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ABSTRACT

Freak waves, waves significantly higher than neighboring
waves, are a serious threat to ships and marine infrastructure.
Despite significant refinement of operational wave models and
recent progress in studying the theoretical foundations of such
extreme events, the emergence of these events remains
unpredictable. In this work, the authors propose a data-driven
wave forecasting approach by combining the essence of common
wave models, rapid oscillations, and slowly changing spectrum
with data-driven techniques such as recurrent neural networks.
A judicious minimization procedure is developed, wherein the
sea surface elevation is first decomposed into harmonic
functions with varying amplitudes. Then, the amplitude
variations are forecasted by fitting universal, black-box models.
This approach, which can be used to forecast wave crests and
troughs in real time, is tested on available buoy data. Overall,
the developed models and fitting strategies outperform simple
benchmarks indicating the approach’s potential for operational,
real-time wave forecasting.

Keywords: Data-driven modelling, extreme waves, forecasting,
machine learning

1. INTRODUCTION

Rogue waves are waves with a crest height n, exceeding
the significant wave height Hy by a factor of 1.25 ( n./Hg >
1.25), where H, is defined as four times the standard deviation
of the surface elevation [1,2]. These extreme waves have
seriously damaged marine infrastructure, endangered ships, and
severely injured humans [3,4]. Hence, reliable ocean wave
forecasting is of paramount importance for safe naval operations.

This critical need has inspired a significant research effort
to model ocean waves, for example, with spectral wave models
[5,6]. The time evolution of wave spectra is governed by an
energy balance equation that can be parameterized in various
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forms. Important terms include the wind input, dissipation, and
nonlinear wave interactions. The nonlinear terms, arising
through a perturbation series of the ocean wave spectrum,
capture resonance interactions between individual wave
components [2] and these interactions have been identified as a
crucial driving mechanism for wave growth [7]. Such models
can yield accurate predictions over multiple days [8]. Such
models, however, do not capture non-resonant interactions
between waves which can be significant for freak wave
occurrence [9]. More importantly, in the energy balance
equation, as an underlying governing assumption, one considers
a slow variation of the wave spectra over large temporal and
spatial (ranging several kilometers) domains. However, this
coarse resolution fundamentally limits the use of spectra to
model, understand, or forecast inherently localized phenomena
such as rogue waves. To illustrate this fact, two 30 minutes
recordings of ocean surface elevation measured off the coast of
San Nicholas island are shown in Figure 1. While both spectra
are very similar, only the recording from January 19, 2019
corresponds to an extreme wave with a crest height of about
5.5 m exceeding the significant wave height of about 3.9 m by a
factor of 1.4 (cf. inset in Fig. 1).

Alternatively, ocean waves have been analyzed by using
classical equations and perturbation approaches. Building on
Stokes’ analysis (see, e.g., [11]), ocean waves have been
modeled, for example, with the nonlinear Schrédinger equation
[4,12,13] and this equation’s extensions to include higher order
terms (see, e.g., [14]). These analyses reveal the modulation or
Benjamin-Feir instability as a possible mechanism for freak
wave formation. Additionally, linear focusing and wave-current
interactions have been identified as feasible causes. While such
simplified models yield valuable insights, the applicability of
these models in a more realistic setting is rather limited, since the
assumptions of, for example, unidirectionality, stationarity, or a
narrow band process do not correspond to reality. Furthermore,
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two recent extensive data analyses [15,16] on buoy data have
revealed that classical rogue wave indicators such as the
Benjamin-Feir index (see, e.g., [17]) do not serve as good
predictors for rogue waves.
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Figure 1: TWO 30 MINTUES OF BUOY RECODINGS OF THE
COAST OF SAN NICHOLAS ISLAND (CDIP BUOY 067)
YIELDING SIMILAR WAVE SPECTRA. HOWEVER ONLY THE
MEASUREMENT FROM JANUARY 19, 2019, CORRESPONDS TO
FREAK WAVE. DATA FROM COASTAL DATA INFORMATION
PROGRAM (CDIP), SCRIPPS INSTITUTION OF
OCEANOGRAPHY [10].

