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Abstract— While imitation learning for vision-based au-
tonomous mobile robot navigation has recently received a
great deal of attention in the research community, existing
approaches typically require state-action demonstrations that
were gathered using the deployment platform. However, what
if one cannot easily outfit their platform to record these
demonstration signals or—worse yet—the demonstrator does
not have access to the platform at all? Is imitation learning
for vision-based autonomous navigation even possible in such
scenarios? In this work, we hypothesize that the answer is yes
and that recent ideas from the Imitation from Observation
(1fo) literature can be brought to bear such that a robot can
learn to navigate using only ego-centric video collected by a
demonstrator, even in the presence of viewpoint mismatch. To
this end, we introduce a new algorithm, Visual-Observation-
only Imitation Learning for Autonomous navigation (VOILA),
that can successfully learn navigation policies from a single
video demonstration collected from a physically different agent.
We evaluate VOILA in the AirSim simulator and show that
VOILA not only successfully imitates the expert, but that it
also learns navigation policies that can generalize to novel
environments. Further, we demonstrate the effectiveness of
VOILA in a real-world setting by showing that it allows a
wheeled Jackal robot to successfully imitate a human walking in
an environment while recording video with a handheld mobile
phone camera.

I. INTRODUCTION

Enabling vision-based autonomous robot navigation has
recently been a topic of great interest in the robotics and
machine learning community [1]-[3]. Imitation learning in
particular has emerged as a useful paradigm for designing
vision-based navigation controllers. Using this paradigm, the
desired navigation behavior is first demonstrated by another
agent (usually a human), and then a recording of that behav-
ior is supplied as training data to a machine learner that tries
to find a control policy that can mimic the demonstration.
To date, most approaches in the navigation domain that
use imitation learning require demonstration recordings that
contain both state observations (e.g., images) and actions
(e.g., steering wheel angle or acceleration) gathered onboard
the deployment platform [1], [2], [4], [5].
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While these existing imitation learning approaches have
proved successful in certain scenarios, there are situations
in which it would be beneficial to relax the requirements
they impose on the demonstration data. For example, if we
wish to collect a large number of demonstrations from many
experts, it may prove too difficult or costly to arrange for
each expert to operate specific deployment platforms, which
are often expensive or difficult to transport. Additionally,
it might be costly to outfit all demonstration platforms
with instrumentation to record the control signals with the
demonstration data. However, due to the low cost and
portability of video cameras, it may still be feasible to
have demonstrators record ego-centric video demonstrations
of their navigation behaviors while operating a different
platform. Demonstrations of this nature would consist of
video observations only (i.e., they would not contain control
signals), and, because of the difference in platform, the
videos would likely exhibit ego-centric viewpoint mismatch
compared to those that would be captured by the deployment
platform. One example of such data is the plethora of vehicle
dashcam videos available in publicly-accessible databases [6]
or on YouTube. Another example is video demonstrations
of robot behaviors generated by proprietary code that one
would like to mimic on the same or different robot hardware.
Unfortunately, to the best of our knowledge, there exist
no current imitation learning techniques for vision-based
navigation that can leverage such demonstration data.

Fortunately, recent work in Imitation from Observation
(1fo) [7]—imitation learning in the absence of demonstrator
actions—has shown a great deal of success for several related
tasks. For example, work in this area has been able to learn
from video-only demonstrations for both simulated and real
limbed robots [8]-[11]. However, no literature of which we
are aware has considered whether these 1f0O techniques can be
applied to the vision-based autonomous navigation problem
we have outlined above. This problem is especially challeng-
ing since physical differences in the demonstration platform
introduce viewpoint mismatch in the video demonstrations.

