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Adversarial Imitation Learning from Video using a State Observer

Haresh Karnan!, Faraz Torabi2, Garrett Warnell® and Peter Stone*

Abstract— The imitation learning research community has
recently made significant progress towards the goal of enabling
artificial agents to imitate behaviors from video demonstrations
alone. However, current state-of-the-art approaches developed
for this problem exhibit high sample complexity due, in part,
to the high-dimensional nature of video observations. Towards
addressing this issue, we introduce here a new algorithm called
Visual Generative Adversarial Imitation from Observation us-
ing a State Observer (VGAIfO-S0). At its core, VGAIfO-SO seeks
to address sample inefficiency using a novel, self-supervised
state observer, which provides estimates of lower-dimensional
proprioceptive state representations from high-dimensional im-
ages. We show experimentally in several continuous control en-
vironments that VGAIfO-SO is more sample efficient than other
Ifo algorithms at learning from video-only demonstrations and
can sometimes even achieve performance close to the Generative
Adversarial Imitation from Observation (GAIf0O) algorithm that
has privileged access to the demonstrator’s proprioceptive state
information.

I. INTRODUCTION

Imitation Learning (1L) [1], [2] is a framework in which an
autonomous agent learns to imitate a demonstration provided
by an expert agent, typically in the form of state and control
signals. Specifically, in this work, we are interested in the
problem of Imitation from Observation (If0), a sub-problem
of IL that does not assume access to the control signals in
the expert demonstrations. Several 1fO algorithms proposed
in the past [3]-[11] have been shown to be successful
at imitating expert’s state-only demonstrations in several
continuous control, robotics domains.

While these prior 1fO algorithms have enjoyed some suc-
cess, they typically assume that the demonstration includes
proprioceptive state information (i.e, the most basic, internal
state information that is available to the agent such as joint
angles and velocities of a legged robot). While some algo-
rithms, such as GAIfO, can learn from video demonstrations
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instead, the additional sample complexity incurred as a result
can be detrimental in domains such as robotics where data
collection during online learning is costly. For example, for
the common benchmark task of Hopper-v2 on MuJoCo [12],
we found that an 1fo algorithm using video demonstrations
took over three times more timesteps to learn a good policy,
compared to the case where a proprioceptive demonstration
was available (see Fig. 1). This problem is especially relevant
in scenarios where proprioceptive information about the
demonstrator might not be available at all. For example, it
may be expensive or impossible to fit specialized sensors
on the demonstrator agents to record the proprioceptive
state information. In some cases, we may not have access
to the demonstrator at all—for example, when learning to
imitate skills from YouTube videos, or learning using video
demonstrations collected from robots with proprietary code
that one would like to mimic on the same or different
hardware.

To alleviate this sample inefficiency problem, an exten-
sion to GAIfO for learning from video-only demonstrations
was proposed [4] (referred to as VGAIfO hereafter) that
was shown to have better sample efficiency compared to
GAIfO. VGAIfO achieves improved sample efficiency when
learning to imitate video-only demonstrations by leveraging
the freely-available proprioceptive state information from the
imitator. Although VGAIfO is better than GAIfO at imitation
from video-only demonstration data, there is still a significant
gap in performance compared to GAIfO that can also imitate
from proprioceptive state-only expert demonstrations. Fig.1
shows this difference in performance between GAIfO (which
has privileged access to proprioceptive states of the expert)
and VGAIfo (which has access only to visual observations
of the expert). The performance gap between these two tech-
niques motivates us here to seek a new method to improve
both sample efficiency and performance when learning to
imitate from video-only demonstrations.

We hypothesize that improved sample efficiency when
learning to imitate from video-only demonstrations can be
achieved by ensuring that the imitation learning process itself
happens over lower-dimensional quantities like propriocep-
tive state information, rather than high-dimensional visual
observations for both the generator and the discriminator.
Therefore, we propose here a novel self-supervised state
observer function that estimates the proprioceptive states
of the agent from high-dimensional observations. Based on
this state observer, we propose a novel IfO algorithm called
Visual Generative Adversarial Imitation from Observation
using a State Observer (VGAIfO-SO). In VGAIfO-SO, the
state observer is jointly learned along with the generator
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Fig. 1: Demonstrating the need for more sample efficiency and improved performance in imitation learning from video-only
demonstrations. Here we show the learning curves of two representative AIL algorithms, GAIfo—that learns to imitate an
expert with privileged access to proprioceptive-state-only demonstrations and VGAIfO—that learns to imitate an expert from
video-only demonstrations, without access to expert’s proprioceptive state information. The x-axis shows number of timesteps
of interactions for the imitator agents with the environment and the y-axis shows the task reward function from OpenAl
gym [13] used only for evaluation. Evident from the performance gap in their respective learning curves, we notice that
GAIfO is more sample efficient than VGAIfO in imitation learning. In this work, we seek to improve both sample efficiency
and imitation learning performance by proposing a new algorithm called VGAIfO-SO.