Important insights on the formation of rogue waves can also
be deduced from experimental and numerical wave tanks. Such
well-controlled idealizations of the ocean aim to uncover
fundamental physical processes driving the formation of ocean
waves. Notably, higher order spectral method has been shown to
accurately mimic an experimental wave tank [18]. Moreover, it
can reproduce known extreme waves [19,20]. These
computations and others relying on the boundary element
method [21], smoothened particle hydrodynamics [22] or
harmonic polynomial cell method [23] are expensive, and hence,
cannot generate forecasts in real-time. Moreover, such schemes
are cannot be straightforwardly applied to the real ocean, since
for example the boundary conditions are generally unclear.

In the recent years, an abundance of data-driven approaches
to analyze general time series have been proposed (see, e.g., [24]
for a review in fluid dynamics). Methods based on the Koopman
operator [25], linear embeddings via dynamic mode
decomposition (DMD) [26], or recurrent neural networks with
long short-term memory cells (LSTM) [27] have promising
appeal for universal black-box approaches. However, such
methods are fundamentally interpolative. Hence, their
applicability for ocean wave forecasting, an extrapolative task,
remains unclear. Moreover, the black-box character allows only
for limited physical insights, and consequently, these approaches
are not amenable for developing a systematic understanding of
possible driving mechanisms.

In summary, spectral methods were developed for time and
length scales larger than rogue waves, while the analytical

models have a limited applicability to real ocean waves.
Moreover, data-driven black-box models will suffer from limited
interpretability and poor extrapolation. To overcome these
limitations, the authors combine the strengths of the
aforementioned approaches in this work. Drawing inspiration
from the existing wave models, the ocean surface elevation is
approximated by rapid oscillations with slowly varying
amplitudes. Subsequently, the time evolutions of these
amplitudes are forecasted by using linear models and a neural
network consisting of LSTM cells. The performance of this
approach is demonstrated on buoy data from Coastal Data
Information Program (CDIP), Scripps Institution of
Oceanography [10]. Overall, an accurate forecasting ability of
ocean waves superior to the relevant benchmarks is
demonstrated. Moreover, an imminent rogue wave is predicted
one minute in advance.

2. MATERIALS AND METHODS

First, the wave model used in this study and the employed
procedure to fit parameters to buoy data [10] are described.
Subsequently, the authors explain the dynamical models utilized
to forecast the model’s slowly varying amplitudes. Following
that, the forecasting strategy and data processing enabling real-
time operational wave forecasting is illustrated.

2.1 Wave model

Persuaded by the continuous up and down movement of the
ocean surface, in most analyses, one models the ocean surface as
a sum of harmonic functions

he(t) = XI5 u;(8) cos(w;t) +v; (1) sin(w;t), )]

where w; are the frequencies and the integer N denotes the
number of frequencies. Since available ocean observations
reveal a non-constant spectrum of waves, the amplitudes u;(t)
and v;(t) are allowed to vary in time. It is noted that instead of
introducing two amplitudes for each frequency (u;(t) and v;(t))
one can equivalently introduce a single amplitude and a phase ¢;
for each frequency. An advantage of the formulation with two
amplitudes is that the model (1) is linear in both amplitudes,
whereas an equivalent model to equation (1) formulated with a
phase would be nonlinear in the phase variable ¢;.

Although the model (1) is flexible and can be used, at least
in principle, to fit any sufficiently smooth function,
simplifications are inevitable before using model (1) to fit
measurements of the ocean surface. Most importantly, the aim of
the work is to forecast forthcoming wave crests and troughs, and
hence, intermediate values between wave peaks and troughs are
only of secondary interest. Therefore, these intermediate values
are discarded and only the crest heights and trough depths are
kept for fitting. With this approach, one reduces the number of
data points within a time window significantly and thus enables
a more accurate fit with the use of less parameters. This filtering
yields a nonuniformly spaced discrete time series of crest heights
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and trough depths, which is labeled with h(t;), where t; denote
the time instances.

