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ABSTRACT 
Freak waves, waves significantly higher than neighboring 

waves, are a serious threat to ships and marine infrastructure. 
Despite significant refinement of operational wave models and 
recent progress in studying the theoretical foundations of such 
extreme events, the emergence of these events remains 
unpredictable. In this work, the authors propose a data-driven 
wave forecasting approach by combining the essence of common 
wave models, rapid oscillations, and slowly changing spectrum 
with data-driven techniques such as recurrent neural networks. 
A judicious minimization procedure is developed, wherein the 
sea surface elevation is first decomposed into harmonic 
functions with varying amplitudes. Then, the amplitude 
variations are forecasted by fitting universal, black-box models. 
This approach, which can be used to forecast wave crests and 
troughs in real time, is tested on available buoy data. Overall, 
the developed models and fitting strategies outperform simple 
benchmarks indicating the approach’s potential for operational, 
real-time wave forecasting.  
 
Keywords: Data-driven modelling, extreme waves, forecasting, 
machine learning 
 
1. INTRODUCTION 

Rogue waves are waves with a crest height 𝑛𝑐 exceeding 
the significant wave height 𝐻𝑠 by a factor of 1.25 ( 𝑛𝑐/𝐻𝑠 >
1.25), where 𝐻𝑠 is defined as four times the standard deviation 
of the surface elevation [1,2]. These extreme waves have 
seriously damaged marine infrastructure, endangered ships, and 
severely injured humans [3,4]. Hence, reliable ocean wave 
forecasting is of paramount importance for safe naval operations.  

This critical need has inspired a significant research effort 
to model ocean waves, for example, with spectral wave models 
[5,6]. The time evolution of wave spectra is governed by an 
energy balance equation that can be parameterized in various 

forms. Important terms include the wind input, dissipation, and 
nonlinear wave interactions. The nonlinear terms, arising 
through a perturbation series of the ocean wave spectrum, 
capture resonance interactions between individual wave 
components [2] and these interactions have been identified as a 
crucial driving mechanism for wave growth [7]. Such models 
can yield accurate predictions over multiple days [8]. Such 
models, however, do not capture non-resonant interactions 
between waves which can be significant for freak wave 
occurrence [9]. More importantly, in the energy balance 
equation, as an underlying governing assumption, one considers 
a slow variation of the wave spectra over large temporal and 
spatial (ranging several kilometers) domains. However, this 
coarse resolution fundamentally limits the use of spectra to 
model, understand, or forecast inherently localized phenomena 
such as rogue waves. To illustrate this fact, two 30 minutes 
recordings of ocean surface elevation measured off the coast of 
San Nicholas island are shown in Figure 1. While both spectra 
are very similar, only the recording from January 19, 2019 
corresponds to an extreme wave with a crest height of about 
5.5 m exceeding the significant wave height of about 3.9 m by a 
factor of 1.4 (cf. inset in Fig. 1).  

Alternatively, ocean waves have been analyzed by using 
classical equations and perturbation approaches. Building on 
Stokes’ analysis (see, e.g., [11]), ocean waves have been 
modeled, for example, with the nonlinear Schrödinger equation 
[4,12,13] and this equation’s extensions to include higher order 
terms (see, e.g., [14]). These analyses reveal the modulation or 
Benjamin-Feir instability as a possible mechanism for freak 
wave formation. Additionally, linear focusing and wave-current 
interactions have been identified as feasible causes. While such 
simplified models yield valuable insights, the applicability of 
these models in a more realistic setting is rather limited, since the 
assumptions of, for example, unidirectionality, stationarity, or a 
narrow band process do not correspond to reality. Furthermore, 
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two recent extensive data analyses [15,16] on buoy data have 
revealed that classical rogue wave indicators such as the 
Benjamin-Feir index (see, e.g., [17]) do not serve as good 
predictors for rogue waves.  

