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A B S T R A C T   

While automated feature extraction has had tremendous success in many deep learning algorithms for image 
analysis and natural language processing, it does not work well for data involving complex internal structures, 
such as molecules. Data representations via advanced mathematics, including algebraic topology, differential 
geometry, and graph theory, have demonstrated superiority in a variety of biomolecular applications, however, 
their performance is often dependent on manual parametrization. This work introduces the auto-parametrized 
weighted element-specific graph neural network, dubbed AweGNN, to overcome the obstacle of this tedious 
parametrization process while also being a suitable technique for automated feature extraction on these inter-
nally complex biomolecular data sets. The AweGNN is a neural network model based on geometric-graph fea-
tures of element-pair interactions, with its graph parameters being updated throughout the training, which 
results in what we call a network-enabled automatic representation (NEAR). To enhance the predictions with 
small data sets, we construct multi-task (MT) AweGNN models in addition to single-task (ST) AweGNN models. 
The proposed methods are applied to various benchmark data sets, including four data sets for quantitative 
toxicity analysis and another data set for solvation prediction. Extensive numerical tests show that AweGNN 
models can achieve state-of-the-art performance in molecular property predictions.   

1. Introduction 

Automated feature extraction techniques, like those used in con-
volutional neural networks (CNNs) and recurrent neural networks 
(RNNs), have been very successful in deep learning applications [17,32]. 
They have made inroads in a variety of fields now, producing 
state-of-the-art results in signal and information processing fields [10], 
such as speech recognition, image recognition [8], and natural language 
processing [35]. These kinds of automated feature extraction tech-
niques, however, are only highly successful on data that is relatively 
simple in structure, such as with images, text, etc. For data sets with 
complex internal structures, such as molecules or macro-molecules, 
hand-crafted descriptors, or representations, are indispensable for 
developing top-quality predictive models [25]. 

There are many physical, biological and man-made objects that have 
intricate internal structures. For example, proteins, chromosomes, 
human bodies, and cities have very complex structures. Tools from 

abstract mathematics such as algebraic topology, differential geometry, 
and combinatorics can be utilized to simplify the structural complexities 
of data [23,25,39]. For molecules and macro-molecules, molecular 
fingerprint representations obtained from persistent homology, curva-
ture analysis of surface electrostatic potentials, and eigenvalues of 
weighted adjacency matrices derived from atomic distances have all be 
used for this endeavor [25]. From the point view of machine learning, 
molecular representations which include detailed chemical and physical 
information can be extremely high-dimensional, especially when the 
biomolecules in question are made of thousands of atoms, such as in the 
case of protein-ligand complexes [2,5,6,9]. By using lower dimensional 
mathematical representations to train simple machine learning models, 
such as gradient-boosting trees (GBT) and random forest (RF) models, 
one can achieve stellar performance. 

Some of our hand-crafted mathematical features are somewhat 
limited in their scope [40], in which we mean they are generated by a 
fixed procedure, with little possibility for making fine adjustments to 
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produce more favorable representations. Other mathematical features 
that we have used are based on a choice of kernel function or functions 
along with adjustable parameters, in which a careful tuning of these 
parameters can deliver optimal performance [26,28]. This process of 
tuning, however, can be very time-consuming and requires experience. 
Although the kernel parameters introduce new dimensions to enhance 
our models, the cost of tweaking becomes tedious when more than a 
small handful are introduced. 

In this work, motivated by the automation of simple feature- 
extraction techniques as in CNNs, we seek to automate the parameter 
optimization for our mathematical representations. Specifically, we 
automate the selection process of kernel parameters either partially or 
fully, meaning that we would like to have some or all of the parameters 
automatically chosen for us during training. Neural networks are trained 
in a series of epochs where the weights of the network are updated at 
each step through gradient descent, and so they are a perfect starting 
point for exploring this idea of automated parameter selection. In our 
approach, back propagation is extended further to include the kernel 
parameters of our molecular representations, leading to the simulta-
neous update of our kernel parameters and neural weights at each batch 
of training. To this end, we introduce auto-parametrized weighted 
element-specific graph neural networks (AweGNNs). The AweGNN im-
plements the above scheme of parameter updates by using a represen-
tation based on kernel-weighted geometric subgraphs, with features 
similar to the correlation functions of flexibility-rigidity index (FRI) used 
in a previous work [28,41]. The representations resulting from updating 
the kernel parameters through training the network are then referred to 
as network-enabled automatic representations (NEARs). To validate 
these NEARs, we implement them on RF and GBT models, leading to 
accurate predictions. We further show that ensemble learning can in 
some cases bolster our network predictions through consensus. 

To test our AweGNN models, we employ four toxicity data sets of 
various sizes. Toxicity is a measure of the degree to which a chemical can 
harm an organism [40]. The harmful effects can be measured qualita-
tively or quantitatively. A qualitative approach only categorizes chem-
icals as toxic or nontoxic, while quantitative toxicity data records the 
minimal amount of a substance that would produce lethal effects. 
Experimental measurement of toxicity is expensive, time-consuming, 
and subject to ethical constraints. In this light, machine learning 
models are extremely useful in that they do not have these same chal-
lenges. The working principal of the machine learning approach for 
toxicity analysis is that molecules with similar structures have similar 
activities, which is called the quantitative structure-activity relationship 
(QSAR) approach. By analyzing the relationship between molecular 
structures, one can predict their biological functions. We can create 
AweGNN models that predict these toxicity endpoints without having to 
conduct any lab experiments [3,14,19,33]. To further improve our 
AweGNN predictions on the sparsity of data [13], we construct 
multi-task (MT) AweGNNs. MT learning or transfer learning [7] learns 
from related tasks to improve the performance on the smaller data sets in 
particular. It is frequently used to compensate if there are similar data 
sets at hand. We find that AweGNN models perform well on these data 
sets when we compare our results to state-of-the-art QSAR techniques, 
such as the ones that were pursued by our group [27,40] previously and 
by others [21,22], with particularly excellent performance on the larger 
data sets. 

To further showcase our AweGNN, we apply our models on a 
different data set; a small data set concerning the solvation of molecules. 
Solvation free energy is a very important quantity in solvation analysis, 
which can be very beneficial in studying other complex or biological 
processes [18,20,24,37]. This data set is relatively small compared to 
the toxicity data sets, but we found that the AweGNN was able to 
perform extremely well, beating all other methods in the literature [27]. 
This proves that the AweGNN is useful in application to molecular 
problems that are not just restricted to toxicity analysis. In addition to 
this, we can find that the concept of the AweGNN can be extended 

further to other kernel-based methods, in which we can automate the 
kernel parameters as we train a network, such as with the differential 
geometry work done by Nguyen et al. [27]. Finally, we note that 
although we have not used multi-scale approaches in this work, we have 
seen them perform well in previous work [27,28], so it is likely to be 
worthy of exploration in further works. 

2. Theory and methods 

In this section, we will briefly review single and multi-task neural 
networks, then describe our AweGNN models. We discuss AweGNN 
through the frameworks of element-specific geometric graph represen-
tations, dynamic normalization functions, explicit derivative calcula-
tions, and instructions on how to update the parameters. Some 
variations on the generation of features are included even though these 
variations might have not been used to train the final models. 