Most commonly the parameters of model (1) are fitted with
the help of the Fourier transform, in particular, the FFT-
algorithm, an algorithmic implementation for discrete time
series. However, it needs to be noted that the Fourier
transformation is defined for infinitely long time series. In
contrast, measurements have a finite duration. Thus, in any such
computation, one implicitly assumes a continuation of the
measured time series outside the measurement window. Most
prominent is a periodic continuation of the measured signal or a
zero-signal outside the measurement window. In the latter case,
the Fourier coefficients are computed by a convolution with an
appropriately chosen filter function, for example, the cosine
filter. In this work, such assumptions are avoided, by
determining the parameters in model (1) through a function
optimization. Since the model (1) is nonlinear in the frequencies
w;, a nonlinear optimization is required. To this end, the cost
function

Z (w;,1;(), v;(®) ) s=[|n(&) — by || )
+230 (Il O + [l @)

+a|| 2 up (D w; sin(w;t) —v;(Dw; cos(wjt)”Z,

is introduced, where || || denotes the L,-norm; that is,

|RO? =3 h(tj)z. The first term in equation (1) ensures an
accurate fit to the extreme values of measured data.

The second term is used to penalize large variations in the
amplitudes u;(t) and v;(t). Most observations of ocean surface
and physical considerations leading to the energy balance
equation [5], the nonlinear Schrodinger equation and its
extension [3] or a third order spectral analysis [28] indicate that
the time variations of the amplitudes are small. Such a slow
variation can be readily enforced by selecting € in the cost
function (2) to be appropriately small.

Moreover, for small time variations of the amplitudes u;(t)
and v;(t), the last term in equation (2) corresponds to the time
derivative of the fitting function (1). Thus, the cost function (2)
also requires small time derivatives at the time instances t;,
whereby it is ensured that h(t;) are indeed approximately
extreme values, respectively, wave crests or troughs.

The parameters, more specifically, the frequencies w; and
the amplitudes u;(t) and v;(t), are obtained by the minimization

arg wj‘ug_f(ltl)r’lvj © Z (“)j' u;(t), v; (t)), (3)

which is a nonlinear optimization, since h(t) is nonlinear in the
frequencies w;. To reduce the computational burden of the
nonlinear function optimization and avoid spurious solutions, a
two-step procedure is adapted. In a first step, the amplitudes are
kept constant (u;(t) = u; = const and v;(t) = v; = const)
and the nonlinear minimization

arg min Z(w;, u;, v; 4
gwj’uj’vj (wj,w,v;), “4)

is numerically solved by using the nonlinear least squares solver
‘Isqnonlin’ provided in MATLAB. It is observed that the
obtained minimum strongly depends on the initialization of the
frequencies w; . To avoid non-optimal solutions with a large
residual, a Monte Carlo method is utilized. The optimization (4)
is started from multiple initial frequencies. These initializations
are obtained by sampling a uniform distribution in the interval
between 0.02 Hz and 0.6 Hz, which corresponds to the frequency
interval in which ocean waves are commonly observed (see, e.g.,
[7]). The determined parameters u;, v; and w; are taken from the
optimization yielding the lowest residual.

After numerically solving the minimization (4), the
frequencies w; are kept fixed at their values obtained by Monte
Carlo sampling and the amplitudes u;(t) and v;(t) are allowed
to vary in time; that is,

arg , min Z(wj, w; (£, v (1)), )

is solved. Since the cost function Z(wj, u;(t), v (t)) is quadratic
in the amplitudes u;(t) and v;(t), the minimization (5) can be
efficiently solved in closed form. Thus, solving the equation (5)
is computationally significantly cheaper than the solution
strategy adapted for equation (4).