(imitator’s policy) and the discriminator within an adversarial
1fo framework [3]. We experimentally show that using the
low-dimensional proprioceptive state predictions of the state
observer as input to the discriminator network leads to
improved sample efficiency and performance when learning
to imitate from video-only demonstrations. Although the
use of AIL for IfO is not a new concept, we show here
for the first time that using a state observer to estimate
proprioceptive states from video demonstrations significantly
improves sample efficiency when learning to imitate from
video-only observations.

This paper makes three main contributions: /) we show
that there exists a significant gap in sample efficiency be-
tween the two IfO algorithms GAIfO (which has privileged
access to proprioceptive states of the expert) and VGAIfO
(which does not have access to proprioceptive states of the
expert); 2) we propose a novel algorithm called VGAIfO-
S0, which explicitly seeks to perform imitation learning over
low-dimensional quantities such as proprioceptive states of
the agent, using a novel state observer network; 3) we show
on a suite of MuJoCo benchmark environments [12], [13]
that VGAIfO-SO narrows the gap in performance between
GAIfO and VGAIfO by improving the sample efficiency, and
performs better than other baseline IfO algorithms.

II. RELATED WORK

Learning from Demonstration. Learning from Demon-
stration (LfD) is a machine learning framework in which, an
autonomous agent learns to imitate an expert demonstration
of a behavior. The demonstrations usually contains sequences
of state-action pairs generated by an expert policy when
deployed in the environment. Several algorithms have been
proposed to solve the imitation learning problem, and they

can be broadly classified into two main categories [4]—
Behavior Cloning (BC) [14]-[16] in which the imitative
policy is learned directly from demonstrations using super-
vised learning, and Inverse Reinforcement Learning (IRL)
[17]-[19] where a reward function is first learned from the
demonstrations, which is then used to learn the policy using
Reinforcement Learning (RL) [20]. Recently, a third category
of imitation learning algorithms, called Adversarial Imitation
Learning (AIL) was proposed [21]-[23], which utilizes an ad-
versarial learning setup similar to a GAN [24] that learns both
a discriminator network that classifies experiences from the
expert and the imitator, and a generator network (imitator’s
policy) that imitates the expert demonstrations. Generative
Adversarial Imitation Learning (GAIL) [21] was one of the
earliest proposed AIL algorithms that was shown to be very
successful at learning to imitate expert demonstrations. One
shortcoming is that all of these algorithms, including GAIL,
assumes access to actions performed by the expert in the
demonstration, which may not be available necessarily.

Imitation Learning from Observation-only Demon-
strations. Fortunately, advances in the Imitation from Ob-
servation (If0) community have addressed the problem of
performing imitation learning when the demonstration data
lacks action information. In the IfO problem setting, the
demonstrations consists of states-only or observations-only
sequences. Behavior Cloning from Observation (BCO) [5] is
an 1fo algorithm that uses behavior cloning [25] to learn the
imitative policy given the expert’s state-only demonstrations.
However, behavior cloning has been shown to suffer from
the well-known compounding-error issue [15], [26] and BCO
[5] is no exception [3]. Generative Adversarial Imitation
from Observation (GAIfO) [3], on the other hand, overcomes
this issue by incorporating reinforcement learning and explo-
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Fig. 2: A diagrammatic representation of the VGAIfO-SO algorithm proposed in this work. Different from existing AIL
methods, we propose here to utilize a novel state observer module, which serves to simplify discriminator training. More
specifically, the state observer learns to map high-dimensional visual observations to low-dimensional proprioceptive states
of the agent. While traditional methods like VGAIfO directly utilize the high-dimensional observations in optimizing the
discriminator’s objective, in this work, we instead use the low-dimensional proprioceptive state predictions of the state

observer to optimize the discriminator objective.

