

Aspects of non-associative gauge theory

Sergey Grigorian

Abstract A smooth loop is the direct non-associative generalization of Lie group. In this paper, we review the theory of smooth loops and smooth loop bundles. This is then used to define a non-associative analog of the Chern-Simons functional.

1 Introduction

One of highly successful areas at the intersection of differential geometry, analysis, and mathematical physics is gauge theory. As it is well-known, this is the study of connections on bundles with particular Lie groups as the structure groups. In [5], the author initiated a theory of smooth loops, which are non-associative analogs of Lie groups, and began the development of gauge theory based on loops, i.e. a non-associative gauge theory. The purpose of this note is to review the theory of smooth loops and loop bundles, and to provide a more rigorous construction of a non-associative Chern-Simons functional on 3-manifolds. In particular, the affine space of connections in a standard gauge theory is replaced by an affine space \mathcal{T} of torsions, modelled on 1-forms with values in a loop algebra (the tangent space to a loop at identity). We define a 1-form on \mathcal{T} , show that it is a closed form, and show that it is the exterior derivative of a function on \mathcal{T} , which we define to be the Chern-Simons functional. Finally, we show how this functional is affected by gauge transformations.

Sergey Grigorian
University of Texas Rio Grande Valley, Edinburg, TX 78539, USA e-mail:
sergey.grigorian@utrgv.edu

2 Smooth Loops

For a detailed discussion of concepts related to smooth loops, the reader is referred to [5]. The reader can also refer to [6, 7, 9, 11, 12] for a discussion of these concepts.

Definition 1 A *loop* \mathbb{L} is a set with a binary operation $p \cdot q$ with identity 1, and compatible left and right quotients $p \backslash q$ and p/q , respectively.

In particular, existence of quotients is equivalent to saying that for any $q \in \mathbb{L}$, the left and right product maps L_q and R_q are invertible maps. Restricting to the smooth category, we obtain the definition of a smooth loop.

Definition 2 A *smooth loop* is a smooth manifold \mathbb{L} with a loop structure such that the left and right product maps are diffeomorphisms of \mathbb{L} .

Definition 3 A *pseudoautomorphism* of a smooth loop \mathbb{L} is a diffeomorphism $h : \mathbb{L} \rightarrow \mathbb{L}$ for which there exists another diffeomorphism $h' : \mathbb{L} \rightarrow \mathbb{L}$, known as the *partial pseudoautomorphism* corresponding to h , such that for any $p, q \in \mathbb{L}$,

$$h(pq) = h'(p)h(q). \quad (1)$$

In particular, $h' = R_{h(1)}^{-1} \circ h$. The element $h(1) \in \mathbb{L}$ is the *companion* of h' . As shown in [5], given h and h' , we have the following properties

$$h(pq) = h'(p)h(q) \quad h(q \backslash p) = h'(q) \backslash h(p) \quad h'(p/q) = h(p) / h(q). \quad (2)$$

It is then easy to see that the sets of pseudoautomorphisms and partial pseudoautomorphisms are both groups. Denote the former by Ψ and the latter by Ψ' . We also see that the *automorphism* group of \mathbb{L} is the subgroup $H \subset \Psi$ which is the stabilizer of $1 \in \mathbb{L}$. We will use \mathbb{L} to denote \mathbb{L} with the action of Ψ and \mathbb{L}' to denote \mathbb{L} with the action of Ψ' , if a distinction between the G -sets is needed.

Let $r \in \mathbb{L}$, then we may define a modified product \circ_r on \mathbb{L} via $p \circ_r q = (p \cdot qr)/r$, so that \mathbb{L} equipped with product \circ_r will be denoted by (\mathbb{L}, \circ_r) , the corresponding quotient will be denoted by $/_r$. We have the following properties [5].

Lemma 1 Let $h \in \Psi$. Then, for any $p, q, r \in \mathbb{L}$,

$$h'(p \circ_r q) = h'(p) \circ_{h(r)} h'(q) \quad h'(p/_r q) = h'(p) /_{h(r)} h'(q). \quad (3)$$

Consider the tangent space $\mathbb{I} := T_1 \mathbb{L}$ at $1 \in \mathbb{L}$. By analogy with Lie groups, for any $\xi \in \mathbb{I}$, define the *fundamental vector field* $\rho(\xi)$ by pushing forward ξ by right translation, so that for any $q \in \mathbb{L}$, $\rho(\xi)_q = (R_q)_* \xi$.

Definition 4 ([5]) The Maurer-Cartan form θ is an \mathbb{I} -valued 1-form on \mathbb{L} , such that $\theta(\rho(\xi)) = \xi$. Equivalently, for any vector field X , $\theta(X)|_p = (R_p^{-1})_* X_p \in \mathbb{I}$.

