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Abstract. A unified solution framework is proposed for efficiently solving conju-
gate fluid and solid heat transfer problems. The unified solution is solely governed
by the compressible Navier-Stokes (N-S) equations in both fluid and solid domains.
Such method not only provides the computational capability for solid heat trans-
fer simulations with existing successful N-S flow solvers, but also can relax time-
stepping restrictions often imposed by the interface conditions for conjugate fluid
and solid heat transfer. This paper serves as Part I of the proposed unified solution
framework and addresses the handling of solid heat conduction with the nondi-
mensional N-S equations. Specially, a parallel, adaptive high-order discontinuous
Galerkin unified solver has been developed and applied to solve solid heat transfer
problems under various boundary conditions.
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1 Introduction

Conjugate fluid and solid heat transfer problems exist in many areas of science and
engineering, such as turbomachinery, heat exchangers, and semiconductor devices.
A conventional way of solving the conjugate heat transfer problem is to combine
the Navier-Stokes (N-S) equations for the fluid with the Fourier-Biot (F-B) equation
for the solid [6, 19], and two stand-alone solvers representing each physic are loosely
coupled by exchanging physical parameters through the domain interface conditions
[22,24–26]. However, coupling in this way often leads to stability constraints and very
restrictive time steps [4, 20], which makes the approach less efficient. The other ap-
proach is to develop a fully coupled discretization method modeling both the solid
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and the fluid with appropriate interface conditions. However, the production of a sin-
gle code with the strong coupling of the N-S and the F-B equations can be as much
work as writing individual codes for separate fluid and solid applications, and is hard
to utilize advanced numerical capabilities of the existing fluid and solid solvers [8,17].

For conjugate heat transfer with incompressible flows, the solid heat transfer phe-
nomena can be modeled either by the F-B equation or using the incompressible N-S
equations also in the solid domain. The latter strategy is possible since the energy
equation in the incompressible N-S equations decouples from the continuity and mo-
mentum equations. However, the situation is essentially different for the compressible
N-S equations where the energy equation does not decouple from the continuity and
momentum equations. In [18], Nordström et al. present the similarity condition for
the compressible N-S equations and the F-B equation. In their work, the velocities are
uncoupled and the fluid and the solid domains are explicitly coupled by continuity
of temperature and heat fluxes, but this approach still suffers from stability issues.
The goal of this work is to develop a unified solution solver which can fully inherit
the advanced computational capabilities of the existing N-S flow solver, resulting in
an all-variable coupled method to efficiently simulate conjugate fluid and solid heat
transfer problems. In the proposed method, the unified solution in both the fluid and
solid domains is solely governed by the full compressible N-S equations in a nondi-
mensional form. It belongs to the fully coupled discretization of fluid and solid which
can thus relax the time step restriction existing in the loose coupling methods. Addi-
tionally, a new capable solid solver equipped with state-of-the-art computational fluid
dynamics (CFD) methods can be obtained with the proposed unified solution strategy.

This paper serves as Part I of the proposed unified solution framework and focuses
on applying the compressible N-S equations to model and solve the solid heat trans-
fer problems. Various advanced CFD methods with fast exponential integrator-based
time marching [9–16] can be utilized to compute the solid solutions and provide more
computational capabilities than traditional solid heat transfer solvers. The capabilities
of using an adaptive high-order discontinuous Galerkin (DG) N-S solver for various
solid heat transfer problems will be tested with convection and radiation effects.

The remaining parts of this paper are organized as follows. Section 2 presents the
theory and equations of the unified solution for solid heat conduction, and Section
3 introduces the numerical methods used in the existing N-S flow solver. Several
solid heat transfer problems are tested in Section 4 to demonstrate the capability of
the proposed method. Some concluding remarks are finally given in Section 5.

2 Governing Equations

The full, compressible N-S equations govern the transport processes of mass, momen-
tum, and energy, where the energy equation is proved mathematically connected to
the F-B equation [18]. We will show in this section that by using proper nondimen-
sionalization, initial and boundary conditions, the F-B equation is also physically con-
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sistent with the energy equation of the N-S equations.