ration, which has led to its state-of-the-art 1fO performance.
An extension of GAIfO [3] called VGAIfo [4] was recently
proposed that improves upon the poor sample efficiency
and performance of GAIfO when learning to imitate from
video-only demonstrations of the expert. VGAIfO leverages
the already available proprioceptive states of the imitator as
inputs to the imitative policy, which makes it more sample
efficient than GAIfo with video-only demonstrations. Time
Contrastive Networks (TCN) [27] is another 1fO algorithm
that was shown to be successful at imitation learning from
video-only demonstrations. TCN achieves self-supervised im-
itation learning by first learning an embedding of the visual
observations in the demonstrations using time-contrastive
metric learning which is then used to drive a reinforcement
learning procedure. Note that the version of TCN we use
as a comparison point to VGAIfO-SO is also called single-
view TCN. The multi-view TCN approach for 1fo deals with
addressing the problem of viewpoint and domain mismatch,
similar to other related approaches such as TPIL [11], among
other methods [9], [10].

Sample efficiency in IfO. Sample efficiency is a desirable
property of algorithms that enable robots to acquire skills
through imitation. Using off policy learning within the AIL
framework has been proposed as a way to improve sample
efficiency [22], [28], [29]. Another way to improve sample
efficiency is to use model-based reinforcement learning tech-
niques within AIL [7]. We note that using off-policy RL or
model-based RL to improve sample efficiency in imitation
learning is orthogonal to this work. However, the techniques
introduced in this work are not restricted to on-policy IL
and can be combined with off-policy and model-based RL
algorithms as well to further improve performance. We view
this work as a stepping stone towards the greater goal
of 1f0 by focusing on the problem of sample inefficiency
when learning to imitate from video-only observations, a
relevant problem in robotics domains. While addressing
domain, viewpoint, and embodiment mismatches are also
important challenges to address in imitation learning, we
leave incorporating them into VGAIfO-SO for future work.

Algorithm 1 vGAIfo-SO
Input: Initialize imitator policy 7y randomly
Initialize discriminator network D, randomly
Initialize state observer network S, randomly
Obtain video-only demonstrations 7. = {Te;,Tey,-- -}
where 7., = {01,03,...};
for : =0,1,2,...N do
Execute my and obtain paired proprioceptive-and-visual
state trajectories 7; = {7i,, Tip, .- -}
where Tij = {(51, Ol), (82, OQ), AN },

Train State Observer : Update parameters 7 of S5,
using the regression loss —E., [(S,,(O¢) — s¢)?] for N
epochs and freeze network parameters 7;

Update parameters ¢ of Dy using gradient descent to
minimize R R
— (Enllog(Ds (5, 5)) + B, llog(1 — Dy (5, 5)
where § = 5,(0), s’ = S,(0");

Update parameters 6 of mg using PPO updates with
reward —[log Dy (3, s')];

end

III. METHOD

In this section, we begin by formally introducing the
imitation learning problem. We then describe the algorithm
introduced in this work— Visual Generative Adversarial
Imitation from Observation using a State Observer (VGAIfO-
S0).

A. Preliminaries

We formulate sequential decision making as a Markov
Decision Process (MDPs) [20]. An MDP is a tuple
(S, A, R, T,v,po) where S and A are state and action
spaces of the agent respectively, and R is a task reward
function. When the agent performs an action a; € A in the
environment at a state s; € S, it transitions to a new state
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Fig. 3: Network architecture of the state observer function proposed in this work. The state observer takes as input three
consecutive visual frames of observations, and produces as output a prediction §; of the proprioceptive features of the agent.

st4+1 € S according to the transition dynamics 7 (S¢41]¢, at)
that is unknown to the agent. ~ is the discount factor that
controls the relative long term utility of the reward and pg
is the initial state distribution of the environment. Since
we are concerned with visual observations, we denote the
observation space of the agent as (. We are interested in
learning a policy # : & — A that the agent can use to
select actions that result in behavior similar to what was
demonstrated. In the imitation learning setting, agents do
not receive a reward r; € R from the environment. Instead,
the imitative agents have access to an expert demonstration
Dr = {(s0,a0), (s1,a1) ...} consisting of state-action pairs.
However, in this work, we focus on the problem of Imitation
from Observation (If0) consisting of video-only demonstra-
tions Dg = {0y, 01, ...} where O € O.

The camera observations of the robots considered in this
work are floating third person views of the robot performing
the task in the environment, rendered using the MuJoCo
simulator [12], [13], as shown in Fig. 2.

