2104.07810v2 [cs.LG] 12 Feb 2022

arxXiv

Skeletal Feature Compensation for Imitation Learning with
Embodiment Mismatch

Eddy Hudson!, Garrett Warnell!2, Faraz Torabi! and Peter Stonel?

Abstract— Learning from demonstrations in the wild (e.g.
YouTube videos) is a tantalizing goal in imitation learning.
However, for this goal to be achieved, imitation learning
algorithms must deal with the fact that the demonstrators and
learners may have bodies that differ from one another. This
condition — “embodiment mismatch” — is ignored by many
recent imitation learning algorithms. Our proposed imitation
learning technique, SILEM (Skeletal feature compensation for
Imitation Learning with Embodiment Mismatch), addresses
a particular type of embodiment mismatch by introducing
a learned affine transform to compensate for differences in
the skeletal features obtained from the learner and expert.
We create toy domains based on PyBullet’s HalfCheetah and
Ant to assess SILEM’s benefits for this type of embodiment
mismatch. We also provide qualitative and quantitative results
on more realistic problems — teaching simulated humanoid
agents, including Atlas from Boston Dynamics, to walk by
observing human demonstrations.

I. INTRODUCTION

Endowing artificial agents with the ability to learn new
behaviors by watching humans is a lofty goal in the field of
machine learning. Artificial agents that can learn in this way,
i.e, perform learning from demonstration (LfD) or imitation
learning (IL), have enormous learning potential. First, IL
enables machines to learn new skills from demonstrators
that are experts in particular tasks of interest (e.g., oper-
ating construction equipment or cooking) rather than from
researchers who are experts at writing computer code or
designing cost functions. Second, this paradigm of learning
provides a channel of skill acquisition even in cases where
it is currently prohibitively difficult to induce the desired
behavior by writing computer code or specifying a cost
function. Finally, the greatest allure of being able to perform
LfD in the wild—in which one seeks to enable an artificial
agent to imitate new behaviors using unconstrained video
demonstrations of those behaviors (e.g., YouTube videos)—
is that there already exists a vast and relatively untapped
amount of demonstration data that we can immediately use

LThe University of Texas at Austin Austin, Texas,
USA {eddyhudson, faraztrb}@utexas .edu,
pstone@cs.utexas.edu

2Army Research Laboratory Austin,
garrett.a.warnell.civ@army.mil

3Sony Al Austin, Texas, USA

This work has taken place in the Learning Agents Research Group
(LARG) at UT Austin. LARG research is supported in part by NSF
(CPS-1739964, 11S-1724157, NRI-1925082), ONR (N00014-18-2243), FLI
(RFP2-000), ARO (W911NF-19-2-0333), DARPA, Lockheed Martin, GM,
and Bosch. Peter Stone serves as the Executive Director of Sony Al
America and receives financial compensation for this work. The terms of
this arrangement have been reviewed and approved by the University of
Texas at Austin in accordance with its policy on objectivity in research.

Texas, USA

to drive behavior acquisition in machines. Here, we are
motivated by the problem of performing LfD in the wild for
robot behavior acquisition, and we seek to make progress
toward that goal in a very specific way.

While a great deal of recent research progress has been
made on particular variants of imitation learning, relatively
little recent work has considered the problem of embodiment
mismatch, i.e., the situation that arises when a demonstrating
agent’s body is different than that of the imitator. For
example, a student in a fitness class who is 6’3" is able to
easily imitate a 5°2” instructor doing jumping jacks. While
the specific signals sent to the student’s muscles are much
different, the jumping-jack motion induced is qualitatively
the same. For IL algorithms to be applied to unconstrained
videos, they will similarly need to be able to deal with
embodiment mismatch of this kind. We envision a two-stage
pipeline where computer vision techniques such as keypoint
extraction and pose-estimation are used to extract expert data
from unconstrained videos, and an IL algorithm capable of
dealing with the embodiment mismatch in the expert data
trains a learner to acquire the skills originally found in the
video.

In this paper, we focus our attention on the second stage
of such a pipeline, and propose a new imitation learning
algorithm called SILEM (Skeletal feature compensation for
Imitation Learning with Embodiment Mismatch) that can
help reliably train a learner to imitate an expert with a dif-
ferent body. Central to SILEM is a learned affine transform
that compensates for differences in the skeletal features (e.g.
joint angles, height of head, etc.) derived from the expert and
learner.

What sets our work apart from prior work in this problem
setting [8], [15], [16] is that 1) we do not require access to
simulations of the expert’s body, and 2) through a series
of controlled ablation studies (Figures 2, 3), we provide
empirical evidence of the detrimental effect embodiment
mismatch has in the domains we consider before proceeding
to address the issue.

II. BACKGROUND

Our ultimate goal in this work is to learn a controller that
solves a sequential decision making problem. Such problems
are typically formulated in the context of a Markov decision
process (MDP), i.e., a tuple M =< S, A, T, R,~ >, where
S denotes an agent’s state space, A denotes the agent’s
action space, T : S x A — A(S) denotes the environment
model which maps state-action pairs to a distribution over the
agent’s next state, R : S Xx A x § — R is a reward function

that provides a scalar-valued reward signal for state-action-
next-state tuples, and v € [0,1] is a discount factor that
specifies how the agent should weight short- vs. long-term
rewards. Solutions to sequential decision making problems
are often specified by reactive policies 7 : S — A(A),
which specify agent behavior by providing a mapping from
the agent’s current state to a distribution over the actions it
can take. Machine learning solutions to problems described
by an MDP typically search for policies that can maximize
the agent’s expected sum of future rewards.

