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Abstract

In lifelong learning, tasks (or classes) to
be learned arrive sequentially over time in
arbitrary order. During training, knowledge
from previous tasks can be captured and
transferred to subsequent ones to improve
sample efficiency. We consider the setting
where all target tasks can be represented
in the span of a small number of unknown
linear or nonlinear features of the input
data. We propose a lifelong learning
algorithm that maintains and refines the
internal feature representation. We prove
that for any desired accuracy on all tasks,
the dimension of the representation remains
close to that of the underlying representation.
The resulting sample complexity improves
significantly on existing bounds. In the setting
of linear features, our algorithm is provably
efficient and the sample complexity for input
dimension d, m tasks with k features up to
error € is O(dk'® /e + km/e). We also prove a
matching lower bound for any lifelong learning
algorithm that uses a single task learner as
a black box. We complement our analysis
with an empirical study, including a heuristic
lifelong learning algorithm for deep neural
networks. Our method performs favorably on
challenging realistic image datasets compared
to state-of-the-art continual learning methods.

1 Introduction

Recent years have witnessed significant advances in
both theory and practice of supervised learning. While
a variety of techniques are available for learning
individual target functions, much less is known about
continual or lifelong learning, where the learner
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is adding new target functions to their repertoire.
Inspired by how humans learn and transfer knowledge
during their lifespan, lifelong learning has many
applications in computer vision [Parisi et al., 2019]
and robotics [Thrun and Mitchell, 1995].

A central idea for lifelong learning is to learn an efficient
representation that facilitates the collection of target
functions to be learned. For example, if deep feed-
forward networks are being used for classification, the
goal might be to learn a hidden layer whose outputs
are relevant and useful features for the family of tasks.
Building a classifier on top of them is relatively easy or
less expensive than building one from the original input
features. This representation itself is incrementally
refined as more target functions are learned.

We consider a very general setting of task/class
incremental learning, where new samples from different
tasks/classes are presented sequentially over time. The
goal of the learner is to maintain hypothesis functions
that work for all tasks/classes encountered so far.
We assume that all targets are simple functions of
a bounded number of unknown linear or nonlinear
features.

Prior work [Balcan et al., 2015] considered the task-
incremental setting where the target functions are linear
classifiers of the input that all lie in a common low-
dimensional subspace. Under this assumption, a simple
algorithm can be shown to learn a good representation
of size comparable to the optimal one (i.e., a basis of
the common low-dimensional subspace). The algorithm
proceeds as follows: maintain a small number of linear
features; learn the next function as a linear function
of the features; if the error is too high, learn the
new function directly on the input, and add it as a
new feature. Under mild assumptions on the input
distribution (log-concavity), with a suitable choice
of error parameters, this algorithm is guaranteed to
learn a small set of features that work well for all
the target functions. More recent works [Du et al.,
2020, Tripuraneni et al., 2020, Chua et al., 2021] focus
on the sample complexity of multi-task learning under
strong distributional assumptions on both the data and
the tasks.
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Our paper is motivated by the following questions:

e Can the theoretical guarantees for linear features
be extended to a representation with nonlinear
features?

e Does the refinement of the internal representation
have provable benefits?

e What is the best possible sample complexity of
lifelong learning?

Our work addresses these questions for both task-
incremental learning (classification or regression) and
class-incremental learning (where we do not have access
to the task ID). Our analysis applies to a broad
class of lifelong learning algorithms that dynamically
change the network architecture. First, we analyze
the setting where the underlying common features
are nonlinear, which is considerably more general
than those previously considered. We prove that
this natural lifelong learning algorithm is guaranteed
to learn low-error targets by creating only a small
number of nonlinear features. Secondly, we propose
a new algorithm, with a refinement step, and show
that it improves the sample complexity using a new
perspective on feature subspaces. The resulting sample
complexity improves significantly on known bounds for
the setting of linear features, and perhaps surprisingly,
we show that it is the best possible in the setting of
linear features, assuming that the lifelong learner has
black-box access to a single task learner to any desired
level of accuracy. This is done by constructing a hard
distribution over tasks. Inspired by the theoretical
findings, we propose a lifelong learning heuristic for
deep neural networks that performs reasonably well.

Finally, we conduct experiments on class-incremental
learning using benchmark data sets and find that
our proposed algorithm outperforms state-of-the-art
continual learning algorithms.

1.1 Problem Settings

We consider m tasks (or m-class classification) where
the tasks (classes) arrive sequentially over time. Let
X =R? be the input space and Y be the label space.
We study a discriminative model, where the target
function of each task can be learned using a linear
combination of at most k linear/nonlinear features.
The goal is to learn a hypothesis function with small
generalization errors on all tasks.

Formally, the problem is associated with a distribution
P over X xY, D is the marginal of P over X. The
label for an input data point € R? is given by

l(z) = ((c",0" (2)))

where o*(z) = (05 (x),...,01(x))" € R is a vector of

Output Layer

Output Layer

Input Layer Input Layer

(a) Case 1: small error with current features (b) Case 2: large error with current features

Figure 1.1: An illustration of LLL. Given a new task y;41, the
algorithm tries to learn the class with existing features o1, -+ , 0.
If the error is small (casel, Figure (a)), then it moves to the next
task. Otherwise (case2, figure (b)), it learns a new set of features
Or41,° " ,0rtky and a linear combination of all features; for linear
features, it learns a single new feature o,41.

unknown features, c¢* € R¥, ¢(-) : R — Y is the map
to the label space. (k < min(m,d)). Equivalently, we
can view it as a two-layer network with k£ neurons in
the hidden layer (Figure 1.1).

Our goal is to learn a good hypothesis function /()
parameterized by (¢*,o*) with a small generalization
error err = P(g )~ pL(l(x), I(x)), where L(-,-) is some
loss function for the specific task.

We use a similar model with multi-task learning,
where all tasks share the same low-dimensional feature
subspace. However, it is different from multi-task
learning, which has T source tasks to learn all-at-once
and use the features learned to solve the target tasks.
The assumption is made there that the features of the
target task are covered by all features that have been
learned. Instead, lifelong learning algorithms learn
all tasks sequentially, with no prior knowledge of the
incoming tasks during training.

Here we focus on the task-incremental learning of
binary classification tasks. Extensions to task-
incremental learning of linear regression and multi-class
classification tasks are given in Appendix D.

Let X = R be the input space, Y = {&1} be the
label space. For any task i € [m], any sample (x,y)
drawn from P satisfies y = [;(x) = sign({c}, o*(x))),
where the features are o*(x) = W*x in the linear
case and o*(x) = f(W*z) in the nonlinear case.
Here f(-) is a nonlinear activation function, e.g.ReLU.
W* € RFxd cr ¢ RF etc. Specifically, in the
linear case, for each task i, we equivalently have
y = sign((a},z)), where a* = W* ¢! € R4 WLOG
we assume that each a} is a unit vector, i.e., ||af||2 =
1,¥i € [m]. The generalization error is defined as

err = Pl yyp (li(x) # li(2)).
1.2 Main Results
In all the results and analysis, we only have Assumption

1, which as Lemma 1 from [Balcan et al., 2015])
asserts, is satisfied by all log-concave distributions after
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an affine transformation. This class includes many
common distributions, such as Gaussian, Uniform and
Gamma distributions [Lovasz and Vempala, 2007].
Assumption 1. (Data Distribution Assumption) Let
(-, -) denote the angle between two vectors. We assume
that there exist universal constants co > ¢; > 0 s.t.,
for any unit vectors u, v € R?,

c10(u,v) < Pyop(sign(u-x) # sign(v-x)) < c20(u,v)

Our theoretical upper bounds are summarized below.

The detailed statements for the results appear as

Theorem 3, Theorem 4 and Theorem 5 in Section 3.

These results are based on the algorithms described
in Section 2, called Basic Lifelong Learning (LLL)
and Lifelong Learning with Representation Refinement
(LLL-RR).

Theorem 1 (Summary of Upper Bounds). Consider
the lifelong learning setting of input dimension d, m
tasks with k common features. The basic lifelong
learning algorithm achieves a target error of € on
all tasks with sample complezity O(dk™® /e + km/€)
for linear features and a factor of k higher for
nonlinear features. With representation refinement
using at most 2k features, the sample complexity is
O(dk"® /e 4+ km/e). In the linear setting refinement

runs in polynomial-time.

This raises the question of whether there exist
algorithms with better sample complexity. We show
that the answer is NO in a general sense. We assume
that we have black-box access to a single-task learner
that works as follows: it takes as input labeled examples
and a target accuracy €, and outputs some feasible
solution with error at most . Then we show that any
lifelong learning algorithm that achieves € error for all
tasks needs Q(dk!- /e + km/e) samples.