B. Visual Generative Adversarial Imitation from Observa-
tion using a State Observer

We adopt the general adversarial framework for IfO as
initially proposed in GAIfO [3], and also followed in VGAIfO
[4]. In this 1fO framework, a parameterized generator func-
tion (imitative policy) mg represented by a Multi-Layer
Perceptron (MLP) takes as its inputs proprioceptive states
of the agent and acts in the environment, so as to pro-
duce state transitions that imitate the expert demonstrations.
Observations of the imitator’s behavior are then used to
train the parameterized discriminator function Dy to classify
between observation transitions from the imitator and the
demonstration sequence. The output of the discriminator
network is then used as a reward signal to drive an update to
the imitator via RL. Both the discriminator and the generator
are updated using the adversarial 1fO objective proposed in
GAIfO [3]. We hypothesize that the poor sample efficiency
of VGAIfO compared to GAIfO, as shown in Fig. 1 is due
to the fact that the discriminator objective is optimized over
high-dimensional images.

To solve the sample efficiency problem when learn-
ing from video-only demonstrations, we propose the novel
VGAIfO-SO algorithm. In VGAIfO-SO, a state observer func-
tion represented as a convolutional neural network (CNN)
(see Fig.3) is learned to circumvent optimizing the dis-

criminator objective directly from high-dimensional visual
observations. The parameterized state observer function &,
is trained using self-supervision. More specifically, S, is
trained to minimize the mean-squared error E., [(S,(O¢) —
5¢)?] between the predicted and ground truth proprioceptive
states of the agent. The training data is obtained from already
available experience gathered by the imitator when exploring
in the environment. In our implementation, we alleviate
partial observability issues by performing frame stacking
with three consecutive frames of visual observations as is
commonly done in the reinforcement learning community
[30], although one can also use other approaches such as
LSTM [31] for sequence modelling.

Note that in this work, we neither assume access to
the proprioceptive states of the expert nor its actions in
the demonstration. We posit that a more natural, and less
restrictive form of the IL problem is to imitate from video-
only demonstrations, assuming we have access to the pro-
prioceptive state and visual observations of the imitator that
we have physical access to. The VGAIfO-SO algorithm is
provided in Alg. 1. Note that in Alg. 1, O’ and s’ are
the sequentially next observation and states after O and
s respectively. When training the discriminator, the state
observer network is frozen and used to infer proprioceptive
states from high-dimensional visual observations of both
the expert and the imitator. Although one can directly use
the known proprioceptive states s; in place of predicted
proprioceptive states 5; for the imitator agent, we find em-
pirically that using predicted proprioceptive states performs
better. The discriminator and generator networks are updated
with the well-known GAN-like loss for 1fO [3]. The imitator
policy is updated using the PPO [32], [33] algorithm. All
three networks are updated iteratively until the imitator
successfully imitates the expert.

IV. EXPERIMENTS

In this section, we perform experiments to evaluate our
Visual Generative Adversarial Imitation from Observation
using a State Observer (VGAIfO-SO) algorithm. Note that
VGAIfO-SO is applicable in problems where the proprio-
ceptive state representation of the agent contains all neces-
sary information to solve the task. In manipulation domain,
for example, if the task involves manipulating objects, the
proprioceptive state should contain sensed poses of those
objects, along with the proprioceptive state information of the
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Fig. 4: Performance of different 1fO algorithms with varied numbers of expert demonstration trajectories, trained for two
million timesteps of interaction with the environment. We see that GAIfO [3] performs the best due to its privileged access
to expert’s proprioceptive state information. VGAIfO-SO, the algorithm introduced in this work, outperforms VGAIfO [4] and
TCN [27] on all six environments and achieves performance similar to GAIfO in InvertedPendulum, InvertedDouble Pendulum
and Hopper, without access to the expert’s true proprioceptive states.
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and achieves performance close to the state-of-the-art GAIfO algorithm that has privileged access to expert’s proprioceptive
states. The x-axis shows timesteps of interactions of the agents with the environment and the y-axis shows the task reward

from OpenAl gym [13] (used only for evaluation).

manipulator. However, in this work, we restrict our analysis
to the locomotion domain that we are primarily interested
in. We hypothesize that, compared to baseline approaches,
using the predictions of the state observer in optimizing the
discriminator’s objective improves the imitation learning per-
formance in terms of both sample efficiency and performance

under two million environment interaction timesteps.