In Figure 2, the authors show an example of an obtained fit
for the sea surface elevation over a five-minute window. Five
Fourier modes are selected in the model (1) (N = 5) and the
parameter controlling the slowness of the amplitude variation
was set to € = 1073, Moreover, @ = 0.5 was selected and one
thousand samples each consisting of five frequencies were
drawn to solve the minimization (4). The fitted surface (red)
closely resembles the measured data in blue, whereas the
amplitudes remain almost constant (small variations) as enforced
by the small parameter €. The relative residual error for the data
shown in Figure 2 is about twelve percent. The average relative
fitting error of crests heights and trough depths for one hundred
randomly selected five-minute windows fitted with the same
parameters is 9.8 percent with a standard deviation of 5 percent.

The fitting procedure for the wave model (1) described in
this section yields N frequencies w; and 2N + 1 time series of
slowly varying amplitudes. To enable ocean wave forecasting
with the model (1), the amplitudes w;(t) and v;(t) need to be
extrapolated beyond the measurement interval to predict future
values. To this end, dynamical models are developed in the next
section.

2.2 Dynamical models

To enable forecasting, dynamical models are fitted to the
time series of the amplitudes u;(t) and v;(t) (cf. bottom part of
Fig. 2). In the absence of well-established modeling approaches
for the slowly varying amplitudes, data-driven black-box models
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are used. More specifically, linear autoregressive models and a
neural network consisting of LSTM cells [27] are employed
here.
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Figure 2: FIT OF THE SEA SURFACE AND TIME
DEPENDENT AMPLITUDES OF 5 FOURIER MODES, ¢ = 1073,
AND a = 0.5 (CF. COST FUNCTION (2)).

Time series forecasting generally requires extrapolation and
the aforementioned models are interpolative with limited
extrapolation capabilities. However, in the setting of this work,
the modelling effort of the pervious section becomes beneficial.
Comparing the upper and lower plots in Figure 2, one intuitively
expects that an extrapolation of the slowly varying lines in the
bottom plot is more promising than extrapolation on the rapidly
changing ocean surface. Indeed, in this work, a dynamical
system is fitted to evolve the slowly varying amplitudes u;(t)
and v;(t) forward in time. Thus, even a restriction of accurate
extrapolations of the slow variations to short time scales (with
respect to the slow dynamics) can yield accurate forecasts for the
fast variations of the full ocean surface. It is expected that such
an approach enables forecasts in a range of minutes, whereas the
linear autocorrelation of the ocean surface elevation is close to
zero after about four seconds.

2.2.1 LINEAR DYNAMICAL MODELS
Here, the authors utilize linear autoregressive models of the
form

wi(t) = i1 Bm i (tiom), (6)

where the coefficients [3,, are scalars and M denotes the order of
the autoregressive model. Before, fitting the coefficients to the
data, the non-uniform time series of the amplitudes are smoothly
interpolated (spline interpolation) to yield the amplitudes u;(t)
and v;(t) in uniform time steps. Then, the coefficients f,, of the
dynamics (6) are obtained with two competing methods. First,
they are obtained with a least squares fit, which will be referred
to as LSO-model. Alternatively, the coefficients can be obtained
from a singular value decomposition of the trajectory matrix [29]

yielding the DMD-model. It is noted that using another popular
method, in which one utilizes the method of moments and solves
the Yule-Walker equations [30, 31], yields unsatisfactory results,
such as exponentially growing amplitudes.

2.2.2 RECURRENT NEURAL NETWORKS

Recurrent neural networks with LSTM cells have been very
effective for regression tasks on sequential data such as time
series forecasting [32]. Such machine learning methods are
tailored for processing large data sets and the aim is to detect
patterns within the provided data. They have been successfully
applied to numerous tasks (see, e.g., the review [24] for
applications in fluid dynamics or [33] for an early application to
ocean waves). The functional input-output relationships of
LSTM-cells are nonlinear since LSTM-cells utilize nonlinear
functions such as sigmoid and hyperbolic tangent (tanh; see,
e.g., [27,32)).