 
Figure 1: TWO 30 MINTUES OF BUOY RECODINGS OF THE 
COAST OF SAN NICHOLAS ISLAND (CDIP BUOY 067) 
YIELDING SIMILAR WAVE SPECTRA. HOWEVER ONLY THE 
MEASUREMENT FROM JANUARY 19, 2019, CORRESPONDS TO 
FREAK WAVE. DATA FROM COASTAL DATA INFORMATION 
PROGRAM (CDIP), SCRIPPS INSTITUTION OF 
OCEANOGRAPHY [10].  

 
Important insights on the formation of rogue waves can also 

be deduced from experimental and numerical wave tanks. Such 
well-controlled idealizations of the ocean aim to uncover 
fundamental physical processes driving the formation of ocean 
waves. Notably, higher order spectral method has been shown to 
accurately mimic an experimental wave tank [18]. Moreover, it 
can reproduce known extreme waves [19,20]. These 
computations and others relying on the boundary element 
method [21], smoothened particle hydrodynamics [22] or 
harmonic polynomial cell method [23] are expensive, and hence, 
cannot generate forecasts in real-time. Moreover, such schemes 
are cannot be straightforwardly applied to the real ocean, since 
for example the boundary conditions are generally unclear.  

In the recent years, an abundance of data-driven approaches 
to analyze general time series have been proposed (see, e.g., [24] 
for a review in fluid dynamics). Methods based on the Koopman 
operator [25], linear embeddings via dynamic mode 
decomposition (DMD) [26], or recurrent neural networks with 
long short-term memory cells (LSTM) [27] have promising 
appeal for universal black-box approaches. However, such 
methods are fundamentally interpolative. Hence, their 
applicability for ocean wave forecasting, an extrapolative task, 
remains unclear. Moreover, the black-box character allows only 
for limited physical insights, and consequently, these approaches 
are not amenable for developing a systematic understanding of 
possible driving mechanisms.  

In summary, spectral methods were developed for time and 
length scales larger than rogue waves, while the analytical 

models have a limited applicability to real ocean waves. 
Moreover, data-driven black-box models will suffer from limited 
interpretability and poor extrapolation. To overcome these 
limitations, the authors combine the strengths of the 
aforementioned approaches in this work. Drawing inspiration 
from the existing wave models, the ocean surface elevation is 
approximated by rapid oscillations with slowly varying 
amplitudes. Subsequently, the time evolutions of these 
amplitudes are forecasted by using linear models and a neural 
network consisting of LSTM cells. The performance of this 
approach is demonstrated on buoy data from Coastal Data 
Information Program (CDIP), Scripps Institution of 
Oceanography [10]. Overall, an accurate forecasting ability of 
ocean waves superior to the relevant benchmarks is 
demonstrated. Moreover, an imminent rogue wave is predicted 
one minute in advance. 
 
2. MATERIALS AND METHODS 

First, the wave model used in this study and the employed 
procedure to fit parameters to buoy data [10] are described. 
Subsequently, the authors explain the dynamical models utilized 
to forecast the model’s slowly varying amplitudes. Following 
that, the forecasting strategy and data processing enabling real-
time operational wave forecasting is illustrated.  

 
2.1 Wave model 

Persuaded by the continuous up and down movement of the 
ocean surface, in most analyses, one models the ocean surface as 
a sum of harmonic functions  

 
ℎ𝑓(𝑡) = ∑ 𝑢𝑗(𝑡) cos(𝜔𝑗𝑡) + 𝑣𝑗(𝑡) sin(𝜔𝑗𝑡)𝑁

𝑗=1 ,           (1) 
 

where 𝜔𝑗 are the frequencies and the integer 𝑁 denotes the 
number of frequencies. Since available ocean observations 
reveal a non-constant spectrum of waves, the amplitudes 𝑢𝑗(𝑡) 
and 𝑣𝑗(𝑡) are allowed to vary in time. It is noted that instead of 
introducing two amplitudes for each frequency (𝑢𝑗(𝑡) and 𝑣𝑗(𝑡)) 
one can equivalently introduce a single amplitude and a phase 𝜑𝑗 
for each frequency. An advantage of the formulation with two 
amplitudes is that the model (1) is linear in both amplitudes, 
whereas an equivalent model to equation (1) formulated with a 
phase would be nonlinear in the phase variable 𝜑𝑗. 