The IL problem is typically formulated using an MDP
without a specified reward function, i.e., M\ R. Instead of re-
ward, the agent is provided with demonstration trajectories—
typically assumed to have been generated by an expert—that
specifies the desired behavior, i.e., 75 = (80, ag, $1, a1, ---).
Imitation from observation (IfO) is a sub-problem of IL in
which the agent does not have access to the actions taken
during the demonstration trajectories, i.e., Tg = (S, S1, ...).
Techniques designed to solve the IL problem seek to use
observed demonstrations to find policies that an imitating
agent can use to imitate the demonstrator.

Adversarial imitation learning (AIL) is a particular way to
perform IL that has recently come to the fore. AIL is loosely
based on GANs [7], in that both involve the same min-
max game with discriminators and generator networks. The
discriminator D, is trained to distinguish between the demon-
stration trajectories and trajectories generated by the imitator.
In particular, the goal of updating D is to drive E,,,[D(0)]
toward 1 and E,..,[D(0)] toward 0, where o is a segment of
the trajectory, and 7 represents trajectories recently generated
by the imitator. In the seminal AIL algorithm GAIL [9], o =
(st,at), whereas in GAIfO [21], 0 = (S¢, St41y-- -, St+n)-
Merel et al. [12] deviate from this paradigm by preventing
the discriminator from accessing actual state information.
Instead, they let o = (g(s¢), 9(st+1),---,9(St4n)), where
g is an abstract function that extracts features based on the
agent’s state. In their IL experiments involving 2 and 3 link
arms, g simply returned the end effector’s location. This
representation allowed Merel er al. [12] to train a 3-link
arm to imitate a 2-link arm. In this work, we refer to the
features extracted by g as skeletal features. The generator,
which in AIL algorithms is the imitator’s policy m, is trained
to induce behavior that elicits large output from D, i.e., to
“fool” D into thinking that the imitator’s trajectories came
from the demonstrator. By iteratively updating D and 7 as
described, AIL approaches are able to find imitator policies
that successfully mimic the demonstrated behavior.

Key to this work is our observation that, to date, most
AIL approaches that have been proposed require the expert
and the learner to have the same embodiment. The embod-
iment mismatch problem we consider here occurs when the
demonstrator is structurally different from the learner. For
example, in the case of dog-like agents, the demonstrator
may be a tall Great Dane and the learner may be an elongated
Dachshund. In such cases, it might be impossible to match 7
with 75. AIL algorithms such as GAIL and GAIfO will tend
to suffer degraded performance in this scenario. Therefore,

[Expert Trajectories]
T

()

Y- —
| v

Skeletal Feature Skeletal Feature
Abstraction Abstraction

v
Discriminator

Sequential

Affine Transform
J

~\

S pEnEENEREEREEREEREENRERREREERY

w. | use output of Discriminator
as reward to train policy

[
-

J

Fig. 1: A high level overview of the proposed technique,
SILEM. The policy and discriminator are learned through
a mini-max game as in prior AIL algorithms, while the
sequential affine transform is learned by backpropagating
through the discriminator (Algorithm 1).

solutions must be designed to explicitly account for this kind
of embodiment mismatch. Note that our goal is not to train
a single policy that is robust to changes in embodiment. Our
aim is to train a policy specific to a particular embodiment
by leveraging demonstrations from another embodiment.

I1I. SILEM

In this work, we propose a new AIL algorithm capable of
training useful policies in the presence of a particular type
of embodiment mismatch, and term it SILEM (Skeletal fea-
ture compensation for Imitation Learning with Embodiment
Mismatch). SILEM follows the lead of prior AIL algorithms
GAIL and GAIfO in its core operations (Algorithm 1,
Figure 1) with one critical exception — the sequential affine
transform.

The sequential affine transform is an affine transform with
the following functional form:

T(or) = T(g(s1),9(st41)s- -, g(st0))
= (#(9s0). F(gls031)); - £ (9(s04)))

where T is the sequential affine transform, and f is an
affine transform operating on the skeletal features from single
states. ie., f(g(s)) = Ag(s) + b, where A is a diagonal
matrix and ¢ is an abstract function that extracts skeletal
features from single states. We restrict our attention to IfO
to more seamlessly learn from human demonstrations, which
generally do not come with actions.

The sequential affine transform’s purpose is to compensate
for differences in the skeletal features obtained from expert

and learner bodies, which arise due to embodiment mis-
match. It is only applied to skeletal features from the learner,
and is optimized by minimizing the following loss function:
L = —log(D(T(0))), while keeping the weights of the
discriminator D fixed. T' is the sequential affine transform,
and o = (g(st),9(St+1),---,9(St4n)) is a sequence of
skeletal features from the learner. This loss function is
similar to that employed for training Conditional GANs [13].
We frame the sequential affine transform as a conditional
GAN that aims to generate skeletal features pertaining to
the demonstrator given skeletal features from the learner.
Combining this additional step with the essential components
of GAIL/GAIfO, each iteration of SILEM comprises three
main steps: (Line 9) update the discriminator D, (Line 10)
update the sequential affine transform 7', and (Line 11)
update the policy 7.

Algorithm 1 SILEM and SILEM™ (our ablation without the
sequential affine transform). Lines in green to be executed
only for SILEM (3, 7, 8, 10).