This allows us to define brackets on \mathbb{I} . For each $p \in \mathbb{L}$ define the bracket $[\cdot, \cdot]^{(p)}$ given for any $\xi, \eta \in \mathbb{I}$ by $[\xi, \eta]^{(p)} = -\theta([\rho(\xi), \rho(\eta)])|_p$. We will denote \mathbb{I}

equipped with the bracket $[\cdot, \cdot]^{(p)}$ by $\mathbb{I}^{(p)}$. Define the *bracket function* $b : \mathbb{L} \rightarrow \mathbb{I} \otimes \Lambda^2 \mathbb{I}^*$ to be the map that takes $p \mapsto [\cdot, \cdot]^{(p)} \in \mathbb{I} \otimes \Lambda^2 \mathbb{I}^*$, so that $b(\theta, \theta)$ is an \mathbb{I} -valued 2-form on \mathbb{L} , i.e. $b(\theta, \theta) \in \Omega^2(\mathbb{I})$.

Theorem 1 ([5, Theorem 3.10]) *The form θ satisfies $d\theta = \frac{1}{2}db(\theta, \theta)$.*

With respect to the action of Ψ , the bracket satisfies the following property.

Lemma 2 *If $h \in \Psi(\mathbb{L})$ and $q \in \mathbb{L}$, then, for any $\xi, \eta, \gamma \in \mathbb{I}$, $h'_* [\xi, \eta]^{(q)} = [h'_* \xi, h'_* \eta]^{h(q)}$.*

We will assume that Ψ is a finite-dimensional Lie group, and suppose the Lie algebras of Ψ and $H_s = \text{Aut}(\mathbb{L}, \circ_s)$ are \mathfrak{p} and \mathfrak{h}_s , respectively. In particular, \mathfrak{h}_s is a Lie subalgebra of \mathfrak{p} . Also, we will assume that Ψ acts transitively on \mathbb{L} . The action of Ψ on \mathbb{L} induces an action of the Lie algebra \mathfrak{p} on \mathbb{I} , which we will denote by \cdot .

Definition 5 Define the map $\varphi : \mathbb{L} \rightarrow \mathbb{I} \otimes \mathfrak{p}^*$ such that for each $s \in \mathbb{L}$ and $\gamma \in \mathfrak{p}$,

$$\varphi_s(\gamma) = \left. \frac{d}{dt} (\exp(t\gamma)(s)) / s \right|_{t=0} \in \mathbb{I}. \quad (4)$$

Lemma 3 *The map φ as in (4) is equivariant with respect to corresponding actions of $\Psi(\mathbb{L})$, in particular for $h \in \Psi$, $s \in \mathbb{L}$, $\gamma \in \mathfrak{p}$, we have*

$$\varphi_{h(s)}((\text{Ad}_h)_* \gamma) = (h')_* \varphi_s(\gamma). \quad (5)$$

Moreover, the image of φ_s is $\mathbb{I}^{(s)}$ and the kernel is \mathfrak{h}_s , and hence, $\mathfrak{p} \cong \mathfrak{h}_s \oplus \mathbb{I}^{(s)}$.

Lemma 4 ([5]) *Suppose $\xi \in \mathfrak{p}$ and $\eta, \gamma \in \mathbb{I}$, then*

$$\xi \cdot [\eta, \gamma]^{(s)} = [\xi \cdot \eta, \gamma]^{(s)} + [\eta, \xi \cdot \gamma]^{(s)} + a_s(\eta, \gamma, \varphi_s(\xi)) \quad (6a)$$

$$\xi \cdot \varphi_s(\eta) = \eta \cdot \varphi_s(\xi) + \varphi_s([\xi, \eta]_{\mathfrak{p}}) + [\varphi_s(\xi), \varphi_s(\eta)]^{(s)}. \quad (6b)$$

Similarly as for Lie groups, we may define a Killing form $K^{(s)}$ on $\mathbb{I}^{(s)}$. For $\xi, \eta \in \mathbb{I}$, we have

$$K^{(s)}(\xi, \eta) = \text{Tr} \left(\text{ad}_{\xi}^{(s)} \circ \text{ad}_{\eta}^{(s)} \right), \quad (7)$$

where \circ is just composition of linear maps on \mathbb{I} and $\text{ad}_{\xi}^{(s)}(\cdot) = [\xi, \cdot]^{(s)}$. Clearly $K^{(s)}$ is a symmetric bilinear form on \mathbb{I} . In [5] it is shown that for $h \in \Psi$, and $\xi, \eta \in \mathbb{I}$ it satisfies $K^{(h(s))}(h'_* \xi, h'_* \eta) = K^{(s)}(\xi, \eta)$.