Theorem 2 (Lower Bound). Suppose that a lifelong
learner has black-box access to a single task learner
that takes an error parameter € as input and s
allowed to return any vector that is within distance €
of the true target unit vector, using ©(d/e) samples in
R?. Then, there exists a distribution of m tasks, m =
29(K) such that for any lifelong learning algorithm,
WHP, the total number of samples required to learn
all m tasks up to error € is Q(dk*® /e + km/e).

Our contributions can be summarized as follows:

Sample complexity. We bound the sample
complexity of lifelong learning for both the linear
and nonlinear cases. In the linear case, our bound

for the lifelong learning is O(dk'® /e + km/e). This
improves the dependence on both k£ and € compared
to past work [Balcan et al., 2015], which proved a
bound of O(dk?/e? + km/e). Tt also improves existing
theoretical results for multi-task learning [Du et al.,
2020, Tripuraneni et al., 2020], where the best sample
complexity is O(dk? /e + km/e). Moreover, this bound
is the best possible up to logarithmic factor for any
lifelong learning algorithm.

Representation refinement. We propose and
analyze the step of sample-free representation
refinement in the lifelong learning setting. Specifically,
this step aims to reduce the dimension of the feature
subspace while keeping the subspace close to the true
one. In the linear setting, we provide an algorithmically
efficient approach via an SDP relaxation. To the best
of our knowledge, we provide the first provable bound
for representation refinement.

Proof techniques. Our analysis is based on
geometric insights. The test error translates to the
distance between the target and learned vectors. To
show that our learned feature subspace is close to the
true one, we consider the set of candidate k-dimensional
subspaces. We would like to show that the measure
of this set decreases rapidly during learning. Instead,
we identify the set of well-approximated vectors by our
current learned subspace and show that the set grows
at a geometric rate until it includes all vectors in the
true subspace.

Empirical results. We evaluate our lifelong learning
algorithms on standard benchmarks and compare them
with state-of-the-art methods, demonstrating their
practice efficiency. We also perform simulations for
the setting of linear features, and exhibit results that
match our theoretical bounds.

1.3 Related work

Lifelong learning [Thrun and Mitchell, 1995] aims
to solve different tasks arriving in a stream, where
knowledge from current and previous tasks is re-
used in subsequent tasks to improve efficiency and
sample complexity. Early works found that lifelong
learning can encounter Catastrophic Forgetting (CF)
[McCloskey and Cohen, 1989], especially when using
back-propagation [Ratcliff, 1990].  That is, the
performance on old tasks can drop dramatically after
learning a new task. There are three main approaches
to addressing this problem: adding a regularization
term [Li and Hoiem, 2017, Kirkpatrick et al., 2017],
freezing the network from previous tasks and adding
branches to new tasks [Xu and Zhu, 2018, Rusu et al.,
2016, Liu et al., 2019, Liu et al., 2021, Yoon et al., 2017]
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and replaying previous tasks’ exemplars [Rebuffi et al.,
2017]. Our work is closest to the second approach
in that we dynamically change the architecture to
overcome CF. Although we do not know the number
of tasks in advance, we prove that our algorithm has a
small model size and efficient sample complexity.

Despite a vast literature on lifelong learning methods,
theoretical investigations are relatively few. [Yin
et al., 2020] studies the optimization and generalization
properties of the regularization-based method by
analyzing the loss landscape. [Bennani et al., 2020,
Doan et al., 2021] analyze the generalization of the
OGD algorithm [Farajtabar et al., 2020] through NTK
[Jacot et al., 2018]. [Balcan et al., 2015] gives an
upper bound on the architecture size when we grow the
network when training binary classifiers. We improve
their bounds getting nearly tight sample complexity
in the linear case, and generalize the approach to the
nonlinear regime.

Two topics closely related to lifelong learning are
meta-learning and transfer learning. There is a
line of work where all tasks approximately [Finn
et al., 2017, Khodak et al., 2019, Balcan et al.,
2019, Denevi et al., 2019] or conditionally [Wang et al.,
2020, Denevi et al., 2020, Denevi et al., 2021] share
a common representation. However, our work focuses
on the setting where all tasks share one common
low-dimensional representation. [Chua et al., 2021]
shows the benefits of task-specific fine-tuning, which
is fundamentally different from our refinement step.
Our refinement step aims to reduce the representation
dimension with slight information loss and help to
improve the sample complexity of subsequent tasks.
This procedure needs no additional data.

There are other works with similar settings to ours
where all tasks share one common representation.
[Baxter, 1997] bounds the sample complexity to
achieve low average error from a Bayesian/information-
theoretic point of view. We compare our results
with recent work [Du et al., 2020, Tripuraneni et al.,
2020, Balcan et al., 2015] in Table 1 for the linear
case. Previous works on multi-task learning [Du
et al., 2020, Tripuraneni et al., 2020] need O(dk?/e) or
more samples from previous tasks to learn the hidden
features, while our algorithm needs O(dk"® /€) samples.
After that, each new task can be learned up to ¢
error with O(k/e) samples. These results illustrate
the efficiency of lifelong learning compared to all-at-
once training. Our analysis can also generalize to the
setting of nonlinear features, e.g., if labels are generated
by a two-layer neural network, with k hidden units. We
prove that our lifelong learning algorithm is sample
efficient with only Assumption 1, which is relatively
weak and clean compared to existing work.

Method Input Feature Total Samples
Assumptions Dimension

[Du et al., 2()2(]]T Sub-gaussian  k O(# + k;”)

= ak2

[Tripuraneni et al., Sub-gaussian k O(d’: + k:”)

2020]*

[Balcan et al., 2015]* Log-concave k O(’i%? + kTm)

LLL (ours)* Well-spread 2k Iog(w) O(@-‘-’“Tm)
(Assumption 1) s

LLL-RR (ours)* Well-spread 2k O(dk_—4km)

(Assumption 1)

Table 1: Comparison of different transfer learning algorithms in the
linear setting. {: the method trains all source tasks all at once, and
then uses the representation to train the target tasks. x: all source
tasks and target tasks are learned sequentially.

Notation. We use bold upper-case letters to refer to
matrices (e.g.X) and bold lower-case letters to refer
to vectors (e.g.x). We use [m] = {1,2,--- ,m}. We
use O to hide polylogarithmic factors. O,Q,© are
standard notations for order of growth. For any two
vectors x,y, let 6(x,y) be the angle between them.
The angle between a vector  and a subspace U is
defined as 0(x,U) = gélll} f(x,u). For two subspaces

U,V define (U, V) = maxf(u, V). Thus §(U, V) <
ue

aiff for all w € U,3v € V st. O(u,v) < a. We

define the distance from a vector u to a subspace F

as the orthogonal distance: d(u,F) = mi{% lu — v]2.
ve

For a distribution D and two vectors u, v, we define
dp(u,v) = Pyop(sign(u - x) # sign(v - x)).

2 Algorithms

We study three algorithms: the basic lifelong learning
algorithm (basic LLL) in Section 2.1, lifelong learning
with representation refinement algorithm (LLL-RR) in
Section 2.2, and heuristic lifelong learning algorithm
(H-LLL) in Section 2.3. We prove guarantees for basic
LLL and LLL-RR in Section 3. We show that H-LLL for
deep neural networks (Section 2.3) outperforms state-
of-the-art continual learning algorithms in Section 4.2.

2.1 Basic Lifelong Learning

Our algorithm maintains a set of features
o1(.),...,0.(.) while tasks are presented incrementally.
As is shown in Figure 1.1, when the next task, say
(7 + 1)-th task arrives, the algorithm first tries to learn
a new linear combination y;;1 of existing features
using examples from the current task. If the best
such combination has a low error, it records the linear
combination parameters and moves on to the next
task. If the error is higher than a threshold €, then
it learns a new set of features o,41, -+ ,0,4%, and a
new linear combination of them with error up to €gcc-
Denote k as the number of steps that the algorithm
learns new features. Let kg be the number of features
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learned at one time, it is a constant dependent on
whether the features are linear or not. We describe
the algorithm in Algorithm 1.

Algorithm 1 Basic Lifelong learning Algorithm (Basic

LLL)

Input: d,m,k, labeled examples of m tasks, threshold
parameters €gcc, €.

The algorithm maintains a set of features
01(.),...,0.(.) along training. When task i + 1
arrives,

e Use the data from the (i + 1)-th task, attempt to
learn the linear function ¢;41 using the current
features o (-) = (01(-), -+ ,0.(-)) .

e Check whether the hypothesis @ — sign(¢;, o (x))
has error less than e.

1. If yes, record the linear combination

parameters €;41.

2. Otherwise, learn a new set of features
o'() = (or41(), 0rik (1) and a
linear function €;47 such that the predictor
x — sign(¢;, ;0'(x)) has error less than €qc..
Update the representation o(-) =

(@1() 5 T ()) T

return m predictors: x — sign(¢] o(x)), where
a(:c) = (01(33)7 T 7J;}k0(w))—r7l <i<m.