Although the model (1) is flexible and can be used, at least 
in principle, to fit any sufficiently smooth function, 
simplifications are inevitable before using model (1) to fit 
measurements of the ocean surface. Most importantly, the aim of 
the work is to forecast forthcoming wave crests and troughs, and 
hence, intermediate values between wave peaks and troughs are 
only of secondary interest. Therefore, these intermediate values 
are discarded and only the crest heights and trough depths are 
kept for fitting. With this approach, one reduces the number of 
data points within a time window significantly and thus enables 
a more accurate fit with the use of less parameters. This filtering 
yields a nonuniformly spaced discrete time series of crest heights 
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and trough depths, which is labeled with ℎ(𝑡𝑗), where 𝑡𝑗 denote 
the time instances.  

Most commonly the parameters of model (1) are fitted with 
the help of the Fourier transform, in particular, the FFT-
algorithm, an algorithmic implementation for discrete time 
series. However, it needs to be noted that the Fourier 
transformation is defined for infinitely long time series. In 
contrast, measurements have a finite duration. Thus, in any such 
computation, one implicitly assumes a continuation of the 
measured time series outside the measurement window. Most 
prominent is a periodic continuation of the measured signal or a 
zero-signal outside the measurement window. In the latter case, 
the Fourier coefficients are computed by a convolution with an 
appropriately chosen filter function, for example, the cosine 
filter. In this work, such assumptions are avoided, by 
determining the parameters in model (1) through a function 
optimization. Since the model (1) is nonlinear in the frequencies 
𝜔𝑗, a nonlinear optimization is required. To this end, the cost 
function 

 
Ζ (𝜔𝑗 , 𝑢𝑗(𝑡), 𝑣𝑗(𝑡)) ∶=‖ℎ(𝑡) − ℎ𝑓(𝑡)‖

2
                             (2) 

+
1

𝜀
∑ (‖𝑢𝑗̇(𝑡)‖

2
+ ‖𝑣𝑗̇(𝑡)‖

2
)𝑁

𝑗=1           

+𝛼‖∑ 𝑢𝑗(𝑡)𝜔𝑗 sin(𝜔𝑗𝑡) − 𝑣𝑗(𝑡)𝜔𝑗 cos(𝜔𝑗𝑡)𝑁
𝑗=1 ‖

2
,  

 
is introduced, where ‖ ‖ denotes the L2-norm; that is,     
‖ℎ(𝑡)‖2 ∶= ∑ ℎ(𝑡𝑗)

2
. The first term in equation (1) ensures an 

accurate fit to the extreme values of measured data.  
The second term is used to penalize large variations in the 

amplitudes 𝑢𝑗(𝑡) and 𝑣𝑗(𝑡). Most observations of ocean surface 
and physical considerations leading to the energy balance 
equation [5], the nonlinear Schrödinger equation and its 
extension [3] or a third order spectral analysis [28] indicate that 
the time variations of the amplitudes are small. Such a slow 
variation can be readily enforced by selecting ε in the cost 
function (2) to be appropriately small.  

Moreover, for small time variations of the amplitudes 𝑢𝑗(𝑡) 
and 𝑣𝑗(𝑡), the last term in equation (2) corresponds to the time 
derivative of the fitting function (1). Thus, the cost function (2) 
also requires small time derivatives at the time instances 𝑡𝑗, 
whereby it is ensured that ℎ𝑓(𝑡𝑗) are indeed approximately 
extreme values, respectively, wave crests or troughs.  

