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Abstract

Research suggests “write-to-learn” tasks improve learning outcomes, yet
constructed-response methods of formative assessment become unwieldy with large class sizes. This
study evaluates natural language processing algorithms to assist this aim. Six short-answer tasks
completed by 1,935 students were scored by several human raters, using a detailed rubric, and an
algorithm. Results indicate substantial inter-rater agreement using quadratic weighted kappa for
rater pairs (each QWK > 0.74) and group consensus (Fleiss’ Kappa = 0.68). Additionally, intra-rater
agreement was estimated for one rater who had scored 178 responses seven years prior (QWK =
0.89). With compelling rater agreement, the study then pilots cluster analysis of response text toward
enabling instructors to ascribe meaning to clusters as a means for scalable formative assessment.

Introduction

Effective formative assessment is indispensable for students and instructors to monitor
learning (GAISE, 2016; Pearl, 2012). Furthermore, it is critical for a citizen statistician to be able to
communicate statistical ideas effectively, both as a consumer and a producer of statistical information
(Gould, 2010). One avenue through which students develop these effective communication skills is
through written tasks. In fact, research has linked ‘“write-to-learn” tasks to improved learning
outcomes in science and mathematics, yet constructed-response methods of formative assessment
such as minute papers and comprehension questions become unwieldy for instructors with large class
sizes (e.g., hundreds, thousands) (Woodard, 2021). A human-machine collaboration may provide the
means necessary to improve the feasibility of formative assessment at scale as well as the quality of
feedback provided to large enrollment students (Basu, 2013). In the current literature, Al-assisted
formative assessment feedback has primarily only been presented for essays or long-answer tasks, and
in disciplines other than statistics (see e.g., Attali, et al., 2008; Page, 1994). This study serves as the
groundwork for leveraging natural language processing (NLP) algorithms to assist formative
assessment using short-answer tasks in large enrollment courses.

Literature Review

Effective assessment feedback should be timely (GAISE, 2016; Garfield, 2008). Popular
solutions for large enrollment classes often rely upon selected-response tasks (e.g., multiple choice) as
a vehicle for formative assessment. For example, the GAISE (2016) guidelines recommend clickers
and similar student response systems, coupled with engagement strategies to encourage careful
reflection before and after responding, as a means for scalable formative assessment. Even still,
selected-response formats tend toward lower levels of Bloom’s Taxonomy such as recall and
recognition tasks (Bloom, 1956; Garfield, 2008; Basu, 2013). The format also invites guessing, which
impairs the instructor’s ability to differentiate between the demonstration of the desired learning
outcome as opposed to a lucky guess, leading question, or ineffective distractors (Jordan, 2009). By
comparison, short-answer response tasks allow students to articulate their reasoning and have greater
potential to invoke higher levels of thinking on Bloom’s Taxonomy (Theobold, 2021).



When students reason and communicate through writing, it serves as a vehicle for sharpening
understanding (Graham, et al., 2020). Continual practice with communicating statistical information,
ideas, and thinking in this manner is thought to improve statistical literacy and learning outcomes as
well as promote retention (Basu, 2013). Such tasks enable students to explain concepts, justify
conclusions, apply knowledge to new scenarios, and form disciplinary connections in their own words
(Bloom, 1956; Garfield, 2008; Graham, 2020). Students with varying degrees of correctness and
understanding warrant different types of feedback (Basu, 2013; Jordan, 2009). Short-answer response
tasks also allow instructors to more easily identify student misconceptions and address student
misunderstandings that may otherwise have gone undetected (Basu, 2013). In this way, instructors can
more closely monitor students’ learning and understanding, resulting in effective formative
assessment (GAISE, 2016; Pearl, 2012).

A human-machine collaboration is a promising mechanism to assist rapid, individualized
feedback at scale (Basu, 2013). Natural language processing (NLP) methods can achieve reliable
classification (e.g., incorrect / partial / correct) of short-answer responses, which could be followed by
automatic clustering of similar student responses for formative assessment. Reliable classification
means the algorithm assigns appropriate scores to the responses, aligning with the pre-established
scoring reliability metrics. Successful clustering would group student responses into clusters that are
as homogenous within, and as heterogeneous between, as possible. The objective would be to
iteratively refine the clustering so an instructor can attach meaning to clusters of responses (Basu,
2013). By exploiting the efficiency of technology for short-answer tasks, students in large enrollment
classes can access a type of timely, personalized feedback believed to enhance the learning experience
in smaller classes (Basu, 2013; Wright, 2019).

Scoring reliability is the broad term for assessing the consistency with which raters score, or
label, a given response. Inter-rater reliability refers to comparing the reliability of scores among one or
more trained human raters, while intra-rater reliability refers to comparing the reliability of scores
from one human rater at two different points in time (Gwet, 2008). With the emergence of automated
rating systems, an algorithm can serve as one of the trained raters being considered in a scoring
reliability analysis (Basu, 2013). An algorithm’s reliability can be similarly scrutinized by comparing
the reliability of a classification algorithm to that of human raters. Since human raters are fallible and
prone to inconsistencies and biases, there is the need to establish a more reasonable standard of
comparison aligned to the reliability expected of competent human raters when judging the
performance of an algorithm (Woodard, 2021; Page, 1994).