Suppose now $K^{(s)}$ is nondegenerate and \mathfrak{p} -invariant, so that the action of \mathfrak{p} is skew-adjoint with respect to $K^{(s)}$. Moreover suppose \mathfrak{p} is semisimple itself, so that it has a nondegenerate, invariant Killing form $K_{\mathfrak{p}}$. We will use $\langle \cdot, \cdot \rangle^{(s)}$ and $\langle \cdot, \cdot \rangle_{\mathfrak{p}}$ to denote the inner products using $K^{(s)}$ and $K_{\mathfrak{p}}$, respectively. Then, given the map $\varphi_s : \mathfrak{p} \rightarrow \mathbb{I}^{(s)}$, we can define its adjoint with respect to these two bilinear maps.

Definition 6 Define the map $\varphi_s^t : \mathbb{I}^{(s)} \rightarrow \mathfrak{p}$ such that for any $\xi \in \mathbb{I}^{(s)}$ and $\eta \in \mathfrak{p}$,

$$\langle \varphi_s^t(\xi), \eta \rangle_{\mathfrak{p}} = \langle \xi, \varphi_s(\eta) \rangle^{(s)}. \quad (8)$$

Since $\mathfrak{h}_s \cong \ker \varphi_s$, we have $\mathfrak{p} \cong \mathfrak{h}_s \oplus \text{Im } \varphi_s^t$, so that $\mathfrak{h}_s^\perp = \text{Im } \varphi_s^t$.

Lemma 5 ([5, Lemma 3.43]) Suppose Ψ acts transitively on \mathbb{L} , \mathfrak{l} is an irreducible representation of \mathfrak{h} , and suppose the base field of \mathfrak{p} is $\mathbb{F} = \mathbb{R}$ or \mathbb{C} . Then, there exists a $\lambda \in \mathbb{F}$ such that for any $s \in \mathbb{L}$, $\varphi_s \varphi_s^t = \lambda \text{id}_{\mathfrak{l}}$ and $\varphi_s^t \varphi_s = \lambda \pi_{\mathfrak{h}_s^\perp}$.

Thus, given our prior assumption of the transitivity of the action of Ψ , the maps φ_s and φ_s^t are isomorphisms between \mathfrak{l} and \mathfrak{h}_s^\perp . If $s \in \mathbb{L}$ is fixed, and there is no ambiguity, we will use the following notation. Given $\xi \in \mathfrak{p}$, $\hat{\xi} = \varphi_s(\xi) \in \mathfrak{l}$ and given $\eta \in \mathfrak{l}$, $\check{\eta} = \frac{1}{\lambda_s} \varphi_s^t(\eta) \in \mathfrak{h}_s^\perp$. We can also use φ_s^t to define a new bracket $[\cdot, \cdot]_{\varphi_s}$ on \mathfrak{l} , such that for $\xi, \eta \in \mathfrak{l}$,

$$[\xi, \eta]_{\varphi_s} = \varphi_s([\xi, \check{\eta}]_{\mathfrak{p}}). \quad (9)$$

Lemma 6 ([5, Lemma 3.50]) Let $s \in \mathbb{L}$, then under the assumptions of Lemma 5, the bracket $[\cdot, \cdot]_{\varphi_s}$ satisfies the following properties. Suppose $\xi, \eta, \gamma \in \mathfrak{l}$, then

1. $\langle [\xi, \eta]_{\varphi_s}, \gamma \rangle^{(s)} = -\langle \eta, [\xi, \gamma]_{\varphi_s} \rangle^{(s)}$.
2. For any $h \in \Psi$, $[\xi, \eta]_{\varphi_{h(s)}} = (h')_* [(h')^{-1} \xi, (h')^{-1} \eta]_{\varphi_s}$.

3 Loop bundles

Let M be a smooth, finite-dimensional manifold with a Ψ -principal bundle $\pi : \mathcal{P} \rightarrow M$.

Definition 7 Let $s : \mathcal{P} \rightarrow \mathbb{L}$ be an equivariant map. In particular, the equivalence class $[p, s_p]_\Psi$ defines a section of the bundle $Q = \mathcal{P} \times_\Psi \mathbb{L}$. We will refer to s as the *defining map* (or *section*).

We will define several associated bundles related to \mathcal{P} . As it is well-known, sections of associated bundles are equivalent to equivariant maps. With this in mind, we also give properties of equivariant maps that correspond to sections of these bundles. Let $h \in \Psi$ and, as before, denote by h' the partial action of h .