The parameters, more specifically, the frequencies 𝜔𝑗 and 
the amplitudes 𝑢𝑗(𝑡) and 𝑣𝑗(𝑡), are obtained by the minimization 

 
arg min

𝜔𝑗,𝑢𝑗(𝑡),𝑣𝑗(𝑡)
Ζ (𝜔𝑗 , 𝑢𝑗(𝑡), 𝑣𝑗(𝑡)),  (3) 

 
which is a nonlinear optimization, since ℎ𝑓(t) is nonlinear in the 
frequencies 𝜔𝑗. To reduce the computational burden of the 
nonlinear function optimization and avoid spurious solutions, a 
two-step procedure is adapted. In a first step, the amplitudes are 
kept constant (𝑢𝑗(𝑡) = 𝑢𝑗 = 𝑐𝑜𝑛𝑠𝑡  and 𝑣𝑗(𝑡) = 𝑣𝑗 = 𝑐𝑜𝑛𝑠𝑡) 
and the nonlinear minimization  

 
arg min

𝜔𝑗,𝑢𝑗,𝑣𝑗

Ζ(𝜔𝑗 , 𝑢𝑗 , 𝑣𝑗),    (4) 

 
is numerically solved by using the nonlinear least squares solver 
‘lsqnonlin’ provided in MATLAB. It is observed that the 
obtained minimum strongly depends on the initialization of the 
frequencies 𝜔𝑗  . To avoid non-optimal solutions with a large 
residual, a Monte Carlo method is utilized. The optimization (4) 
is started from multiple initial frequencies. These initializations 
are obtained by sampling a uniform distribution in the interval 
between 0.02 Hz and 0.6 Hz, which corresponds to the frequency 
interval in which ocean waves are commonly observed (see, e.g., 
[7]). The determined parameters 𝑢𝑗 , 𝑣𝑗  and 𝜔𝑗 are taken from the 
optimization yielding the lowest residual.  

After numerically solving the minimization (4), the 
frequencies 𝜔𝑗 are kept fixed at their values obtained by Monte 
Carlo sampling  and the amplitudes 𝑢𝑗(𝑡) and 𝑣𝑗(𝑡) are allowed 
to vary in time; that is,  

 
arg min

 𝑢𝑗(𝑡),𝑣𝑗(𝑡)
Ζ(𝜔𝑗 , 𝑢𝑗(𝑡), 𝑣𝑗(𝑡)),  (5) 

 
is solved. Since the cost function Ζ(𝜔𝑗 , 𝑢𝑗(𝑡), 𝑣𝑗(𝑡)) is quadratic 
in the amplitudes 𝑢𝑗(𝑡) and 𝑣𝑗(𝑡), the minimization (5) can be 
efficiently solved in closed form. Thus, solving the equation (5) 
is computationally significantly cheaper than the solution 
strategy adapted for equation (4). 

In Figure 2, the authors show an example of an obtained fit 
for the sea surface elevation over a five-minute window. Five 
Fourier modes are selected in the model (1) (𝑁 = 5) and the 
parameter controlling the slowness of the amplitude variation 
was set to 𝜀 = 10−3. Moreover, 𝛼 = 0.5 was selected and one 
thousand samples each consisting of five frequencies were 
drawn to solve the minimization (4). The fitted surface (red) 
closely resembles the measured data in blue, whereas the 
amplitudes remain almost constant (small variations) as enforced 
by the small parameter 𝜀. The relative residual error for the data 
shown in Figure 2 is about twelve percent. The average relative 
fitting error of crests heights and trough depths for one hundred 
randomly selected five-minute windows fitted with the same 
parameters is 9.8 percent with a standard deviation of 5 percent. 

The fitting procedure for the wave model (1) described in 
this section yields 𝑁 frequencies 𝜔𝑗 and 2𝑁 + 1 time series of 
slowly varying amplitudes. To enable ocean wave forecasting 
with the model (1), the amplitudes 𝑢𝑗(𝑡) and 𝑣𝑗(𝑡) need to be 
extrapolated beyond the measurement interval to predict future 
values. To this end, dynamical models are developed in the next 
section. 

