝑘𝑘,𝑚𝑚𝑚𝑚𝑚𝑚: 

𝐴𝐴𝐴𝐴𝑆𝑆𝑘𝑘 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑢𝑢𝑢𝑢𝑢𝑢�𝐵𝐵�𝑢𝑢𝑘𝑘|𝑢𝑢𝑘𝑘𝑇𝑇𝑒𝑒𝑖𝑖 ∈ �𝑢𝑢𝑘𝑘,𝑚𝑚𝑚𝑚𝑚𝑚
𝑇𝑇 𝑒𝑒𝑖𝑖 ,𝑢𝑢𝑘𝑘,𝑚𝑚𝑚𝑚𝑚𝑚

𝑇𝑇 𝑒𝑒𝑖𝑖�,∀𝑖𝑖 ≤ 𝑘𝑘 × 𝑛𝑛𝑢𝑢� (10) 

where 𝑒𝑒𝑖𝑖 = [0,0, … ,0,1,0, … ,0]𝑇𝑇 ∈ ℝ𝑘𝑘×𝑛𝑛𝑢𝑢 is a standard basis for which only the 𝑖𝑖𝑡𝑡ℎ 
location has the value of 1. An efficient approach to find the convex hull in high-
dimensional spaces is the Quickhull Algorithm (Barber et al., 1996). According to the 
Minkowski-Weyl’s Theorem, every polyhedron is identically described by its vertex 
representation and its hyperplane representation, and thus the formulation of 𝐴𝐴𝐴𝐴𝑆𝑆𝑘𝑘 in 
(10) can be equivalently converted to a set of linear constraints using the Double 
Description Method (Fukuda and Prodon, 1996): 

𝐴𝐴𝐴𝐴𝑆𝑆𝑘𝑘 = {𝑥𝑥(𝑘𝑘)|𝐻𝐻�𝑘𝑘𝑥𝑥(𝑘𝑘) ≤ 𝑙𝑙𝑘̅𝑘} (11) 

In the simplest case of the online calculation, if the process disturbances and the 
measurement noises are not considered, the online update of the dynamic funnel can be 
established by the substitution of (11) into the state-space model (1), and the dynamic 
funnel at the current state 𝑥𝑥0 is simply: 
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𝐴𝐴𝐴𝐴𝑆𝑆𝑘𝑘 = {𝑥𝑥(𝑘𝑘)|𝐻𝐻�𝑘𝑘𝑥𝑥(𝑘𝑘) ≤ 𝑙𝑙𝑘̿𝑘; 𝑙𝑙𝑘̿𝑘 =  𝑙𝑙𝑘̅𝑘 + 𝐻𝐻�𝑘𝑘𝐴𝐴𝑘𝑘𝑥𝑥0} (12) 

3.2. Transient state funnel with process disturbances 

In this subsection, the interested outputs are the state variables, and the following 
assumptions are considered: 𝐶𝐶 = 𝐼𝐼𝑛𝑛𝑥𝑥×𝑛𝑛𝑥𝑥;𝐷𝐷 = 0𝑛𝑛𝑥𝑥×𝑛𝑛𝑢𝑢;  𝑣𝑣(𝑖𝑖) = 0𝑛𝑛𝑥𝑥 ,∀ 𝑖𝑖 ≤ 𝑘𝑘. The process 
disturbance sequence can be redefined as the deviation, 𝑤𝑤𝑥𝑥(𝑘𝑘), from the mean value of 
the state vector, and the 𝐸𝐸𝐸𝐸𝐸𝐸 is chosen as the 𝐻𝐻𝐻𝐻𝐻𝐻 with respect to 𝑥𝑥(𝑘𝑘): 