1: Initialize parametric policy 7
2: Initialize parametric discriminator D
3: Initialize sequential affine transform 7°
4: Obtain state-only expert demonstration data 7p =
{o} =A{(s6, 8041, -+, 504m)}
while 7 improves do
Using 7, collect learner trajectories 7 =
{(stsSt415 -5 St4n) }
7: Generate a copy of 7 called 7
8: Replace each element o; in 7 with T'(o;)

AN

{o} =

9: Update D using the loss: —(EONTE [log(D(0))] +

Eo~r[log(1 — D(0))]

10: Update T using the loss: —E,_ [log(D(T(0)))]

11: Update 7 by performing PPO updates with reward
function D(0), where o € T

12: end while

Note that our choice of objective function to train the
sequential affine transform runs the risk of interfering with
policy learning. In the presence of embodiment mismatch,
skeletal features from the learner can differ from the expert
both due to embodiment mismatch and due to imperfect
imitation. Left to its own devices, this objective function
might encourage the sequential affine transform to go above
and beyond its purpose by converting skeletal features from
faltering learner states to skeletal features from excellent
expert states — as opposed to merely compensating for
embodiment mismatch. However, we find empirically that,
because we use an affine transform rather than a more
powerful network (e.g., a multi-layer perceptron (MLP)), this
scenario does not occur (Table I).

At first glance, the restriction of having to use an affine
transform might appear quite severe. It requires a certain
degree of similarity between the expert and learner. However,
as we show in the results section, by choosing g appro-

priately, the space of problems solvable by SILEM widens
to include potentially impactful problems such as training
humanoid robots from human demonstrations. In our experi-
ments involving human demonstrations, we define a separate
g for the demonstrator (expert) and the learner, which allows
us to address instances of embodiment mismatch where
there exists a mismatch in the number of joints (see the
humanoid walking experiments in Section V). Naturally, as
the difference between the expert and learner bodies becomes
more and more drastic, the process for designing g will
become more and more involved. Fortuitously, as the expert
differs from the learner in ever more ways, it becomes less
and less useful to the learner since the feedback it can offer
the learner also drops precipitously. For instance, humanoid
robots can learn a lot more from human demonstrations than
from demonstrations by quadrupedal agents.

IV. RELATED WORK

Our work broadly fits in the realm of learning from demon-
strations (LfD), or imitation learning. In LfD, the learner is
trained to imitate the behavior of an expert demonstrator.
One use case for LfD is when it is difficult to specify the
target behavior using a scalar reward signal. e.g. performing
backflips [2]. This is in contrast to many impressive results in
the past decade using deep RL techniques such as in Atari
games [14], or Go [18], where the target behavior can be
more easily achieved by specifying a scalar reward signal.

In LD, the expert and learner might face different environ-
ments and have different embodiments. Prior work [4], [11]
has shown promise in correcting the difference in dynamics
faced by the learner and expert. However, these approaches
have failed to show concrete evidence that they combat
embodiment mismatch.

Manually matching the feature-space of the learner and
expert can resolve embodiment mismatch to a certain extent
[12], [16]. However, methods such as these may be difficult
to scale and often arrive at suboptimal solutions when the
embodiment mismatch gets noticeably large. Peng et al
[16] also require control over the agent’s starting state
distribution, thus precluding application of their technique
on real robots. Some methods for LfD sidestep the problem
of constructing a mapping by using temporal consistency to
learn a reward function that is invariant to the environment
that the input state belongs to [17]. However, Torabi et al.
[21] show that it is difficult to learn periodic locomotion
behaviors using such reward functions.

There have been a few attempts at automatically creating
a mapping between the state-spaces of two different agents
[1], [3], [8], [10], [15]. Gupta et al. [8] require both the
expert and the learner to have solved at least one common
task beforehand. This makes it impossible to learn from
new demonstrators in the wild, effectively ruling out any
application for the LfD in the wild problem. Gamrian et al.
[3] and Kim et al. [10] use a framework based on GANs
to map between various domains. However, they train the
mapping using a random policy. In many robotics domains,
random policies do not provide useful information: a random

Humanoid agent will fall down immediately. Thus a mapping
trained using such a policy is unlikely to generalize to
walking gaits. Along those lines, Ariki et al. [1] also require
random explorations, and they do show successful results
using a humanoid robot (the NAO robot). However, they fail
to evaluate their approach on more complex humanoid agents
such as the ones we have used, where random policies fail to
provide any useful information. Peng et al. [15] use inverse
kinematics to approximately match keypoints on the expert
with keypoints on the learner. Such an approach, apart from
having to be laboriously tuned, has only been shown to work
for relatively simple examples of embodiment mismatch. Our
best attempt to use the techniques of Peng et al. [15] to train
the humanoid agents to imitate human demonstrations fails
to produce useful policies.

SILEM is closest to the work of Stadie er al. [19],
Third Person Imitation Learning (TPIL). TPIL employs one
discriminator for policy improvement, and another separate
discriminator to cancel out embodiment mismatch using gra-
dient reversal [5]. The success of the entire approach hinges
on the hypothesis that differences in single states reflect only
embodiment mismatch and not differences in policy quality.
However, for complex domains such as humanoid walking,
this hypothesis fails to hold [12]. Our results also confirm
that TPIL fails to reliably help humanoid agents imitate
human demonstrations.

Within the specific problem setting that we operate,
learning locomotion skills in the presence of embodiment
mismatch, we are the first to provide definitive evidence that
our approach is capable of handling embodiment mismatch.
Neither Peng et al. [15] nor Peng et al. [16] perform
controlled ablation studies showing that their approaches
handle meaningful embodiment mismatch. Gangwani et al.
[4] perform such ablation studies, but they study transition
dynamics mismatch. Ghadirzadeh ef al. [6] and Yu et al
[22] provide impressive results, but they do so on robotic
arms, where the challenge is in dealing with a wide diversity
of physical objects while the actual task remains simple:
reaching and picking.