The architecture utilized in this work consists of two
hundred hidden units; that is, two hundred LSTM unit-cells in
parallel. This layer is followed by a fully connected layer
filtering one hundred features from the LSTM layer. To avoid
overfitting a dropout layer is included. With this layer, one sets
each feature extracted from the fully connected layer to zero with
a probability set to 0.1. The weights of the neural network are
tuned with a stochastic gradient descent utilizing the Adam
optimizer [34].

The capabilities of the two modelling approaches are
illustrated in Figure 3. To this end, a twelve-minute window of
the ocean surface elevation is decomposed with twelve Fourier
modes (N = 12 in model (1)). For the cost function (2), the
parameters € = 1073 and a = 0.5 are selected. Two dynamical
models, a linear autoregressive model of order M = 100 and a
LSTM model are fitted for the amplitudes after using data from
the whole time interval. Then, initializing each model at about
seven minutes, the upcoming samples are predicted by using the
dynamical model only. For the example shown in Figure 3, the
LSTM model is found to correctly predict the oscillations in the
data, whereas the variations decay quickly with the linear model.

It is remarked that meaningful forecasts will significantly
differ from the numerical exercise that resulted in Figure 3,
primarily, for two reasons. First, for the dynamical system shown
in Figure 3, the training data and the testing data were the same.
More precisely, the dynamical systems were fitted by using the
data for the whole-time interval, notably, also data after seven
minutes that is then subsequently ‘forecasted’. In reality,
however, the time series to be forecasted is unknown and hence
cannot be used to fit the model. Second, the time series of the
slowly varying amplitudes are also obtained by minimizing the
cost function (2) over the whole-time span including the, in
reality unknown, future values. Whether the proposed modeling
approach is indeed useful cannot be evaluated from the outcome
of a single experiment, such as that shown in Figure 3. To this
end, a systematic investigation consisting of multiple
observation spans and subsequent averaging of the forecasting
capability is necessary. Such an analysis is performed in
Section 3.
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Figure 3: TRUE TIME SERIES, PREDICTION FROM A
LINEAR MODEL, AND FORECAST WITH A RECURRENT
NEURAL NETWORK WITH LSTM CELLS.

2.3 Forecasting strategy

To enable operational, real-time, wave forecasting the
strategy sketched out in Figure 4 is adapted. The durations in
Figure 4 are approximative. Their exact values will generally
depend on the various parameters involved as well as the
underlying buoy data employed for fitting.

Buoy measurement

=3min -
[1.] Solve nonlinear
optimization (4)
Duration: 2-10 min
Frequencies w;
=15 min Initial condition
[2.] .Sollve I.inear Fraquencies u; [3.] Fit dynamical system
optimization (5) Linear models: <10 sec
Duration: <10 sec N LSTMs: = 2 min
Amplitudes
u;(t) and u;(t) ‘ [4.] Run dynamical system
=17 min
time

Figure 4: FLOW CHART ENABLING OPERATIONAL, REAL-
TIME OCEAN WAVE FORECASTING

As first step, the nonlinear function minimization (4) needs
to be solved. Due to the employed Monte Carlo sampling (cf.
Section 2.1), this step is computational expensive. To keep this
challenge manageable, only a short duration of the buoy data
(approx. 3 minutes) is used while solving equation (4). The
duration to obtain a solution to equation (4) ranges between two
to ten minutes and depends on the number of frequencies in
model (1) as well as the number of Monte Carlo samples used.

