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Abstract

In this work, a dynamic operability mapping is developed to find an operable funnel for
a linear time-invariant dynamic system. The existing operability mapping method to
find this funnel is computationally expensive, which makes it unsuitable for online
control applications. A novel two-step calculation procedure is proposed, which
includes an offline computation of the nominal funnel by constructing a convex hull of
the manipulated variable projections, followed by an online update that adjusts the
funnel to an operable region based on the current state information. As a result, a
dynamic funnel that contains all achievable outputs regardless of the process
disturbances and measurement noises is obtained in the form of transient output
constraints for model predictive control implementation.
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1. Introduction

Process operability is defined as the design and control ability to achieve desired
performance from the given available inputs regardless of the realization of the
disturbances (Gazzaneo et al., 2020). If the operability analysis is able to be carried out
along with the operation of a process, not only the achievable portions of the desired
outputs are known, but also the feasible output constraints can be provided for model
predictive control to guarantee feasibility (Lima and Georgakis, 2009). However, the
currently available operability analysis involves an exhaustive generation of the input
combinations, and thus this approach may quickly become intractable.

In this paper, the achievable output sets at all values of the disturbances are formulated
as a set of time-dependent polyhedra, which is referred to as the dynamic operable
funnel. To avoid confusion between control theory and process operability concepts,
external output constraints are defined here as the constraints on the output variables
that are given by the physical nature of a process, such as thermodynamic and
equipment’s safety limits. In the application to online model predictive control, the
dynamic funnel provides the transient output constraints to keep the process from
moving toward an inoperable region, and the online calculation must be done efficiently
to assure a sufficient time for the controller to solve for an optimal path.

In particular, the dynamic operable funnel of a linear time-invariant dynamic process is
proven to be defined as a polyhedron. Also, the ability of the current process to move
toward its stable operating region is quickly verified following Phase I of the simplex
algorithm for linear programming, and the operable region in the presence of external
output constraints can be obtained via the convex hull of suitable geometric duals with
respect to a feasible solution (Muller and Preparata, 1978). Therefore, the remaining
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challenge is constructing the dynamic operable funnel in a tractable manner. In the
proposed framework, the funnel calculation is divided into two steps: the first step is
computing the funnel offline before the full state information arrives; and the second
step is updating the funnel online according to the full state information that becomes
available. The preliminaries and concepts necessary to define the proposed approach are
detailed next.

2. Dynamic Operability Problem Background

2.1. Preliminaries

Consider the following discrete-time linear time-invariant dynamic system:
x(k + 1) = Ax(k) + Bu(k) + Gw(k); x(0) = x, (1

y(k) = Cx(k) + Du(k) + v(k) 2)

in which x(k) € R™,u(k) € R™ and y(k) € R™ are the vectors of state variables,
input/manipulated variables and output/controlled variables, respectively; w(k) € R™
and v(k) € R™ are the zero-mean multivariate Gaussian distributed vectors with the
respective positive definite covariance matrices, X,, € R™*™ and X, € R™*"  The
initial time k = 0 is defined to be the current time instead of the time in which the
process begins, and the initial state variables, x,, are assumed to be given by a state
observer.

Since w(k) and v(k) are assumed to be zero-mean with Gaussian distributions, the
states and the outputs are also multivariate Gaussian random variables with the
respective means x(k) and y(k). The sequences of covariance matrices for the states,
2, (k), and the outputs, X,,(k), are:

T (k+1) =A%, (kAT + G%,,GT;2,(0) = Onxny 3)

2y (k) = C2,(k)CT + 3, Q)

When a random vector p € R™ is a Gaussian random vector with a mean p and a
covariance matrix X,, its 95% highest density region, HDR(p), is the following
ellipsoid with the scale lzz, equals to the inverse cumulative distribution function of the
chi-squared distribution with n,, degrees of freedom:

HDR(p) = {pl(p — D", (0 — P) < 1313 = Inv,2(95%; 1)} Q)

2.2. Dynamic operability sets

The Available Input Set at the discretized time k (AIS)) is defined as the set of all
feasible sequences of manipulated variables from the initial time 0 to time k.

AISk = {uk = [u(O)T'u(l)Tﬁ ---'u(k - 1)T]T|uk,min < Uy < uk,max} (6)

The Expected Disturbance Set (EDSY) is the set of all realizations of the disturbances,
d, at the time k. The two sources of disturbances assumed here are the w(k) and v(k),
which can take any real values due to their Gaussian distributions. Their values are
constrained to their respective 95% highest density regions as follows:
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(7

EDS = {d(k) — (i v(or| 00 Hag B’ 2 Dd (k) < 15}

1G = Inv,2(95%; n,, + ny,)