Toward the goal of improving the balance between the instructor burden and student benefit
associated with formative assessment, this research study aims to address the following questions:
(RQ1) What level of agreement is achieved among trained human raters labeling (i.e., scoring)
short-answer tasks? (RQ2) What level of agreement is achieved between human raters and an NLP
algorithm? (RQ3) What sort of NLP representation leads to good clustering performance, and how
does that interact with the classification algorithm?

Methods

This study utilized de-identified extant data from a previous study, which solicited responses
to a group of short-answer tasks from post-secondary students enrolled in introductory statistics
courses (Beckman, 2015). The data consist of responses to 6 short-answer tasks provided by 1,935
students representing a total of 29 class sections for 16 unique courses at 15 distinct institutions that
are mostly, but not exclusively, located in the USA.

(RQ1) The 1,935 students from the 2015 study, and their associated responses to each task,
were divided among four persons with sufficient intersection to evaluate rater agreement. The four
persons possess varied levels of experience with statistics education that would be common within an



instructional team. Rater A was an experienced statistics instructor and the author of the tasks’
prompts and associated scoring rubrics. Rater B was an experienced statistics instructor. Rater C was a
statistics graduate student with some experience as a teaching assistant in statistics and had previously
taught an undergraduate mathematics course. Rater D was a statistics graduate student teaching
assistant. The study sought to evaluate all student responses available, with quality responses from at
least 50 students for the analysis of agreement between each possible combination of raters for RQI.

Using a prior analysis to estimate the approximate proportion of earnest response attempts in
the data, each desired rater comparison was allocated 63 randomly selected students to target
approximately 50 quality responses. Therefore, three raters (i.e., Rater A, Rater B, Rater C) were
assigned to review responses by 750 students such that each pair of raters would share an intersection
of 63 randomly selected students in addition to a distinct set of 63 randomly selected students shared
by all three raters. After the initial allocation exercise, but before the scoring process, a fourth
evaluator (i.e., Rater D) joined the study team and was assigned the 252 students previously assigned
for multiple raters (63 x 3 pairwise + 63 three-way).

The only constraint on the allocation of students to each rater was imposed to preserve a
unique opportunity to examine intra-rater agreement for Rater A. Using the same rubric in service of
an entirely different research objective, Rater A had scored a random sample of 178 responses in 2015
(see Beckman, 2015). The sample allocation to each rater in the present study simply verified that at
least 50 of the students scored by Rater A in 2015 would again be evaluated by Rater A in the current
study. Rater A had not revisited the scoring for those tasks during the 7 years elapsed.

Each evaluator used a detailed rubric to score the assigned student responses (see Beckman,
2015). Student responses were either given a score of 0: incorrect, 1: partial, or 2: correct, and
examples of student responses for each classification were provided in the rubric. After all responses
had been scored, confusion matrices were tabulated to determine the percentage agreement as well as
the amount of one-level and two-level discrepancies. Scoring reliability among raters was estimated
using quadratic weighted kappa (QWK) for pairwise agreement and Fleiss’ kappa to measure
consensus among three or more raters. Viera & Garrett (2005) describe a heuristic interpretation of
rater agreement represented by various kappa values: kappa < 0 is worse than chance; 0 < kappa < 0.2
is slight agreement; 0.2 < kappa < 0.4 is fair agreement; 0.4 < kappa < 0.6 is moderate; 0.6 < kappa <
0.8 is substantial agreement; 0.8 < kappa < 1 indicates almost perfect rater agreement.

(RQ2) The scoring reliability measures for the four trained human raters served as a baseline
with which to evaluate the algorithm performance and validate the reliability of automated scoring.
For machine learning, the 7,258 unique task-responses were randomly split four ways: 90% were split
into the typical division of training (72%), development (9%) and test (9%), with an additional 10%
held in reserve for more rigorous testing. The 653 task-responses in the test set were selected to
include responses with the highest agreement among human raters (e.g., 458 had unanimous
agreement among 3 or 4 raters); the remaining task-responses were randomly assigned to the training,
development, and reserve sets. Two NLP algorithms were compared for accuracy using a subset of
student responses. The first being a logistic regression combined with a Long Short-Term Memory
(LSTM) for learning vector representations, and the second being the Semantic Feature-Wise
Transformation Relation Network (SFRN) (Li et al., 2021).

(RQ3) The goal of the clustering is to determine if a set of student responses that have the
same correctness can be grouped into semantically similar clusters. The two NLP classification
algorithms each learn a distinct vector representation on training data that supports better
classification. Neither of these learned representations are optimal for clustering, which is a process to
discover relationships in data, rather than to learn an a priori classification task. Therefore, we
compare the clustering of the two types of learned vector representations with a third approach that
applies a pre-trained phrase-embedding method to produce much lower dimension vectors. We



compare all three using different clustering methods to develop insight into the best combination for
semantic coherence of output clusters.