In this paper, we hypothesize that it is possible to perform
imitation learning for vision-based autonomous navigation
using video-only demonstrations collected using a physically
different platform. To this end, we introduce a new IfO
technique for vision-based autonomous navigation called
Visual-Observation-only Imitation Learning for Autonomous
navigation (VOILA).! To overcome viewpoint mismatch,
VOILA uses a novel reward function that relies on off-

'A preliminary version of this work was presented at the 2021 AAAI
Spring Symposium on Machine Learning for Navigation.
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Fig. 1: Policy rollout trajectories of the VOILA agent (green) successfully imitating a demonstration behavior (black) of
patrolling a rectangular hallway clockwise. The demonstration consists of a video gathered by a human walking while using
a handheld camera that is considerably higher than the robot’s camera (introducing significant viewpoint mismatch). We
see that the VOILA agent is able to successfully imitate the expert demonstration even in the presence of this egocentric

viewpoint mismatch.

the-shelf keypoint detection algorithms that are themselves
designed to be robust to egocentric viewpoint mismatch. This
novel reward function is utilized to drive a reinforcement
learning procedure that results in navigation policies that
imitate the demonstrator.

We experimentally confirm our hypothesis both in simula-
tion and on a physical Clearpath Jackal robot. We compare
VOILA against a state-of-the-art IfO algorithm GAIfo [9],
and show that VOILA can learn to imitate an expert’s visual
demonstration in the presence of viewpoint mismatch while
also generalizing to environments not seen during training.
Additionally, we demonstrate the flexibility of VOILA by
showing that it can also support vision-based training of
navigation policies with inputs other than camera images.

II. BACKGROUND AND RELATED WORK

The proposed approach, VOILA, performs reinforcement
learning (RL) using a novel reward function based on image
keypoints in order to accomplish imitation from observation
for autonomous navigation with viewpoint mismatch. In
this section, we review related work in autonomous robot
navigation, imitation from observation, and in computer
vision techniques for visual feature extraction.

A. Machine Learning for Autonomous Navigation

The use of machine learning methods in the design of
autonomous navigation systems goes back several decades,
though recent years have seen a spike in interest from the
research community [2], [3], [12]-[14]. One of the earliest
successes was reported by Pomerleau [15], in which a
system called ALVINN used imitation learning to train an
artificial neural network that could perform lane keeping
based on demonstration data generated in simulation. Since
then, several improvements, both in the amount and type of

demonstration data and in network architecture and training,
have been proposed in the literature. In particular, LeCun
et al. proposed the use of a convolutional neural network
(CNN) to better process real demonstration images for an
off-road driving task [4], and, more recently, Bojarski et al.
reported that gathering a large amount of real-world human
driving demonstration data and applying data augmentation
made it possible to train even more-complex CNN architec-
tures to perform lane keeping [1].

While the aforementioned approaches each use end-to-
end imitation learning to find autonomous navigation poli-
cies, other machine learning for autonomous navigation
work has adopted the alternative training paradigm of RL.
Chang et al. propose using off-policy Q-learning from video
demonstration data to learn goal conditioned hierarchical
policies for semantic navigation [14]. While their approach
also uses video demonstrations with no action labels, they
learn a goal conditioned policy with access to thousands
of navigation video examples whereas in our work, the
focus is on imitating an expert’s video demonstration in the
presence of viewpoint mismatch using a single video-only
demonstration. Gupta et al. [16] propose a context translation
network to imitate an expert demonstration in the presence
of viewpoint mismatch. However, their approach requires
multiple demonstrations with differing camera viewpoints
in each demonstration to provide context signals. Addition-
ally, their approach only deals with third-person viewpoint
mismatch and does not consider the egocentric viewpoint
mismatch problem that is considered in this work. Similarly,
Gaskett et al. [17] propose a visual servoing algorithm
that uses image template-matching to provide rewards for
their reactive agent. However, their algorithm is tailored
towards visual servoing, whereas this work focuses on robot



navigation.