𝐸𝐸𝐸𝐸𝑆𝑆𝑘𝑘𝑥𝑥 = {𝑤𝑤𝑥𝑥(𝑘𝑘)|𝑤𝑤𝑥𝑥(𝑘𝑘)𝑇𝑇Σ𝑥𝑥−1(𝑘𝑘)𝑤𝑤𝑥𝑥(𝑘𝑘) ≤ 𝑙𝑙𝑥𝑥2; 𝑙𝑙𝑥𝑥2 = 𝐼𝐼𝐼𝐼𝑣𝑣𝜒𝜒2(95%;𝑛𝑛𝑥𝑥)} (13) 

The formulation of 𝐴𝐴𝐴𝐴𝑆𝑆𝑘𝑘 in this subsection is  

𝐴𝐴𝐴𝐴𝑆𝑆𝑘𝑘 = � 𝐴𝐴𝐴𝐴𝑆𝑆𝑘𝑘𝑤𝑤(𝑤𝑤𝑥𝑥(𝑘𝑘)) = �𝑥𝑥(𝑘𝑘)�𝑥𝑥
(𝑘𝑘) = 𝐴𝐴𝑘𝑘𝑥𝑥0 + 𝐵𝐵�𝑘𝑘𝑢𝑢𝑘𝑘 + 𝑤𝑤𝑥𝑥(𝑘𝑘)
𝑢𝑢𝑘𝑘 ∈ 𝐴𝐴𝐴𝐴𝑆𝑆𝑘𝑘;𝑤𝑤𝑥𝑥(𝑘𝑘) ∈ 𝐸𝐸𝐸𝐸𝑆𝑆𝑘𝑘𝑥𝑥; �

𝑤𝑤𝑥𝑥(𝑘𝑘) ∈ 𝐸𝐸𝐸𝐸𝑆𝑆𝑘𝑘
𝑥𝑥

 (14) 

Let Σ𝑥𝑥(𝑘𝑘) = 𝑉𝑉𝑥𝑥(𝑘𝑘)𝑆𝑆𝑥𝑥(𝑘𝑘)𝑉𝑉𝑥𝑥−1(𝑘𝑘) be the eigenvalue decomposition of the covariance 
matrix Σ𝑥𝑥(𝑘𝑘). Since a basic property of any covariance matrix is positive definiteness, 
𝑉𝑉𝑥𝑥−1(𝑘𝑘) = 𝑉𝑉𝑥𝑥𝑇𝑇(𝑘𝑘) is an orthogonal matrix, and 𝑆𝑆𝑥𝑥(𝑘𝑘) is a diagonal matrix with positive 
elements. Denoting 𝑆𝑆𝑥𝑥−0.5(𝑘𝑘) to be an inverse of the square root of 𝑆𝑆𝑥𝑥(𝑘𝑘), a bijective 
mapping 𝐿𝐿 = 𝑆𝑆𝑥𝑥−0.5(𝑘𝑘)𝑉𝑉𝑥𝑥𝑇𝑇  that transforms the state vector 𝑥𝑥�(𝑘𝑘) = 𝐿𝐿𝐿𝐿(𝑘𝑘) is introduced. 
The covariance matrix of the transformed vector 𝑥𝑥�(𝑘𝑘) is: 

Σ𝑥𝑥�(𝑘𝑘) = 𝐿𝐿Σ𝑥𝑥(𝑘𝑘)𝐿𝐿𝑇𝑇 = 𝑆𝑆𝑥𝑥−0.5(𝑘𝑘)𝑉𝑉𝑥𝑥𝑇𝑇𝑉𝑉𝑥𝑥(𝑘𝑘)𝑆𝑆𝑥𝑥(𝑘𝑘)𝑉𝑉𝑥𝑥𝑇𝑇(𝑘𝑘)𝑉𝑉𝑥𝑥(𝑘𝑘)𝑆𝑆𝑥𝑥−0.5(𝑘𝑘) = 𝐼𝐼𝑛𝑛𝑥𝑥×𝑛𝑛𝑥𝑥 (15) 