The Achievable Output Set at a fixed disturbance d (A0S(d)) is the set of all possible
outputs at the discretized time k given the linear system (1), (2) and the range of
manipulated variables. A necessary condition for a process to be operable is that the set
of achievable outputs regardless of the realizations of the process disturbances, A0Sy,
has to be nonempty. The A0S, is defined as the intersection of all achievable output
sets at fixed realizations of the disturbance:

(1), (2) are satisfied; }

— d _
A0Sy = ﬂ A0S () {”(k) w, € AlS,; d(k) € EDS;

d
deEDS]

(8)

3. Calculation of Transient Output Constraints

3.1. Offline computation of transient state funnel at nominal-valued disturbances

The following assumptions are considered for the offline calculation of the dynamic
funnel that can be later addressed in the online update: xo = 0y, ; C = Iy xn,; D =
Op,xnys W) = 0y ;v() =0, Vi<k. The considered outputs are the predicted
state variables before w(k) and v(k) are accounted for, and the AOS), has the form:

A0S, = {x(k)|x(k) = Byuy; u, € AIS;} )

where By = [A*"*B A¥"2B ... AB B]. From the definition (6), the AIS) is a bounded
convex polyhedron. From the formulation of (9), By:R¥*™nu — R™ is a linear
transformation of the AIS, into the A0S, so that the AOS) is exactly the smallest
convex hull that contains all the projections of the available input sequences on the state
vector space. Additionally, for an achievable state x(k) to be a vertex of the A0S, its
preimage, u;, must be a vertex of the AIS,. Then the AOS; can be computed by taking
the convex hull of the 2¥*™u vertices of the AIS), which is the vector of the input
sequence in which each element is either taken from the value of the lower bound
Uy min OT the upper bound Uy 4y

A0S, = convexhull(Buy|ufe; € {uf min€i Uk maxei}, Vi < k Xny) (10)

where e; = [0,0, ...,0,1,0, ...,0]" € R¥*™ is a standard basis for which only the i"
location has the value of 1. An efficient approach to find the convex hull in high-
dimensional spaces is the Quickhull Algorithm (Barber et al., 1996). According to the
Minkowski-Weyl’s Theorem, every polyhedron is identically described by its vertex
representation and its hyperplane representation, and thus the formulation of A0S, in
(10) can be equivalently converted to a set of linear constraints using the Double
Description Method (Fukuda and Prodon, 1996):

A0S, = {x(k)|Hx (k) < I} (11)

In the simplest case of the online calculation, if the process disturbances and the
measurement noises are not considered, the online update of the dynamic funnel can be
established by the substitution of (11) into the state-space model (1), and the dynamic
funnel at the current state x, is simply:
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AOSk = {x(k)lﬁkx(k) S lzk, Tk = l_k + HkAkxo} (12)

3.2. Transient state funnel with process disturbances

In this subsection, the interested outputs are the state variables, and the following
assumptions are considered: C = I, xn ;D = Op xn,; V(i) = 0,,V i < k. The process
disturbance sequence can be redefined as the deviation, w, (k), from the mean value of
the state vector, and the EDS is chosen as the HDR with respect to x(k):

EDS = (W (k) |wy ()T 25 ()wy (k) < 155 1 = Inv,2(95%; )} (13)

The formulation of AOS), in this subsection is
x(k) = A*%xy + Bruy + wy (k)
(14)

A0Sy = ﬂ A0S (wy (k) = {x(k)| W € AISy; wy (k) € EDSE;
)y Wy ]

wy(k) € EDSE

Let Z,(k) = V. (k)S,(k)Vy, t(k) be the eigenvalue decomposition of the covariance
matrix X, (k). Since a basic property of any covariance matrix is positive definiteness,
V, Y(k) = VI (k) is an orthogonal matrix, and S, (k) is a diagonal matrix with positive
elements. Denoting Sg %% (k) to be an inverse of the square root of S, (k), a bijective
mapping L = Sg%°(k)V,l that transforms the state vector £(k) = Lx(k) is introduced.
The covariance matrix of the transformed vector x (k) is:

Ze(k) = LE, (W)L = ST (VI Ve () S, OV (1) Vi (k) S (k) = I e, (15)

Because the covariance X; is an identity matrix, the proposed linear mapping L
corresponds to a change of coordinates to transform the state vector into a standard
Gaussian random vector, and the ellipsoid EDS{ is transformed into an n-sphere EDS;
with radius L. This provides an advantage when finding the intersection AOS), of all
achievable output sets for the disturbance realizations based on the following theorem:

Theorem 1: Let [H]; denote the i*" row of a matrix H: R™ — R™2. Given a bounded
polyhedron in the form of P, = {x € R™|Hx < [} and its image under a bounded
translation according to an n-sphere P.(d) = {X|2 = x + d; Hx < [;d"d < 3}, the
intersection of all P,(d) is given by:

p= ﬂ P(d) = {x|Hx < L[1], = (1), — L/ THITTH, V i < ) a6

dTdsi?