 
2.2 Dynamical models 

To enable forecasting, dynamical models are fitted to the 
time series of the amplitudes  𝑢𝑗(𝑡) and 𝑣𝑗(𝑡) (cf. bottom part of 
Fig. 2). In the absence of well-established modeling approaches 
for the slowly varying amplitudes, data-driven black-box models 
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are used. More specifically, linear autoregressive models and a 
neural network consisting of LSTM cells [27] are employed 
here. 

 
Figure 2: FIT OF THE SEA SURFACE AND TIME 

DEPENDENT AMPLITUDES OF 5 FOURIER MODES, 𝜀 = 10−3, 
AND 𝛼 = 0.5 (CF. COST FUNCTION (2)).    
 

Time series forecasting generally requires extrapolation and 
the aforementioned models are interpolative with limited 
extrapolation capabilities. However, in the setting of this work, 
the modelling effort of the pervious section becomes beneficial. 
Comparing the upper and lower plots in Figure 2, one intuitively 
expects that an extrapolation of the slowly varying lines in the 
bottom plot is more promising than extrapolation on the rapidly 
changing ocean surface. Indeed, in this work, a dynamical 
system is fitted to evolve the slowly varying amplitudes 𝑢𝑗(𝑡) 
and 𝑣𝑗(𝑡) forward in time. Thus, even a restriction of accurate 
extrapolations of the slow variations to short time scales (with 
respect to the slow dynamics) can yield accurate forecasts for the 
fast variations of the full ocean surface. It is expected that such 
an approach enables forecasts in a range of minutes, whereas the 
linear autocorrelation of the ocean surface elevation is close to 
zero after about four seconds. 

 
2.2.1  LINEAR DYNAMICAL MODELS 

Here, the authors utilize linear autoregressive models of the 
form  

 
𝑢𝑗(𝑡𝑙) = ∑ 𝛽𝑚

𝑀
𝑚=1 𝑢𝑗(𝑡𝑙−𝑚),                 (6) 

 
where the coefficients 𝛽𝑚 are scalars and 𝑀 denotes the order of 
the autoregressive model. Before, fitting the coefficients to the 
data, the non-uniform time series of the amplitudes are smoothly 
interpolated (spline interpolation) to yield the amplitudes 𝑢𝑗(𝑡) 
and 𝑣𝑗(𝑡) in uniform time steps. Then, the coefficients 𝛽𝑚 of the 
dynamics (6) are obtained with two competing methods. First, 
they are obtained with a least squares fit, which will be referred 
to as LSQ-model. Alternatively, the coefficients can be obtained 
from a singular value decomposition of the trajectory matrix [29] 

yielding the DMD-model. It is noted that using another popular 
method, in which one utilizes the method of moments and solves 
the Yule-Walker equations [30, 31], yields unsatisfactory results, 
such as exponentially growing amplitudes. 

 
2.2.2  RECURRENT NEURAL NETWORKS 

Recurrent neural networks with LSTM cells have been very 
effective for regression tasks on sequential data such as time 
series forecasting [32]. Such machine learning methods are 
tailored for processing large data sets and the aim is to detect 
patterns within the provided data. They have been successfully 
applied to numerous tasks (see, e.g., the review [24] for 
applications in fluid dynamics or [33] for an early application to 
ocean waves). The functional input-output relationships of 
LSTM-cells are nonlinear since LSTM-cells utilize nonlinear 
functions such as sigmoid and hyperbolic tangent (tanh; see, 
e.g., [27,32]).  

The architecture utilized in this work consists of two 
hundred hidden units; that is, two hundred LSTM unit-cells in 
parallel. This layer is followed by a fully connected layer 
filtering one hundred features from the LSTM layer. To avoid 
overfitting a dropout layer is included.  With this layer, one sets 
each feature extracted from the fully connected layer to zero with 
a probability set to 0.1. The weights of the neural network are 
tuned with a stochastic gradient descent utilizing the Adam 
optimizer [34].  