2.1. Neural networks 

Neural networks are predictive models that consist of layers which 
are made up of neurons in which each neuron is connected to every 
other neuron in the next layer of the layer sequence. A weight is asso-
ciated with each connection that determines how much a neuron con-
tributes to the input of the neuron in the next layer, and a bias term is 
introduced to shift the activations. Activation functions, such as the 
logistic sigmoid, grant the network a level of non-linearity for additional 
complexity. A feature vector, in which each feature corresponds to a 
neuron in the input layer, can be pushed through the layers of the 
network all the way to the output layer in a process called forward 
propagation. Neural networks can be trained as classification models 
that categorize data, or regression models that predict continuous 
quantities. In this work, we only develop regression models. 

Neural networks are trained by updating the weights and biases of 
the network in a series of steps through gradient descent, in which an 
appropriate loss function is minimized. The process of calculating the 
errors of a neural network is called back propagation, in which de-
rivatives are calculated in the backwards direction starting from the 
output layer, where the loss (or error) is calculated, and propagating 
backward through each layer all the way back to the input layer, after 
which the weights are then updated by following the negative direction 
of the gradient. The gradient descent process finds a local minimum of 
the loss function when viewed with respect to the weights. This process 
fits the network to the data set in question. 

A general neural network consists of an input layer, an output layer, 
and any number of hidden layers in between. Deep neural networks are 
characterized by having many more layers and neurons, allowing the 
network to be more complex. There are many additions to the neural 
network architecture that can be included for training a model. Acti-
vation functions bring non-linearity to a network, and a proper choice of 
activation function can have an effect on training and performance of a 
network. Dropout [34] layers prevent over-fitting by dropping out 
random neurons during each step of training. Weight decay is another 
technique that regularizes the network to prevent over-fitting by 
decreasing the magnitude of each weight throughout the training. Batch 
normalization [12] layers normalizes the outputs of each layer to speed 
up the training time, improve performance, and allow deep networks to 
be trained with stability by reducing internal covariant shift. Adaptive 
learning rates are learning rates that change during the training of the 
network, such as in a momentum approach to gradient descent that 
“gains speed as it descends down a valley”, that can find local minimums 
faster and sometimes have the ability to jump out of “undesirable” local 
minimums. We use batch normalization, ReLU activation, and the 
AMSGrad [31] variant of the popular Adam [15] optimization adaptive 
learning rates in our work. Dropout and weight decay increased the 
training time dramatically and so were not used in our final models, but 
may be explored further in the future. 
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Single-task (ST) neural networks are networks trained on a single 
data set and have a single output (at least in the regression case). An ST 
network is trained by the minimization problem: 

min
W,b
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where ⃒⃒⃒⃒⋅⃒⃒⃒⃒2 denotes the L2 norm, α represents the regularization con-
stant, f is a function parametrized by the weights, W, and biases, b, that 
represents the output of the network, and xi and yi are the feature vector 
and the label of the ith data point respectively of a data set with N 
samples. 

Single-task networks are, however, limited in their usefulness when 
being trained on small data sets. Multi-task (MT) networks have been 
developed to take advantage of large data sets to bolster the training of a 
network on a smaller data set. The idea is to train the models on multiple 
tasks simultaneously by sharing weights, thus highlighting relevant 
features that are important across all the related tasks. The details of 
their training are as follows: 

If we let T be the number of tasks and {(xt
i , yt

i)}
Nt
i=1 is the training data 

for the tth task where Nt is the number of samples of the tth task, xt
i is the 

feature vector of the ith sample of the tth task, and yt
i is the label for the ith 

sample of the tth task. The training strategy is to minimize the chosen loss 
function, L, for all tasks simultaneously. We define the loss for task t, Lt , 
below. 
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where f t is the part of the network that predicts the labels for the tth task 
parametrized by weights, Wt , and bias, bt; f s is the part of the network 
that has shared weights, Ws, and bias, bs. To train all models simulta-
neously, we provide a single loss function to minimize so our problem is 
then: 
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where ⃒⃒⃒⃒⋅⃒⃒|2 denotes the L2 norm and α and β represent the regularization 
constants that set the magnitudes of the weight decay during training. In 
practice, if weight decay is used, we generally set α = β. 

2.2. Overview of auto-parametrized weighted element-specific graph 
neural networks (AweGNNs) 

We now wish to describe the concept of AweGNNs applied to mo-
lecular data sets. As in most machine learning endeavors, we seek to 
frame the task at hand as a minimization problem. To detail our su-
pervised learning algorithm, we first start with a biomolecular data set, 
χ, where χi will represent the ith element of the training data set. We 
want a function F(χi; {η, κ}) that encodes the geometric and chemical 
information into an abstract representation parametrized by a set of 
parameters, {η,κ}. Then, the minimization problem becomes: 

min
η,κ,W,b
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where L is the chosen scalar loss function to be minimized, α is the 
regularization constant that determines the magnitude of the weight 
decay, and yi is the label of the ith data point in our biomolecular data 
set. The function, f, is the function parametrized by the weights, W, and 
biases, b, that represent the output of the neural network. Notice the 
difference with the formulations in the previous section. The output of 
the function, F, on the data χi acts as the feature vector, xi, given pre-
viously. The parameters, {η, κ}, that parametrize F are included in the 

minimization process. This simultaneous update of the parameters of the 
representation function is the novel idea driving this work. 

The AweGNNs are trained for the regression task of predicting the 
toxicity endpoints and the solvation free energy of various small mole-
cules, with the standard choice of mean squared error (MSE) as our loss 
function, L. The regularization constant, α, as noted before, is omitted in 
our work for both the single and multi-task models due to a lack of 
noticeable increase in performance, but with a moderate increase in 
training time. F will be based on element-specific calculations that are 
controlled by pairs of tunable kernel parameters that capture different 
geometric features of the molecules based on the values of those kernels 
chosen. Each element-specific group will be assigned a pair of these 
parameters and will be updated throughout the training by back prop-
agation. The representations generated by F after the training of the 
AweGNN are called network-enabled automatic representations 
(NEARs), and will be used later for training other models to demonstrate 
their performance. The procedure is summarized in Fig. 1 below. 

More specifically, we wish to understand how to back propagate 
through F. This will require us to, at each batch or epoch, back propa-
gate throughout the entire network, then use that information to back 
propagate through F all the way to the kernel parameters that F is 
dependent on. In reality, F, should be a composition of a function that 
outputs vector representations of biomolecules along with the normal-
ization of the output of that function. Thus, we can represent F as F =
N∘R, where N is the normalization function, and R is the raw repre-
sentation function. The normalization function is important because it 
avoids instability in the network. Now when considering back propa-
gation through the function, F, we have to keep in mind the chain rule, 
∂F
∂x = ∂N

∂R
∂R
∂x, as we calculate our partial derivatives. 

If we want to be able to calculate these derivatives, then we must 
make sure that they are differentiable functions. Some normalization 
functions, however, will not be differentiable everywhere, but will 
usually still be differentiable almost everywhere and continuous almost 
everywhere, so they will be practical functions to use. Representation 
functions themselves can be very discontinuous and non-differentiable 
depending on the method of calculating features, so we must be espe-
cially careful in selecting the function, R. We would also like both the 
representation function and normalization function to be easy to 
calculate since we must calculate the normalized features at each epoch 
of training. We will later describe in detail the geometric graph repre-
sentation function, R, that we used for our AweGNN that is continuous 
and differentiable everywhere, and easy to calculate. 