The work closest to ours is that of Kendall et al. [18],
in which the proposed system learns a navigation policy
using RL, where the reward function is the total distance
travelled by their autonomous vehicle before a human driver
intervenes (to, e.g., prevent collisions). However, unlike
VOILA, Kendall ef al. utilize experience gathered exclusively
by the learning platform itself, considering neither imitation
from observation nor the particular problem of viewpoint
mismatch.

B. Imitation from Observation

Recently, there have been a number of imitation from
observation (If0) techniques introduced in the literature, in-
cluding the adversarial approach, GAIfO, proposed by Torabi
et al. [9], [19] which we use as a comparison point in
this paper. In GAIfO, the reward signal is provided by a
learned discriminator network which seeks to reward state
transitions similar to those present in the demonstration and
penalize—if it can tell the difference—state transitions that
come from the imitator. While GAIFO has been shown to
be successful in both low- and high-dimensional observation
spaces, it has thus far only been applied to continuous control
tasks for limbed agents. Moreover, as we will show in our
experiments, while GAIfO is able to imitate the expert when
the egocentric viewpoints between the expert and the imitator
match, it is unable to do so in the presence of viewpoint
mismatch.

Viewpoint mismatch in If0 has been previously considered
in the work by Sermanet et al. [10], which proposes Time
Contrastive Networks (TCNs). TCNs use a triplet loss metric
to learn a feature space embedding which is then used for
rewarding the agent to imitate the expert. While both VOILA
and TCNs are robust to viewpoint mismatch, TCNs require
demonstration data with multiple viewpoints in the same
timestep in order to learn an embedding space robust to
viewpoint mismatch, whereas VOILA achieves this robustness
by leveraging feature detection algorithms (e.g SIFT [20])
commonly used in SLAM that are themselves designed to be
robust to viewpoint mismatch.

C. Feature Detection and Matching

To overcome viewpoint mismatch, VOILA utilizes a novel
reward function that relies on local image features such as
keypoints and their descriptors. Keypoints have been used for
decades to solve challenging tasks such as image verification,
matching and retrieval. More recently, deep-learning-based
keypoint extractors such as SUPERPOINT [21] have been
shown to be more successful than classical approaches. In
this work, we use SUPERPOINT to detect keypoints and
their corresponding descriptors, and we determine keypoint
matches between two images using the typical method based
on the two nearest neighbors in descriptor space [21] using
the ¢, distance metric. However, in principle VOILA can
be used with any local feature detector or feature matching
algorithm. In our experiments, we use the simplest image
retrieval algorithm of local keypoint detection followed by

nearest neighbor matching in the descriptor space to identify
the visually closest image with maximum keypoint matches.
However, there exist more sophisticated algorithms such as
NetVLAD [22], [23] that are more robust to visual aliasing
errors for the task of image retrieval which can be used with
VOILA with no changes to the underlying algorithm.

Several works have proposed learning a keypoint detector
specific to the imitation learning task [24], [25]. Unlike such
approaches, VOILA uses an off-the-shelf keypoint extractor
that is not trained specifically for the navigation task.

D. SLAM-based Approaches for Navigation

Visual Teach and Repeat (VTR) methods such as the
one proposed by Barfoot er al. [26] follow a two step
approach to imitating a navigation demonstration. First, a
SLAM map of the demonstration environment is built in
the teach phase. In the subsequent repeat phase, the robot
localizes within a submap of the environment and follows a
desired trajectory. VOILA, on the other hand, learns a reactive
navigation policy directly from demonstrations, sidestepping
the SLAM problem.

III. VOILA

In this section, we formulate the imitation learning
problem for the task of autonomous visual navigation,
which we pose as a reinforcement learning problem with a
demonstration-dependent reward. The critical contribution of
VOILA is the development of this particular reward function,
which we describe in detail below.