Results

(RQ1) When considering the inter-rater agreement among the three trained human raters
(Raters A, C, & D), the pairwise quadratic weighted kappas (QWK) were between 0.79 and 0.83. The
Fleiss’ Kappa value for the three way comparison was 0.70 (see Table 1). These measures indicate
substantial inter-rater agreement among the three human raters (Viera & Garrett, 2005). At the time of
this writing, only data for tasks 2a and 2b could be evaluated for Rater B, but the results are similarly
strong. The pairwise QWK between Rater B and other raters were between 0.71 and 0.74. The Fleiss’
Kappa value for the four way comparison on tasks 2a and 2b was 0.62. When considering the
intra-rater agreement for one evaluator, on a subset of the 178 responses scored from the study seven
years prior, the pairwise QWK was 0.88. This measure indicates almost perfect intra-rater agreement
following seven years elapsed (Viera & Garrett, 2005).

Rater Comparison Measure of Reliability

Rater A & Rater C QWK =0.8342
Rater A & Rater D QWK =0.7966
Rater C & Rater D QWK =0.7916
Rater A (2015) & Rater A QWK =0.8802

Rater A & Rater C & Rater D Fleiss’ Kappa = 0.698
Rater A & SFRN QWK =0.7871
Rater C & SFRN QWK =0.8151
Rater D & SFRN QWK =0.7403

Rater A & Rater C & Rater D & SFRN Fleiss’ Kappa = 0.678

Table 1: Reliability comparisons among human raters (A, C, D) and an NLP algorithm (SFRN).

(RQ2) Similar calculations were performed once the NLP algorithm was introduced as an
additional rater. The SFRN algorithm achieved much higher classification accuracy than LSTM (83%
vs. 72%). When considering SFRN and human raters, the QWK values for pairwise comparisons were
between 0.74 and 0.82. The Fleiss’ Kappa value for the four way comparison, between the algorithm
and all three human raters, was 0.68 (see Table 1). Therefore, there was substantial inter-rater
agreement among the raters, including the algorithm (Viera & Garrett, 2005). Other classifiers were
tested but had much lower agreement.

(RQ3) SFRN learns a high-dimension (D=512) vector representation on training data, which
as noted above produces high agreement with humans on a test set. Multiple experiments with
K-means and K-medoids clustering of the test data showed that SFRN led to more consistent clusters
when the representation is retrained (0.62), in comparison to other classifiers. Each class (correct,
partially correct, incorrect) for each question is clustered separately. Consistency is measured as the
ratio of all pairs of responses in a given class per question that are clustered the same way on two runs
(in the same cluster, or not in the same cluster). However, the highest consistency (0.88; D=50) was



achieved by generating a new representation for each response using WITMF (Guo & Diab, 2011), a
matrix factorization method that produces static representations.

Discussion
(1)Take-home message about the study

In addition to laying the groundwork for NLP-assisted formative assessment feedback for
short-answer tasks in large enrollment courses, this work presents a careful study of inter-rater
agreement including varied experience typical for an instructional team of a large course, intra-rater
agreement after seven years elapsed, and comparison between algorithm performance and domain
experts using a detailed rubric. Given the high reliability of the algorithm, it’s important to investigate
how an environment could be created for teaching assistants and the algorithm to collaborate to
achieve both high reliability on the scores and high quality feedback for students. The substantial
scoring reliability and feasibility of clustering performance shown in this study suggest that a
human-machine collaboration offers a promising opportunity for continued research toward a large
class formative assessment using short-answer tasks that approaches small class quality and instructor
burden.

(2) Limitations of the study

The study includes incomplete data for Rater B. The analysis does have data from Rater B
with respect to two of the 6 tasks, but comparisons including Rater B are limited without the full data
on the remaining tasks. In the 2015 study, students came from many classes of varying sizes, and not a
single large class as desired. There is reason to believe this limitation would introduce noise into the
data, likely resulting in conservative estimates of reliability and feasibility.

The key limitation of the NLP methods is how to manage the tradeoff between algorithms that
achieve high reliability on classification of correctness based on neural network methods that learn
high dimension vector representations, and the opposing requirement for low dimension
representations to yield denser clusters with greater differentiation between clusters. Thus, we will
pursue multiple avenues, such as dimension reduction prior to clustering, or a separate
post-processing step that adopts an independent low dimension representation.

(3) Implications for teaching and research

There is intrinsic value in a rigorous evaluation of rater agreement for instructors of all class
sizes. Investigating discrepancies and inconsistencies in scoring could lead to new insights regarding
the nature of rater biases which could greatly contribute to the emerging area of data science ethics
(Cetinkaya-Rundel 2021).

Although this study focuses on large enrollment classes in particular, success in these efforts
creates an opportunity to study formative assessment interventions and mechanisms associated with
desired learning outcomes that have implications for smaller and intermediate class sizes as well
(Basu, 2013). For example, instructors of all class sizes would benefit by being able to focus their
efforts on tasks other than grading, such as designing projects or studying how students respond to
different types of feedback (Jordan, 2009). The use of an automated rater would also allow for the
study of feedback effect and revision effect to determine whether students’ learning experience is
enhanced when given the opportunity to revise their responses (Attali & Powers, 2008).
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