Bundle	Equivariant map	Equivariance property
\mathcal{P}	$k : \mathcal{P} \rightarrow \Psi$	$k_{ph} = h^{-1} k_p$
$Q' = \mathcal{P} \times_{\Psi'} \mathbb{L}'$	$q : \mathcal{P} \rightarrow \mathbb{L}'$	$q_{ph} = (h')^{-1} q_p$
$Q = \mathcal{P} \times_\Psi \mathbb{L}$	$r : \mathcal{P} \rightarrow \mathbb{L}$	$r_{ph} = h^{-1} (r_p)$
$\mathcal{A} = \mathcal{P} \times_{\Psi'_*} \mathfrak{l}$	$\eta : \mathcal{P} \rightarrow \mathfrak{l}$	$\eta_{ph} = (h')^{-1} \eta_p$
$\mathfrak{p}_\mathcal{P} = \mathcal{P} \times_{(\text{Ad}_\xi)_*} \mathfrak{p}$	$\xi : \mathcal{P} \rightarrow \mathfrak{p}$	$\xi_{ph} = (\text{Ad}_h^{-1})_* \xi_p$
$\text{Ad}(\mathcal{P}) = \mathcal{P} \times_{\text{Ad}_\Psi} \Psi$	$u : \mathcal{P} \rightarrow \Psi$	$u_{ph} = h^{-1} u_p h$

Given equivariant maps $q, r : \mathcal{P} \rightarrow \mathbb{L}'$, define an equivariant product using s , given for any $p \in \mathcal{P}$ by

$$q \circ_s r|_p = q_p \circ_{s_p} r_p. \quad (11)$$

Due to Lemma 1, the corresponding map $q \circ_s r : \mathcal{P} \longrightarrow \mathbb{L}'$ is equivariant, and hence \circ_s induces a fiberwise product on sections of Q . Analogously, we define fiberwise quotients of sections of Q . Similarly, we define an equivariant bracket $[\cdot, \cdot]^{(s)}$ and the equivariant map φ_s . Other related objects such as the Killing form $K^{(s)}$ and the adjoint φ_s^t to φ_s are then similarly also equivariant.

Suppose the principal Ψ -bundle \mathcal{P} has a principal Ehresmann connection given by the decomposition $T\mathcal{P} = \mathcal{H}\mathcal{P} \oplus \mathcal{V}\mathcal{P}$ and the corresponding vertical \mathfrak{p} -valued connection 1-form ω . Given an equivariant map $f : \mathcal{P} \longrightarrow S$, define

$$d^\omega f := f_* \circ \text{proj}_{\mathcal{H}} : T\mathcal{P} \longrightarrow \mathcal{H}\mathcal{P} \longrightarrow TS. \quad (12)$$

This is then a horizontal map since it vanishes on any vertical vectors. The map $d^\omega f$ is moreover still equivariant, and hence induces a covariant derivative on sections of the associated bundle $\mathcal{P} \times_\Psi S$. If S is a vector space, then this reduces to the usual definition of the exterior covariant derivative of a vector bundle-valued function and $d^\omega f$ is a vector-bundle-valued 1-form. Note that due to our initial assumption that $K^{(s)}$ is \mathfrak{p} -invariant, we also see that $d^\omega f$ is metric-compatible with respect to $\langle \cdot, \cdot \rangle^{(s)}$.

Following [5], let us define the torsion of the defining map s with respect to the connection ω .

Definition 8 The *torsion* $T^{(s, \omega)}$ of the defining map s with respect to ω is a horizontal \mathfrak{l} -valued 1-form on \mathcal{P} given by $T^{(s, \omega)} = (s^*\theta) \circ \text{proj}_{\mathcal{H}}$, where θ is Maurer-Cartan form of \mathbb{L} . Equivalently, at $p \in \mathcal{P}$, we have

$$T^{(s, \omega)}|_p = (R_{s_p}^{-1})_* d^\omega s|_p. \quad (13)$$

Thus, $T^{(s, \omega)}$ is the horizontal component of $\theta_s = s^*\theta$. We also easily see that it is Ψ -equivariant. Thus, $T^{(s, \omega)}$ is a *basic* (i.e. horizontal and equivariant) \mathfrak{l} -valued 1-form on \mathcal{P} , and thus defines a 1-form on M with values in the associated vector bundle $\mathcal{A} = \mathcal{P} \times_{\Psi_*} \mathfrak{l}$. We have the following properties.

Theorem 2 Suppose $s : \mathcal{P} \longrightarrow \mathbb{L}$, then

$$d^\omega \varphi_s = \text{id}_{\mathfrak{p}} \cdot T^{(s, \omega)} - [\varphi_s, T^{(s, \omega)}]^{(s)} \quad (14a)$$

$$d^\omega \varphi_s^t = \varphi_s^t (\check{T} \cdot \text{id}_{\mathfrak{l}}) - [\check{T}, \varphi_s^t]_{\mathfrak{p}}, \quad (14b)$$

where $\text{id}_{\mathfrak{p}}$ and $\text{id}_{\mathfrak{l}}$ are the identity maps of \mathfrak{p} and \mathfrak{l} , respectively, and \cdot denotes the action of the Lie algebra \mathfrak{p} on \mathfrak{l} .