The capabilities of the two modelling approaches are 
illustrated in Figure 3. To this end, a twelve-minute window of 
the ocean surface elevation is decomposed with twelve Fourier 
modes (𝑁 = 12 in model (1)). For the cost function (2), the 
parameters 𝜀 = 10−3 and 𝛼 = 0.5 are selected. Two dynamical 
models, a linear autoregressive model of order 𝑀 = 100 and a 
LSTM model are fitted for the amplitudes after using data from 
the whole time interval. Then, initializing each model at about 
seven minutes, the upcoming samples are predicted by using the 
dynamical model only. For the example shown in Figure 3, the 
LSTM model is found to correctly predict the oscillations in the 
data, whereas the variations decay quickly with the linear model. 

It is remarked that meaningful forecasts will significantly 
differ from the numerical exercise that resulted in Figure 3, 
primarily, for two reasons. First, for the dynamical system shown 
in Figure 3, the training data and the testing data were the same. 
More precisely, the dynamical systems were fitted by using the 
data for the whole-time interval, notably, also data after seven 
minutes that is then subsequently ‘forecasted’. In reality, 
however, the time series to be forecasted is unknown and hence 
cannot be used to fit the model. Second, the time series of the 
slowly varying amplitudes are also obtained by minimizing the 
cost function (2) over the whole-time span including the, in 
reality unknown, future values. Whether the proposed modeling 
approach is indeed useful cannot be evaluated from the outcome 
of a single experiment, such as that shown in Figure 3. To this 
end, a systematic investigation consisting of multiple 
observation spans and subsequent averaging of the forecasting 
capability is necessary. Such an analysis is performed in 
Section 3.  
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Figure 3: TRUE TIME SERIES, PREDICTION FROM A 

LINEAR MODEL, AND FORECAST WITH A RECURRENT 
NEURAL NETWORK WITH LSTM CELLS.  
 

 
2.3 Forecasting strategy 

To enable operational, real-time, wave forecasting the 
strategy sketched out in Figure 4 is adapted. The durations in 
Figure 4 are approximative. Their exact values will generally 
depend on the various parameters involved as well as the 
underlying buoy data employed for fitting.  

 

  
Figure 4: FLOW CHART ENABLING OPERATIONAL, REAL-
TIME OCEAN WAVE FORECASTING 
 

As first step, the nonlinear function minimization (4) needs 
to be solved. Due to the employed Monte Carlo sampling (cf. 
Section 2.1), this step is computational expensive. To keep this 
challenge manageable, only a short duration of the buoy data 
(approx. 3 minutes) is used while solving equation (4). The 
duration to obtain a solution to equation (4) ranges between two 
to ten minutes and depends on the number of frequencies in 
model (1) as well as the number of Monte Carlo samples used. 

The frequencies 𝜔𝑗 obtained in the first step are then used in 
solving equation (5). Since the minimum obtained by solving (5) 
is available in closed form, this step takes only seconds. To 
enable real time forecasting, data recorded while solving 
equation (4) is included when solving the minimization (5). Of 
course, the frequencies optimized for first three minutes will 
generally not be the same as fitting frequencies for the whole 
time interval of approximately 15 minutes. However, as 
previously mentioned, most wave models as well as observations 
indicate that the dominant frequencies in the ocean change 
slowly. Thus, it is reasonable to expect that the dominant 
frequency components over the first three minutes do not differ 
significantly from the dominant frequency components over the 
whole 15-minutes time interval. Indeed, within this work, this 
expectation can be confirmed. It is observed that solving 
equations (4) and (5) for the whole 15 minutes of time interval 
results in only minor improvements compared to the employed 
strategy (cf. Fig. 4). For example, for 𝑁 = 12 Fourier modes, 
𝛼 = 0.5, 𝜀 = 10−3, and ten randomly selected 15-minutes 
windows, the employed strategy yields an average relative mean 
square error of 3.8% whereas solving equations (4) and (5) for 
the whole 15 minutes results in a relative mean square error of 
3.5%. 