V. EXPERIMENTS AND RESULTS

Our experiments involve a series of HalfCheetah-based
bodies (Figure 2a), a series of Ant-based bodies (Figure
2¢), and three simulated humanoid agents Humanoid, Hu-
manoidR, and Atlas (Figure 3a). The input to the policy
network and @ function consist of the default low level state
information (for example joint angles, velocities, etc.).

For the HalfCheetah-based and Ant-based bodies, g is
simply the identity function, while for the humanoid agents,
it is a function that abstracts out the list of features defined
in Figures 4a and 4b. In our experiments involving human
demonstrations, there exists an asymmetry in the definition
of g. For example, due to differences in the skeletal structure
between the demonstrator and learner (Figure 3a), it is not
possible to use the same function to compute the relative
position of the right hand in the demonstrator and learner.

HCO

=< s

HC2

4.

(a) The bodies we design based on HalfCheetah

1.00 1

|

0.754
0.50
0.251

0.007 —@— SILEM
~@®— SILEM

Normalized Performance

—0.25

0

[¥)

1
HalfCheetah Variants

(b) Results for the HalfCheetah bodies

Ant0

7\

(c) The bodies we design based on Ant
//O\"/./\

—8— SILEM
~®— SILEM

Ant6

—
o

—

0.6

Normalized Performance
%

IS

0 1 2 3 1 5 6
Ant Variants

(d) Results for the Ant bodies

Fig. 2: The toy domains we created to assess SILEM’s
benefits (2b, 2d) Results showing that SILEM is able to
prevent degradation of imitation performance due to embod-
iment mismatch. SILEM™ is an ablation of SILEM with
the sequential affine transform removed from the training
structure. The y-axis shows performance normalized by
body-specific expert-level performance — a score of 1.0
by an algorithm for a body indicates that that algorithm
can match the performance of PPO on that body. The plot
shows minimum, average, and maximum performance over
5 independent trials.

CMU Mocap file

HumanoidR

Humanoid

(a) The simulated humanoids considered in this paper

Atlas

B Humanoid
B HumanoidR
Atlas

800 1

(=2}

o

o
L

Average reward
[N
S
(e}

200 1

Peng20 SILEM~ TPIL SILEM

(b) Results in Atlas, Humanoid, and HumanoidR

Fig. 3: The experiments we performed involving human demonstrations. (3b) Results showing that SILEM is able to reliably
learn from human demonstrations, while TPIL, Peng20, and our ablation without the sequential affine transform (SILEM™)
are unable to do so. The y-axis uses the built-in reward function from the DeepMind Control Suite, which rewards the agent
for maintaining an upright posture, matching the human’s speed, and minimizing energy expenditure. The maximum reward
possible is 1000. The plot shows minimum, average, and maximum performance over 5 independent trials.

Thus, we use different g functions for the demonstrator and
learner (that eventually end up computing the same quantity).

We generated the three HalfCheetah-based bodies HCO,
HCI, and HC2 by setting the torso length at 1, 2, and 3
respectively. HCO is the original HalfCheetah provided by
PyBullet. We then train HCO, HC1, and HC2 to imitate an
expert HCO that is running as fast as possible. We generated
the Ant-based bodies by increasing the length of the link
closest to the original Ant’s body in steps of 0.05 from 0.2
to 0.5. This resulted in a total of 7 Ant-based bodies, from
Ant0 to Ant6, where Ant0 is the original Ant provided by
PyBullet. We then train all the Ant-based bodies to imitate
an expert AntO that is running as fast as possible. The first
humanoid agent, Humanoid, is the simple humanoid from
the DeepMind Control Suite [20]. The second humanoid,
HumanoidR, is an asymmetric humanoid that we generated
by elongating Humanoid’s right arm and shortening its left
arm. The third humanoid is a simulated version of Atlas,
a robot from Boston Dynamics. The humanoid agents are
trained to imitate the first demonstration from Subject 8§ in
the CMU Mocap Library (mocap.cs.cmu.edu). The demon-
stration is of a human walking forward. Note that we do
not train HumanoidR to imitate Humanoid. They both, along
with the simulated Atlas, are trained to imitate the human
demonstration.

Can the sequential affine transform address embod-
iment mismatch? To answer this question, we first create
an ablation of SILEM, SILEM™ (Algorithm 1), where the
sequential affine transform is removed from the training

structure. We then apply SILEM™ and SILEM to the toy
domains we designed and to train the three humanoids
(Humanoid, HumanoidR, and Atlas). Our results in Figure
2 and 3b and the attached supplementary video shows that
SILEM is able to consistently generate stable gaits for all of
the agents we test, while SILEM™ fails to do so.

As further evidence that the sequential affine transform
addresses embodiment mismatch, we plot the affine trans-
forms used by the best performing policies of Humanoid and
HumanoidR in Figure 4a and 4b. The results show that the
sequential affine transforms apply targeted compensation for
the asymmetric arms, thus providing evidence that SILEM
works by correcting embodiment mismatch.

Comparison with TPIL and Peng20 on training hu-
manoid agents from human demonstrations: Note that we
refer to our implementation of Peng et al. [15] as Peng20.
We compare SILEM with Peng20 since our application of the
sequential affine transform for humanoid agents is similar to
their application of inverse kinematics for dog-like agents.
Peng20 matches end effectors between demonstrator and
learner, while we also additionally match the elbow and knee
angles. We also compare SILEM to TPIL since we found
TPIL to be the closest available alternative to SILEM — like
SILEM, TPIL is an AIL algorithm that addresses mismatch
between expert and learner in an online fashion.