2.1 The compressible Navier-Stokes equations

In the proposed unified solution of conjugate fluid and solid heat transfer, the problem
is solely governed by the conservative form of the compressible N-S equations with a
source term as follows:

Ut +∇ · Fc = ∇ · Fv + S (2.1)

where the conservative vector U, the convection flux Fc, the viscous flux Fv and the
source term S are respectively written as

U =

 ρ
ρv
ρE

 , Fc =

 ρv
ρv⊗ v + p I

ρvH

 , Fv =

 0
τ

τ · v− q

 , S =

 0
0
Q

 .

(2.2)
Here ρ is the fluid density, v the fluid velocity, E the total energy, H the total en-

thalpy, q the fluid heat flux vector, and Q the volume heat source. The viscous stress
τ is given by

τ = µ

[
−2

3
(∇ · v)I +∇v + (∇v)T

]
(2.3)

with I denoting the identity tensor. The heat flux is given by

q = −k∇T, (2.4)

where T is the temperature and k is the thermal conductivity. Additionally, the equa-
tion of state of perfect gas is used to close the system, namely,

p = ρRT, (2.5)

where R = Cp − Cv is the specific gas constant with Cp and Cv being the specific heat
capacity for constant pressure and volume respectively.

2.2 Transformation from the N-S equations to the F-B equation

In the compressible N-S equations (2.2), the first two equations govern the transport
processes of mass, momentum, and the last energy equation is similar to the F-B equa-
tion which governs the solid heat transfer phenomena. Nordström et al. [18] proved
that the F-B equation and the energy component in the Navier-Stokes equations pro-
duces exactly the same results only if a similarity condition is hold. Alternately, physi-
cal transformations are also possible to transform the energy equation to the F-B equa-
tion. Considering rigid solid body with zero velocity in the Eulerian reference frame-



4 Shu-Jie Li, Lili Ju

work, (2.2) becomes

U =

 ρ
ρv
ρE

 , Fc =

 0
p I
0

 , Fv =

 0
0
−q

 , S =

 0
0
Q

 . (2.6)

To fully recover the F-S equation, the fluid density ρ and thermal conductivity k can
be redefined respectively as

ρ := ρs
Cs

Cv
, k := ks, (2.7)

where the subscript s is used to denote the variables and parameters of solid domain
problem. Specifically, Cs is the solid specific heat capacity, ρs the solid mass density
and ks the solid thermal conductivity. The solid mass density ρs is constant in time
but can be spatially varying according to the mass conservation equation of (2.1). By
substituting (2.7) into (2.1), the energy equation can be transformed to the F-B equation
of the form:

∂ (ρsCsT)
∂t

= ks∇2T + Q. (2.8)

This derivation confirms the similarity condition [18] of the compressible N-S equa-
tions and the F-S equation in physics. It can be easily verified that the parametric
relationship (2.7) that substitutes the fluid variables with the solid ones also satisfies
the similarity condition exactly. As a consequence, in theory, one can obtain the solid
solutions by solving the compressible N-S equations despite that there are still some
unsolved problems such as non-zero velocity and stability issues [18].

2.3 Solid heat conduction solutions of the nondimensional N-S equations

Nondimensionalizing the flow-field parameters can remove the necessity of convert-
ing from one unit system to another within the unified solver and facilitate multi-
physics computations with input nondimensional numbers. For the 3-D compressible
N-S equations (2.1) for conjugate heat transfer, parameters from both the fluid and
the solid domains will be chosen for obtaining a unified solution form. For solid heat
transfer problems, the nondimensionalization is performed as follows

ρ =
ρ̂

ρeff
, v =

v̂
a0

, x =
x̂
Lr

, Lr =
L̂

Lm
, T =

T̂
T0

,

t =
α0 t̂
L2

r
, p =

p̂
ρa2

0
, E =

Ê
a2

0
, ks =

k̂
k0

, µ =
µ̂

µ0
.