Once the time varying amplitudes are known, those are 
utilized to fit the dynamical systems described in Section 2.2. 
The coefficients of the linear models are almost instantly 
available, while the LSTM network requires more time, as the 
parameter tuning requires minimization of a nonlinear cost 
function. The last step involves running the fitted dynamical 
systems to obtain a forecast. The dynamical systems are 
initialized at the last data point, which is available when fitting 
their parameters (at about 15 minutes, cf. Figure 4). Thus, about 
the first two minutes of the obtained time series are not forecasts, 
since these data points have already passed in reality. After that, 
the fitted models are used to generate forecasts of ocean surface 
elevation. The start time and time span of the actual forecast is 
indicated in yellow in Figure 4. 
 
3. RESULTS AND DISCUSSION 

The above described model and forecasting strategy is tested 
on available buoy data from CDIP, Scripps Institution of 
oceanography [10].  The measurements are from a Datawell 
directional waverider MkIII [35] located near San Nicholas 
Island in the Pacific Ocean. The recordings span the time interval 
between February 9, 2018 and March 5, 2019. Three models are 
tested, namely, two linear models and one recurrent neural 
network with LSTM cells. While the coefficients of one linear 
model (LSQ) are obtained through a least-squares minimization, 
the other model’s parameters (DMD) are fitted through a singular 
value decomposition of the trajectory matrix [29]. 

First, the fitted models are used to forecast the slowly 
varying amplitudes. While such forecasts indicate the 
convergence of the developed models, a forecast of a slowly 
varying amplitudes is of limited relevance for applications. Thus, 
these models are subsequently used to forecast the upcoming 
wave crests and troughs, a more meaningful quantity in practice. 
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The discussion is concluded with an exploration of the ability of 
the developed models to forecast an imminent rogue wave.  

 
3.1 Forecasting slowly varying amplitudes 

As a first step, the slowly varying amplitudes are forecasted. 
Such forecasts show that the models have picked up some 
meaningful signal from the supplied data. To this end, twelve 
Fourier modes (𝑁 = 12 in model (1)) have been used to 
decompose the ocean surface elevation. Moreover, the 
parameters 𝜀 = 10−3 and  𝛼 = 0.5 were selected for the cost 
function (2).  

To indicate the predictive power of the developed models, 
those are tested against two benchmarks. As a first benchmark, 
the mean of each slowly varying amplitude is used as forecast 
value. For a second benchmark, the forecasted value of each 
amplitude is kept constant at its value at the last known sample. 
For comparison of the forecasts, the forecasted amplitudes of 
each of the three models and both two benchmarks are subtracted 
from the true values of the amplitudes and the L2 error is 
computed. Repeating the fitting procedure described in Section 
2 for ten randomly selected time windows within the data set 
yields the results shown in Figure 5. In this figure, the authors 
show the mean square error of each model relative to the mean 
square error of the mean guess (left hand side) and the 
forecasting of the last sample (right hand side). Thus, a relative 
mean square error below one indicates that the corresponding 
model can be used to forecast the variations of the amplitudes 
more accurately than the corresponding benchmark. It is noted 
that only error values beyond two minutes are forecasts, as the 
first two minutes have already passed while fitting the 
parameters of the various models (cf. Section 2).  

 
Figure 5: MEAN AND STANDARD DEVIATION OF THE 
RELATIVE MEAN SQUARE ERROR FOR FORECASTING THE 
SLOWLY VARYING AMPLITUDES 
 
From Figure 5, it can be discerned that the linear models 
outperform the mean guess by about twenty percent, whereas the 
LSTM network does not yield forecasts better than this guess. 
Comparing with the forecast from the last sample, all three 

models are found to yield better forecasts, although the 
performance of the LSTM is only marginally better than the 
benchmark. Only small differences between the two linear 
models can be observed in Figure 5.  