The frequencies w; obtained in the first step are then used in
solving equation (5). Since the minimum obtained by solving (5)
is available in closed form, this step takes only seconds. To
enable real time forecasting, data recorded while solving
equation (4) is included when solving the minimization (5). Of
course, the frequencies optimized for first three minutes will
generally not be the same as fitting frequencies for the whole
time interval of approximately 15 minutes. However, as
previously mentioned, most wave models as well as observations
indicate that the dominant frequencies in the ocean change
slowly. Thus, it is reasonable to expect that the dominant
frequency components over the first three minutes do not differ
significantly from the dominant frequency components over the
whole 15-minutes time interval. Indeed, within this work, this
expectation can be confirmed. It is observed that solving
equations (4) and (5) for the whole 15 minutes of time interval
results in only minor improvements compared to the employed
strategy (cf. Fig. 4). For example, for N = 12 Fourier modes,
a=0.5, £¢=1073, and ten randomly selected 15-minutes
windows, the employed strategy yields an average relative mean
square error of 3.8% whereas solving equations (4) and (5) for
the whole 15 minutes results in a relative mean square error of
3.5%.

Once the time varying amplitudes are known, those are
utilized to fit the dynamical systems described in Section 2.2.
The coefficients of the linear models are almost instantly
available, while the LSTM network requires more time, as the
parameter tuning requires minimization of a nonlinear cost
function. The last step involves running the fitted dynamical
systems to obtain a forecast. The dynamical systems are
initialized at the last data point, which is available when fitting
their parameters (at about 15 minutes, cf. Figure 4). Thus, about
the first two minutes of the obtained time series are not forecasts,
since these data points have already passed in reality. After that,
the fitted models are used to generate forecasts of ocean surface
elevation. The start time and time span of the actual forecast is
indicated in yellow in Figure 4.

3. RESULTS AND DISCUSSION

The above described model and forecasting strategy is tested
on available buoy data from CDIP, Scripps Institution of
oceanography [10]. The measurements are from a Datawell
directional waverider MKIII [35] located near San Nicholas
Island in the Pacific Ocean. The recordings span the time interval
between February 9, 2018 and March 5, 2019. Three models are
tested, namely, two linear models and one recurrent neural
network with LSTM cells. While the coefficients of one linear
model (LSQ) are obtained through a least-squares minimization,
the other model’s parameters (DMD) are fitted through a singular
value decomposition of the trajectory matrix [29].

First, the fitted models are used to forecast the slowly
varying amplitudes. While such forecasts indicate the
convergence of the developed models, a forecast of a slowly
varying amplitudes is of limited relevance for applications. Thus,
these models are subsequently used to forecast the upcoming
wave crests and troughs, a more meaningful quantity in practice.
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The discussion is concluded with an exploration of the ability of
the developed models to forecast an imminent rogue wave.

3.1 Forecasting slowly varying amplitudes

As a first step, the slowly varying amplitudes are forecasted.
Such forecasts show that the models have picked up some
meaningful signal from the supplied data. To this end, twelve
Fourier modes (N = 12 in model (1)) have been used to
decompose the ocean surface elevation. Moreover, the
parameters € = 1073 and a = 0.5 were selected for the cost
function (2).

To indicate the predictive power of the developed models,
those are tested against two benchmarks. As a first benchmark,
the mean of each slowly varying amplitude is used as forecast
value. For a second benchmark, the forecasted value of each
amplitude is kept constant at its value at the last known sample.
For comparison of the forecasts, the forecasted amplitudes of
each of the three models and both two benchmarks are subtracted
from the true values of the amplitudes and the L, error is
computed. Repeating the fitting procedure described in Section
2 for ten randomly selected time windows within the data set
yields the results shown in Figure 5. In this figure, the authors
show the mean square error of each model relative to the mean
square error of the mean guess (left hand side) and the
forecasting of the last sample (right hand side). Thus, a relative
mean square error below one indicates that the corresponding
model can be used to forecast the variations of the amplitudes
more accurately than the corresponding benchmark. It is noted
that only error values beyond two minutes are forecasts, as the
first two minutes have already passed while fitting the
parameters of the various models (cf. Section 2).
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Figure 5: MEAN AND STANDARD DEVIATION OF THE
RELATIVE MEAN SQUARE ERROR FOR FORECASTING THE
SLOWLY VARYING AMPLITUDES

From Figure 5, it can be discerned that the linear models
outperform the mean guess by about twenty percent, whereas the
LSTM network does not yield forecasts better than this guess.
Comparing with the forecast from the last sample, all three

models are found to yield better forecasts, although the
performance of the LSTM is only marginally better than the
benchmark. Only small differences between the two linear
models can be observed in Figure 5.