(2.9)

The superscript ˆ indicates the dimensional quantity. The effective fluid density ρeff =
ρsCs/Cv is used according to (2.7); The dimensional reference states T0 and a0 denote
the fluid reference temperature and sound speed respectively; k0 is the solid thermal
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conductivity at the reference temperature T0, α0 = k0
s /(ρsCs) is the solid thermal dif-

fusivity , L̂ is the characteristic length of the physical problem, and Lm corresponds
to the nondimensional characteristic length of the generated mesh, and µ0 is the fluid
viscosity at T0. With the above nondimensionalization process (2.9), the equation of
state (2.5) is transformed to

p =
ρT
γ

, (2.10)

where the ratio of specific heats γ is defined as γ = Cp/Cv. Let us define the scaled
viscosity µ′ by

µ′ =
|M|
Re

µ. (2.11)

We introduce three nondimensional numbers hereafter, namely, the Prandtl number Pr,
the Mach number M and the Reynolds number Re

Pr =
µCp

k
, M =

v0

a0
, Re =

ρ|v0|Lr

µ̂0
.

Then the nondimensional compressible N-S equations can be expressed in the same
form of (2.1) and (2.2), namely,

∂ρ

∂t
+∇ · (ρv) = 0,

∂ (ρv)
∂t

+∇ · (ρv⊗ v + p I) = ∇ · τ,

∂ (ρE)
∂t

+∇ · (ρvH) = ∇ · (τ · v− q) + Q,

(2.12)

where the viscous stress is given by

τ = µ′
[
−2

3
(∇ · v)I +∇v + (∇v)T

]
, (2.13)

and the nondimensional heat flux of the energy equation is written as

q = − µ′

(γ− 1)Pr
∇T = − γ µ′

(γ− 1)Pr
∇
(

p
ρ

)
. (2.14)

And Q is a nondimensional volume heat source which is case-dependent.

In theory, the nondimensional compressible N-S equation can be recovered to the
nondimensional F-S equation (2.8). For the F-S equation (2.8), applying the same
nondimensionalzation (2.9) leads to the following equation:

∂
[

ρT
γ(γ−1)

]
∂t

=
1

γ(γ− 1)
ks∇2T + Q. (2.15)
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It can be verified that the energy evolution of the nondimensional compressible N-
S equations (2.12) can degenerate to the same form (2.15) under the transformation
relationship of Section 2.2.

Remark 2.1. According to (2.11), if |M| = 0, the scaled viscosity µ′ is zero and also inde-
pendent of the Reynolds number Re. But if |M| 6= 0 , the recovery error from the N-S to the
F-S equation can be large for a small Reynolds number. The time marching of the momentum
equation could yield non-zero velocity solutions with non-zero shear stress, which eventually
affect solver stability. In [18], solutions of small velocity are obtained so that the solutions only
approximate the solid solutions of the F-S equation with certain recovery errors. A hard set-
ting of null velocity leads to stability issues which are still unsolved in [18]. In our work, the
velocity is allowed to be zero and the recovery to the F-S equation can be fully accomplished.

2.4 Initial condition

The solution vector of the compressible N-S equations in both the fluid and solid do-
mains can be written in a unified form

U =

 ρ
ρv
ρE

 =

 1
M

1
γ(γ−1) +

1
2 |M|2

 , (2.16)

which can be solved by using regular time marching methods. For both the fluid and
the solid, ρ and T are alway unit in the initial fields according to the nondimensional-
ization (2.9). With a zero Mach number, the initial solid field U0 is given by

U0 =

 ρ
ρv
ρE

 =

 1
0
1

γ(γ−1)

 . (2.17)

Note that during the time-marching iteration, the conservative variables ρ and ρv also
participate in the computation of the solid field under the unified solution framework.

2.5 Boundary conditions

Five types of boundary conditions relative to solid heat transfer are included in the
unified solution solver, which can be applied to both the fluid and the solid domains.
They are isothermal, adiabatic, heat flux, heat convective, and surface radiation bound-
ary conditions, in which the radiation boundary condition is provided for surface ra-
diation computations. All the boundary conditions are imposed implicitly in the same
way as the original N-S flow solver, see reference [12] for details. The boundary con-
ditions are expressed in a nondimensional form as shown in Table 2, where the Biot
number (Bi) is introduced for the convection boundary condition, namely, Bi = ĥLr/ks

0;
qs is the normal heat flux and ˙̂qe is the dimensional heat flux due to exterior heating up
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such as solar radiation; T and Tref are nondimensional, and the latter one denotes the
reference temperature. Note that the nondimensional expressions must be computed
correctly otherwise unphysical solutions might occur.

Table 1: Five types of boundary conditions in the nondimensional form.