Proof Equation (14a) follows from [5, Theorem 4.11]. However to obtain (14b), suppose ξ is an \mathfrak{l} -valued map and η is a \mathfrak{p} -valued map. Then,

$$\langle (d^\omega \varphi_s^t)(\xi), \eta \rangle^{(s)} = \langle \xi, (d^\omega \varphi_s) \eta \rangle^{(s)}.$$

Using (14a) and (6b), we obtain (14b). \square

Recall that the curvature $F^{(\omega)} \in \Omega^2(\mathcal{P}, \mathfrak{p})$ of the connection ω on \mathcal{P} is given by

$$F^{(\omega)} = d\omega \circ \text{proj}_{\mathcal{H}} = d\omega + \frac{1}{2} [\omega, \omega]_{\mathfrak{p}}, \quad (15)$$

where wedge product is implied. Given the defining map s , define $\hat{F}^{(s, \omega)} \in \Omega^2(\mathcal{P}, \mathbb{I})$ to be the projection of the curvature $F^{(\omega)}$ to \mathbb{I} with respect to s , such that for any $X_p, Y_p \in T_p \mathcal{P}$,

$$\hat{F}^{(s, \omega)} = \varphi_s \left(F^{(\omega)} \right). \quad (16)$$

Theorem 3 ([5, Theorem 4.19])

$\hat{F}^{(s, \omega)}$ and $T^{(s, \omega)}$ satisfy the following structure equation

$$\hat{F}^{(s, \omega)} = d\omega T^{(s, \omega)} - \frac{1}{2} \left[T^{(s, \omega)}, T^{(s, \omega)} \right]^{(s)}, \quad (17)$$

where a wedge product between the 1-forms $T^{(s, \omega)}$ is implied.

In the case of an octonion bundle over a 7-dimensional manifold, this relationship between the torsion and a curvature component has been shown in [2]. Using φ_s and φ_s^t , let us define an adapted covariant derivative as a map from the space of \mathbb{I} -valued equivariant functions $\Omega_{\text{basic}}^0(\mathcal{P}, \mathbb{I})$ to the space of horizontal \mathbb{I} -valued equivariant (i.e. basic) 1-forms $\Omega_{\text{basic}}^1(\mathcal{P}, \mathbb{I})$:

$$d_{\varphi_s}^\omega = \frac{1}{\lambda} \varphi_s \circ d\omega \circ \varphi_s^t : \Omega_{\text{basic}}^0(\mathcal{P}, \mathbb{I}) \longrightarrow \Omega_{\text{basic}}^1(\mathcal{P}, \mathbb{I}). \quad (18)$$

We can see that this covariant derivative is metric-compatible as long as $d\omega$ is.

Lemma 7 Suppose $\xi, \eta \in \Omega_{\text{basic}}^0(\mathcal{P}, \mathbb{I})$, then $d\omega$ is metric-compatible if and only if

$$d \langle \xi, \eta \rangle_s = \langle d_{\varphi_s}^\omega \xi, \eta \rangle_s + \langle \xi, d_{\varphi_s}^\omega \eta \rangle_s.$$

Proof This can be shown by explicitly expanding $d_{\varphi_s}^\omega$ and noting that since $\varphi_s \varphi_s^t = \lambda \text{id}_{\mathbb{I}}$, $(d\omega \varphi_s) \varphi_s^t = -\varphi_s (d\varphi_s^t)$. \square

Theorem 4 $\hat{F}^{(s, \omega)}$ satisfies the following Bianchi identity

$$d_{\varphi_s}^\omega \hat{F}^{(s, \omega)} = F_{\mathfrak{h}_s} \dot{\wedge} T^{(s, \omega)}, \quad (19)$$

where $F_{\mathfrak{h}_s} = \pi_{\mathfrak{h}_s} F$ and $\dot{\wedge}$ denotes the action of \mathfrak{p} on \mathbb{I} combined with the wedge product of p -forms.