The algorithm works for both linear and nonlinear
features. For linear features, if a new target function
does not have a good representation as a combination of
the features learned so far, the new target is itself a new
feature since everything is linear (Algorithm 1, [Balcan
et al., 2015]), so ko above is 1. For nonlinear features,
when the current representation is not good enough,
we can learn a set of kg < k nonlinear features with
low error since each task corresponds to a target with
at most k features. Here we assume that a single such
combination can be learned efficiently (i.e., a neural
network with a small, single hidden layer) [Bartlett
et al., 2019]. Section 3 proves that the number of

features to be learned can be upper bounded by O (kkg).

We give the full guarantees for this basic LLL algorithm
in Theorem 3.

2.2 Lifelong Learning with Representation
Refinement

Similar to the basic LLL algorithm, LLL-RR also
expands the feature space gradually. Whenever we
learn a new task ¢, we attempt to learn it using
the current representation and check whether a linear
combination exists with an error less than e. If yes,
we record the classifier for the current task and move
to the next one. Otherwise, we learn a new classifier

for the current task with error at most €,.., via new
features; we then do a step of representation refinement
on all the features learned so far. The refinement step
can also be done when the number of features grows
above a threshold rather than every time a new task
is learned to high accuracy. The formal description of
LLL-RR is given in Appendix C.

Refinement algorithm. Denote wq,--- 711;(,%“),%
as all the features learned so far. The goal of refinement
is to find a minimal dimensional feature subspace
that is within distance €,.. to all learned features.
We minimize the dimension of feature subspace
while keeping it close to the original representation
by solving the optimization problem (2.1). This
problem is NP-hard, but we provide an efficient
approximation algorithm for the linear case (and
practical implementation for the general case in
Section 2.3).

Algorithm 2 Representation Refinement (RR)

Input: All features learned so far wq,--- ,11)(;6“),60,
and the desired feature subspace dimension k.

Solve the following optimization problem, and get
the solution V”.

min dim (V')

st. d(Wi, V) < eque, for1<i< (k n 1) ko
(2.1)
return Refined representation V.

The refinement step is provably beneficial to the total
sample complexity. Theorem 4 guarantees that lifelong
learning algorithm with representation refinement
(LLL-RR) can be ended with learning new features
in O(k) steps. The analysis is shown in Section 3.

Linear features. We provide an efficient
implementation for the linear case by using a
Semi-definite Programming (SDP) relaxation (2.2) and
then applying Principal Component Analysis (PCA)
to round the SDP solution. The relaxation from (2.1)
to (2.2) is natural. The positive semi-definite (PSD)
matrix X represents the projection matrix to V*, the
complement of the subspace V. It is a relaxation since
X might have fractional eigenvalues between 0 and
1. We describe the formal algorithm in Algorithm 3.
As is proved in Theorem 5 (Section 3), if the optimal
dimension of the feature subspace is k, this linear case
implementation will output a (2k — 1)-dimensional
subspace V' with d(w;, V') < V2€qce, Vi € [ff + 1].
Consequently, LLL-RR terminates with feature
dimension O(k).
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Algorithm 3 Representation Refinement (RR)
Implementation in Linear Case
Input: All features learned so far wy, -+, wy,, and

the desired feature subspace dimension k.

1. Solve the following SDP, and get the solution
X* t*.

min ¢

Xt

st W] X <t,1<i<k+1 (2.2)
0XX =1
Tr(X)=d—k

2. Do the singular value decomposition X* =
Z?Zl Niugu] , where 0 < A\p < -+ < Ay < 1.

return V' = span(uj,---,usk_1) as the refined
representation.

2.3 A Lifelong Learning Heuristic for Deep
Neural Networks

In order to apply our basic LLL algorithm to deep
neural networks, we propose a heuristic lifelong
learning (H-LLL) algorithm. The intuition of our
LLL algorithm is to build an expandable and dynamic
representation that can adapt to incoming tasks/classes
without sacrificing the quality for previous tasks/classes.
Following this intuition, we propose to learn a separate
encoder for each task. We observe the training data
D; for the i-th task and the memory buffer M; for
the previous tasks. The memory buffer is constructed
based on herding selection [Welling, 2009, Rebuffi
et al., 2017]. H-LLL works iteratively in two phases.
First, H-LLL learns the representation with a separate
encoder f; in the i-th task, while the other encoders
fj,d < i are frozen during the training in the i-
th task. Second, H-LLL finetunes the last classifier
layer using the memory buffer M; and the current
task data D;. These two steps are iterated as the
training proceeds. We take the i-th task as an example.
Since we train a separate encoder f; for the i-th
task, the representation of a sample x (by the end
of the i-th task) is constructed by concatenating all
the learned features: v;(x) = {f1(x), fo(x), -, fi(x)}
where v; denotes the representation after learning the
i-th task. The training uses cross-entropy loss on both
the memory buffer M; and the current dataset D;:

I o
L= M, UD] ; log (SoftMax (W, v (z)))

(2.3)
where W, is the weight of the last classifier layer.
After training of the representation is completed, we
follow [Yan et al., 2021] and re-train the classifier layer

with a heated-up softmax [Zhang et al., 2018] and a
balanced finetuning method [Castro et al., 2018]. Note
that, for each encoder f;,Vj, we can parameterize it
with any neural network. In this paper, we use ResNet-
18 for all the encoders f;, V3.

3 Theoretical Guarantees

Here we state the main theorems for the basic
LLL algorithm and LLL-RR algorithm, bounding the
representation size and complexity. Here our algorithm
and analysis apply for both linear and nonlinear
features. For nonlinear features, we consider the
kernel induced by them. These features live in a
potentially infinite-dimensional space (or exponential
in d dimensional space if, e.g., the input is from the
Boolean hypercube).

The main theorems are stated as follows. Complete
proof for all theoretical guarantees are in Appendix A.

We begin with a bound for the basic LLL algorithm.

Theorem 3 (Basic LLL). Consider the lifelong
learning setting of input dimension d, m tasks with
k common features. Let €40 = ﬁ for a sufficiently
small constant ¢ > 0. Under Assumption 1, the
basic LLL algorithm, learns mew features at most
k = O(klog(log(k)/€)) times and the dimension of the
learned feature space is O(klog(log(k)/€)) for linear
features and O(k?1og(log(k)/€)) for nonlinear features.
The total number of labeled examples to learn all
tasks to within error € is O(@log(@)log(%) +
km log (e log(1)) = O(dk® /e + km/e) for linear

€

features and a factor of k higher for nonlinear features.

Our main result analyzes the lifelong learning algorithm
with representation refinement.

Theorem 4 (LLL with Representation Refinement).
Consider the lifelong learning setting of input dimension
d, m tasks with k common features. Suppose that
the algorithm has access to an oracle that gives a
constant-factor approzimation of Optimization Problem
2.1. Set €4ec = ﬁ for a sufficiently small constant
¢ > 0. Under Assumption 1, the LLL-RR algorithm
learns at most O(klog(log(k)/e)) new features, and
the dimension of the feature space is O(k). The total
number of labeled examples to learn tasks to within
error € 1s O(@log(@)log(%) + Emlog(l)) =
O(dk' /e + km/e).

In the linear setting, we provide an efficient
implementation of the constant-factor approximation
oracle in Algorithm 3 with the following guarantee.

Theorem 5 (Approximation). In the linear case, for
the optimization problem (2.1), if there exists a subspace
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Figure 3.1: Geometric illustration of the proof sketch. For any target
a; that has more than € error based on the previous feature subspace
Vi_1, the algorithm accurately learns a new feature within error
€acc, and therefore pushes the new feature subspace V; towards the
the true one V'*.

V* of k dimension with d(w;, V*) < €gee, Vi € [12: +
1], then for any constant ¢ > 1, we can get a (ck —
1)-dimensional subspace solution with approzimation

factor /1 + ﬁ i mazximum distance. Specifically,
let ¢ = 2, the output of Algorithm 3, V', is a (2k — 1)-
dimensional subspace s.t. d(w;, V') < V2€qee, Vi €
[k +1].

3.1 Proof idea and plan of Theorem 4

Our proof is based on geometry. Firstly, we show that
Assumption 1 guarantees that the distance between
hypothesis vectors approximates the test error within
a constant factor. As is shown in Figure 3.1, for
any target a; that has a large error based on the
previous features, d(a;, V;—_1) > € neglecting constants.
Learning a; accurately will help reduce the angle
between the feature subspace of the algorithm V;
and the true feature subspace V*. To quantify
the improvement in the angle between the feature
subspaces, we construct a convex set whose volume
grows at a geometric rate. This leads to the upper
bound on the number of new features.