Because the covariance Σ𝑥𝑥� is an identity matrix, the proposed linear mapping 𝐿𝐿 
corresponds to a change of coordinates to transform the state vector into a standard 
Gaussian random vector, and the ellipsoid 𝐸𝐸𝐸𝐸𝑆𝑆𝑘𝑘𝑥𝑥 is transformed into an n-sphere 𝐸𝐸𝐸𝐸𝑆𝑆𝑘𝑘𝑥𝑥� 
with radius 𝑙𝑙𝑥𝑥. This provides an advantage when finding the intersection 𝐴𝐴𝐴𝐴𝑆𝑆𝑘𝑘 of all 
achievable output sets for the disturbance realizations based on the following theorem: 

Theorem 1: Let [𝐻𝐻]𝑖𝑖 denote the 𝑖𝑖𝑡𝑡ℎ row of a matrix 𝐻𝐻:ℝ𝑛𝑛1 → ℝ𝑛𝑛2 . Given a bounded 
polyhedron in the form of 𝑃𝑃𝑥𝑥 = {𝑥𝑥 ∈ ℝ𝑛𝑛𝑥𝑥|𝐻𝐻𝐻𝐻 ≤ 𝑙𝑙} and its image under a bounded 
translation according to an n-sphere 𝑃𝑃𝑥𝑥(𝑑𝑑) = {𝑥𝑥�|𝑥𝑥� = 𝑥𝑥 + 𝑑𝑑;𝐻𝐻𝐻𝐻 ≤ 𝑙𝑙;𝑑𝑑𝑇𝑇𝑑𝑑 ≤ 𝑙𝑙𝑑𝑑2}, the 
intersection of all 𝑃𝑃𝑥𝑥(𝑑𝑑) is given by: 

𝑃𝑃 = � 𝑃𝑃𝑥𝑥(𝑑𝑑)
𝑑𝑑𝑇𝑇𝑑𝑑≤𝑙𝑙𝑑𝑑

2

= �𝑥𝑥�𝐻𝐻𝐻𝐻 ≤ 𝑙𝑙; �𝑙𝑙�
𝑖𝑖

= [𝑙𝑙]𝑖𝑖 − 𝑙𝑙𝑑𝑑�[𝐻𝐻]𝑖𝑖𝑇𝑇[𝐻𝐻]𝑖𝑖  ∀ 𝑖𝑖 ≤ 𝑛𝑛2� (16) 

Proof: For each hyperplane [𝐻𝐻]𝑖𝑖𝑥𝑥 ≤ [𝑙𝑙]𝑖𝑖, the hyperplane [𝐻𝐻]𝑖𝑖𝑥𝑥 ≤ [𝑙𝑙]𝑖𝑖 − 𝑙𝑙𝑑𝑑�[𝐻𝐻]𝑖𝑖𝑇𝑇[𝐻𝐻]𝑖𝑖  is 
the parallel hyperplane shifted toward the feasible half-space by a distance of 𝑙𝑙𝑑𝑑. Thus, a 
translation of all feasible points in [𝐻𝐻]𝑖𝑖𝑥𝑥 ≤ [𝑙𝑙]𝑖𝑖 by a distance 𝑑𝑑 can only violate 
[𝐻𝐻]𝑖𝑖𝑥𝑥 ≤ �𝑙𝑙�

𝑖𝑖
 if 𝑑𝑑 > 𝑙𝑙𝑑𝑑 . Therefore, 𝐻𝐻𝐻𝐻 ≤ 𝑙𝑙 is the intersection of all hyperplanes [𝐻𝐻]𝑖𝑖𝑥𝑥 ≤

[𝑙𝑙]𝑖𝑖 when the translation distance is less than or equal to 𝑙𝑙𝑑𝑑. 