Our quantitative results in Figure 3b and our qualitative
results in the attached supplementary video show that SILEM
outperforms both Peng20 and TPIL by a large margin at
the task of imitating the human demonstration. Surprisingly,

1.2
1.0
Q
= 0.81
>
0.6
0.4 = Humanoid
=== HumanoidR

o o 1 00 0

gl

(a) Values in the diagonal matrix, A

0.2

0.1

0.0+

—0.11

Value

—0.21
—0.31 s Humanoid

m=_ HumanoidR

—0.44

1 1 g

glo 1
lo

3m
(8]

o o 1 00 o0

gl

(b) Values in the bias, b

Fig. 4: The values of the affine transform from the top 10 policies in both Humanoid and HumanoidR. Thicker plotlines
show the mean. The relevant features have been highlighted with thicker vertical gridlines. Note that positive = faces forward
from the agent, and positive z points upwards. (4a) As expected, the relative position of the left and right hands get scaled
up and down respectively (the hands’ z-values are always negative). (4b) The left arm maintains a more obtuse angle than
the right arm in order to match the counterbalance provided by the right arm (see supplementary video). The sequential
affine transform allows for this adaptive correction by modifying the left and right elbow angles accordingly.

Peng20, TPIL, and SILEM™ perform much better on Atlas
than they do on the other humanoid agents. We posit that this
is because Atlas is closer in dimensions to the demonstrator
than the other humanoid agents. The feet are 1.13, 1.26, and
0.99 units away from the torso for the demonstration, Hu-
manoid, and Atlas respectively. However, the hands are 0.74,
0.4 and 0.91 units away from the torso for the demonstration,
Humanoid, and Atlas respectively.

Why does the sequential affine transform not interfere
with the policy’s learning? The objective function used
to learn the sequential affine transform has the potential to
conflict with the policy’s learning objective — the sequential
affine transform could, in theory, generate skeletal features
corresponding to good expert states from skeletal features
corresponding to poor learner states. We hypothesize that
such a scenario does not arise because the sequential affine
transform consists of affine transforms and not more power-
ful deep networks such as MLPs. Our experiments support
the claim (Table I). For context, the average ground truth
reward obtained by a random policy and expert is -1555
and 2249 respectively. On the other hand, the discriminator
reward can vary from O to 1000. Using an MLP (1 hidden
layer with 100 units) results in high discriminator reward,
but poor performance by the policy. This finding suggests
that the MLP is crafting skeletal features corresponding to
good expert states from skeletal features corresponding to
poor learner states.

VI. CONCLUSION

In this paper, we have introduced a new AIL algorithm
called SILEM (Skeletal feature compensation for Imitation
Learning with Embodiment Mismatch). Using SILEM, we
showed improved performance in the challenging problem of

TABLE I: Results from applying SILEM to HCO where f
in the sequential affine transform is either an MLP or an
Affine Transform. These results suggest a degeneracy in the
MLP not present with the affine transform — the MLP is
both compensating for embodiment mismatch and imperfect
imitation. All results are the mean over 5 independent trials.

f Discriminator Ground Truth
Reward Reward
MLP 466 -1979
Affine Transform 451 2234

learning from human demonstrations. We presented evidence
that SILEM works by learning a sequential affine transform
capable of compensating for differences in the skeletal fea-
tures of the expert and learner that arise due to embodiment
mismatch.

We hypothesize that SILEM is also capable of handling
simple cases of environment mismatch. E.g., the human
walking demonstration is from a flat surface, but the hu-
manoid agent is learning to walk on an inclined surface.
By scaling and shifting the skeletal features appropriately,
it might be possible to make the walking behavior on an
inclined surface resemble that on a flat surface. An interesting
line of future work would be to exhaustively evaluate the ca-
pabilities of SILEM with regards to environment mismatch.
This could be followed by trying to successfully replace
the sequential affine transform with a more sophisticated
architecture, such as an ensemble of affine transforms, thus
opening the door for SILEM to tackle ever more complex
instances of embodiment and environment mismatch.

(1

(2]

(3]

[4]

[3]

(6]

(7]

(8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

REFERENCES

Ariki, Y., Matsubara, T., Hyon, S.H.: Latent kullback-leibler control
for dynamic imitation learning of whole-body behaviors in humanoid
robots. In: 2016 IEEE-RAS 16th International Conference on Hu-
manoid Robots (Humanoids). pp. 946-951 (2016).

Christiano, PF,, Leike, J., Brown, T., Martic, M., Legg, S., Amodei, D.:
Deep reinforcement learning from human preferences. In: Advances
in Neural Information Processing Systems. pp. 4299-4307 (2017)
Gamrian, S., Goldberg, Y.: Transfer learning for related reinforcement
learning tasks via image-to-image translation. CoRR abs/1806.07377
(2018), http://arxiv.org/abs/1806.07377

Gangwani, T., Peng, J.: State-only imitation with transition dynamics
mismatch. In: International Conference on Learning Representations
(2020), https://openreview.net/forum?id=HJgLLyrYwB
Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by back-
propagation. In: Proceedings of the 32nd International Conference
on International Conference on Machine Learning - Volume 37. p.
1180?1189. ICML?15, JMLR.org (2015)

Ghadirzadeh, A., Chen, X., Poklukar, P., Finn, C., Bjorkman, M.,
Kragic, D.: Bayesian meta-learning for few-shot policy adaptation
across robotic platforms. CoRR abs/2103.03697 (2021), https:
//arxiv.org/abs/2103.03697

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley,
D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets.
In: Advances in neural information processing systems. pp. 2672-2680
(2014)

Gupta, A., Devin, C., Liu, Y., Abbeel, P., Levine, S.: Learning invariant
feature spaces to transfer skills with reinforcement learning. arXiv
preprint arXiv:1703.02949 (2017)