We will be testing both single-task (ST) and multi-task (MT) 
AweGNN models that follow much the same structure, again as outlined 
in Fig. 1. The ST model takes batches and from a data set, generates a 
representation, then normalizes it with batch normalization before 
feeding it into the artificial neural network portion of the AweGNN and 
then updating the parameters as above. The MT-AweGNN consists of a 
common set of parameters that are used for all 4 toxicity data sets, 
shared weights for the hidden layers of the artificial neural network 
portion, but separate weights for the 4 output layers. The normalization 
is done also in batches, by placing a number of data points into the batch 
from each data set proportional to the size of that data set with respect to 
all the data sets combined. For example, if the batch size is 100, and 
there are data sets with size 200, 400, 600, and 800, then each batch 
would have 10 samples from the first data set, 20 from the second, 30 
from the third, and 40 from the last data set. This MT structure is 
illustrated below in Fig. 2. 

2.3. Normalization function 

For the normalization function, we choose the standard normaliza-
tion function, Nσ , which centers each feature about the mean and scales 
by the standard deviation of the training samples. More precisely, if x is 
the feature, μ the mean, and σ the standard deviation, then Nσ(x) = x−μ

σ
. 
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This function is continuous and differentiable everywhere except when 
the standard deviation is zero. By a slight modification, we can add an 
error constant for numerical stability and to make Nσ continuous and 
differentiable everywhere, where Nσ(x) = x−μ

̅̅̅̅̅̅̅̅

σ2+ε
√ with ε being a very 

small number such as 10−5. When training in batches, we normalize 
each batch individually with separate batch mean, μB , and batch stan-
dard deviation, σB . These statistics are tracked and a batch momentum 
value of 0.1 is used to record accumulated batch statistics to obtain a 

Fig. 1. Pictorial visualization of the AweGNN training process. The first stage is splitting up the molecules in the data set into the element-specific groups, with 
initialized η and κ kernel parameters for each group. Then, a molecular representation is generated based on the kernel parameters, given by F in the diagram. This 
representation is fed into the neural network, then the kernel parameters are updated by back propagation through the neural network and through the repre-
sentation function, F. 

Fig. 2. Diagram depicting the structure and automation of the MT-AweGNN. The model is trained by collecting samples from each data set proportionally and then 
generating their representations according to shared parameters. The representations are normalized together, then pushed through the artificial neural network and 
then to their corresponding outputs. Back propagation goes through the feature matrix, normalization function, and finally the representation function to update the 
kernel parameters. 
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more stable reading of the distribution of the features in the whole data 
set, as detailed in Ioffe and Szegedy [12]. During evaluation time, the 
recorded statistics are used to transform the output of the representation 
function, R. 

The normalization procedure is similar to batch normalization in 
neural networks, except that the affine transformation is omitted, and 
the expression for ∂N

∂R can be found in the paper written by Ioffe and 
Szegedy [12], along with the rest of the details for batch normalization. 
Although the above procedure omits the affine transformations, we 
chose to apply the affine transformations in our work because the 
models performed well with them. In practical terms, the PyTorch [29] 
library is utilized for applying this batch normalization. A BatchNorm1d 
layer is placed in front of the molecular representation layer with pa-
rameters: eps = 1e-05, momentum = 0.1, affine = True, and track_-
running_stats = True, which are the default settings in PyTorch [29]. 

2.4. Biomolecular geometric graph representations 

We seek a general formulation of a geometric graph representation of 
biomolecular structures from which we can extract features to create our 
sought after representation function, R. We use this method to generate 
descriptors for the toxicity analysis of small molecules, but the idea can 
extend beyond this concept quite naturally to provide useful represen-
tations. In our work, we want to use a weighted and vertex-labeled graph 
in which we can generate descriptors from special subgraphs of the 
graph representation of each molecular structure. We begin by looking 
for a set, T , of element types that are suitable for our analysis. Generally 
the choice of element types will be chosen by looking at the commonly 
occurring element types found in a given data set, or we might choose to 
omit certain element types to avoid elements that have uncertain posi-
tioning or negligible influence in molecular interactions. Usually, we 
will have at least C, N, O, S ∈ T , but in most cases we will also include 
H, P, Cl, and Br. We define 
V =

{(

rj,αj

)

∈R3 ×T
⃒

⃒ rj; αj ∈T ; j= 1, 2,…,N
}

to be the vertex set, in which N denotes the number of atoms in the 
molecule that are of an element type that is a member of T . This vertex 
set has a labeling that describes the atom coordinates and the element 
type of the atom at each vertex. We will use these labels to determine 
element specific subgraphs from which to extract features. 

Our edge set, E , is described by a choice of parameters, {ηkk′ } and 
{κkk′ }, and a choice of a type of kernel function, Φ : R→R, which is 
parametrized by them 

E =
{

Φ
(
⃒

⃒

⃒

⃒ri − rj

⃒

⃒

⃒

⃒; ηkk
′ , κkk

′
)
⃒

⃒ αi = k∈T ,αj = k
′ ∈T ; i, j= 1, 2,…,N ;

⃒

⃒

⃒

⃒ri − rj

⃒

⃒

⃒

⃒> vi + vj + σ
}

,

where ||⋅|| denotes the Euclidean distance, vi and vj denote the Van der 
Waals radius of the ith and jth atoms respectively, ri and rj represent the 
ith and jth atom coordinates, and σ is the average of the standard de-
viations of vi and vj in the data set. Notice, the distance constraint 
eliminates covalent interactions from being used in our calculations. We 
remove the covalent interactions because many biomolecular properties 
are known to be determined by non-covalent interactions, As noted in 
Nguyen et al. [27], many biomolecular properties are known to be 
determined by non-covalent interactions, so we remove the covalent 
interactions because we do not want their contribution to overwhelm or 
otherwise interfere with the contributions of the non-covalent in-
teractions. The parameters, ηkk′ and κkk′ , are values tied to the element 
specific pair, kk′ , which can be tied to the properties of the element types 
in question. The types of kernels that determine the weights of our edges 
are always chosen to be decreasing functions that have the properties: 
Φ(x)→ 1 ​ as ​ x→0 (5)  

and 
Φ(x)→ 0 ​ as ​ x→∞. (6) 

This characterization gives the property that atoms that are closest 
will contribute the most, and atoms that are too far away, will contribute 
almost nothing. Most radial basis functions can be used, but the most 
popular choice of kernel types are the generalized exponential and the 
generalized Lorentz functions, given by 

ΦE(x; η, κ)= e
−
(

x
η

)κ

(7)  

and 

ΦL(x; η, κ)= 1

1 +
(

x
η

)κ, (8)  

respectively. These kernel types have been used to create successful 
models for protein-ligand binding prediction, predicting toxicity end-
points, and many other applications [25,27,28]. They act as low-pass 
filters that capture the most important element interactions, where the 
η value determines the cutoff point, and the κ value determines the 
sharpness of the cutoff. In summary, we have procured a vetex-labeled, 
weighted graph, G(V ,E ), in which we can extrapolate features from 
special element specific subgraphs. 