To be more specific, denote ¢1,--- ,%; as the indices
of tasks where we learn new features. At step ij,
we construct a set Y;  of all possible subspaces that
are feasible solutions to the refinement optimization
problem (2.1). Let X;_ be the set of vectors in the unit
ball in the true k-dimensional feature subspace that
are within distance O(e/v/k) to all subspaces in Yi. .
Then we can show that X is a symmetric convex set.
Clearly, the set Y;, shrinks during training as we have
more and more constraints in the optimization problem.
Alongside, the volume of X; increases exponentially.
The learning procedure terminates when X;_ covers the

ball By,(0,1/2vk), which means that a target function
(unit vector) spanned by the true k features will have
error O(e) to the solution learned by LLL-RR. In other
words, the feature subspace we learn can solve all future
tasks with small errors using only hypothesis vectors

from the learned feature subspace.

We will prove this step by step. Lemma 1 bridges the
test error to the distance metric. Lemma 2, Lemma 3
and Corollary 1 show that the convex hull of true
feature vectors is contained in the set Xi,;. Lemma 4
carefully analyzes the maximum volume ellipsoid in
X, , whose volume grows exponentially. Based on these
facts, we can bound the number of new features and
prove Theorem 4.

Let X = R? for each task i, there exists unit
length a; such that all (x,y) drawn from P satisfies
sign({(a;,z)) = y. Let A € R™*4 rows of which
are a;. Since the parameters a; lie in some k-
dimensional subspace with k < min(m,n), there exists
W € RF*4 C € R™** such that A = CW. Rows
wi'— B ,w,;'— can be seen as k linear meta-features that
are sufficient to learn m tasks. In each step when the
current feature subspace cannot achieve low error, we
learn new features. Then we take the refinement step
to keep a minimal dimensional subspace that is close

to all current features wy,--- ,w;.

Lemma 1. Given two wunit vectors w,v and a
distribution D. If D satisfies Assumption 1, then
there exist nonzero constants ¢ and ¢’ such that
dllu =z < dp(u,v) < "flu—vls.

Lemma 2. Let S be a set of subspaces. Let X = {x €
B(0,1)|d(x,Y) < r,YY € S}. Then the set X is a
symmetric conver set.

Lemma 3. For any k € [k], let

Y = {V|d(w;,, V) < creqee, Vi < k},

1
Xifc = {IB S Bk(O, 1)\d(:c, V) < (Cl‘i‘g)ﬁacc,vv S Y;fc}’

where c1,c¢ are small constants. Then for any j >
k, :I:aik S ij

Corollary 1. For any k € [k],

conv(ta;,,- - ,:I:aifc) CXi,.
Lemma 4 (Max Ellipsoid). Let K C RF be a
symmetric convex body and E(K) be the mazimum
volume ellipsoid contained in K. For a vector u on the
boundary of E(K), let K' = conv(K, 2vku, —2vku).
Then,

vol(E(K")) S 13

vol(E(K)) — 10
Proof idea of Lemma 4. We first consider E(K) =
By (0,1), a unit ball around the origin and the vector
u=(1,0,---,0)" € bd(E(K)). By symmetry, we can
assume the ellipsoid F(K") = {w|z—§ +3F, i—z <1}
and only consider the two-dimensional slice first, where
w = (1,0)7, B(K") = {(x,y)|% + % < 1}. Then
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we calculate the volume of the ellipsoid contained in
E(K"), which is greater than 12 of the volume of
the unit ball. Finally we define an affine bijective
transformation to a general ellipsoid E(K). See
Figure 3.2 as a sketch of part of the calculation.

1 Vak=1

G 2wk

)
__x 2k
YT V=1 Vak—1

MZM
B(0,1) G,

Figure 3.2: Maximum volume ellipsoid

It is noteworthy that the convex set X; (of feature
vectors in R¥) we keep in the proof is defined to be
close to any possible subspace that is close to the
subspace spanned by new features w;. So our proof is
quite general for any lifelong learning algorithm that
dynamically expands the architecture, e.g.the basic
LLL algorithm.

3.2 Proof of Theorem 5

Let (X*,t*) be a solution of the SDP (2.2) with singular
value decomposition (SVD) X* = Z?Zl \iu;u; , where
0< A <--<A<1,and N N\ =d—k Let
V' be the span of {u, -+ ,ug }. Then the squared
distance of any vector a to V' is Z?:k,+l(a—'—ui)2. In
the meantime, the SDP assigns a value of a' X*a =
Z‘ii:l Ai(aTu;)?. Thus, the multiplicative increase in
squared distance is at most

d
Zi:k,+1(aTui)2 < 1
Z?Zl Ni(aTw;)?2 — Aw41

Now since the sum of all eigenvalues is d — k and each

one is at most 1, for ¥ > k, we must have

(@—k) - (A=K -1)
K41

E—k+1
k' +1

k41 >

Choose k' = ck — 1, and we would have

Z?:ck(aTui)Q < 1 <1+ 1

S dilaTu)? T A T el
Since there exists a subspace V* of k dimension
with d(w;, V*) < €wee,Vi € [k + 1], we
have Zle Ni(w] u;)? < €. Consequently,
span(uy, -+ ,Uck—1) 18 a (ck — 1)-dimensional

approximation of V* with the approximation factor

W1+ i in maximum distance.

Specifically, for ¢ = 2, we have d?(w;, V')

Z?:2k(m;rui)2 < 26gcc'

ay

Figure 3.3: Geometric illustration of the lower bound examples when
k = 2,d = 3. The errors that the algorithm makes concentrate on
the third coordinate, and thus lead to the large angle between the
learned feature subspace V and the underlying one U. Any new
task, e.g., ag that lies on the span of {a1, a2} cannot help improve
the representation V.

3.3 Proof idea of Theorem 2 (lower bound)

Consider a sequence of tasks

€;, 1 S ) S k
a; = .
> jes Ti€j,

where z; S Bernoulli(1/2), e; is the standard unit
vector, S C [k] is a subset of indices. The proof is
mainly by constructing an adversarial output of the
algorithm where the errors that it makes concentrate
on one coordinate, say k + 1. (See Figure 3.3.) We
will show by the following steps: (1) After learning the
first k tasks, each with error ¢;, the angle between the
learned feature subspace and the underlying one is at

least Q(1/>";cq €7) for some subset of at least k/2 tasks.
(2) For each subsequent task, the angle of the new task

to the learned subspace is at least Q(1/>",c g €7) with

high probability. (3) Learning such a new task does
not improve the representation. (4) To solve all tasks
up to error €, we will need each ¢; = O(e/Vk), and it
leads to the sample complexity bound. The full proof
and related lemmas are in Appendix B.

4 Simulations and Empirical Results

In this section, we describe our experimental
studies. In Section 4.1, we run the basic LLL
and LLL-RR algorithms in a task-incremental binary
classification setting. Then we conduct -class-
incremental experiments on real dataset using our H-
LLL algorithm in Section 4.2. The performance shows
the benefits of our algorithm compared to existing
continual learning algorithms.

4.1 Linear Features

Here we consider task-incremental lifelong learning
in the setting of binary classification where y =
sign((cf, W*z)). We choose the input dimension,
d = 100, the number of tasks, m = 100, the number
of examples per task, N = 200, the dimension of

feature subspace, £ = 5. The parameters cj;, W ~



Xinyuan Cao, Weiyang Liu, Santosh S. Vempala

+ Joint Training

[7 LLLRR ‘
= LLL

Dimension of Subspaces

Angles between Subspaces (degree)

[

[/

’,, l + Joint Tminmg‘
/
li

0 20 40 60 80 100 0 20 40 60 80 100
Number of Tasks Number of Tasks

‘ 94

<
S

——LLLRR
‘——— LLL ‘

+ Joint Training |

—LLL-RR 1
-=LLL
«_Joint Training|

2

%

Minimal Task Accuracy (%)

%

g

0 20 40 60 80 100 0 20 40 60 80 100
Number of Tasks Number of Tasks

Figure 4.1: Simulation on linear features. N =200,k=5,m=

100, d=100, averaged on 10 trials.

N(0,1). The input data X; ~ N(0,1). We set the
error threshold to be ¢ = 0.1. We compare three
methods: LLL (Basic lifelong learning algorithm), LLL-
RR (lifelong learning algorithm with representation
refinement), and Joint Training (offline training with
all data jointly).

The average task accuracy and minimal task accuracy
are computed for tasks encountered so far based
on the current model. The angle between feature
subspaces is calculated as their maximal principal
angle. Formally, for two subspaces F' and G, let P,Q
to be the orthogonal matrices whose columns form
an orthonormal basis of F' and G. For the singular
value decomposition PTQ = UZV T, we define the
principal angles between F and G as 0; = arccos(X;;),
5 =200 > -,> 0 >0 We calculate the angle
between two subspaces F' and G as the maximal
principal angle, i.e., arccos(X11).

As we can see in Figure 4.1, lifelong learning can
continually learn better features while learning more
tasks. Moreover, lifelong learning with refinement
improves average accuracy, min accuracy, model size
and convergence to the underlying feature subspace.