B.C. Type Nondimensional form

Adiabatic qs = 0

Isothermal Tbc = Tw

Heat flux qs =
1

γ(γ−1)ks
∂T
∂n

Heat convective qs =
1

γ(γ−1)Bi (T − Tref)

Surface radiation qs =
ε

γ(γ−1)
σLr
k0T0

[(
T̂4 − T̂4

ref

)
− α ˙̂qe

]

3 Numerical Methods

A parallel, high-order adaptive discontinuous Galerkin (DG) compressible N-S flow
solver has been developed and tested for many benchmark problems in [9–14]. We
keep the algorithms untouched so that all existing CFD methods implemented in this
package can be utilized for solid heat conduction and conjugate fluid and solid heat
transfer simulations. This section gives a brief overview of the basic spatial and tem-
poral discretization schemes used in the solver. Without loss of generality, the pro-
posed unified solution framework can be applied to other CFD solvers as well.

3.1 Modal discontinuous Galerkin method for spatial discretization

A modal discontinuous Galerkin method is used for spatial discretization in the solver
[9,11]. The DG discretization of the N-S equations (2.1) is defined on a partition of the
computational domain Ω of arbitrary shape and can handle curved elements. An
adaptive discontinuous Galerkin method is applied, which seeks a variable-order ap-
proximation U in each element E ∈ Ω with a k-order polynomial, namely

U(x, t) =
N(k)

∑
j=1

uj(t)ψj(x), (3.1)

where {ψj}N(k)
j=1 is a basis for Pk(E), the space of all polynomials defined on E with

order no more than k. An orthonormal basis set expressed in the Cartesian coordinates
is used for supporting arbitrarily shaped elements [9, 11] and it also facilitates the
implementation of adaptive computations [15]. The adaptive approximation can be
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simply obtained by adding or removing terms of (3.1) in the orthonormal basis set
with cell order k stored elementwisely.

Next, by multiplying Eq. (2.1) with the adaptive-order basis functions, a weak form
is obtained as∫

E
ψiψjdx

duj

dt
= −

∫
∂E

ψiF̃ · n̂ dσ +
∫
E
(F ·∇ψi + ψiS)dx := Ri, (3.2)

where Einstein’s summation convention is used. Here n̂ denotes the outward unit
normal of the surface element ∂E . The flux terms containing the inviscid flux F̃c and
the viscous flux F̃v are defined as

F̃ = F̃c
(
u±h
)
+ F̃v

(
u±h , (∇huh + δf )

±) , (3.3)

where F̃c is computed by a Riemann solver with the two-side variables u±h on the sur-
face, and F̃v can be computed by several optional DG schemes [1, 5, 21]. In the current
work, the second approach of Bassi and Rebay (BR2) [1] is used, which introduces the
local and the global lifting operators δf and δ. The local lifting operator can be solved
by using Galerkin projection from each element E to the surface ∂E∫

E
ψ · δf dx =

∫
∂E

ψ · ({u} − u+
h )dσ, (3.4)

where the average operator {a} = 1
2 (a+ + a−) is used. In the BR2 scheme, the global

lifting operator is used for volume integrations and the local lifting operator is used for
facewise integrations. The global lifting operator is linked to the local lifting operator
in the following way

δ = ∑
∂E

δf . (3.5)

The volume integration terms of (3.2) containing the global lift operator can be com-
puted as

F = Fc (uh) + Fv (uh, (∇huh + δ)) . (3.6)

The implementation of exponential integrator-based time integration schemes for the
BR2 formulation uses the same analytical global Jacobian as in [12, 13], which is com-
posed of variable-order elemental Jacobians for both the fluid and solid domains.

3.2 Exponential time integrator

Exponential integrators [2, 3, 7] have widely been studied as effective tools for the
time marching of various evolution problems in science and engineering in the past
decades. The Predictor-Corrector EXPonential time integrator scheme (PCEXP) was
proposed in [11] for fast time integration of the unified system of the fluid and the
solid domains. The PCEXP scheme allows large time steps and is found to be efficient
for both steady and unsteady flow computations [10, 12–14].
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Let us start with the following ordinary differential system

du
dt

= R(u), (3.7)

where u = u(t) ∈ RK denotes the solution vector, R(u) ∈ RK is the right-hand-
side term obtained by the DG discretization, and K is the total degree of freedom of
the solution. Let us consider u(t) in the interval of one time step, i.e., t ∈ [tn, tn+1].
Rewriting the right-hand-side term of (3.7) leads to

du
dt

= Jnu + N(u), (3.8)

with the Jacobian matrix

Jn =
∂R(un)

∂u
,

and the remainder part
N(u) = R(u)− Jnu.