Proof: For each hyperplane [H];x < [l];, the hyperplane [H];x < [l]; — l4+/[H]T[H]; is
the parallel hyperplane shifted toward the feasible half-space by a distance of [ ;. Thus, a
translation of all feasible points in [H];x < [l]; by a distance d can only violate
[H];x < [i]i if d > ;. Therefore, Hx <[ is the intersection of all hyperplanes [H];x <

[1]; when the translation distance is less than or equal to [;.

Note that the disturbance effects on the state vector are the same as translating the
achievable output set in (12) by a translation vector in EDS}, and the linear mapping L
puts the A0S} in the form that is applicable for Theorem 1. Finally, since L is a
bijective mapping, the final form of the transient state funnel with process disturbances
in the original state vector x (k) is given by:
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A0S, = {x(k)

Hyx(k) < Ii; [Zk]i = [l + HkAkxo]i - lx\/[HkL_l]iT[ﬁkL_l]i } (17)

3.3. Transient output funnel with process disturbances and measurement noises

The output vector can be interpreted as a projection of the state variables and the
manipulated variables at the same time step. Similarly to the previous subsection, using
the Double Description Method, all the vertices of AOS}, in the state vector space can be
found. Following the same procedure from (10) to (12), one can arrive at the achievable
output set with process disturbances before considering the measurement noises:

A0S, (v(k) = 0) = {y(k)|Hcy < by} (18)

Since the effects of the measurement noises on the outputs are the same as the
disturbances on the state variables, a similar procedure from (13) to (17) can be
followed with the linear mapping L, =S;0'5(k)VyT(k) defined according to the
eigenvalue decomposition of X, (k) = Vy(k)Sy(k)Vy_l(k). The final form of the
achievable output set is:

A0S, = {Y(k) Hyy < by; [bi]; = [Ek]i - ly\/[HkL§1]iT[HkL§1]i} (19)

4. Numerical Example
Consider the system given in (1), (2) with the following matrices:

0.59 —0.43];3 _ [0.42 1.82] G = [0.52 -0.477.

—0.06  0.39 248 —0.71 122 047V 20)
004 0 5 0] _[ 20

_[0 171.5_ oy — .y — 10-5 )

c=[y o=tz =70 galim =107 [0 Jfix =[5

The prediction horizon is chosen to be 6 for illustrative purposes, and the objective is
constructing the six achievable output sets A0Sy, for k = 1, ...,6. The input ranges of the
considered AIS), are —1 < uy(k) < 1 and —2 < u,(k) < 2. In the offline computation,
the vertices of the AIS,, which are all combinations of wu(k) € {[-1— 2]7,
[—12]%,[1 = 2]%,[12]7} for all 0 < k < 5, are applied to the linear state-space model
to calculate the associated basis state vectors. The set of convex hulls of these basis state
vectors at each time k is the nominal A0Sy, and the funnel of nominal state vectors
obtained for this case is shown in Figure 1(a).

|

In the online update of the dynamic funnel, at each value of k, the A0S, is adjusted
according to (12), and the new dynamic funnel at w(k) = 0 and v(k) = 0 is shown in
Figure 1(b). To find the intersection of all A0S, at different values of w(k) in the 95%
highest density region, (17) is applied, and the new AOS, that takes into account
process disturbances, w(k), is shown as the dashed-edge empty polytopes in Figures
1(c) and (d). In the next step, AOS;, of state vectors are projected into the space of the
output vectors, and the convex hulls of the images at every time k is the AOS;, of output
vectors, which is represented as the dashed-edge empty polytopes in Figures 1(e) and
(f). Finally, to address the measurement noise, the hyperplanes of every A0S, are
shifted inward according to (19). The result is a funnel of output vectors that can always
be achieved regardless of the realization of the process disturbances and the
measurement noises by varying the constrained manipulated variables. This funnel is
plotted with dotted-edge grey-filled polytopes in Figures 1(¢) and (f).
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Figure 1: Dynamic operable funnels. (a): Funnel of state vector considering nominal
initial state; (b): Funnel of state vector considering actual initial state without
disturbances; (c), (d): Adjustment of funnel of state vectors with process disturbances;
(e), (f): Funnels of output vectors with and without measurement noises.

5. Conclusions

Dynamic operability corresponds to an output controllability measure that can be used
to assist with the formulation of online constrained control problems (Gazzaneo et al.,
2020). However, in dynamic operability mapping, exhaustive input discretization
methods in the reported literature quickly become intractable with the increase in
predictive horizon length. In this work, a novel dynamic operability mapping was
proposed in a two-step framework that allows the majority of the computational effort
being performed offline. The achievable output sets at different predictive times were
formulated as set of inequality constraints that are updated online according to the
current full state information and uncertainty propagation. Even though the current
framework is limited to a linear time-invariant dynamic process, the proposed theory is
a valid basis for future work on linear time-varying and nonlinear dynamic processes.
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