We test our hypothesis by evaluating VGAIfO-SO on a suite
of continuous control environments in MuJoCo [12], [13],
that were also used to evaluate other related IL algorithms
[3], [4], [21] in the past. We compare VGAIfO-SO with two
representative AIL algorithms GAIfO (with privileged access
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trend which shows that as the learning progresses, the state
observer tends towards predicting the true proprioceptive
states of the demonstrator (unseen data) as well as the
imitator (training data).

to expert’s proprioceptive states) and VGAIfO. Note that
GAIfO is expected to perform better than VGAIfO-SO since it
learns to imitate from low-dimensional proprioceptive state-
only demonstrations of the expert. We also compare VGAIfO-
SO against single-view TCN [27], an algorithm for self-
supervised imitation learning from video-only demonstra-
tions. In our implementation of TCN, instead of using PILQR
[34], we use PPO [32], [33] to learn the imitative policy. Note
that TCN also uses the proprioceptive states of the imitator
as input to the imitative policy, similar to GAIfO, VGAIfO,
and VGAIfO-SO, making it a fair baseline for comparison.
We additionally perform analysis experiments on VGAIfO-SO
to qualitatively evaluate the proprioceptive state predictions
from the state observer. In all experiments reported, the
results are averaged across ten different random initial seeds.

Figures 4 and 5 depict our experiments comparing
VGAIfO-SO with GAIfO, VGAIfO and TCN on the six con-
tinuous control environments in MuJoCo [12], [13]. We see
that VGAIfO-sO performs significantly better than VGAIfO
and TCN, and achieves performance close to GAIfO and the
expert policy in InvertedPendulum, InvertedDouble Pendulum
and Hopper. Fig. 4 shows that TCN does not achieve per-
formance anywhere near the expert. A similar observation
was made earlier by Torabi et al. [4], perhaps due to the
tasks considered here being cyclical in nature and not well
suited to the time-dependent embeddings learned by TCN.
The learning curves of the three AIL algorithms is shown in
Fig. 5, validating the superior sample efficiency of VGAIfO-
SO compared to VGAIfO.

On VGAIfo-sO, we performed a coarse hyperparameter
search on number of training epochs on the three networks
per adversarial training iteration and found that performing

a single epoch per iteration on the networks worked best,
except environments HalfCheetah, Walker2d and Swimmer
that required 20 state observer epochs per iteration. We per-
formed similar hyperparameter searches across other baseline
algorithms GAIfO, VGAIfO and TCN and report results for the
best set of hyperparameters.

State Observer Analysis. While the state observer is
trained exclusively using experience from the imitator, we
use it to predict proprioceptive states for both the imitator
and the demonstrator. Therefore, it is important to ensure that
it behaves as expected on the demonstration observations as
well. To determine if the state observer is actually predicting
the correct proprioceptive state, we study the prediction
errors of the state observer in estimating the expert’s propri-
oceptive states averaged across the demonstration sequence.
Fig. 6 shows the average L2 norm of the prediction error
after every state observer update epoch. While the prediction
errors are initially high, these errors decrease with more and
more training. Therefore, we conclude that the state observer
is also learning to predict the true proprioceptive state of the
expert agent as well.

V. DISCUSSION

Summary. In this work, we introduced Visual Generative
Adversarial Imitation from Observation using a State Ob-
server (VGAIfO-S0), an IfO algorithm that learns to imitate
an expert policy from video-only demonstrations. We showed
that, by regressing an intermediate state representation such
as the proprioceptive states of the agent from visual observa-
tions using a state observer network, the imitation learning
performance can be improved significantly. We compared our
approach against similar baselines and showed that VGAIfo-
SO learns to imitate the expert with better sample efficiency,
and also achieves better overall imitation performance.

Limitations and Future Work. While we have shown
that VGAIfO-SO performs as well as GAIfO in some domains,
it does not in all experimental domains we studied (e.g.,
in some relatively harder tasks such as HalfCheetah and
Walker2d, there still exists a gap in performance between
GAIfO and VGAIfO-SO). This performance gap can poten-
tially be narrowed further by extending VGAIfO-SO with
recent advances in the reinforcement learning community
involving image augmentations towards sample efficient
learning [35], [36]. Another approach is to jointly train the
state observer and the discriminator with their combined
losses, end-to-end, to further improve performance. In this
work, we assume no viewpoint or domain mismatch between
the demonstrator and the imitator since the focus of this
work is in improving sample efficiency when learning to
imitate from video-only demonstrations. However, viewpoint
and domain mismatch are also important challenges to
overcome when performing imitation learning from video-
only demonstrations in the real-world. VGAIfO-SO can be
potentially combined with algorithms such as TPIL [11] to
overcome this limitation.
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