Note that the disturbance effects on the state vector are the same as translating the 
achievable output set in (12) by a translation vector in 𝐸𝐸𝐸𝐸𝑆𝑆𝑘𝑘𝑥𝑥, and the linear mapping 𝐿𝐿 
puts the 𝐴𝐴𝐴𝐴𝑆𝑆𝑘𝑘𝑤𝑤 in the form that is applicable for Theorem 1. Finally, since 𝐿𝐿 is a 
bijective mapping, the final form of the transient state funnel with process disturbances 
in the original state vector 𝑥𝑥(𝑘𝑘) is given by: 



Dynamic Operability Analysis for the Calculation of Transient Output Constraints of 
Linear Time-Invariant Systems  5 

𝐴𝐴𝐴𝐴𝑆𝑆𝑘𝑘 = �𝑥𝑥(𝑘𝑘)�𝐻𝐻�𝑘𝑘𝑥𝑥(𝑘𝑘) ≤ 𝑙𝑙𝑘𝑘; �𝑙𝑙𝑘𝑘�𝑖𝑖 = �𝑙𝑙𝑘̅𝑘 + 𝐻𝐻�𝑘𝑘𝐴𝐴𝑘𝑘𝑥𝑥0�𝑖𝑖 − 𝑙𝑙𝑥𝑥�[𝐻𝐻�𝑘𝑘𝐿𝐿−1]𝑖𝑖𝑇𝑇[𝐻𝐻�𝑘𝑘𝐿𝐿−1]𝑖𝑖  � (17) 

3.3. Transient output funnel with process disturbances and measurement noises 

The output vector can be interpreted as a projection of the state variables and the 
manipulated variables at the same time step. Similarly to the previous subsection, using 
the Double Description Method, all the vertices of 𝐴𝐴𝐴𝐴𝑆𝑆𝑘𝑘 in the state vector space can be 
found. Following the same procedure from (10) to (12), one can arrive at the achievable 
output set with process disturbances before considering the measurement noises: 

𝐴𝐴𝐴𝐴𝑆𝑆𝑘𝑘(𝑣𝑣(𝑘𝑘) = 0) = �𝑦𝑦(𝑘𝑘)|𝐻𝐻𝑘𝑘𝑦𝑦 ≤ 𝑏𝑏�𝑘𝑘� (18) 

Since the effects of the measurement noises on the outputs are the same as the 
disturbances on the state variables, a similar procedure from (13) to (17) can be 
followed with the linear mapping 𝐿𝐿𝑦𝑦 = 𝑆𝑆𝑦𝑦−0.5(𝑘𝑘)𝑉𝑉𝑦𝑦𝑇𝑇(𝑘𝑘) defined according to the 
eigenvalue decomposition of Σ𝑦𝑦(𝑘𝑘) = 𝑉𝑉𝑦𝑦(𝑘𝑘)𝑆𝑆𝑦𝑦(𝑘𝑘)𝑉𝑉𝑦𝑦−1(𝑘𝑘). The final form of the 
achievable output set is: 

𝐴𝐴𝐴𝐴𝑆𝑆𝑘𝑘 = �𝑦𝑦(𝑘𝑘)�𝐻𝐻𝑘𝑘𝑦𝑦 ≤ 𝑏𝑏𝑘𝑘; [𝑏𝑏𝑘𝑘]𝑖𝑖 = �𝑏𝑏�𝑘𝑘�𝑖𝑖 − 𝑙𝑙𝑦𝑦��𝐻𝐻𝑘𝑘𝐿𝐿𝑦𝑦−1�𝑖𝑖
𝑇𝑇�𝐻𝐻𝑘𝑘𝐿𝐿𝑦𝑦−1�𝑖𝑖  � (19) 

4. Numerical Example 
Consider the system given in (1), (2) with the following matrices: 

𝐴𝐴 = �   0.59 −0.43
−0.06     0.39� ;𝐵𝐵 = �0.42     1.82

2.48 −0.71� ;𝐺𝐺 = �0.52 −0.47
1.22    0.47� ;  

𝐶𝐶 = �0 1
1 1� ;𝐷𝐷 = 02×2; Σ𝑤𝑤 = �0.04 0

0 0.02� ;Σ𝑣𝑣 = 10−5 �5 0
0 1� ; 𝑥𝑥0 = �   20

−30� 
 (20)  