Thus, Eq. (3.8) admits the following solution

un+1 = exp(∆t Jn)un +
∫ ∆t

0
exp ((∆t− τ) Jn)N(u(tn + τ))dτ, (3.9)

where the matrix exponential is defined as

exp(−t Jn) =
∞

∑
m=0

(−t Jn)
m

m!
(3.10)

The PCEXP scheme [12] that approximates (3.9) is given by

u∗ = un + ∆t Φ1(∆tJn)R(un), (3.11)

un+1 = u∗ +
1
2

∆t Φ1(∆tJn) [(N(u∗)−N(un)] , (3.12)

with the matrix function Φ1defined as

Φ1(∆tJn) :=
J−1

n
∆t

[exp (∆tJn)− I] , (3.13)

where I is a K×K identity matrix. The PCEXP scheme behaves like an implicit scheme
and is efficient for simulating both steady and unsteady flows [10–12]. The time ad-
vancement procedure using PCEXP in the solid domain is identical to that of the orig-
inal CFD solver. For solid heat transfer, the time step size is often controlled by the
Fourier number Fo, namely,

∆t = Fo
h2

α(p + 1)2 , (3.14)
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where h denotes the spatial mesh size, α the thermal diffusivity, and p the spatial order
of accuracy. To use large time steps for the PCEXP scheme, a dynamically increasing
Fourier number law is taken which is similar to the CFL number evaluation strategy
presented in [11]. The resulting solid solver is found to be stable for very large time
steps with a Fourier number up to 108, as shown in Section 4.4.

4 Numerical Results

In this section, we first compare numerical results obtained by solving the three-
dimensional compressible N-S equations with corresponding analytical solutions of
the one-dimensional F-B equation and verify their accuracy in Cases 4.1 - 4.3, where
the spatial order k or DG (Pk) is chosen to be equal to the order of the exact poly-
nomial solutions. For Case 4.4, the exact solution is non-polynomial and the conver-
gence orders are computed to verify the high-order numerical feature for solving solid
problems. Finally, a three-dimensional heat sink problem is presented in Case 4.5 for
demonstrating the feasibility of using the adaptive high-order unified solution solver
for solid heat conduction applications.

4.1 Verification of heat flux boundary condition

The heat flux boundary condition is tested with a steady one-dimensional solid heat
conduction problem with constant thermal conductivity ks = 400 W/m ·K and no
heat generation in the medium. We take the left wall to be at temperature Tw = 300
K at x = 0 and the heat flux boundary condition with heat flux of q = 20W/cm2 at
x = L = 0.028 m is applied. The analytical solution of this problem is governed by the
following simplified heat conduction equation

d2T
dx2 = 0. (4.1)

and the analytical solution is given by

T(x) = −Ax + Tw, (4.2)

where A = q/ks. We compute a numerical solution with the 3-D compressible N-
S equations discretized by DG (P1) on a single cell. As one can see from Fig. 1, the
numerical solution approximates the exact solution in high precision in the computa-
tional domain with errors floating around 10−14.

4.2 Verification of convection boundary condition

The convection boundary condition is often essential for simulating conjugate heat
transfer problems. To test the unified solution solver along with the convection bound-
ary condition, the follwoing one-dimensional solid heat conduction problem (4.3) with
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Figure 1: The numerical solution (left) and its relative errors (right) in Case 4.1.

volume heat source Q = 5× 105 W/m3 is considered:

k
d2T
dx2 + Q = 0. (4.3)

Here we take the left wall to be at temperature Tw = 300 K at x = 0 and the convection
boundary condition −ks

∂T
∂x = h (T − T0) is applied at x = L = 1 m. The thermal

conductivity ks = 400 W/m ·K, the heat transfer coefficient h = 600 W/m2 ·K and
T0 = 273.15 K. The analytical solution of this problem is given by