 
3.2 Forecasting wave crests and troughs 

As a next step, the heights of the forthcoming wave crests 
and the depths of the upcoming troughs, which are more 
meaningful quantities in practice, are forecasted. Following the 
developments from Section 2, the buoy measurements are 
decomposed into 16 Fourier modes (𝑁 = 16 in model (1)) and 
the parameters 𝜀 = 10−3 and  𝛼 = 0.5 were selected for the cost 
function (2). Then, each of the three models is used to generate 
approximately seven minutes of data, which yields a five-minute 
forecast of ocean surface elevations (cf. Fig. 4). The wave crest 
heights and trough depths of the forecasts from the three models 
are then compared to the actual values. Since peaks and valleys 
in the forecast and the true data do not occur at the same time 
instance, not only an error of the forecasted crest heights and 
trough depths but also in the time when the wave will occur can 
be computed. Repeating this procedure for one hundred 
randomly selected windows in the buoy data set, the obtained 
results are shown in Figure 6. 

The three obtained models are compared to a benchmark, 
which is obtained by forecasting a single wave whose amplitude 
and period corresponds to the mean values of the training data. 
In Figure 6, the author show that on the average, linear models 
predict crest heights and trough depths about 28 cm away from 
their actual values, whereas the mean error is about 25 cm with 
the LSTM network. All three models are found to show a 
significant improvement compared to the benchmark with yields 
an average error of about 35 cm.  

 
 
Figure 6: MEAN AND STANDARD DEVIATION OF THE ERROR 
OF FORECASTED CREST HEIGHTS AND TROUGH DEPTH 
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To validate the accuracy of the forecasts for large waves, the 
maximal wave crest height or trough depths is extracted from 
each forecast included in Figure 6. The large waves are then 
compared to the true value from the buoy data [10]. The average 
maximal wave crest or trough depth error for the three different 
models is shown in Figure 7. With the linear models, one predicts 
the largest crest height or trough depth with an average error of 
about 0.6 m, whereas with the LSTM-network, one has an 
average error of only 0.4 m.  

 
 Figure 7: MEAN AND STANDARD DEVIATION OF THE 

ERROR OF THE FORECASTED MAXIMAL CREST HEIGHT 
RESPECTIVELY TROUGH DEPTH 

 
3.3 Forecasting a rogue wave 

Finally, the developed method is tested to forecast the freak 
wave shown in the inset in Figure 1. To this end, the buoy 
measurements are decomposed into 12 Fourier modes (𝑁 = 12 
in model (1)) and the parameters 𝜀 = 10−3 and  𝛼 = 0.5 were 
used in the cost function (2). After fitting the remaining 
parameters according to the procedure described in Section 2, the 
obtained LSTM network is used to generate three minutes of data 
yielding the one-minute forecast shown in Figure 8. Although 
the full extent of the developing rogue waves is under-estimated 
by the neural network, the forecast clearly has a significant rise 
in the peak heights at the rogue wave event up to three meters. 
The rogue wave is forecasted about one minute in advance from 
buoy measurements.  

 

 
FIGURE 8: FREAK WAVE: GROUND TRUTH , FITTED MODEL 
AND FORECASTED OCEAN SURFACE ELEVATION 
 
CONCLUSION 

In this work, the authors have motivated and proposed the 
wave model (1) and described a procedure to fit all involved 
parameters to data. Applying the described procedure to buoy 
data [10], the obtained models are used for ocean wave 
forecasting and shown to outperform chosen benchmarks. 
Moreover, a freak wave event is forecasted about a minute in 
advance. For future work, the authors envision working on 
improving the forecast accuracy as well as the forecast horizon. 
In addition, consideration will be given to using a wavelet 
description in place of the Fourier series description. 
Furthermore, a systematic tuning of the various 
hyperparameters, most importantly the number of Fourier 
modes, is planned.  
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