Ho, J., Ermon, S.: Generative adversarial imitation learning. In:
Advances in neural information processing systems. pp. 4565-4573
(2016)

Kim, K., Gu, Y., Song, J., Zhao, S., Ermon, S.: Domain adaptive
imitation learning. In: III, H.D., Singh, A. (eds.) Proceedings of
the 37th International Conference on Machine Learning. Proceedings
of Machine Learning Research, vol. 119, pp. 5286-5295. PMLR
(13-18 Jul 2020), http://proceedings.mlr.press/v119/
kim20c.html

Liu, F, Ling, Z., Mu, T., Su, H.: State alignment-based imitation
learning. In: International Conference on Learning Representations
(2020), https://openreview.net/forum?id=rylrdxHFDr
Merel, J., Tassa, Y., Srinivasan, S., Lemmon, J., Wang, Z., Wayne,
G., Heess, N.: Learning human behaviors from motion capture by
adversarial imitation. arXiv preprint arXiv:1707.02201 (2017)

Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv
preprint arXiv:1411.1784 (2014)

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Belle-
mare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski,
G., et al.: Human-level control through deep reinforcement learning.
Nature 518(7540), 529 (2015)

Peng, X., Coumans, E., Zhang, T., Lee, TW.E., Tan, J., Levine, S.:
Learning agile robotic locomotion skills by imitating animals. In:
Robotics: Science and Systems (07 2020).

Peng, X.B., Kanazawa, A., Malik, J., Abbeel, P, Levine, S.: Sfv:
Reinforcement learning of physical skills from videos. In: SIGGRAPH
Asia 2018 Technical Papers. p. 178. ACM (2018)

Sermanet, P, Lynch, C., Chebotar, Y., Hsu, J., Jang, E., Schaal,
S., Levine, S., Brain, G.: Time-contrastive networks: Self-supervised
learning from video. In: 2018 IEEE International Conference on
Robotics and Automation (ICRA). pp. 1134-1141. IEEE (2018)
Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez,
A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al.: Mastering
chess and shogi by self-play with a general reinforcement learning
algorithm. arXiv preprint arXiv:1712.01815 (2017)

Stadie, B.C., Abbeel, P., Sutskever, I.: Third-person imitation learning
(2017), https://arxiv.org/pdf/1703.01703.pdf

Tassa, Y., Doron, Y., Muldal, A., Erez, T., Li, Y., Casas, D.d.L.,
Budden, D., Abdolmaleki, A., Merel, J., Lefrancq, A., et al.: Deepmind
control suite. arXiv preprint arXiv:1801.00690 (2018)

Torabi, F., Warnell, G., Stone, P.: Generative adversarial imitation from
observation. In: Imitation, Intent, and Interaction (I3) Workshop at
ICML 2019 (June 2019)

Yu, T., Finn, C., Dasari, S., Xie, A., Zhang, T., Abbeel, P., Levine, S.:
One-shot imitation from observing humans via domain-adaptive meta-
learning. In: Kress-Gazit, H., Srinivasa, S.S., Howard, T., Atanasov, N.

(eds.) Robotics: Science and Systems XIV, Carnegie Mellon Univer-
sity, Pittsburgh, Pennsylvania, USA, June 26-30, 2018 (2018)., http:
//www.roboticsproceedings.org/rssl4/p02.html

arXiv:2104.07810v2 [cs.LG] 12 Feb 2022

Skeletal feature compensation for Imitation Learning with Embodiment
Mismatch: Supplementary material

1 Hyper-parameter search

For every experiment, we used a grid search to find the best set of hyper-parameters. Specifically, for every configuration of
hyper-parameters in the experiment, we ran 5 independent trials. Within each trial, we trained a policy, measured the average
reward obtained by that policy over 1000 episodes, and assigned the resulting number as the score for that particular trial. The
score for each configuration of hyper-parameters is the average score over the 5 trials corresponding to that configuration. The
best configuration of hyper-parameters is then that which maximizes this score.

All instantiations of SILEM, SILEM ~, and TPIL, use n = 4. L.e., the input to the discriminator is a tuple of size 4.

1.1 General settings for PPO

Throughout this work, the learning rate in PPO is always linearly decayed to 0. We use the Adam optimizer with the default
options from OpenAl baselines. The other settings in Table 2 and Table 1 are also used throughout this work unless specified
otherwise. Note that both SILEM and SILEM™ use PPO to improve the policy, but instead of the reward function from the
environment, they utilize the output of the discriminator as the reward function. Contrary to Table 2, the Ant experts were
trained for 1000 PPO iterations.

Table 1: Common hyper-parameters used for PPO in experiments involving Atlas, Hu-
manoid and HumanoidR (The Mujoco environment).

HYPER-PARAMETER VALUES
NO. TIMESTEPS USED FOR EACH ITERATION 4096
PPO CLIP PARAMETER 0.1
DISCOUNT FACTOR () 0.99
LAMBDA () 0.95
PPO MINIBATCH SIZE 256
NoO. PPO ITERATIONS 8000
LEARNING RATE 1E-4

Table 2: Common hyper-parameters used for PPO in experiments involving Ant and
HalfCheetah (The Pybullet environments).

HYPER-PARAMETER VALUES
NO. TIMESTEPS USED FOR EACH ITERATION 2048
PPO CLIP PARAMETER 0.2
DISCOUNT FACTOR (7) 0.99
LAMBDA () 0.95
No. PPO EPOCHS 10
PPO MINIBATCH SIZE 64
No. PPO ITERATIONS 2000
LEARNING RATE 2E-4

1.2 SILEM and SILEM~ for the humanoid agents (Atlas, Humanoid and HumanoidR)

The SILEM experiments involving humanoid agents used L2 normalization for the state transformer’s weights. None of our
other SILEM experiments used L2 normalization. The diagonal matrix and bias values of the state transformer were normalized
with different coefficients.