Let Gkk′ be the subgraph of G whose vertex set, V kk′ , contains the 
vertices that are labeled element type k or k′ ; and the edge set, E kk′ , 
contain only the edges connecting a vertex labeled with element k to a 
vertex labeled with element type k′ . This is called the element specific 
subgraph generated by the element pair kk′ . For a given element specific 
subgraph, Gkk′ , we define the following descriptor associated with that 
subgraph: 
μG

kk
′ ,Φ =

∑

(i,j)∈E
kk
′

wj⋅Φ
(

||ri − rj||; ηkk
′ , κkk

′
) (9)  

where the wj term is usually a constant 1 or a value associated with the 
jth atom, such as a partial charge. The ηkk′ and κkk′ values represent the 
respective η and κ values for the kk′ group, while ri and rj represent the 
atom coordinates as before. We get a sum over the weights of the sub-
graph in which additional atom specific weights can be applied to 
enhance the meaning of the feature. This abstractly defines the total 
strength of the non-covalent interactions between the atoms of element 

Fig. 3. This shows an element specific subgraph corresponding to the element 
types C and O of aminopropanoic acid, C3H6NO2 (with the hydrogens omitted). 
The dashed orange edges represent the edges of the subgraph that are weighted 
by the chosen kernel function, Φ, while the solid blue lines represent covalent 
bonds. Notice the 3rd carbon atom does not connect to the oxygen atoms since 
it is covalently bonded to both of them. 
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type k and the atoms of element type k′ . This is illustrated in Fig. 3 
below. 

With these descriptors detailed above, we can describe a represen-
tation function by obtaining one or more features from each element 
specific subgraph. We can extract multiple features per subgraph by 
considering different statistics of our features such as the mean of the 
sum above, the standard deviation of the terms in the sum, choosing 
various values of wj above according to chemical or physical properties 
of specific atoms, etc. In summary, the features that we generate using 
this approach measures the aggregate interaction strength between 
groups of atoms of specific element types, which we call element-specific 
groups. This gives us a representation of the internal structure of a 
molecule that fits into the QSAR paradigm, which promotes the idea that 
similar molecular structures have similar physical properties. 

The representation function used in our work for the toxicity data 
sets consisting of small molecules considers the element type set T =
{H,C,N,O,S,P,F,Cl,Br, I}. For each element specific pair, we calculate 4 
descriptors: The first is calculated with each wj = 1, the next with the 
wj’s set to be equal to the partial charge of the jth atom, and the 
remaining 2 descriptors are generated by dividing the first 2 descriptors 
by the number of edges in the element specific group, giving us a 
measure of the mean interaction of the elements. Since we have 10 
different element types, we can form 100 element specific groups; and 
since we have 4 descriptors per element specific group, we have 400 
descriptors for every set of parameters and choice of kernel. In our work, 
we only use the Lorentz functions, ΦL

η,κ, for our feature generation and 
results. 

2.5. Parameter adjustment and initialization 

When considering our molecular representation function in the 
context of the parameter automation task, we can make a few choices in 
terms of the parameters that we will be adjusting at each epoch or batch. 
Below are 3 possible avenues to consider: 

η-adjustable Here, we set the η values for each element specific pair 
randomly within some range. We note that these assignments that are 
made for each element specific pair are common for all of the biomol-
ecular structures in your data set. We can combine several sets of fea-
tures to make multi-scale models that would have multiple 
initializations of the η values, but we will be assuming a 1-scale model at 
present. If we set the η values this way, these will be the parameters that 
we will be updating in our gradient descent. 

τ-adjustable For an element specific pair, kk′ , we set the charac-
teristic value to be ηkk′ = τ(vk + vk′ ), where vk is the Van der Waals 
radius of element type, k, and vk′ is the Van der Waals radius of element 
type, k′ . Similar to the previous situation, the τ value assigned de-
termines the element specific η values for the entire data set. Again, if we 
consider multi-scale models, then we may choose different values of τ 

for each set. In the τ-adjustable case, we will be seeking to update the τ 

value at each step of the training. 
κ-adjustable In the previous two situations, we were assuming a 

fixed κ value, but we can also update this parameter in conjunction with 
the others. There are two ways to introduce this technique. The first way 
is to introduce one κ and update that with respects to all of the element 
specific groups. The second way is to introduce a κ value for all the 
element specific groups and update those separately. Multi-scale models 
are handled in a similar way as above. 

Aside from choosing which parameters to update throughout the 
training of the AweGNNs, we also must consider how we want to 
initialize each parameter before training. We notice that τ, κ, and η all 
have to take values greater than zero to maintain continuity and/or 
satisfy the conditions of a radial basis function. Also, we want to make 
certain that the values are not too large. A large η value will capture all 
of the atoms in a molecule and the kernel value will be effectively a 
constant 1 at all measured distances. A large κ value will make the kernel 

function approach the form of an ideal low-pass filter, where it is either a 
constant 0 or constant 1. In both cases, the magnitude of the derivatives 
will be extremely small and the model will not be able to update 
effectively. 

In our experimentation, we use 100 η-adjustable and 100 κ-adjust-
able parameters per scale (1 η and 1 κ value per element specific group) 
giving us 200 total adjustable variables per scale for our molecular 
representation function. The η-initialization for each scale is chosen by a 
single random tau value from a uniform distribution with a range of 
0.5–1.5, in which all the η values are set according to the Van der Waals 
radii as described above. The κ-initialization for each scale is done by 
chosing a value of κ for each element-specific group from a uniform 
distribution with a range of 5–8. 

The adjustment of parameters throughout the training of our 
AweGNN will be like an evolving kernel function at each element- 
specific group that attempts to create an optimal filter that provides 
the best representation for the network. The η values determine the 
center of the cutoff region and the κ values control the sharpness of the 
cutoff. In Fig. 4, we see the evolution of the kernel function of a MT- 
AweGNN model, where the kernel functions are graphed at various 
choices of the number of epochs of training, so that the transformation of 
the kernel function can be clearly seen. 

2.6. Derivatives of the representation function 

Our main goal is to update the parameters of our feature represen-
tation during the training of our neural network. We must first show how 
to calculate the derivatives of the representation functions with respect 
to parameters κ, η, and τ values. We will then use these derivatives to 
show how to complete the back propagation through all the way to the 
parameters. We begin with a representation function, R : Rn→Rd×m, and 
focus on a given element-specific subgraph; where this could be a single 
or multi-scale representation function. 

Suppose that ν is the set of update-able parameters for R. Then we 
can represent R by: 
R(ν)i,j =

∑

(a,b)∈G

qb⋅Φ(||ra − rb||; νG), (10)  

Where G is the element specific subgraph which is used in the calcula-
tion of the jth descriptor of the ith sample, qb represents a value that may 
be associated with the atom labeled b, ra and rb represent the co-
ordinates of the atoms labeled a and b respectively, and νG is the subset 
of ν that corresponds to the calculations that are associated with G. 