A. Preliminaries

We treat autonomous visual navigation as a RL problem
where the environment is a Markov decision process. At
every time step ¢, the state of the agent is described by
s¢ € S, the observation of the agent is described by O; € O,
and an action a; € A is sampled from the agent’s policy
a; ~ m(+|O;).2 A single expert demonstration is represented
as a set of n sequential observations D¢ = {I, I, ..., I, }.
Performing this action in the environment leads to a next
state syy1 ~ T(:|s¢, ar), where T is the unknown transition
dynamics of the agent in the environment. For this specific
transition, the agent receives a reward, r;+; € R, which
is a function of both the agent’s transition tuple and the
demonstration, i.e., .41 = R(Oy, ay, Or11; D¢). The relative
utility of near-term and long-term reward is controlled using
the discount factor v € (0, 1]. The RL objective is to find
a policy 7 that maximizes the expected sum of discounted
rewards E[X5° v  R(Oy, at, Oy1; D).

B. Reward Formulation for Imitation Learning

For each transition (Oy,a;,Opy1) experienced by the
learner, we require a reward r,y; such that the learner, by
optimizing the RL objective with this reward, can learn to

2While VOILA’s reward function depends on camera images, the imitation
policy can actually be learned over any appropriate state representation—
vision-based or otherwise. We show one such example using LiDAR scans
as the state representation in Fig. 1.



imitate the demonstration. In particular, because we wish
to perform learning in real time, we seek a dense reward
function that provides feedback at each timestep without
delay. Since the expert demonstrations are from a physically
different agent, there can be significant ego-centric viewpoint
mismatch between the observation spaces of the learner and
the demonstrator as shown in Fig. 1. Such a mismatch
poses a challenge to designing a good reward function
since it is not immediately clear how to compare images
from different viewpoints. Hence, we introduce here a novel
reward function based on keypoint feature matches between
the expert and the imitator’s ego-centric observations for the
task of imitation learning for visual navigation. Keypoint
detectors have been extensively used in the computer vision
community for several decades to solve challenging tasks
like structure-from-motion (SfM), visual SLAM and hier-
archical localization. Recent keypoint detection algorithms
like SUPERPOINT [21] provide invariance to perspective dis-
tortion, scaling, translation, rotation, viewpoint mismatches,
and varied lighting conditions between the key and query
images. Hence, we use keypoint detectors to help define
the reward function to learn visual navigation policies from
demonstrations provided by any other agent.

The reward function we propose relies on a quantity
that we call match density. We define the match density
d(O1, O2) between two images O; and Oy as the ratio of the
number of keypoint matches between Oy and O, and the
total number of detected keypoints in Oz. d(O1,02) € [0, 1],
assuming there is always a non-zero number of keypoints
detected in an image. Additionally, instead of imposing a
temporal alignment constraint, we define the reward for a
particular transition by searching the demonstration for the
image which is most visually similar to the learner’s current
observation. Here, we define the most visually similar image
in the expert demonstration to be the one that has the highest
match density with O;, which we denote as I;. Fig. 1 shows
the imitator’s current observation O; and corresponding
visually closest expert image I;. For convenience of notation,
we denote the next image after I; in the demonstration
sequence as J;.

Using the concepts described above, we now define the
proposed reward function for VOILA:

F+V = \agteer||
-10

, alive

)

ey
where F' = d(Oq1,1i41) and V' = v % d(Oq1, Jy) —
d(Oy¢, J;). If the robot is in the done state, i.e., it has
crashed (as detected in AirSim, or by the trainer in physical
experiments) or the number of keypoint matches drop below
10, the agent receives a penalty reward of —10. Otherwise,
the agent is in the alive state, and we assign a reward that
depends on terms F' and V. The F' term assigns reward value
based on the match density encountered at the next obser-
vation Oy that the agent ends up in the transition. This
component encourages the agent to stay on the demonstrated

R(Ot, G, Ot+1; De) = { done

trajectory. The V' term is similar to a potential-based shaping
term, and rewards a transition based on the difference in
the match densities with the next expert observation .J; and
the imitator’s observations. This component encourages the
imitator to find a policy that exhibits similar state transitions
to those experienced by the expert. We additionally found
that adding the action penalty term with a A of 0.01 penalizes
the agent for making large steering changes. Since the
maximum value of the reward function in the alive state
is 2, we heuristically picked a value 5 times higher and
arrived at -10 for the negative penalty. This value worked
well empirically in our experiments; we do not have any
reason to believe that the results are particularly sensitive to
this exact value. The expert image retrieval step is performed
in real-time using feature matching, and is outlined in the
implementation section.