Table 3: The grid search for SILEM and SILEM ™ on Humanoid and HumanoidR was
conducted by evaluating all permutations of the following parameter values. Hyper-
parameters in bold only apply to SILEM.

HYPER-PARAMETER VALUES
(Np) NO. UPDATE STEPS FOR THE DISCRIMINATOR 1,2
(Ng) NO. UPDATE STEPS FOR THE STATE TRANSFORMER 1
(d) LEARNING RATE DECAY FOR THE STATE TRANSFORMER 0.996, 1
(wq) L2 COEFFICIENT FOR DIAGONAL MATRIX 1, 10
(wp) L2 COEFFICIENT FOR BIAS VALUES 1,10
(Np) No. PPO EPOCHS 4,7

Table 4: The combination of parameters that turned out best for each experiment in-
volving SILEM and Humanoid and HumanoidR.

HUMANOID AGENT Np d wgq w, Np

HuMANOID 2 1 10 10 7
HUMANOIDR 1 1 1 10 7

Table 5: The combination of parameters that turned out best for each experiment in-
volving SILEM™ and Humanoid and HumanoidR.

HUMANOID AGENT Np Np

HUMANOID 1 7
HUMANOIDR 1 7

Table 6: The grid search for SILEM and SILEM™ on Atlas was conducted by evaluating
all permutations of the following parameter values. Hyper-parameters in bold only

apply to SILEM.

HYPER-PARAMETER VALUES
(Np) NO. UPDATE STEPS FOR THE DISCRIMINATOR 1,2
(Ng) NO. UPDATE STEPS FOR THE STATE TRANSFORMER 2,3
(wq) L2 COEFFICIENT FOR DIAGONAL MATRIX 1,10
(wp) L2 COEFFICIENT FOR BIAS VALUES 1,10
(Np) No. PPO EPOCHS 5,8,12
(a) ANKLE’S RANGE OF MOTION +0.3, £0.1

Table 7: The combination of parameters that turned out best for each experiment in-

volving SILEM and Atlas.

HYPER-PARAMETER VALUES
(Np) NO. UPDATE STEPS FOR THE DISCRIMINATOR 2
(Ng) NO. UPDATE STEPS FOR THE STATE TRANSFORMER 2
(wq) L2 COEFFICIENT FOR DIAGONAL MATRIX 10
(wp) L2 COEFFICIENT FOR BIAS VALUES 10
(Np) No. PPO EPOCHS 8
(a) ANKLE’S RANGE OF MOTION +0.1

Table 8: The combination of parameters that turned out best for each experiment in-
volving SILEM™ and Atlas.

HYPER-PARAMETER VALUES
(Np) NO. UPDATE STEPS FOR THE DISCRIMINATOR 1
(Np) No. PPO EPOCHS 8
(a) ANKLE’S RANGE OF MOTION +0.1

1.3 TPIL (Third Person Imitation Learning) for Atlas, Humanoid and HumanoidR

Table 9: The grid search for TPIL on Humanoid and HumanoidR was conducted by
evaluating all permutations of the following parameter values.

HYPER-PARAMETER VALUES
(Cg¢) GRADIENT REVERSAL COEFFICIENT 0.1,0.3,0.6,1,1.3,1.6
(Np) NO. UPDATE STEPS FOR THE DISCRIMINATOR 1,2,3

(Np) No. PPO EPOCHS 4,5,7

Table 10: The combination of parameters that turned out best for each experiment in-
volving TPIL and Humanoid and HumanoidR.

HUMANOID AGENT C, Np Np

HUMANOID 0.6 1 5
HUMANOIDR 0.3 1 4

Table 11: The grid search for TPIL on Atlas was conducted by evaluating all permuta-
tions of the following parameter values.

HYPER-PARAMETER VALUES

(Cy) GRADIENT REVERSAL COEFFICIENT 0.1,0.3,0.6,1,1.3,1.6
(Np) NO. UPDATE STEPS FOR THE DISCRIMINATOR 1,2

(Np) No. PPO EPOCHS 5,8,12

(a) ANKLE’S RANGE OF MOTION +0.1, 0.3

Table 12: The combination of parameters that turned out best for each experiment in-

volving TPIL and Atlas.
HYPER-PARAMETER VALUES
(Cy) GRADIENT REVERSAL COEFFICIENT 1.3
(Np) NO. UPDATE STEPS FOR THE DISCRIMINATOR 1
(Np) No. PPO EPOCHS
(a) ANKLE’S RANGE OF MOTION +0.1

1.4 Peng20 for Atlas, Humanoid and HumanoidR

We first used 1k_-humanoid. py to convert the demonstration trajectory to Humanoid’s and HumanoidR’s embodiment. Then
we used ik_atlas.py, to get the demonstration trajectory in Atlas’ embodiment. Both the aforementioned python files can
be found in the source code. With the demonstration trajectory in the correct embodiments, we now apply GAIfO/SILEM™ to
train the respective humanoid agents. We use the same grid search options as in Table ?? and ??.

Table 13: The combination of parameters that turned out best for each experiment in-
volving Peng20 and Atlas.

HYPER-PARAMETER VALUES
(Np) NO. UPDATE STEPS FOR THE DISCRIMINATOR 1
(Np) No. PPO EPOCHS 12

(a) ANKLE’S RANGE OF MOTION +0.3

Table 14: The combination of parameters that turned out best for each experiment in-
volving Peng20 and Humanoid and HumanoidR.