Proof We can write $F = F_{\mathfrak{h}_s} + \frac{1}{\lambda} \varphi_s^t (\hat{F})$, so applying $\varphi_s \circ d\omega$, the left-hand side vanishes due to the standard Bianchi identity, and we are left with

$$d_{\varphi_s}^\omega \hat{F} = -\varphi_s (d\omega F_{\mathfrak{h}_s}) = (d\omega \varphi_s) \wedge F_{\mathfrak{h}_s}.$$

Using (14a), we obtain (19). \square

3.1 Gauge theory

As discussed earlier, equivariant horizontal forms on \mathcal{P} give rise to sections of corresponding associated bundles over the base manifold M . So let us now switch perspective, and work in terms of sections of bundles. Recall that the space of connections on \mathcal{P} is an affine space modelled on $\Omega^1(\mathfrak{p}_{\mathcal{P}})$. Thus, any connection $\tilde{\omega} = \omega + A$ for some $A \in \Omega^1(\mathfrak{p}_{\mathcal{P}})$. Then,

$$T^{(s, \tilde{\omega})} = T^{(s, \omega)} + \varphi_s(A) \quad (20)$$

The space of possible torsions of s therefore comes from deformations by elements of $\varphi_s^t(\Omega^1(\mathcal{A}))$. So define the *torsion space* $\mathcal{T}_s \cong \Omega^1(\mathcal{A})$. Therefore, for any $\xi \in \Omega^1(\mathcal{A})$, the torsion and curvature of $\omega_{\xi} = \omega + \check{\xi}$ are given by

$$T^{(s, \omega_{\xi})} = T^{(s, \omega)} + \xi \quad (21a)$$

$$\hat{F}^{(s, \omega_{\xi})} = \hat{F}^{(s, \omega)} + d_{\varphi_s}^{\omega} \xi + \frac{1}{2} [\xi, \xi]_{\varphi_s}. \quad (21b)$$

Since our prior assumption of transitivity of the action of Ψ implies that φ_s is surjective, we can find a reference connection ω_0 for which $T^{(s, \omega_0)} = 0$. In particular, ω_0 will have curvature with values in \mathfrak{h}_s , and in particular $\hat{F}^{(s, \omega_0)} = 0$. The torsion will unchanged if we add to ω an \mathfrak{h}_s -valued 1-form, hence the equivalence $\mathcal{T}_s \cong \Omega^1(\mathcal{A})$ is independent of the choice of a particular ω_0 .

Suppose h is a section of the associated bundle $\text{Ad}(\mathcal{P})$, then it defines a gauge-transformation and the gauge transformed connection is $h^* \omega$. In particular, for the section $s \in \Gamma(Q)$, we have

$$d^{h^* \omega} s = (h_*)^{-1} d^{\omega} (h(s)). \quad (22)$$

Since the torsion is determined by the covariant derivative of s , transformations of the connection and the defining section s are very closely related. Indeed, as shown in [5], the corresponding transformation of torsion is given by

$$\begin{aligned} T^{(h(s), \omega)} &= (R_{h(s)})_*^{-1} d^{\omega} (h(s)) \\ &= h'_* \circ (R_s)_*^{-1} \circ (h_*)^{-1} d^{\omega} (h(s)) \\ &= h'_* T^{(s, h^* \omega)}, \end{aligned} \quad (23)$$

which follows from Definition 8 and properties of h (2). Recall that we assumed that Ψ acts transitively on \mathbb{L} , so that, for a fixed connection ω , all the possible torsions are obtained by the action of Ψ on s , with the non-trivial transformations given by cosets of Ψ/H_s , where $H_s = \text{Stab}(s)$. On the other hand, as (23) shows, transformations of s correspond to gauge transformations of the connection. Since,

$$d^{h^* \omega} s = d^{\omega} s + (h)_*^{-1} (d^{\omega} h) \cdot s, \quad (24)$$

we obtain

$$T^{(s, h^* \omega)} = T^{(s, \omega)} + \varphi_s \left((h_*)^{-1} (d^\omega h) \right). \quad (25)$$

We will define *loop gauge transformations* to be precisely those that act non-trivially on s . Infinitesimally this corresponds to taking $h = \exp(\eta)$ for $\eta \in \Omega^0(\mathcal{A})$, so that

$$T^{(s, u^* \omega)} = T^{(s, \omega)} + d_{\varphi_s}^\omega \eta, \quad (26)$$

hence at $T^{(s, \omega)} \in \mathcal{T}_s$, the tangent vectors to \mathcal{T}_s in the directions of loop gauge transformations correspond precisely to the image of $d_{\varphi_s}^\omega$. Although this is beyond the scope of this note, the L_2 -norm of T may be considered as a functional on gauge orbits in \mathcal{T}_s . Critical points then become analogues of the Coulomb gauge condition in gauge theory [1, 2, 3, 4, 5, 8].

The above considerations allow us to consider analogues of various functionals defined in gauge theory [5]. The key difference of course is that \hat{F} does not satisfy the standard Bianchi identity.