4.2 Image Classification

Experimental settings. We generally follow the
experimental settings and evaluation protocol in
[Rebuffi et al., 2017]. In our experiments, we evaluate
our H-LLL algorithm on CIFAR-100. We train all 100
classes in 10 splits and each split contains 10 classes.
There is no class overlap between different splits. Each
training data split can be viewed as a task and is
fed to the neural network incrementally. Similar to
[Rebuffi et al., 2017], we use a fixed memory size of
2,000 exemplars. The final result are curves of the
classification accuracies after each batch of classes. We

95 :
— 90 —
% * Joint Training | ||
\ —iCaRL
5 _ L
8 RPSNet w
BIiC
g8 WA = =
e — —H-LLL (Ours)| || ol
I
<6 <601
\ —e—
“ —o—Class 70-79
55 <3 50 H~+—Class 80-89.
B Class 90-99
50 :

20 40 60 80 100 0 2 4 6 8 10
Number of Classes Step Index

Figure 4.2: Incremental Classification accuracy on CIFAR-100.

use ResNet-18 [He et al., 2016] for all the encoders
fj,Vj and SGD with weight decay 0.0005. All the
ResNet encoders are trained from scratch. For different
methods, we use the same class split on CIFAR-100 to
ensure fair comparison.

Accuracy vs. number of classes. In Fig. 4.2, we
first show the comparison of incremental accuracies
to some of the state-of-the-art methods including
iCaRL [Rebuffi et al., 2017], RPSNet [Rajasegaran
et al., 2019], BiC [Hou et al., 2019] and WA [Zhao
et al., 2020]. One can observe that our H-LLL algorithm
significantly outperforms the other methods and yields
an average incremental accuracy [Rebuffi et al., 2017]
of 73.8%, while the second best approach (WA) only
achieves 69.8% accuracy.

Accuracy for different classes. In order to gain
deeper understanding of the H-LLL algorithm, we
examine the accuracy of different class splits in each
step. From Fig. 4.2, we can see that the incremental
accuracy for different class groups decreases in a slow
and smooth way. This indicates that H-LLL is able
to preserve knowledge of class concepts and effectively
avoid catastrophic forgetting.

5 Discussion

We study, theoretically and empirically, the efficiency
of lifelong learning when tasks share a low-dimensional
feature representation. We introduce a refinement
algorithm and bound its representation and sample
complexity, and prove a matching lower bound for the
sample complexity (for any lifelong learning algorithm).
Our results show that: (1) lifelong learning provably
converges for nonlinear feature representations, (2)
refinement has provable benefits, and (3) lifelong
learning is an efficient approach to multi-class/multi-
task learning. Our work also indicates that (a)
refinement can be practical and can dynamically keep
the dimension of the representation bounded and (b)
remembering only a small subset of previous examples
suffices for efficient lifelong learning.

These results raise several questions; we mention a few.
In the general setting of nonlinear features, how can
we guarantee that the refinement is efficient in terms
of time complexity?
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Supplementary Material:
Provable Lifelong Learning of Representations

A Proof of Theorem 3 and Theorem 4

Here we restate and prove all the lemmas before giving the full proof of the two main theorems.

Lemma 1. Given two unit vectors w,v and a distribution D. If D satisfies Assumption 1, then there exist
nonzero constants ¢’ and ¢’ such that ¢'||u — v|2 < dp(u,v) < "|Ju —v||2.

Proof. By Assumption 1, Jej,ca s.t. c10(u,v) < dp(u,v) < c26(u,v). Using the Taylor expansion of cosine
function, we know 1 — 22/2 < cos(z) <1 —a?/2! + 21 /4! <1 — 1122 /24. Since ||u — v|3 = 2 — 2 cos((u, v)), we

have /120(u,v) < ||lu — v|2 < (u,v). Choose ¢’ = ¢1,¢” = 1/ ¢y, we get the results proved. O

Lemma 2. Let S be a set of subspaces. Let X = {x € Br(0,1)|d(z,Y) <r,VY € S}. Here By(0,1) is the unit
ball in k-dimension. Then the set X is a symmetric convex set.

Proof. For any © € X,VY € S, since d(x,Y) = d(—x,Y ), we have —x € X. So S is symmetric about the origin.

For any @1, x2 € X, for any Y € S, we have d(x1,Y) < r,d(x2,Y) < r. Let P be the projection matrix of Y,

([ P12 + | Pzall2)” — || P (z1 + 22) |13
T pT TpT T 5T
=x, P' Pxy + x5 P' Pxy+ 2||Pxq|2||Px2|s — (1 + x2) P P (x;+x2)
=||Pzy || Pxsll2 — (Pz1) " (Px2) >0

So we have

d .’131+3327Y _lp T + To
2 2

For a fixed Y, {x € By(0,1)|d(x,Y) < r} is closed and thus convex. Therefore

<P (), b+ i <

X = () {= € Bx(0,)|d(z,Y) <1}
Yes

is a convex set. O

Lemma 3. For any k € [k], let
Y;l]; = {V|d(’li)17,V) < Cl€accavj < k}a
1
Xi, ={z € Bx(0,1)|d(z,V) < (c1 + g)eacc,‘v’V €Y},

where c1,c are small constants. Then for any j > k, ta;, € X;;.

Proof. For VV € Yi al(u?il;7 V) < ¢1€qce. Since we learn the feature vector w;, within error €cc, by Lemma 1,
we have d(aik,ﬁ)ik) < €aee/C. So d(a%, V) <(ca+ ﬁ)eacc. Hence a;, € X;. Because d(x, V) =d(—z,V), we
also know —a;; € X;. AlsoY;, DY, D+ D Yi;;’ so X;, €X;,, C.---C Xq;].c. So for any 5 > l;:, :I:ai,.c € Xy, O

Corollary 1. For any k € [k], conv(+ay, , - ya; ) C X, .

Proof. From Lemma 3, we know +a;,, -+ ,+a; € X; . Combined with Lemma 2, we get the corollary. O
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Lemma 4 (Max Ellipsoid). Let K C R* be a symmetric convex body and E(K) be the mazimum volume ellipsoid
contained in K. For a vector u on the boundary of E(K), i.e.u € bd(E(K)), let K' = conv(K, 2v/ku, —2vku).

Then,

vol (B (K')) _ 13
vol (E(K)) = 10°

Proof. Since E(K) C K, we have
K" := conv (E (K),2Vku, 72\/%11) CK'
So it suffices to prove that

vol (B (K")) _ 13
vol (E (K)) = 10

First, let’s assume that F(K) = By(0, 1), i.e., the unit ball around the origin, and the vector u is (1,0,---,0)" €
By (0,1). By symmetry, we can assume the ellipsoid

E(K") = {ac °

M

We consider the two-dimensional slice first, where u = (1,0)", E(K") = {(z,y)|% + %j < 1}. Direct calculation
shows that
2k

V(z,y) e K"y < ——— +
(z.9) V=TT Vik =1

— z _2VE
where y = — i i
point (2v/k,0) (see Figure 3.2). So for any point on the boundary of E(K"), it also satisfies

2 T 2\/% ?
y =0 <1a2> = <\/4k:—1+\/4k—1>

Simplifying the inequality we get

b 1 , 4k 4k )
— - 2>
<2+4k—1>x TR L

is the line tangent to the unit ball and go across the point (-1- oA 24\%1) and the

To ensure that the quadratic inequality holds, let the determinant equal zero, and we get a? = 4k —b?(4k —1). So,

CE2 2

Y "
—_— 4+ =< - .
{(:c,y)'4k_b2(4k_1)+b2 I}K for b < 1

By symmetry, in k dimensions, we get that E, C E(K") for b < 1.

k
Eb_{ Ak — b24k—1 Z

vol (Ey) = y/(4k — b2 (4k — 1)) b2~2 - vol (B (0, 1))

L\J‘SHM
H,_/

The volume of this ellipsoid is

Let f(b) = (4k — b2(4k — 1))b?~2. Calculate its derivative and let it to be zero, so we get b2 =1 — = <1l

f@ - <1 4’63—1)“ - <(1 4k3—1>4kg_4>Z 24(i>i
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Hence we know .

vol (E;) > 2 (i) " vol (B (0,1)) > %vol (Be (0,1))

Finally for any symmetric ellipsoid F(K) := A'/?By(0,1) and any u = A'?ug on the boundary of E(K),
where ug is the unit vector corresponding to u. There exists an orthogonal matrix, say Q, that rotates ug to
(1,0,---,0)T. That is Quo = (1,0,---,0)". Define an affine bijective transformation T := AY/2Q "z, with
T~ (x) = QA~'/?x. Then

T ((1, 0,--- ,O)T) — AV2QT Quy = AV ?uy = u

T (B (0,1)) ={T (y) |y y <1}
={z|T (x)" T (z) < 1}
—{zleT ATV2QTQA 22 < 1)
={zjzT A7z <1}
=E(K)

So we get T'(E;) C E(K"). Since the ratio of volumes is invariant under affine transformation, we have

vol(E(K")) __ vol(T(E;)) _  wvol(E) 13
vol (E (K)) = vol(T (By, (0,1))) _ vol(By, (0,1)) = 10°

The next lemma gives us a stopping condition.