Now, since differential operators are linear and our features are 
calculated by a summation of differentiable functions, we need only 
know how to calculate the derivative of each term, i.e., for any variable, 
x, we have: 
(

∂R(ν)
∂x

)

i,j

=
∑

(a,b)∈G

qb⋅
∂

∂x
Φ(||ra − rb||; νG). (11) 

Thus, we want to find out the derivatives of the functions, ΦE
η,κ and 

ΦL
η,κ, with respect to parameters η, τ, and κ. We start by finding the de-

rivative with respect to η. 
The derivative of the generalized exponential function is: 

∂ΦE
η,κ(r)
∂η

=
(

κ

η

)(

r

η

)κ

e−(r/η)κ

, (12)  

and for the Lorentz generalized function, we have the derivative: 

∂ΦL
η,κ(r)
∂η

=

(

κ
η

)(

r
η

)κ

(

1 +
(

r
η

)κ)2
(13) 

Also, we calculate the derivatives with respect to κ parameters 
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starting with the generalized exponential function: 
∂ΦE

η,κ(r)
∂κ

=
(r

η

)κ

ln
(η

r

)

e−(r/η)κ

, (14)  

and for the Lorentz generalized function, we have the derivative: 

∂ΦL
η,κ(r)
∂κ

=

(

r
η

)κ

ln
(

η

r

)

(

1 +
(

r
η

)κ)2
. (15) 

Now, for the derivative with respect to the τ parameter, we can just 
apply the chain rule with η = τ(v1 +v2) being a function of τ. Note that 
∂η

∂τ
= (v1 + v2) = τ(v1+v2)

τ
= η

τ
. Then, for the exponential derivative, we 

have: 
∂ΦE

η,κ

∂τ
= ∂η

∂τ
⋅
∂ΦE

η,κ

∂η
=
(η

τ

)(κ

η

)(r

η

)κ

e−(r/η)κ =
(κ

τ

)(r

η

)κ

e−(r/η)κ

, (16)  

and for the lorentz function, we have: 

∂ΦL
η,κ

∂τ
= ∂η

∂τ
⋅
∂ΦL

η,κ

∂η
=
(η

τ

)

(

κ
η

)(

r
η

)κ

(

1 +
(

r
η

)κ)2
=

(

κ
τ

)(

r
η

)κ

(

1 +
(

r
η

)κ)2
(17) 

Thus, we now know the derivatives ∂R
∂η

, ∂R
∂τ

, and ∂R
∂κ

; and we can use them 
to calculate the gradient for our gradient descent when training our 
neural network. 

2.7. How to update the parameters 

Now that we have the derivatives of the representation function, we 
will be able to calculate the derivatives of the loss function that we have 
chosen, L, with respect to our parameters, η, τ, and κ. We must 
remember that in our process of feature calculation, we have decided to 
normalize the features. We chose to use the standard normalization, Nσ , 
and we denoted the normalized representation function to be F = N∘ R, 
with R being the un-normalized representation function. By the chain 
rule, we obtain ∂F

∂x = ∂N
∂R

∂R
∂x, where x = η, κ, or τ. We have also discussed 

what ∂N
∂R looks like, so in fact we should now have a full description of the 

derivatives of the normalized representation function with respect to our 
parameters. 

Now, to get our final update rule, we have to extend the back 
propagation of our neural network to the features, obtaining the de-
rivatives, ∂L

∂F. Then our derivatives that we calculated earlier, ∂F
∂x, will be 

used in the chain rule again to get: ∂L
∂x = ∂L

∂F
∂F
∂x, where x = η, κ, or τ. This 

gives us the update rule for our parameters. In more detail, the update 
rule actually looks like ∂L

∂x = ∑

i,j
∂L
∂Fij

∂Fij
∂x . Remember that the τ, κ, and η 

parameters are all constrained to be greater than zero. As a precaution 
we propose that after every epoch, the parameters be clipped so that 
they are constrained to values that are 0.01 or higher to avoid forbidden 
values. 

2.8. Multi-scale models 

Multi-scale models are models that are trained on features generated 
by multiple sets of parameters. More specifically, for 2 representation 
functions, R1 : Rn→Rd×m and R2 : Rn→Rd×m, we can get the 2-scale 
representation function, [R1, R2] : Rn→Rd×2m, by concatenating the 
outputs of R1 and R2 so that the features of each data point match up. 

We can extend this idea of a 2-scale model to any scale. Let 
R1 : Rn→Rd×m, …, Rk : Rn→Rd×m be representation functions with the 
same parameter types. Then, combining the functions together one at a 
time as above, then we get a new multi-scale representation function, 
[R1, R2, …, Rk] : Rn→Rd×(k⋅m). These multi-scale methods have been 
shown to be very effective in improving the performance of single-scale 
models [27,28]. 

2.9. Model architectures and hyper-parameters 

We wish to now describe the specific network architecture of the 
AweGNN model. For the artificial neural network (ANN) portion of the 
AweGNN, we choose a very simple 4-layer network with 400 neurons in 
the first two hidden layers and 20 neurons in the last two hidden layers. 
The ANN architecture and parameters were chosen through a quick 
parameter search of the multi-task network where the models were 
tested on a randomized validation set of 10% of the training data of each 
toxicity data set to obtain good average predictions across all 4 data sets 
and was modified to ensure relative convergence for the kernel pa-
rameters. The convergence assures that we have stable choices for the 
parameters of the kernel function, which we will use for later analysis. 

Fig. 4. Evolution of the kernel function of the C–N group for a MT-AweGNN. The picture below shows a series of kernel functions that were used to evaluate the 4 
features corresponding to the C–N element-specific group at different points in the training of an MT-AweGNN. We choose specific snapshots during training that 
show a smooth change in the kernel function as the η-κ pair is updated. 
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Dropout and weight decay are omitted since they did not notably in-
crease performance, but increased the training time significantly. 

The AMSGrad [31] variant of the Adam optimizer is used because it 
has been shown to improve the convergence of the kernel parameters 
while still achieving large gradients that allow the model to explore a 
larger parameter space, and allows a more interesting analysis of the 
parameter trajectories. A large learning rate of 0.1 is also applied with a 
learning rate decay of 0.999 per epoch of training, for the total of 2000 
epochs, leaving the final learning rate at a value of approximately 
0.01352 at the end of the training. The decay gives the network and 
kernel parameters an opportunity to settle down in a local minimum, 
while the large learning rate gives the models a chance to explore more 
parameter choices while also regularizing the network. The network was 
further improved by applying batch normalization, which is known to 
speed up the training of a network and provides an additional source of 
regularization that reduces the need for dropout [12]. Finally, the batch 
size used was 100 for the ST models, while the MT models used a total of 
40 batches per epoch, with sizes as even as possible and number of 
samples from each data set proportional to their respective size. 

For all of the network models, we use the PyTorch [29] API in 
conjunction with cython [4] and Numba [16] to speed up the calculation 
of the geometric graph descriptors. All hidden layers are actually 
composed of 3 different layers: a linear unit, followed by a batch 
normalization layer with affine transformations active and momentum 
set to 0.1 (default PyTorch setting), then a ReLU activation. The input 
layer is constructed with 2 layers: a Geometric Graph Representation 
(GGR) layer followed by a batch normalization layer again with affine 
transformations and the same momentum setting. The GGR layer is the 
representation function, R, and the batch normalization layer is the Nσ 

normalization function, as described in detailed previously to generate 
our normalized representation function, F = Nσ∘R. Finally, the output 
layer is simply a linear activation into either 1 or 4 outputs, depending 
on if we are using a multi-task or single-task model. The details of the 
full AweGNN architecture are illustrated in Fig. 5 below. 

As discussed earlier, the network-enabled automatic representation 
(NEAR) generated from training an AweGNN can be used as inputs for 
ensemble models. By examining the performance of these models, we 
can see if the representations generated by AweGNNs can produce 
meaningful features for a broad range of machine learning models. We 
use two ensemble models, random forest regressor (RF) and gradient 
boosting regressor (GBT), from the scikit-learn v0.23.2 package [30]. A 
search for reasonable parameter choices was made on the same vali-
dation sets above. For the RF models, we use the parameters: 

n_estimators = 8 000, max_depth = 27, min_samples_split = 3, and 
max_features = sqrt, with any remaining parameters considered to be set 
at the default setting. For the GBT models, we use the same parameters 
as the RF models above along with the additional parameters: loss = ’ls’, 
learning_rate = 0.1, and subsample = 0.2, with any remaining param-
eters set to the default choice. 