T(x) = −1
2

Ax2 +

(
T0 − Tw

1 + s
+

2s + 1
s + 1

A
)

x + Tw, (4.4)

where A = Q/ks and s = ks/h. We compute the solution with DG (P2) for matching
the exact quadratic solution (4.4). Again, the simulated solution approximates the
exact solution with high accuracy as shown in Fig. 2, and the relative errors are almost
invisible in the global and the local error floats.
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Figure 2: The numerical solution (left) and its relative errors (right) in Case 4.2.
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4.3 Verification of radiation boundary condition

Apart from the usual boundary conditions considered above, the radiation boundary
condition is also provided in the unified solver. The radiation boundary condition is
tested with a solar heating wall problem. Consider a large plane wall of thickness
L = 0.06 m and thermal conductivity ks = 1.2 W/m·K. The wall is covered with white
porcelain tiles that have an emissivity of ε = 0.85 and a solar absorptivity of α = 0.26.
The Stefan-Boltzmann constant σ = 5.670374419 × 10−8 W·m·K−4. The inner wall
surface has a temperature of T1 = 300 K while the outer surface is exposed to solar
radiation that is incident at a rate of q̇e = 800 W/m2. The reference temperature
of radiation is at Tr = 0 K. This benchmark problem is governed by a steady heat
conduction equation

d2T
dx2 = 0, (4.5)

with isothermal and radiation boundary conditions

T(0) = T1,

−ks
dT(L)

dx
= εσ

[
T4(L)− T4

r

]
− αq̇e.

The analytical solution of this problem can be expressed as

T(x) =
1
ks

(
αq̇e − εσT4

L

)
x + T1, (4.6)

which is the solution for the variation of the temperature in the wall in terms of the
unknown outer surface temperature TL. At x = L, the equation (4.6) becomes

TL =
L
ks

(
αq̇e − εσT4

L

)
+ T1. (4.7)

Finally, the temperature solution (4.6) can be closed with TL numerically solved from
the nonlinear equation (4.7). The numerical solution is computed with DG (P1). One
more time, although one cell is used for the computational domain, the numerical
solution agrees very well with the exact solution, as shown in Fig. 3 (left). The local
errors float around 10−14 along the computational domain as demonstrated in Fig. 3
(right).

4.4 Heat conduction of a hollow cylinder

In this case, the convergence order of accuracy of the developed unified solver is tested
on a 3-D solid hollow cylinder problem. The isothermal boundary condition is im-
posed on the inner and the outer cylinder surfaces with Ti = 1 and To = 5 at radius of
ri = 1 and ro = 2, respectively. The 3-D hollow cylinder is obtained by extruding the
2-D annular surface of the xy-plane with ∆z = 1. The periodic boundary condition is
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Figure 3: The numerical solution (left) and its relative errors (right) in Case 4.3.

imposed on the two annular surfaces. Quadratic curved elements are used for repre-
senting boundary curvatures of the inner and the outer cylinder surfaces. The exact
solution of this problem is given by

Texact(r) = To + (Ti − To)
ln r− ln ro

ln ri
ro

, (4.8)

where r denotes the horizontal radius. This exact solution is used to study the conver-
gence rate of numerical solutions by measuring the L2 norms of the numerical temper-
ature errors over the entire computational domain Ω. The scaled L2 error is defined
as

EL2 =

√∫
[TNS − Texact]

2dΩ∫
dΩ

(4.9)

Three successively refined meshes [nb× nr× nz] = [16× 4× 1, 32× 8× 1, 64× 16×
1] are generated for calculating the convergence order, where nb, nr, nz denotes the
cell number along the annular boundaries, the radical direction and the z direction,
respectively. We compute the temperature solution of the N-S equations TNS with DG
(P4). As shown in Table 2, TNS converges to the exact solution rapidly with mesh
refinements. The average convergence order is 4.5, which verifies the ability of the
proposed solver for obtaining high-order solid solutions.