Lemma 5. Let P = conv(xy,...,x,,) be a polytope in R* with each x; of unit Euclidean length. Then, the
mazximum volume ellipsoid contained in P satisfies

vol (E (P)) < 2V/2e Q/@) vol (By, (0,1)).

Proof. Recall the polar of a convex body P is the convex body defined as
P*={x : (x,y) <1 forall y € P}.
By the Blaschke-Santalo inequality, we have
vol (P) vol (P*) < vol (By (0,1))* .

Next we lower bound the volume of P*. Note that P* is the intersection of exactly m halfspaces, each tangent

to the unit ball. Consider the ball By (0,r) with r = ,/ #7(217”)' By Lemma 6, each halfpace cuts off a cap of

this ball, of volume at most e—(k=1)/2r* ﬁ of the volume of Bg(0,r). Therefore, the volume that is in the

intersection of all m halfspaces is at least vol(By(0,7))/2 and hence, this is a lower bound on the volume of P*.
Using this, we have,

vol (By (0,1))?

1(P) < ———— 212

vol(P) < ST B, (0,m) /2

Furthermore, since 1+ x < e*, we can derive the following and complete the proof.

2lzg_(21n))k:2( /2logk(;2m))k(1+ﬁ)% /1+ﬁ§2@( /210g]€(2m))k

< 2r~*vol (B}, (0,1))
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Lemma 6. (Lemma 4.1 from [Lovdsz and Vempala, 2007])For any ﬁ <t <1 and halfspace H at distance tr

from the origin,
2
vol (By, (0,7) N H) < e~ */2y0l (B (0,7)) .

We can now prove Theorem 4.

Theorem 4 (LLL with Representation Refinement). Consider the lifelong learning setting of input dimension
d, m tasks with k common features. Suppose that the algorithm has access to an oracle that gives a constant-
factor approzimation of Optimization Problem 2.1. Set €4cc = ﬁ for a sufficiently small constant ¢ > 0.

Under Assumption 1, the LLL-RR algorithm learns at most O(klog(log(k)/€)) new features, and the dimension
of the feature space is O(k). The total number of labeled examples to learn tasks to within error € is

O(# log (510 log (%) + £ log (1)) = O(dk'® /e + km/c).

Proof. Let’s first prove the linear case. Since the ground truth feature space lies in a k-dimensional subspace
V* =span(ay,--- ,a,) C R* the span of the true features is R*. Along training, when we deal with the ij-th

N . — €
task, let w;, be the new feature we learn to ensure that the i-th task has error no more than €qc. N TXICESYEOL
where ¢, ¢’ are universal constants defined in Lemma 1 and ¢; is the approximation constant of Optimization
Problem 2.1. WLOG we assume w;, to be a unit vector. By Lemma 1,

€(],CC _ €

ke (e +1)

Denote V;, be the feature subspace after fine-tuning (optimization). Since there exists a k-dimensional subspace V*
satisfying all constraints and the algorithm outputs a constant-factor approximation of Optimization Problem 2.1,
we can get a cij-approximation solution with dimension cok for constants cq,ce. So we know in the end the
dimension of the feature subspace we get is O(k).

d(a;, ,w;, )

Let By (0,1) be the unit ball on the subspace. Denote the set of all possible solutions of the optimization as

= {V|d(w; ,V) < Crégee, Vi < kY. Let X, be all the vectors in the unit ball that is within distance
(c1 + L)eace = 375 to all of the subspaces in Y; , that is X, := = {x € Br(0,1)|d(z,V) < sve 'V €Y, .1 By
Lemma 2 and Corollary 1, we know X;_is a convex set contalmng {£ai,, -+, +a; }. We will show next that
after learning k = O(klog(log(k)/€)) new tasks, X, contains the ball By (0, 1/2VE).

In the initial step, Yj is the set of all subspaces. We naturally have B(0, NP ——) C X since for any « € B(0,¢),
d(z,V) <d(O,V)+d(z,0) < 3o Here O is the origin. So we know vol(X,) > (W) Vo, where 1 is
the volume of the unit ball in R¥. Encountering the iz-th task, the current feature subspaces V;,  cannot
ensure an € error. By Lemma 1, d(a;.,V;. ) > . Hence d(2f7wk )= 37z Which means :I:a\% ¢ Xi .

Consequently, the vector u = u'a;, € bd(E(X;, |)) satisfies |lu]| N w Accordlng to lemma 4, we know that

:i:2\[u>> > EVO]. (Xifc—l)

Also because of the convexity of Xi,, we have X; DO conv(Xikil,:I:ai];). Therefore,
vol (Xlic) 2 B
vol (Xlu ) 10
k-1

The algorithm will terminate when X;, 2 E(X;;) 2 Bk(0, 5 f

C,,. This means that after learning k new features, for any new tasks with weights lie in the same feature subspace
V*, the current features can achieve error less than e. By Lemma 5,we know the volume of E(X k) is upper

vol (conv (Xi;;q’ :taz-fc>) > vol (conv (

’Lk 17

). So for any unit vector a € By(0,1), d(a, Vi) <

K
bounded by 2v/2e (\/ 2105”“) vol(By,(0,1)). It grows by a constant factor 12 whenever we learn a new feature.

So the number of tasks we learn with error €,.. in the algorithm k satisfies:

k k =
€ 13 2log 2k
) (=) <2v?
(2\/E> (10) = z
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Simplify and take the log to both sides, so we will have k — Elog(2 log(2k)) < const + klog(1). This will lead to
k < O(klog(log(k)/€))-

Moreover, the sample complexity [Balcan and Long, 2013] of learning one task with input dimension d up to €
error is O(dlog(1/€)/e). So the sample complexity of our algorithm is

0 (2 oy (1/eoee o 1051 /9 ) +0 (“ 105 1/0))

=0 <dk;/E log (k/€) log (log (k) /€) + k?mlog (1/6))

o m)

€ €

Finally, for the nonlinear case, we consider the kernel of the features. These features live in a potentially
infinite-dimensional space. If we assume there is an oracle to get a constant approximation for the optimization
problem 2.1, the dimension of features will be O(k) in the end. Other bounds follow precisely the same as the
linear case. O

It is noteworthy that the convex set X; (of feature vectors in R*) we keep in the proof is defined to be close
to any possible subspaces that are close to the subspace spanned by new features w;. So our proof is quite
general for any lifelong learning algorithm that dynamically expands the architecture, e.g.the basic LLL algorithm.
Consequently, we can prove Theorem 3 as follows.

Theorem 3 (Basic LLL). Consider the lifelong learning setting of input dimension d, m tasks with k common
features. Let €4cc = ﬁ for a sufficiently small constant ¢ > 0. Under Assumption 1, the basic LLL algorithm,

learns new features at most k = O(klog(log(k)/€)) times and the dimension of the learned feature space is

O(klog(log(k)/€)) for linear features and O(k?log(log(k)/€)) for nonlinear features. The total number of labeled
examples to learn all tasks to within error € is O(@ log(@) log(%)+’“7m log(@) log(1)) = O(dk"® [e+km/€)
for linear features and a factor of k higher for nonlinear features.

Proof. The proof exactly follows the proof of the Theorem 4. Without the refinement of the feature subspace,
the subspace we get is still in the set Y; . Since X; will eventually cover the By(0, ﬁ) after learning
O(klog(log(k)/€)) features, the dimension of the feature subspace is at most O(klog(log(k)/¢)) for the linear
features and O(k? log(log(k)/€)) for the nonlinear features. So the total sample complexity is O(dk"® /e 4+ km/e)
for linear features and O(dk?® /e + k?m/e) for nonlinear features. O

B A Lower Bound for General Lifelong Learning Algorithms

In this section, we show that our sample complexity bound for general lifelong learning algorithms in the linear
setting is asymptotically the best possible, assuming black-box access to a learner for a single linear target.

As a warm-up, we first show that the analysis of our lifelong algorithm is tight.

Theorem 6 (Tight Example). Using the same condition and algorithm as in Theorem 4, the total sample
complexity is Q(dk*® /e + km/e).

Proof. Assume the task vectors a; = e;,1 <i < k — 1, where e; € R* has 1 in i-th coordinate and 0 otherwise.
Assume that our alaorithm accurately learns these k — 1 tasks and returns w; = a; + €4ccar. Then for a new
task’s weight ﬁ Zi;f aza;, a; € {1,—1}. Based on the current features, the error we make on this task is

O(Vkeaee). If we assume that €,.. = w(e/Vk), then we need to learn these 2°~2 tasks accurately as well given
learning any of them will not help with others (except its negative). Then the total complexity will be exponential
with respect to k. So €qe. = O(¢/V'k), and thus we have the sample complexity Q(dk'®/e + km/e). O

Theorem 6 shows that the analysis of our algorithm’s sample complexity is tight for the linear setting. The main
result of this section is a lower bound for general lifelong learning algorithms (Theorem 2). Based on the proof
idea we state in the paper, we will show each step accordingly with the following lemmas.
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Lemma 7. For k orthonormal tasks a; = e;, 1 <1i < k, for any algorithm that learns task i within error ¢;, i.e.,
dp(a;,a;) < €. Let U =span(aq,--- ,ay) be original feature subspace, and V = span(as,--- ,ay) be the learned

subspace. Then there exist feasible outputs a; such that 6(U, V) = Q( Zil €2).