3. Results 

In this section, we give a description of the different quantitative 
toxicity data sets, and then we compare the results of our best models to 
the models generated by other published methods [21,22,27,40]. We 
note that in the work by Nguyen et al. [27], we only report the results 
from one consensus model trained and tested on the Tetrahymena pyr-
iformis IGC50 data set that performed the best, which is labeled as 
Nguyen-best. For the work done by Wu et al. [40], we only report the 
results for the models that utilized all the descriptors detailed in that 
paper. The results of the random forest models are referred to as Wu-RF, 
the gradient boosting models are referred to as Wu-GBT, the ST models 
are Wu-ST, the MT models are Wu-MT, and the consensus of Wu-GBT 
and Wu-MT is Wu-consensus. Except in the case of the Daphnia Magna 
LC50, the best scoring Wu models were those that relied on all de-
scriptors, but any such important detail will be mentioned when 
relevant. 

We also introduce a solvation data set, Model III, as in the paper by 
Nguyen et al. [27]. The performance of our AweGNN models, when 
trained on this data set, is compared to those of differential geometry 
based models developed earlier [27], and other state-of-the-art methods 
[36,38]. The models in this particular section are named as they are in 
the previously referenced paper [27], where the names refer to various 
choices of kernel options/kernel parameters used in the calculation of 
differential geometric descriptors. 

As for our own models, we report them in many ways and in many 
combinations. We train multiple models for each data set and each 
model type, then we combine those in that instance by averaging their 
predictions to get one consensus prediction. This is done to reduce 
variance from random weight initializations and to improve our final 
results. We also combine the predictions of different model types in 
consensus to see if those will possibly yield better results, as we see in 
Wu [40]. We note that models were trained in sets of 42 instead of sets of 
40 or 50 models due to the constraints of our computing architecture. If 
there are computational concerns, we could also significantly reduce the 
number of models trained (perhaps to 5 or 10 models), and still obtain 

Fig. 5. Internal architecture of our Auto-parametrized weight element-specific Graph Neural Network (AweGNN) model for the toxicity data sets. The input layer 
consists of our novel Geometric Graph Representation (GGR) layer and a batch norm with no affine transformation. Hidden layers include a linear transformation 
followed by regular batch normalization and ReLU activation, while the output layer has the standard linear activation. 
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similar results. For each data set, we train 42 ST and MT AweGNNs with 
randomized initial weights and obtain a consensus prediction for both 
types, labeled ST-network and MT-network respectively. Then, we train 
one ensemble model for each of the NEARs generated by training the 
networks. Thus, for random forest, we train 42 models based on the 
NEARs resulting from the ST models and 42 more on the NEARs 
resulting from the MT models, in which we get the corresponding 
consensus predictions, ST-RF and MT-RF. Similarly, we get predictions 
from the GBT models, ST-GBT and MT-GBT. Finally, we obtain various 
consensus predictions by combining the previous predictions mentioned 
above. First, we average the prediction ST-network and MT-network to 
get the consensus, network-consensus. Next, we combine ST-network 
and ST-GBT to get ST-consensus. Similarly, we obtain MT-consensus 
by combining MT-network and MT-GBT. Finally, we get the predic-
tion, final-consensus by taking the consensus between ST-consensus and 
MT-consensus. These predictions and their performances on the test sets 
are recorded in the tables in section 3.2, and a summary of this entire 
process is depicted in Fig. 6. 

3.1. Evaluation metrics 

A protocol was proposed by Golbraikh et al. [11] to determine if a 
QSAR model has true predictive power, as summarized in the following 
four points:  

1. q2 > 0.5  
2. R2 > 0.6  
3. R2−R2

0
R2 < 0.1  

4. 0.85 ≤ k ≤ 1.15 

Where q2 is the square of the leave one out correlation coefficient for 
the training set, R2 is the square of the Pearson correlation coefficient 

between the experimental and predicted toxicity endpoints of the test 
set, R20 is the square of the correlation coefficient between the experi-
mental and predicted toxicity for the test set in which the intercept is set 
to zero for a linear regression performed on the predicted and experi-
mental labels given by X and Y respectively so that the regression is 
given by Y = kX (from which the k value is extrapolated). 

For each numerical experiment involving toxicity, we record the 
metrics above, although we omit the q2 coefficient due to the compu-
tational cost. We also record the root-mean-squared error (RMSE) and 
the mean-absolute error (MAE) since these are standard metrics for 
evaluating the performance of a model. The final metric to report is 
coverage, or the fraction of chemicals predicted, which is important 
because a lower coverage can unfairly improve prediction accuracy. For 
the solvation data sets, we only report the MAE, RMSE, and the R2 score 
as in Nguyen et al. [27]. 

3.2. Toxicity data sets 

This paper analyzes 4 different quantitative toxicity data sets [21]. 
These are the 96h fathead minnow LC50 data set, the 48h Daphnia 
magna LC50-DM data set, the 40h Tetraphymena pyriformis IGC50 data 
set, and the oral rat LD50 data set. The LC50 (LC50-DM) set report the 
concentration in milligrams per liter of test chemicals placed in water 
that it takes to cause 50% of fathead minnows (Daphnia magna) to die 
after 96(48) hours. These were downloaded from the ECOTOX aquatic 
toxicity database via the web site e http://cfpub.epa.gov/ecotox/and 
were preprocessed using filter criterion including media type, test 
location, etc. The IGC50 data set measures the 50% growth inhibitory 
concentration of the Tetrahymena pyriformis organism after 40 h and 
was obtained by Schultz and co-workers [1,43]. The last data set, LD50, 
represents the concentration of chemicals that kill half of rats when 
orally ingested. This data set was constructed from the ChemIDplus 
database (http://chem.sis.nlm.nih. gov/chemidplus/chemidheavy.jsp) 

Fig. 6. Pictorial representation of the overall strategy. The arrows show the flow of the processes of training, extracting representations from trained AweGNNs, and 
making predictions. Blue corresponds to molecular data sets, light green corresponds to machine learning models, orange corresponds to molecular representations, 
and dark green corresponds to predictions. 
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and then filtered according to several criteria [21]. 
The final sets in this work are identical to the sets preprocessed to 

develop the Toxicity Estimation Software Tool (TEST) [21]. The 2D sdf 
format molecular structures and toxicity endpoints are available on the 
TEST website. 3D mol2 format molecular structures were created with 
the Schrödinger software in an earlier work [40]. We should note that 
the units of the toxicity endpoints are not uniform between the data sets. 
The LD50 set endpoints are in -log10(T ​ mol /kg) while the endpoints of 
the remaining sets are in units of -log10(T ​ mol /L). No attempt has been 
made to rescale the values. Finally, the data sets all have differing sizes 
and compositions, and so the effectiveness of our method varies greatly 
between them. 

Statistics of each data set are detailed below in Table 1. Numbers 
inside parentheses indicate the actual number of molecules that were 
used for training and evaluating models. The first 3 data sets include all 
available molecules, but for the last data set (LD50), some molecules 
were dropped out due to force field failures when applying the 
Schrödinger software. Despite this, our coverage is greater than any of 
the TEST models and so is more widely applicable in use. 