IV. IMPLEMENTATION

In this section, we provide specific implementation details
of VOILA including those related to representation learning,
keypoint feature extraction, and the network architectures.

A. Representation Learning

Representation learning using unsupervised learning is a
powerful tool to improve the sample efficiency of deep RL
algorithms. Instead of learning a navigation policy over high
dimensional image space, VOILA uses a latent representation
of the image and learns the navigation policy over this
latent code as input to the policy. Specifically, VOILA uses
a Regularized Auto Encoder (RAE) [27] to learn a latent
posterior of the visual observations of the imitator. The
imitating control policy is then learned using RL with the
latent code z; = g4(O;) as the input to the policy network,
where g4 is the encoder of the RAE with weights ¢. A
ResNet-18 encoder-decoder network architecture is used for
the RAE and is trained for the task of image reconstruction,
with data collected from the imitator using random rollouts.
The input images are of size 256 x 256 and the size of the
latent dimension is 512. Random cropping and random affine
image augmentations are utilized to regularize training.

B. Keypoint Feature Extraction

As a preprocessing step, all SUPERPOINT features detected
from expert observations are stored in a buffer. At the
start of an episode (for the first frame), the nearest expert
observation I; to Oy is retrieved by linearly searching for the
closest expert observation in D¢ with the maximum feature
matches. As the episode unfolds, instead of exhaustively
searching for the closest expert image at every transition,
the search is restricted over the three next expert observations
forward in time from the previous closest expert image in D°.
At each transition, SUPERPOINT keypoints and descriptors
are extracted and used to retrieve the closest expert image
and compute the reward according to Equation 1. Note
that the SUPERPOINT keypoint descriptors extracted in an
image are the local features and not the global features for
that image. Hence, we explicitly train an RAE to learn a
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Fig. 2: Imitation performance of policies learned using
VOILA and GAIfO in AirSim. The y-axis shows Hausdorff
distance between expert and imitator’s trajectories, averaged
across five trials (lower distance indicates behavior more
similar to the expert). A Hausdorff distance greater than 10.0
(marked by the red line) indicates a failure in imitating the
demonstration. We see that with viewpoint mismatch, the
GAIfO agent is unable to imitate the expert successfully on all
tracks, whereas VOILA is unaffected by viewpoint mismatch
and results in policies that induce behavior closer to that of
the demonstrator.

compressed global representation of the image for training
the navigation policy, as described in the previous section.
The SUPERPOINT descriptor [21] for every keypoint is a
vector of 512 float values. These descriptors are learned
from data and correspond to different features of a keypoint
including—but not limited to—lighting, location, appearance
and texture.

C. Navigation Policy Architecture

We model the navigation policy 7 using a 3-layer, fully-
connected neural network, with 256 neurons per layer. We
perform frame-stacking with two consecutive latent codes of
observations in time to alleviate effects of partial observ-
ability in the environment. We also additionally include the
most recent action performed by the agent as a part of the
state. We use Soft Actor-Critic (SAC) [28], an off-policy RL
algorithm, to learn .

V. EXPERIMENTS

We now describe the experiments that we performed to
evaluate VOILA. The experiments are designed to answer the
following questions:

(Q1) Is VOILA capable of learning imitative policies from
video demonstrations that exhibit viewpoint mismatch?

(Q2) How well do policies learned using VOILA generalize
to environments unseen during training?