K2

Proof. Since the algorithm learns task ¢ within error ¢;, with Lemma 1, there exists a constant ¢ such that
lla; — a;|| < €;/c. Because we does not consider constant factor, we assume WLOG that ||a; — a;|| < ¢;. Consider
the case where all errors made by the algorithm concentrate on the k 4+ 1 coordinate. Then the features learned

by the algorithm are a; = (?) ,1 <i<k. Denote A= (ay, - ,ar) = ((ﬁ')? columns of which are the task

T
- R R T .
vectors. Denote s = (eq,--- ,ex) . A= (@1, - ,a) = s—]f— . By the definition of the angles between subspace,

we have (U, V) = max O(x, Pyx), where Py is the projection matrix of the subspace V.
E4S

Let € = s = (e, ,e) € U. Since

we have

So we know that (U, V) > 6(z, Pyx) =

V' and the underlying one U is at lease €(

Lemma 8. For any vector € = .._cx;€e;, where S C [k], z; o Bernoulli(1/2). Assume that Vi € S,0 <

i€S

€ < 2\/>ics€r/IS]. Let V = span({a;},i € S), where d; = (?) Then with high probability, 6(x,V) =

Q(\/Zies €).- Z

Tj— € ) e €iTi ifjes

(1- Zf:l €)Y eg€iri ifj=k+1
between & and the subspace V as follows.

Proof. Denote y = Py (x), then y; = . Then we can calculate the angle

(Zies €ixi)2
ZiES xf

(tan (0 (z, Py (x))))* = (1-Yiesed) (Cies i) > i

Dies TP+ (Eies 612) (Zies Eimi)Q —2 (Zz‘es 61"”%’)
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The last inequality is because we learn each task well, so we can assume ), €2 < 1/2. Then the probability

that 0(x, Py (x)) is greater than O(y/>",cg €7) is as follows.

1 1
PO Py (x) > — |Y | =P(tan’0(x, Py (x)) > 5> €7)
16 ' 25
€S €S
P i (Zies €ini) > 1 &
Ziesxz 25 ies
’ 1
=P (ZQ%) 26—4 efof
i€S i€S €S
’ 1
>P (Zéﬂi) 2 GZ‘S|Z :
i€S i€S

By Chernoff bound, for any ¢ > 0,

1 / 2
P Zeil‘ifizqut ‘ 612 Zlfet/2
€S €S €S
Choose t = 4/|S|/8, we have

1 1 B
P E €i36i2§ E €i_§ |S] E el >1-e |S]/128
€S €S icS

Note that with e = />, g €? and 0 < ¢; < 2¢/4/|S] for all i € S, we have
Ze- > 7V|S|
! 2

€.
i€S

e sisa-t s
€S €S €S

2

1 1
> 2| > E b > = E 2
PlO(x,V)> 16 e | >P ( elbz> > 64|S‘ €

€S i€S

Consequently, we have

1 1
b > = o 2
>P ZEleEQZQ 3 \S|Zei
€S €S €S
>1 — —I51/128

O

Lemma 9. Forby,--- by >0, with b = \/Zle b2/k, let b; > b/C for some constant C > 1. Then there exists
a subset S C [k] with |S| > k(1 —p) s.t. for alli € S, we have

2 ) 2
b; < lln ¢ M
p 1-p S|
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Proof. Let S; = {1,--- ,k}. Choose a constant v > 1. We repeat the following procedure. For the j-th step,

we are given a set {x;,7 € Sj}, Let Sji1 = {i € S,bi < 7/ e, b2/1S;]}. The algorithm terminates when

S; = Sjt1. Denote p; =1 —|S;41|/|5;]. For the j-th step, we have

be: Z b} + Z b; > Z b§+pﬂzzb§

€S 1€Sj 41 1€S5;\Sj41 €S 41 i€S;
This derives that
R<(1-pA2) Y p2<e??” S 32
P> Py P > i
i€Sj41 i€S; i€S;

Accumulating all J steps, we have

2Nl 2N
Yo < e =i Py b = e R P
€Sy i€S1

From the condition that b; > b/C, we have

S50 < 0 8 <o Kl

1€Sy

From the definition of p;, we know that

J—1 J—1
1Syl=k [[Q=p)>k|1=) b
j=1 j=1
Denote p = Z;;ll pj, then we have
1-p<e P02

Choose v = 3 L ln +—, then we get a set S; with |S;| > k(1 — p) satisfying for all i € Sy,
b; < ln ZZES’ .
p 1— 1551

We now restate and prove Theorem 2 as follows.

Theorem 2 (Lower Bound). Suppose that a lifelong learner has black-box access to a single task learner that
takes an error parameter € as input and is allowed to return any vector that is within distance € of the true target
unit vector, using ©(d/¢) samples in RY. Then, there exists a distribution of m tasks, m = 29(K) such that for
any lifelong learning algorithm, WHP, the total number of samples required to learn all m tasks up to error € is

Q(dk'5 /e + km/e).

Proof. Denote the underlying feature subspace as U. Consider a sequence of tasks with first k tasks the basis of
the feature subspace, i.e., a; = e;,1 < i < k. The lifelong learning algorithm learns task ¢ up to error ¢;, and get

k features @y, - - -, ag. If the number of tasks for which €; < /2 Zz | €2/3k is more than k/4, then we have that
the total sample complexity is already Q(dk!'-5/ \/Zle €?) and the theorem follows. So we assume that for at
least 3k/4 tasks, we have

€ >

k
2 Z €2 /3k.
i=1

Calling this subset 1, it follows that for each i € S1, we have €; > (/> s €2/2|S;|. Next, applying Lemma 9
to the set S with cardinality at least 3k/4, using p = 1/3 and C = /2, we get that there exists a set S C S
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with |S] > k/2 and ¢; < 24/ ZlI%SI * for all i € S. Consider the span V := {a;,7 € S}. By Lemma 7, we know

there exists feasible a; such that (U, V) = Q(1/>;cq €7).

Next we consider the following tasks as a; = > ;g ji€;,j > k + 1, where zj; tid Bernoulli(1/2). There are 2¥/2
such tasks. By Lemma 8, we know that with high probability each new task is far from the learned subspace, i.e.,

1 e~ k/256
P H(aj,V)z—G /;e >1—

Assume that the single-task learning algorithm applied to this new task also induce error in the (k 4 1)’st
coordinate. Say the new learned feature a; = (a;-r, > ics bjici) . Then the new learned feature is in the learned
subspace V', which means that learning new tasks does not improve the learned subspace.

Since each new task is generated randomly, there are exponentially many new tasks that are far from the learned
subspace but make no improvement by learning them. Therefore to ensure each task is learned with error ¢, the
only way is to let O(U,V) < e. This implies that Y, g€ < ce®. By the generalized Holder inequality [F1nne1,

1992], we have
S Iv iy (S) = (5)

€S v ies €S

So Zlek > 'k!% /e. The number of the samples needed to learn the tasks in set S is ZzGS = Q(dk*® /e).
So the overall sample complexity for the sequence of tasks are Q(dk*® /e + km/e). O

C Formal Algorithm of LLL-RR

For completeness, we describe the formal algorithm of LLL-RR. Different from the basic LLL algorithm, we are
memorizing a list ws, - -+, wy, —all along with the algorithm. Each time when we need to learn the new features
Wipo w1 Wiy vy, We add them to the list, and feed the list to Algorithm 2 to get a new feature subspace.
The formal algorithm is in Algorithm 4.

Algorithm 4 Lifelong Learning Algorithm with Representation Refinement (LLL-RR)
Input: d,m,k, labeled examples of m tasks , threshold parameters €., €.

1. Using data from the first task to learn a set of features Wi() = (w1(-), - , W, (-)) " and a linear function
¢; such that & — sign(é] Wi (z)) has error smaller than €.
/* Number of features 1 <ky<k. For linear features, ko =1. */

Let k = 1. Set the feature subspace Vi = Wi, and the temporary features V; = Wj.
2. For the task i =2,--- ., m
e Using the data from the i task, attempt to learn the linear function ¢; using the temporary features
Vi1
e Check whether x — sign(¢, V;_1(z)) has error less than e.
(a) If yes, set V, =V, .. // Small error with current features.