3.2.1. LC50-DM (Daphnia Magna) set 
The Daphnia magna LC50 set is the smallest data set with 283 mole-

cules in the training set and 70 molecules in the test set. Given the small 
size of the data set, it can be difficult to train robust QSAR models, thus 
multi-scale models are extremely important for obtaining reasonable 
results. Table 2 shows the results of various QSAR models on the 
LC50DM data set. The TEST consensus had the highest R2 score (R2 =
0.739) out of all the models shown, although Wu et al. [40] reported a 
much higher R2 score of 0.788, which does not appear in the table, when 
only using topological descriptors for a multi-task model. This high 
result with fewer descriptors may be due to the nature of neural net-
works to overfit when trained on small data sets and many descriptors. 
When comparing the result of Wu-MT as reported in the table (using all 
descriptors) to the TEST consensus, we notice that although the R2 score 
was lower, the RMSE and MAE are better. The group contribution scored 
exceptionally well in RMSE and MAE, but doubt was cast on the accu-
racy of those results [40]. 

The performance of our ensemble models was fairly poor in com-
parison to the results from Wu. Our RF-ST and RF-MT models scored 
0.439 and 0.443 respectively vs. the 0.460 R2 score achieved by Wu-RF. 
Our MT-GBT model was a bit better in performance than the Wu-RF 
model, but it could not beat the Wu-GBT model. We do see however 
that our MT-GBT model had outperformed the ST-GBT model notice-
ably, going from an R2 score of 0.457–0.471, showing a slight benefit 
from using the MT-NEAR for GBT models. As for the network models, we 
see a descent show for our ST-network model vs. the Wu-ST model. 
Although ST-network has an R2 score of 0.448 vs. the 0.459 for Wu-ST, 
we see that the ST-network RMSE of 1.315 beats quite decisively the 
RMSE of 1.407 for Wu-ST. Our MT-network model had unfortunately 
performed much worse than the Wu-MT model, even though its results 
are comparable with many of the TEST models reported. The Wu-MT 
model R2 score of 0.726 is significantly higher than the score of 0.664 
from MT-network. All of our other models do not do well enough to the 
comment on. 

3.2.2. Fathead minnow LC50 set 
The fathead minnow LC50 set was randomly divided into a training 

(80% of the entire set) and a test set (20% of the entire set) [21]. Table 3 
shows the performance of all of the various models trained and tested on 
the LC50 data. This is the second smallest data set that we are analyzing 
in this work. The best TEST model is again the TEST consensus, at an R2 

score of 0.728. Notice that this is lower than the previous TEST 
consensus on the LC50 at an R2 of 0.739, although the coverage increase 

Table 1 
Set statistics for quantitative toxicity data.  

data set # of 
molecules 

train set 
size 

test set size max 
value 

min 
value 

LC50-DM  353 283 70 10.064 0.117 
LC50  823 659 164 9.261 0.037 
IGC50  1792 1434 358 6.36 0.334 
LD50  7413 (7398) 5931 

(5919) 
1482 
(1479) 

7.201 0.291  

Table 2 
Comparison of prediction results for the LC50DM test set.  

model R2  R2 − R20
R2  

k RMSE MAE coverage 

Results with TEST models 
Hierarchical [21] 0.695 0.151 0.981 0.979 0.757 0.886 
single model [21] 0.697 0.152 1.002 0.993 0.772 0.871 
FDA [21] 0.565 0.257 0.987 1.190 0.909 0.900 
group contribution 

[21] 
0.671 0.049 0.999 0.803 0.620 0.657 

nearest neighbor 
[21] 

0.733 0.014 1.015 0.975 0.745 0.871 

TEST consensus [21] 0.739 0.118 1.001 0.911 0.727 0.900 
Results with previous methods from our group 
Wu-RF [40] 0.460 1.244 0.955 1.274 0.958 1.000 
Wu-GBT [40] 0.505 0.448 0.961 1.235 0.905 1.000 
Wu-ST [40] 0.459 0.278 0.933 1.407 1.004 1.000 
Wu-MT [40] 0.726 0.003 1.017 0.905 0.590 1.000 
Wu-consensus [40] 0.678 0.282 0.953 0.978 0.714 1.000 
Ensemble models 
ST-RF 0.439 0.014 0.956 1.312 0.983 1.000 
ST-GBT 0.457 0.004 0.966 1.280 0.954 1.000 
MT-RF 0.443 0.012 0.960 1.304 0.985 1.000 
MT-GBT 0.471 0.003 0.970 1.261 0.953 1.000 
AweGNN models 
ST-network 0.448 0.060 0.959 1.315 0.959 1.000 
MT-network 0.664 0.000 0.983 1.002 0.741 1.000 
Consensus models 
network-consensus 0.583 0.005 0.984 1.112 0.826 1.000 
ST-consensus 0.465 0.015 0.933 1.272 0.933 1.000 
MT-consensus 0.602 0.000 0.981 1.090 0.820 1.000 
final-consensus 0.541 0.001 0.979 1.171 0.872 1.000  

Table 3 
Comparison of prediction results for the LC50 test set.  

model R2  R2 − R20
R2  

k RMSE MAE coverage 

Results with TEST models 
hierarchical [21] 0.710 0.075 0.966 0.810 0.574 0.951 
single model [21] 0.704 0.134 0.960 0.803 0.605 0.945 
FDA [21] 0.626 0.113 0.985 0.915 0.656 0.945 
group contribution 

[21] 
0.686 0.123 0.949 0.810 0.578 0.872 

nearest neighbor 
[21] 

0.667 0.080 1.001 0.876 0.649 0.939 

TEST consensus [21] 0.728 0.121 0.969 0.768 0.545 0.951 
Results with previous methods from our group 
Wu-RF [40] 0.727 0.322 0.948 0.782 0.564 1.000 
Wu-GBT [40] 0.761 0.102 0.959 0.719 0.496 1.000 
Wu-ST [40] 0.692 0.010 0.997 0.822 0.568 1.000 
Wu-MT [40] 0.769 0.009 1.014 0.716 0.466 1.000 
Wu-consensus [40] 0.789 0.076 0.959 0.677 0.446 1.000 
Ensemble models 
ST-RF 0.697 0.028 1.018 0.836 0.589 1.000 
ST-GBT 0.687 0.000 0.995 0.820 0.562 1.000 
MT-RF 0.703 0.029 1.019 0.829 0.582 1.000 
MT-GBT 0.706 0.001 0.998 0.795 0.543 1.000 
AweGNN models 
ST-network 0.682 0.003 0.987 0.830 0.566 1.000 
MT-network 0.749 0.000 0.999 0.735 0.481 1.000 
Consensus models 
network-consensus 0.739 0.000 0.996 0.748 0.505 1.000 
ST-consensus 0.711 0.000 0.994 0.788 0.540 1.000 
MT-consensus 0.747 0.001 1.001 0.739 0.494 1.000 
final-consensus 0.737 0.001 0.998 0.753 0.507 1.000  
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from 0.900 to 0.951. For the Wu models, the best result is a whopping 
0.789 R2 score for Wu-consensus. Wu-consensus also boasts the best 
overall RMSE and MAE. The other 2 high scoring models from that 
category are Wu-MT and Wu-GBT, which come at R2 scores of 0.769 and 
0.761, respectively (see Table 3). 