The prediction horizon is chosen to be 6 for illustrative purposes, and the objective is 
constructing the six achievable output sets 𝐴𝐴𝐴𝐴𝑆𝑆𝑘𝑘 for 𝑘𝑘 = 1, … ,6. The input ranges of the 
considered 𝐴𝐴𝐴𝐴𝑆𝑆𝑘𝑘 are −1 ≤ 𝑢𝑢1(𝑘𝑘) ≤ 1 and −2 ≤ 𝑢𝑢2(𝑘𝑘) ≤ 2. In the offline computation, 
the vertices of the 𝐴𝐴𝐴𝐴𝑆𝑆𝑘𝑘, which are all combinations of 𝑢𝑢(𝑘𝑘) ∈ {[−1 − 2]𝑇𝑇 ,
[−1 2]𝑇𝑇 , [1 − 2]𝑇𝑇 , [1 2]𝑇𝑇} for all 0 ≤ 𝑘𝑘 ≤ 5, are applied to the linear state-space model 
to calculate the associated basis state vectors. The set of convex hulls of these basis state 
vectors at each time 𝑘𝑘 is the nominal 𝐴𝐴𝐴𝐴𝑆𝑆𝑘𝑘, and the funnel of nominal state vectors 
obtained for this case is shown in Figure 1(a).  

In the online update of the dynamic funnel, at each value of 𝑘𝑘, the 𝐴𝐴𝐴𝐴𝑆𝑆𝑘𝑘 is adjusted 
according to (12), and the new dynamic funnel at 𝑤𝑤(𝑘𝑘) = 0 and 𝑣𝑣(𝑘𝑘) = 0 is shown in 
Figure 1(b). To find the intersection of all 𝐴𝐴𝐴𝐴𝑆𝑆𝑘𝑘 at different values of 𝑤𝑤(𝑘𝑘) in the 95% 
highest density region, (17) is applied, and the new 𝐴𝐴𝐴𝐴𝑆𝑆𝑘𝑘 that takes into account 
process disturbances, 𝑤𝑤(𝑘𝑘), is shown as the dashed-edge empty polytopes in Figures 
1(c) and (d). In the next step, 𝐴𝐴𝐴𝐴𝑆𝑆𝑘𝑘 of state vectors are projected into the space of the 
output vectors, and the convex hulls of the images at every time 𝑘𝑘 is the 𝐴𝐴𝐴𝐴𝑆𝑆𝑘𝑘 of output 
vectors, which is represented as the dashed-edge empty polytopes in Figures 1(e) and 
(f). Finally, to address the measurement noise, the hyperplanes of every 𝐴𝐴𝐴𝐴𝑆𝑆𝑘𝑘 are 
shifted inward according to (19). The result is a funnel of output vectors that can always 
be achieved regardless of the realization of the process disturbances and the 
measurement noises by varying the constrained manipulated variables. This funnel is 
plotted with dotted-edge grey-filled polytopes in Figures 1(e) and (f). 
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Figure 1: Dynamic operable funnels. (a): Funnel of state vector considering nominal 

initial state; (b): Funnel of state vector considering actual initial state without 
disturbances; (c), (d): Adjustment of funnel of state vectors with process disturbances; 

(e), (f): Funnels of output vectors with and without measurement noises. 

5. Conclusions 
Dynamic operability corresponds to an output controllability measure that can be used 
to assist with the formulation of online constrained control problems (Gazzaneo et al., 
2020). However, in dynamic operability mapping, exhaustive input discretization 
methods in the reported literature quickly become intractable with the increase in 
predictive horizon length. In this work, a novel dynamic operability mapping was 
proposed in a two-step framework that allows the majority of the computational effort 
being performed offline. The achievable output sets at different predictive times were 
formulated as set of inequality constraints that are updated online according to the 
current full state information and uncertainty propagation. Even though the current 
framework is limited to a linear time-invariant dynamic process, the proposed theory is 
a valid basis for future work on linear time-varying and nonlinear dynamic processes. 
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