To answer the questions above, we perform experiments
using both a simulated autonomous vehicle and a real
Clearpath Jackal robot on the task of imitating “road fol-
lowing” and ‘“hallway patrol” tasks, respectively. The ob-
jective of the VOILA agent is to imitate the expert’s visual

demonstration by learning an end-to-end navigation policy,
even in the presence of viewpoint mismatch. To quantify
performance of imitation policies, we compute the Haus-
dorff distance metric (lower is better) between trajectories
generated on a held-out set of environments.

A. Simulation Experiments in AirSim

In our simulation experiments, we answer questions ()1
and @), using the outdoor ‘Neighborhood’ environment in
AirSim [29] and learn the task of road following, i.e., driving
on a straight road avoiding collisions with obstacles such
as parked cars along the curb while dealing with varied
lightning conditions along its path. To this end, we pick 12
straight road segments (tracks) in the AirSim environment.
Two tracks (Track 1 and 2) were used for training the agent,
and the learned policy is deployed on all 12 tracks. The other
10 tracks and their expert demonstrations are not seen by
the agent prior to evaluation, and so we use them to test the
generalizability of the learned policy to unseen environments.
In each episode, the car begins at a randomized initial
position near the start of the track, so the agent cannot
trivially solve the task by learning to drive straight without
having to steer. The expert demonstrations consist of a
single trajectory (egocentric, front-facing images) for all
tracks provided by a human (the first author) controlling the
demonstration vehicle with the objective of navigating from
start to end of the tracks, driving straight, in the middle of the
road, and avoiding collisions with obstacles such as parked
cars.

We use the latent vector of the RAE as the state represen-
tation, and the action space consists of change in steering
and throttle values. Note that the expert demonstrations are
required only during training to compute the reward. At test
time, the agent imitates the expert without requiring access
to expert demonstrations.

We compare VOILA against GAIfO, a state-of-the-art I1fO
algorithm that does not explicitly seek to overcome view-
point mismatch. While both GAIfO and VOILA are IfO
algorithms that can imitate from video-only demonstration
data, GAIfO has been evaluated predominantly in domains
such as limbed-robot locomotion and manipulation, whereas
VOILA has been designed specifically for vehicle navigation
domains. Additionally, GAIfO uses a learned reward function
whereas in VOILA, we propose a manually defined reward
function that is not learned. To ensure a fair comparison, we
provide each algorithm the same state representation, i.e.,
the latent code of the RAE. Further, since GAIfO is an on-
policy algorithm whereas VOILA relies on the off-policy SAC
algorithm, we allow GAIfO ten times more training timesteps
than VOILA (1 million vs. 100,000). Finally, we report results
for GAIfO using the policy that achieved maximum on-policy
returns during training.

Fig. 2 addresses both ); and @)s. In Fig. 2, in the
presence of viewpoint mismatch, we see that, as expected,
GAIfO is unable to imitate the expert on the training Track
2 and does not generalize to other environments. However,
confirming our hypothesis, VOILA is able to imitate the



expert demonstration even in the presence of viewpoint
mismatch on seen Tracks 1 and 2 and also generalizes to
the other 10 unseen tracks.

B. Physical Experiments on the Jackal

To answer (7 and Q2 on a physical robot, we performed
experiments using a Clearpath Jackal—a four-wheeled, dif-
ferential drive ground robot equipped with a front facing
camera. The environment considered is an indoor office
space, shown in Fig. 1, consisting of carpeted floors, straight
hallways, intersections, and turns. There are also static obsta-
cles such as benches, chairs, whiteboards, pillars along the
wall, and trashcans, all of which the robot needs to avoid
colliding with.