3.2 Forecasting wave crests and troughs

As a next step, the heights of the forthcoming wave crests
and the depths of the upcoming troughs, which are more
meaningful quantities in practice, are forecasted. Following the
developments from Section 2, the buoy measurements are
decomposed into 16 Fourier modes (N = 16 in model (1)) and
the parameters ¢ = 1073 and a = 0.5 were selected for the cost
function (2). Then, each of the three models is used to generate
approximately seven minutes of data, which yields a five-minute
forecast of ocean surface elevations (cf. Fig. 4). The wave crest
heights and trough depths of the forecasts from the three models
are then compared to the actual values. Since peaks and valleys
in the forecast and the true data do not occur at the same time
instance, not only an error of the forecasted crest heights and
trough depths but also in the time when the wave will occur can
be computed. Repeating this procedure for one hundred
randomly selected windows in the buoy data set, the obtained
results are shown in Figure 6.

The three obtained models are compared to a benchmark,
which is obtained by forecasting a single wave whose amplitude
and period corresponds to the mean values of the training data.
In Figure 6, the author show that on the average, linear models
predict crest heights and trough depths about 28 cm away from
their actual values, whereas the mean error is about 25 cm with
the LSTM network. All three models are found to show a
significant improvement compared to the benchmark with yields
an average error of about 35 cm.
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Figure 6: MEAN AND STANDARD DEVIATION OF THE ERROR
OF FORECASTED CREST HEIGHTS AND TROUGH DEPTH
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To validate the accuracy of the forecasts for large waves, the
maximal wave crest height or trough depths is extracted from
each forecast included in Figure 6. The large waves are then
compared to the true value from the buoy data [10]. The average
maximal wave crest or trough depth error for the three different
models is shown in Figure 7. With the linear models, one predicts
the largest crest height or trough depth with an average error of
about 0.6 m, whereas with the LSTM-network, one has an
average error of only 0.4 m.
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Figure 7: MEAN AND STANDARD DEVIATION OF THE
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3.3 Forecasting a rogue wave

Finally, the developed method is tested to forecast the freak
wave shown in the inset in Figure 1. To this end, the buoy
measurements are decomposed into 12 Fourier modes (N = 12
in model (1)) and the parameters € = 1073 and a = 0.5 were
used in the cost function (2). After fitting the remaining
parameters according to the procedure described in Section 2, the
obtained LSTM network is used to generate three minutes of data
yielding the one-minute forecast shown in Figure 8. Although
the full extent of the developing rogue waves is under-estimated
by the neural network, the forecast clearly has a significant rise
in the peak heights at the rogue wave event up to three meters.
The rogue wave is forecasted about one minute in advance from
buoy measurements.

Ground Truth
Fit
Forecast

Sea Surface Elevation (m)
o

-6

0 0.5 1 1.5 2
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FIGURE 8: FREAK WAVE: GROUND TRUTH , FITTED MODEL
AND FORECASTED OCEAN SURFACE ELEVATION

CONCLUSION

In this work, the authors have motivated and proposed the
wave model (1) and described a procedure to fit all involved
parameters to data. Applying the described procedure to buoy
data [10], the obtained models are used for ocean wave
forecasting and shown to outperform chosen benchmarks.
Moreover, a freak wave event is forecasted about a minute in
advance. For future work, the authors envision working on
improving the forecast accuracy as well as the forecast horizon.
In addition, consideration will be given to using a wavelet
description in place of the Fourier series description.
Furthermore, a systematic tuning of the various
hyperparameters, most importantly the number of Fourier
modes, is planned.
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