Table 2: Numerical errors for the simulated heat conduction of a hollow cylinder in Case 4.4: convergence
order in space with the DG P4 discretization.

nb × nr × nz 16× 4× 1 32× 8× 1 64× 16× 1 avg. order

EL2 6.4067× 10−5 2.9389× 10−6 1.2803× 10−7 4.50
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4.5 Heat sink problem

In this case, we will test the ability of using the advanced high-order adaptive method
existing in the original N-S flow solver for solid heat conduction applications. A 3-D
heat sink problem is considered which models a CPU heat sink. The geometry con-
tains thirteen solid fins, where the bottom size is of 100mm× 100mm× 5mm and the
fin size is of 1mm× 100mm× 50mm. The bottom surface has a constant temperature
of T = 100◦C. Other surfaces are modeled with the convection boundary condition
with the thermal conductivity k = 400 W/m ·K, the heat transfer coefficient h = 1000
W/m2 ·K and the reference temperature T0 = 30◦C.

The computational mesh for this model contains 115,000 unstructured, anisotropic
hexahedral elements with a cell aspect ratio of 10, see Fig. 5(a) for illustration. The
numerical results are produced by using the proposed unified DG solver, in particu-
lar, the adaptive DG (P0−k) approach [14, 15] is used in which the solution is initially
computed with the P0 order and then converted to the Pk order adaptively in space.
In total, five different accuracy solutions can be obtained as the polynomial order k
increases from zero to four during a single zigzag alike convergence, as shown in
Fig. 4(a). To demonstrate the ability of using large time steps, adaptive time stepping
with a variable Fourier number Fo is used during the spatial adaptation. The Fourier
number starts at 102 and dynamically increases up to 108 (see Fig. 4(b)). Thus, the
resultant unified solver is capable of solving the solid problems with both adaptive
spatial accuracy and variable time steps. The converged, adaptive polynomial order
distribution (P) for DG discretization is presented In Fig. 5(b),, and it can be observed
that the P4 elements are located in the lower part of the fins where the strong nonlinear
distribution appears. The P3 and P2 elements are distributed in the medium gradient
varying zones along the anisotropic direction aligned with the fins. The computed
temperature data is extracted along the median intersection curve cut by the red plane
as shown in Fig. 6(a). Fig. 6(b) gives the temperature profiles obtained on the closed
intersection curve containing both upper, lower, and side surfaces, and five solutions
with respect to different maximal orders k (P0−k) are also displayed in different colors.
It can be observed that the temperature distribution is visibly influenced by the order
of approximation accuracy, and the P0−4 adaptive solution (green line) can catch and
exhibit significant temperature variations. In this case, the adaptive solution robustly
converges to the steady-state solution and the final order distribution over the total
number of elements are P1 – 0.49%, P2 – 67.58%, P3 – 27.15%, and P4 – 4.78%.

5 Conclusions

We propose to develop a unified solution framework for simulating conjugate fluid
and solid heat transfer, in which the solution is solely governed by the compressible
N-S equations. This paper serves as Part I of this framework, in which we focus on
capability verification of the unified solver for solid heat conduction problems. The
theoretical connection between the fluid and solid domains is explained based on the
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Figure 4: The heat sink simulated by the adaptive DG solid heat conduction solver in Case 4.5: (a) the
convergence history of residuals; (b) Fourier number v.s the number of time iterations.

(a) Anisotropic mesh (b) Distribution of cell polynomial orders

Figure 5: The heat sink simulated with the adaptive DG solid heat conduction solver in Case 4.5: (a) the
anisotropic mesh generated with the cell aspect ratio of 10; (b) the perspective view of the distribution of
cell polynomial orders. The solution is locally adapted from P0 to P4, and the solver produces no P0 cells in
the end, indicating that the first-order spatial accuracy is inadequate for this problem.

compressible N-S equations in a nondimensionalized form. It is shown that the F-
B equation is a specific form of the energy equation of the N-S equations with solid
material parameters. The initial and boundary conditions are also discussed for both
the fluid and the solid domains. Various test cases demonstrate that the proposed
unified solution method is capable of simulating solid heat conduction by using an
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(a) Simulated temperature disctribution
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Figure 6: The heat sink solution produced by the adaptive DG solid heat conduction solver in Case 4.5. (a)
the simulated temperature distribution and the cut plane; (b) the temperature profile along the cut plane
and local cell polynomial orders.

high-order adaptive DG solver and an exponential time integrator for the N-S equa-
tions. The unified solver for solving conjugate fluid and solid heat transfer problems
will be presented as Part II of this framework in the coming work, and the proposed
method is applicable to other existing advanced N-S flow solvers as well.
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