HUMANOID AGENT Np Np

HUMANOID 1 7
HUMANOIDR 1 4

1.5 SILEM and SILEM~ for the HalfCheetah-based bodies

Table 15: The grid search for SILEM and SILEM™ was conducted by evaluating all
permutations of the following parameter values. Hyper-parameters in bold only apply

to SILEM.
HYPER-PARAMETER VALUES
(n) NO. EXPERT TRAJECTORIES 10, 20
(Np) NO. UPDATE STEPS FOR THE DISCRIMINATOR 5,10
(Ng) NO. UPDATE STEPS FOR THE STATE TRANSFORMER 5,10
(d) LEARNING RATE DECAY FOR THE STATE TRANSFORMER 0.999, 1
(Np) No. PPO EPOCHS 5,10
(Npmp) PPO MINIBATCH SIZE 64, 128

Table 16: The combination of parameters that turned out best for each experiment
involving SILEM and a HalfCheetah-based body. We only ran SILEM using the

HalfCheetahO expert.
HALFCHEETAH-BASEDBODY n Np Ng d Np Npmb
HALFCHEETAHO 20 10 5 0.999 10 64
HALFCHEETAH1 20 10 5 0.999 10 64
HALFCHEETAH2 10 10 10 1 10 64

Table 17: The combination of parameters that turned out best for each experiment in-
volving SILEM™ and a HalfCheetah-based body, when the HalfCheetahQ expert is used.

HALFCHEETAH-BASEDBODY n Np Np Npm

HALFCHEETAHO 20 10 10 64
HALFCHEETAH1 20 5 10 256
HALFCHEETAH2 20 5 5 64

Table 18: The combination of parameters that turned out best for each experiment in-
volving SILEM ™ and a HalfCheetah-based body, when the learner and expert have the
same HalfCheetah-based body.

HALFCHEETAH-BASED BODY n Np Np Npmb

HALFCHEETAHO 10 10 10 128
HALFCHEETAH1 20 5 5 64
HALFCHEETAH2 20 5 10 128

1.6 SILEM and SILEM~ for the Ant-based bodies

Table 19: The grid search for SILEM and SILEM™ was conducted by evaluating all
permutations of the following parameter values. Hyper-parameters in bold only apply

to SILEM.
HYPER-PARAMETER VALUES
(n) NO. EXPERT TRAJECTORIES 10, 20
(Np) NO. UPDATE STEPS FOR THE DISCRIMINATOR 5,10
(N¢g) NO. UPDATE STEPS FOR THE STATE TRANSFORMER 5,10
(d) LEARNING RATE DECAY FOR THE STATE TRANSFORMER 0.994, 0.996, 0.998, 0.999, 1
(Np) No. PPO EPOCHS 5,10
(Npmp) PPO MINIBATCH SIZE 64, 128, 256

Table 20: The combination of parameters that turned out best for each experiment in-
volving SILEM and an Ant-based body. We only ran SILEM using the Ant0 expert.

ANT-BASEDBODY n Np Nga d Np Npmp
ANTO 20 10 10 1 10 128
ANTI1 10 10 5 1 10 128
ANT?2 20 10 10 1 10 128
ANT3 10 5 5 1 10 128
ANT4 10 10 10 0999 10 64
ANTS 10 5 5 1 10 128
ANT6 20 5 5 1 10 256

Table 21: The combination of parameters that turned out best for each experiment in-
volving SILEM™ and an Ant-based body, when the Ant0 expert is used.

ANT-BASEDBODY n Np Np Npmp

ANTO 10 10 10 256
ANTI1 10 10 10 128
ANT2 20 10 5 64
ANT3 20 10 10 256
ANT4 20 5 10 256
ANTS 20 5 5 128
ANT6 10 5 5 256

Table 22: The combination of parameters that turned out best for each experiment in-
volving SILEM™ and an Ant-based body, when the learner and expert have the same
Ant-based body.

ANT-BASEDBODY n Np Np Npmp

ANTO 20 10 10 128
ANTI1 10 10 10 256
ANT2 20 10 10 128
ANT3 10 10 5 128
ANT4 20 10 5 64
ANTS 10 10 10 64
ANT6 10 10 10 256

2 Neural Architectures

All of the neural networks used in this work are multi-layer perceptrons (MLPs) made up of tanh nonlinearities. For the
experiments involving humanoid agents, the discriminators had 2 hidden layers with 128 units each while the policies had 2
hidden layers with 256 units each. For all other experiments (involving the Pybullet environments), the discriminators had 3
hidden layers with 128 units each, while the policies had 2 layers with 64 units each.

3 Computing Infrastructure and Run-times

We run our experiments on the CPUs in a computing cluster managed by HTCondor. Each node in the cluster had approxi-
mately the following server model with minor variations: Dell PowerEdge M620, and processor: 2x Xeon E5-2670 (8 core) @
2.60GHz. Each experimental run of SILEM takes approximately 2 days in this setup. Running the grid searches for the Ant-
based bodies took approximately a week, while for the humanoid agents, it took around 2-4 days. Note that this timing is depen-
dent on the load of the cluster during job submission. Our source code is based on Open Al baselines and the DeepMind Control
Suite (for the humanoid agents), and used the following GitHub repo — github.com/ywchao/merel-mocap-gail —
as a starting point. Our source code is attached to the supplementary materials. While SILEM incurs additional computational
complexity due to the training steps for the state transformer (as compared to SILEM ™), we found that it did not affect training
time much. The computational cost of simulating the policy’s interaction with the environment is overwhelmingly higher than
the other steps in an iteration of SILEM.