Let us now specialize to the case of M being a smooth compact 3-dimensional manifold. Following the standard theory, as in [10], let us define a 1-form ρ on \mathcal{T}_s , for $\chi \in \Omega^1(\mathcal{A})$, which is also interpreted as an element of $T_\omega \mathcal{T}$, by

$$\rho(\chi)|_\omega = \int_M \left\langle \hat{F}^{(s, \omega)}, \chi \right\rangle^{(s)}. \quad (27)$$

Theorem 5 Suppose M is a smooth compact 3-dimensional manifold, then $\rho = d\vartheta$, where ϑ is a functional on $\mathcal{T}_s \cong \Omega^1(\mathcal{A})$ given by

$$\vartheta(\xi) = \frac{1}{2} \int_M \left\langle d_{\varphi_s}^\omega \xi + \frac{1}{3} [\xi, \xi]_{\varphi_s}, \xi \right\rangle^{(s)} dt. \quad (28)$$

The critical points of ϑ correspond to $\omega_\xi = \omega_0 + \check{\xi}$ for which $\hat{F}^{(s, \omega_\xi)} = 0$.

Proof Consider $\omega_\xi = \omega + \check{\xi}$, then using Stokes' Theorem, to first order we get

$$\begin{aligned} \rho(\chi)|_{\omega_\xi} - \rho(\chi)|_\omega &= \int_M \left\langle d_{\varphi_s}^\omega \xi, \chi \right\rangle^{(s)} + O(|\xi|^2) \\ &= \int_M d \langle \xi, \chi \rangle^{(s)} + \int_M \langle \xi, d_{\varphi_s}^\omega \chi \rangle^{(s)} + O(|\xi|^2) \\ &= \int_M \langle \xi, d_{\varphi_s}^\omega \chi \rangle^{(s)} + O(|\xi|^2) \end{aligned}$$

Using the same argument as in [10], we see that $d\rho = 0$. Since \mathcal{T}_s is a contractible space, by Poincare lemma, $\rho = d\vartheta$ for some function ϑ on \mathcal{T}_s . Consider now a path $\omega(t) = \omega_0 + t\check{\xi}$ from ω_0 to $\omega = \omega_0 + \check{\xi}$, where ω_0 is such that $T^{(s, \omega_0)} = 0$. Integrating it explicitly, and noting that since ρ is closed, this is path-independent, we get,

$$\begin{aligned}
\vartheta(\xi) - \vartheta(0) &= \int_0^1 \rho_{\omega(t)}(\varphi_s(\dot{\omega}(t))) dt \\
&= \int_0^1 \int_M \left\langle \hat{F}^{(s, \omega(t))}, \xi \right\rangle^{(s)} dt \\
&= \int_0^1 \int_M \left\langle t d_{\varphi_s}^\omega \xi + \frac{1}{2} t^2 [\xi, \xi]_{\varphi_s}, \xi \right\rangle^{(s)} dt \\
&= \frac{1}{2} \int_M \left\langle d_{\varphi_s}^\omega \xi + \frac{1}{3} [\xi, \xi]_{\varphi_s}, \xi \right\rangle^{(s)} dt.
\end{aligned}$$

Setting $\vartheta(0) = 0$, and noting that $\xi = T^{(s, \xi)}$ and $d_{\varphi_s}^\omega \xi = \hat{F}^{(s, \xi)} - [\xi, \xi]_{\varphi_s}$, we recover

$$\vartheta(\xi) = \frac{1}{2} \int_M \left(\langle T, \hat{F} \rangle^{(s)} - \frac{1}{6\lambda^2} \langle T, [T, T]_{\varphi_s} \rangle^{(s)} \right), \quad (29)$$

which (up to a factor of $\frac{1}{2}$), is the Loop Chern-Simons Functional defined in [5]. In particular, we see that $d\vartheta|_\omega = 0$ if and only if $\hat{F}^{(s, \omega)} = 0$, that is, connections for which this holds are critical points of the functional ϑ . \square

Unlike in the case of the standard Chern-Simons Functional, ρ does not necessarily vanish along orbits of the non-associative gauge action. As we see from (26), vectors tangent to the orbits are given by $d_{\varphi_s}^\omega \eta$ for some $\eta \in \Omega^0(\mathcal{A})$. Using (19), we find

$$\rho \left(d_{\varphi_s}^\omega \eta \right) \Big|_\omega = \int_M \left\langle F_{\mathfrak{h}_s}^\omega \wedge T^{(s, \omega)}, \eta \right\rangle^{(s)}. \quad (30)$$