(b) Otherwise, learn a new set of features W;(-) and a linear function & such that the predictor
x — sign(¢] Wj(x)) has error less than €.
Update the feature subspace V; = (V;; W;), and feed into Algorithm 2. It returns the refined
subspace V. Set the temporary features V; = V. Let k = k -+ 1.
return m predictors: x — sign(é; Vi(x)) , 1 <i < m.

D Extensions to Task-Incremental Regression and Class-Incremental Learning

In our main text, we study the setting of solving m tasks of binary classification incrementally. The classification
error is defined as err(l) = Pz yy~pll(z [(z) # y]. By Assumption 1, we know the task error is small if and only
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if the parameters are close to each other. Now we would like to extend to task-incremental regression and
class-incremental classification by connecting the parameter’s o distance to the error of the model.

Task-incremental regression. Consider the regression tasks shared with low-dimensional common features.
For i € [m],y = (¢},0*(x)) + €;. The regression error is err(l) = E(g )~ p[/ll(z) — y||3]. We can further weaken
our assumption to ¢ < E[mwT] < col for 0 < ¢1 < ¢g. Then for any unit vector u, v, we have

Eyr (@@= v72)"] = Eayr [(u—v)22" (u—-v)]

So we get a lemma similar to Assumption 1 that ¢;||u — v||? < Egepllu’z — v x||? < cofu — v||?, which is
sufficient for analysis.

Class-incremental classification. Let X = R? be the input space and Y = {1,2,--- ,m} be the class labels.
We assume that the labels can be recovered by passing the input through a linear/nonlinear layer and then taking
the maximum of m linear combinations. Formally, the label is given by

l(x) = argmax;c(,, (¢}, 0" (2))
The classification error is err(l) = Pz )~ pli(x) # y]. Noticing that, when we meet a new class, the classifier
should determine whether the label belongs to the current class or not. In this sense, we regard the problem as a
binary classification. To get the negative samples in the current class, we also need a small proportional of data
from previous classes. Practically, we propose the heuristic lifelong learning (H-LLL) algorithm in Section 2.3 to
solve the class-incremental learning. Experiments in Section 4.2 complement our results.

E Another Approach — Theoretical Guarantees for LLL

Here we give a simpler analysis for the basic LLL algorithm, along the lines of [Balcan et al., 2015]. The result is
weaker than Theorem 3, but we include the proof here for completeness, along with an extension to nonlinear
features.

Theorem 7 (Basic LLL). Let v = ce and €gec S-t. 4]4;6% + v = de for sufficiently small constants ¢, > 0.
Assume that all targets share k common features. Then, under Assumption 1, and sequential presentation of the
tasks in any order, the basic LLL algorithm will incrementally learn a representation of dimension k for linear
features and k2 for nonlinear features with error at most € on all tasks. The total number of samples used by
the algorithm is O(dk®log(k/e)/e® + kmlog(1/e)/e) = O(dk?/€* + mk/e) in the linear setting and a factor of k
higher in the nonlinear setting.

Before we prove the theorem, we define the v-separated term. We use the definition y-separated from [Balcan et al.,
2015] that a subsequence of vectors a;,,a;,,--- is y-separated if for any a;;, 0(a;,,span(a;,,--- ,a;;_,)) > 7.
Define the ~y-effective dimension of aq, - - , a,, as the size of the largest y-separated subsequence. Note that when
v = 0, v-effective dimension is exactly the dimension of the spanned subspace. We prove Theorem 7 by showing
two facts: each target is far from the span of previous ones; we learn the new target accurately. (Lemma 11). We
start with a helper lemma (Lemma 10).

Lemma 10. Let w,v be two unit vectors in R* and U be a subspace. Then,

) sin f(w, v)
< .
sinf(span(U, w), span(U, v)) < e g T i 0. O]

Proof. If w € U or v € U, O(span(U, w),span(U, v)) = 0. The inequality becomes trivial. Now we assume that
w,v ¢ U. From the symmetry of w and v, we prove the following and then replacing v with w leads to the
original inequality.

sin f(w, v)
~ sinf(v,U)

By definition, Jx € span(U,w) s.t. 0(x,span(U,v)) = (span(U,w),span(U,v)). Here x is a combination
of w3 and w, wu; is some vector in U. Using the fact that 6(zx,span(U,v)) < 60(z,span(ui,v)) <

sin f(span(U, w), span(U, v))
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f(span(uq, w),span(ui,v)) and O(v,U) < 0(v,uy), it is sufficient to prove that

sin f(w, v)

1 <
sin f(span(uy, w), span(u, v)) Sn 60, uy)

Denote a = f(span(uy, w),span(uy,v)), = 0(v,u;). WLOG we assume u; = (1,0,0) and span(u;,w) is the
x-y plane. Then we can write v = cos(8)u; + sin(8)vy, where v; = (0, cos(a),sin(«)). Since sinf(w,v) >
d(v, z-y plane) = sin(«) sin(S), we get the lemma proved.

O
Lemma 11 (Kernel Subspace). Let U, Vi be two subspaces of RY. Let Uy = span{yi, - ,y;}, Vi =
span{yi,...,yr}. Let e,v >0 and € < 42/(10k). Assume that
1. sinO(y;,span{y1,...,Yi—1}) =7, fori=2,--- k.
2. sinb(y;,y) <e fori=1,--- k.
Then we have sin0(Uy, Vi) < 2ke/vy. In other words, for any point y* € Uy, there is a point y € Vi, s.t.
2¢k
sinf(y*,y) < —.
~y
Proof. Here we use the strong induction on a stronger version of the conclusion where Uy, = span{W,y{, - ,y;},

Vi = span{W,y1,...,yx} for some fixed subspace W. The base case is k¥ = 1. This follows directly from
Lemma 10 with U = W, w = y,v = y*. Now we prove the induction step on k with strong hypothesis. Let
U] = span(Uy_1,y). By Lemma 10 and induction hypothesis, we have

sin 0(yx, y5) 2(k—1)e
sin 0(yx, Ur—1) v

sin (Uy, Vi) < sin (U, Uy,) + sin0(U;,, Vi) <

By triangle inequality and induction hypothesis, we further have
. . . 2e¢(k —1
sin 0(yx, Ug—1) > sinO(yg, Vi—1) — sin@(Vi_1,U—_1) > v — (’y)

Combining the two inequalities, we get

, € 2(k—1e € ( v? ) 2ke
sinf(Uy, Vi) < + = — +2k—-1)) < —
(U ) y— 2= g v \7* = 2(k — 1)e (k=1 B

Now we put them together to analyze Algorithm 1.

Proof. We consider the kernel of nonlinear features o (x). These features live in a potentially infinite-dimensional
space (or exponential in d dimensional space if, e.g., the input is from the Boolean hypercube). Let U be the span of
the nonlinear features (viewed as vectors) in the model used to label data.The 7-effective dimension of U is at most
k. Let yf = ¢ To*(x) = al(x),y; = ¢] o(x) = a;(x). WLOG let’s assume a;, a’ be vectors of unit length. From
the algorithm, if the current task ¢ has already achieved e error by current features, it’s done. Otherwise, we learn a
new set of kg features and a linear combination whose error is at most €,... Denote the indices of tasks that we learn
new features as iy, 4z, - - ,i;. Encountering the task iz, denote V; = span(a;,,--- ,a; ),U; =span(aj ,---,a; ).
We will prove by induction that for any & € [k], (1) 0(ai . Vi) =7 (2) 0(a ,U;_,) > -

The base case k = 1 holds immediately. For the inductive step k> 1, the task i; cannot achieve € error with
the current features V;_,. By Assumption 1, G(a;-*fc, Vi_,) > €/ca. After learning a new set of features to ensure
error less than €,c., we know there is a new linear combination a;, such that H(a:‘fc,aik) < €gee/c1- So by triangle
inequality,

0 (a'i,;v ‘/fc_l) Z 6/02 - Eacc/Cl Z Y
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So we have shown that (1) holds for .

To prove (2), we suppose for contradiction that O(a;;,Ufc_l) < 7. From induction hypothesis, for any j € [k — 1],
sinf(a;,, Vj_1) > v/2. By construction, we also have for any sinf(a;;,a; ) < €scc/c1. Apply Lemma 11, we have

O(U;_1, Vi) < 8eaeck/v. By triangle inequality, we further have

*
i

0 (az, Vi) <0(ai Ui ) +0 (U, Vi) <7+ deack/ (e17) < efes

By Assumption 1, there exists b;, € V;_, with error less than ¢, and thus leads to contradiction. So (2) is also
proved. Furthermore, since we have assume that the y-effective dimension of the true targets is at most k, we
have k < k. So the size of the internal representation is k' = O(kky).

The sample complexity for learning one task in d-dimension up to error € is O(dkglog(1/€)/€). Here we learn
O(k) such tasks. All other tasks can be learned using the features of dimension O(kko). Therefore the total
sample complexity is O(dkko/€ace l0g(1/€qce) + kkomlog(1/e)/€) = O(dk?ko/€? + kkom/e).
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