We evaluated VOILA on a hallway patrol task, in which
the robot begins at a start state (shown in Fig. 1) and
patrols around the building clockwise by taking the first
right at intersections and driving straight in the hallways. To
obtain a video demonstration of this task from a physically
different agent, a human (the first author) walked the patrol
trajectory once while recording video using a mobile phone
camera held approximately 4 feet above the ground (the
robot’s camera is at approximately 0.8 feet from the ground).
To contrast the imitation learning performance of VOILA
with and without any viewpoint mismatch, we perform
additional experiments (see full version of paper on ArXiv
[30]), henceforth called VOILA-w/o-mismatch in which the
expert demonstrations are collected onboard the deployment
platform itself. These demonstrations are collected using the
ROS move_base [31] navigation stack with a pre-built map
of the environment and waypoints to patrol the environment
while recording the egocentric visual observations from the
front facing camera.

A VOILA training episode consists of the robot starting at
approximately the same start state (as shown in Fig. 1) and
exploring in the training environment until the agent reaches
the done state. After each training episode, the robot was
manually reset back to the start state by a human operator,
and a new training episode began. Training the navigation
policy happened onboard the robot on a GTX 1050Ti GPU.

The VOILA agent trained using demonstrations with and
without viewpoint mismatch learned to imitate the expert
within 90 minutes (120 episodes) and 60 minutes (100
episodes), respectively, of experiment time (including time
taken to reset the robot at the end of an episode). Fig. 1 shows
the trajectory rollout (in green) of the policy learned using
VOILA, imitating the expert demonstration in the presence
of viewpoint mismatch. Addressing )1, we see that VOILA
is able to successfully patrol the indoor environment in a
real-world setting, as demonstrated by a physically different
expert agent, in the presence of viewpoint mismatch.

To evaluate the generalizability of policies learned using
VOILA to unseen real-world conditions (Q)2), we deploy the
policy learned by VOILA in a ‘perturbed environment’, in
which positions of movable objects such as trashcans, doors,
whiteboards, chairs, and benches in the training environment
are perturbed as shown in Fig. 3. We see that, even with such

Fig. 3: The VOILA agent (green), trained in the unperturbed
training environment (left), deployed here in the perturbed
environment (right). We see that the learned policy is robust
to the visual differences between the training and deployment
environment, examples of which are provided as image pairs.

environmental changes, VOILA is able to successfully patrol
the hallway without any collisions. To quantify the imitation
learning performance of VOILA, we compute the Hausdorff
distance between the human demonstrated trajectory and
the trajectory generated by the policy learned using VOILA.
The Hausdorff distance between the human demonstration
and VOILA is 0.783. The VOILA-w/o-mismatch agent trained
using demonstrations without any egocentric viewpoint mis-
match achieves a Hausdorff distance of 0.665. To provide
context for the Hausdorff distance metric, we also compute
the Hausdorff distance for suboptimal and random trajecto-
ries. The suboptimal trajectory was collected by navigating
along the hallway in a zig-zag route using move_base by
setting waypoints closer to the walls and achieves a Haus-
dorff distance of 0.806. The random trajectory was collected
using a randomly initialized policy, which fails quickly by
crashing in the environment, achieving a Hausdorff distance
of 1.192. We see that the VOILA agent is able to successfully
imitate the expert’s video-only navigation demonstration and
patrols the hallway without any collisions.

VI. CONCLUSION AND FUTURE WORK

In this paper, we introduced Visual-Observation-only Im-
itation Learning for Autonomous navigation (VOILA), a new
approach that enables imitation learning for autonomous
robot navigation using a single, egocentric, video-only
demonstration while being robust to egocentric viewpoint
mismatch. VOILA formulates the imitation problem as one of
reinforcement learning using a novel reward function that is
based on keypoint matches between the expert and imitator’s
visual observations. We showed through experiments, both
in simulation and on a physical robot, that, by optimizing
the proposed reward function using reinforcement learning,
VOILA could successfully find a good imitation policy that
maps sensor observations directly to low level action com-
mands. We additionally performed experiments that tested
the generalizability of policies trained using VOILA to unseen
environments. One interesting direction for future work is to
explore state representations that enable VOILA to generalize
better across environments.
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