Now let us consider how ϑ is affected by gauge transformations. Consider a path $t \in [0, 1]$ connecting $T^{(s, \omega)}$ to $T^{(s, u^* \omega)}$. In particular, this is equivalent to a path $\xi(t) \in \Omega^1(\mathcal{A})$ such that $\xi(0) = 0$ and $\xi(1) = \varphi_s(u^* \omega - \omega)$. Then, define $\omega(t) = \omega + \dot{\xi}(t)$, so that

$$\begin{aligned}
\vartheta(\xi(1)) - \vartheta(0) &= \int_0^1 \rho_{\omega(t)}(\varphi_s(\dot{\omega}(t))) dt \\
&= \int_0^1 \int_M \left\langle \hat{F}^{(s, \omega(t))}, \dot{\xi}(t) \right\rangle^{(s)} dt.
\end{aligned} \quad (31)$$

As in the standard gauge theory [10], we may extend \mathcal{P} , and all the associated bundles, to a bundle over $\tilde{M} = M \times [0, 1]$. In a local trivialization, let us define the connection $A = A_0 dt + A_i dx^i$ on \tilde{M} with $A_0 = 0$ and $(A_i)_{(p,t)} = \omega_i(t)_p$. Then, we see that the curvature F_A of this connection is given by $(F_A)_{0i} = \dot{A}_i(t)$ and $(F_A)_{ij} = \left(F^{(\omega)} \right)_{ij}$. Hence

$$\hat{F}_A = \dot{\xi}_i(t) dt \wedge dx^i + \left(\hat{F}^{(s, \omega)} \right)_{ij} dx^i \wedge dx^j = -\dot{\xi}(t) \wedge dt + \hat{F}^{(s, \omega)}, \quad (32)$$

so that $\langle \hat{F}_A, \hat{F}_A \rangle = -2 \langle \hat{F}^{(s, \omega(t))}, \dot{\xi}(t) \rangle^{(s)} \wedge dt$, and thus (31) becomes

$$\vartheta(\xi(1)) - \vartheta(0) = -2 \int_{\tilde{M}} \langle \hat{F}_A, \hat{F}_A \rangle. \quad (33)$$

This shows that there is a relation between Chern-Simons and a Chern-Weil-like functionals, similar to standard gauge theory. However, the 4-form $\langle \hat{F}_A, \hat{F}_A \rangle$ on a 4-manifold is not necessarily independent of the choice of connection, so it is not a topological invariant. On the other hand, the above discussion shows that in this particular case, it is independent of the path $\omega(t)$, so it is important to understand if there is an invariant theory that is related to this non-associative gauge theory.

Acknowledgements This work was supported by the National Science Foundation grant DMS-1811754.

References

1. S. K. Donaldson. Gauge theory: Mathematical applications. In *Encyclopedia of Mathematical Physics*, pages 468–481. Academic Press/Elsevier Science, Oxford, 2006.
2. S. Grigorian. G_2 -structures and octonion bundles. *Adv. Math.*, 308:142–207, 2017, 1510.04226. doi:10.1016/j.aim.2016.12.003.
3. S. Grigorian. Estimates and monotonicity for a heat flow of isometric G_2 -structures. *Calc. Var. Partial Differential Equations*, 58(5):Art. 175, 37, 2019. doi:10.1007/s00526-019-1630-0.
4. S. Grigorian. Isometric flows of G_2 -structures. 2020, arXiv:2008.06593.
5. S. Grigorian. Smooth loops and loop bundles. *Adv. Math.*, 393:Paper No. 108078, 115, 2021, 2008.08120. doi:10.1016/j.aim.2021.108078.
6. K. H. Hofmann and K. Strambach. Topological and analytic loops. In *Quasigroups and loops: theory and applications*, volume 8 of *Sigma Ser. Pure Math.*, pages 205–262. Heldermann, Berlin, 1990.
7. H. Kiechle. *Theory of K-loops*, volume 1778 of *Lecture Notes in Mathematics*. Springer-Verlag, Berlin, 2002. doi:10.1007/b83276.
8. E. Loubeau and H. N. Sá Earp. Harmonic flow of geometric structures. 2019, arXiv:1907.06072.
9. P. T. Nagy and K. Strambach. *Loops in group theory and Lie theory*, volume 35 of *De Gruyter Expositions in Mathematics*. Walter de Gruyter & Co., Berlin, 2002. doi:10.1515/9783110900583.
10. H. N. Sá Earp. *Instantons on G_2 -manifolds (with Addendum)*. PhD thesis, Imperial College London, 2009.
11. L. V. Sabinin. *Smooth quasigroups and loops*, volume 492 of *Mathematics and its Applications*. Kluwer Academic Publishers, Dordrecht, 1999. doi:10.1007/978-94-011-4491-9.
12. J. D. H. Smith. *An introduction to quasigroups and their representations*. Studies in Advanced Mathematics. Chapman & Hall/CRC, Boca Raton, FL, 2007.