Our ensemble models do comparably well when compared to the 
TEST models, except for the TEST consensus. Our ST-network model did 
similarly in performance to many of the TEST models, notably FDA, 
group contribution, and nearest neighbor. Our best model, MT-network, 
with an R2 score of 0.749 and RMSE of 0.735 beats all TEST models, and 
all of our consensus models do equal to or better than the TEST 
consensus model, except for the ST-consensus, which was weighed down 
by the oddly poor performance of the ST-GBT model (ST-GBT performed 
more poorly than did the ST-RF model, with an R2 score of 0.687 vs. 
0.697). 

In comparison to the Wu models, we notice that all of our ensemble 
models are far behind in performance to either Wu-RF or Wu-GBT, with 
our best R2 score of 0.706 from our MT-GBT model being overtaken by 
the lowest ensemble score of 0.727 from the Wu-RF model. The per-
formance of our ST-network model is comparable to Wu-ST with an R2 of 
0.682–0.692, with even closer RMSE and MAE scores. As far as the MT 
models go, we see a much greater difference between MT-network and 
Wu-MT. We cannot come close to the R2 score of 0.789 from the Wu-MT 
model, which is the best of the models from Wu for this data set [40]. 

3.2.3. Tetraphymena pyriformis IGC50 set 
The IGC50 data set is the second largest of the data sets we are 

analyzing. The diversity of the molecules is relatively low compared to 
the other data sets, which allows for more coverage in the TEST models. 
The amount of data points in the set is large enough to train robust 
models, which translates into the high R2 scores for the models that are 
compared in this section. The results for this data set are shown in 
Table 4. We notice that the TEST models are far more variant in their 
results than in the previous 2 data sets, with R2 scores ranging from 
0.600 to 0.764. Again, the TEST consensus gets the highest R2 score 
(0.764). Among the Wu models, the Wu-consensus model is again the 

supreme champion with an R2 score of 0.802. As usual, the Wu-MT 
model also did very well, trumping all TEST models with respect to 
every metric. We also introduce the best IGC50 model from the work 
done by Nguyen et al. [27] in which GBT models were trained on rep-
resentations derived from differential geometry based descriptors. 
Though the model was trained without help from other data sets, it was 
able to defeat the Wu-MT model in all metrics. The GBT Nguyen-best 
model is however narrowly defeated by the Wu-GBT model with an R2 

score of 0.781 compared to 0.787. 
Our ensemble models are relatively low in comparison to the per-

formance of the rest of the models, although our MT-GBT model does 
perform better than all TEST models except for the TEST consensus 
model. Our ST-network model outperforms all TEST models single- 
handedly with an R2 score of 0.778. All of our remaining models 
outperform our own ST-network model, and thus also every TEST model 
as well. 

Our ensemble models under-perform yet again in comparison to the 
RF and GBT models set forth by Wu. When comparing our network 
models, we see that our ST-network model strongly defeats the Wu-ST 
model with an R2 score of 0.749 and even outperforms the Wu-MT 
model with an R2 of 0.770. ST-network is, however, beaten by Wu- 
consensus, and even by the model put forth by Nguyen, that is, 
Nguyen-best. Our MT-network model is the best scoring model in the 
whole table in all metrics except for MAE, with an R2 score of 0.803, 
RMSE of 0.436, and MAE of 0.310. Only Wu-consensus has a lower MAE 
of 0.305, but that MAE is beaten by our model, network-consensus, with 
an MAE of 0.304. Although MT-network technically performs slightly 
better than Wu-consensus, they are effectively identical in performance. 

3.2.4. Oral rat LD50 set 
The oral rat LD50 set contains the most molecules. The data set is 

quite large (7413 molecular compounds), so naturally full coverage is 
not available for any of the methods proposed, although most models 
still have very high coverage. The labels of this data set are quite difficult 
to predict because of the high experimental uncertainty in obtaining the 
toxicity endpoints, as noted in Zhu et al. [42]. Table 5 shows the results. 
As in Wu et al. [40], we omit the single model and group contribution 
TEST methods from the table in our analysis. As always, the TEST 
consensus provides the greatest results amongst the TEST models. For Table 4 

Comparison of prediction results for the IGC50 test set.  
model R2  R2 − R20

R2  
k RMSE MAE coverage 

Results with TEST models 
hierarchical [40] 0.719 0.023 0.978 0.539 0.358 0.933 
FDA [40] 0.747 0.056 0.988 0.489 0.337 0.978 
group contribution 

[40] 
0.682 0.065 0.994 0.575 0.411 0.955 

nearest neighbor 
[40] 

0.600 0.170 0.976 0.638 0.451 0.986 

TEST consensus [40] 0.764 0.065 0.983 0.475 0.332 0.983 
Results with previous methods from our group 
Wu-RF [40] 0.736 0.235 0.981 0.510 0.368 1.000 
Wu-GBT [40] 0.787 0.054 0.993 0.455 0.316 1.000 
Wu-ST [40] 0.749 0.019 0.982 0.506 0.339 1.000 
Wu-MT [40] 0.770 0.000 1.001 0.472 0.331 1.000 
Wu-consensus [40] 0.802 0.066 0.987 0.438 0.305 1.000 
Nguyen-best [27] 0.781 0.004 1.003 0.463 0.324 1.000 
Ensemble models 
ST-RF 0.713 0.013 1.006 0.535 0.377 1.000 
ST-GBT 0.745 0.000 0.994 0.496 0.329 1.000 
MT-RF 0.716 0.013 1.006 0.532 0.377 1.000 
MT-GBT 0.753 0.000 0.995 0.489 0.327 1.000 
AweGNN models 
ST-network 0.778 0.000 1.003 0.463 0.309 1.000 
MT-network 0.803 0.000 0.999 0.436 0.310 1.000 
Consensus models 
network-consensus 0.799 0.000 1.001 0.440 0.304 1.000 
ST-consensus 0.777 0.000 1.000 0.464 0.309 1.000 
MT-consensus 0.795 0.000 0.998 0.445 0.305 1.000 
final-consensus 0.789 0.000 0.999 0.451 0.306 1.000  

Table 5 
Comparison of prediction results for the LD50 test set.  

model R2  R2 − R20
R2  

k RMSE MAE coverage 

Results with TEST models 
hierarchical [21] 0.578 0.184 0.969 0.650 0.460 0.876 
FDA [21] 0.557 0.238 0.953 0.657 0.474 0.984 
nearest neighbor 

[21] 
0.557 0.243 0.961 0.656 0.477 0.993 

TEST consensus [21] 0.626 0.235 0.959 0.594 0.431 0.984 
Results with previous methods from our group 
Wu-RF [40] 0.619 0.728 0.949 0.603 0.452 0.997 
Wu-GBT [40] 0.630 0.328 0.960 0.586 0.441 0.997 
Wu-ST [40] 0.614 0.006 0.991 0.601 0.436 0.997 
Wu-MT [40] 0.626 0.002 0.995 0.590 0.430 0.997 
Wu-consensus [40] 0.653 0.306 0.959 0.568 0.421 0.997 
Ensemble models 
ST-RF 0.606 0.013 1.003 0.612 0.452 0.998 
ST-GBT 0.643 0.002 0.995 0.578 0.424 0.998 
MT-RF 0.596 0.012 1.003 0.619 0.456 0.998 
MT-GBT 0.641 0.002 0.995 0.580 0.426 0.998 
AweGNN models 
ST-network 0.660 0.001 0.995 0.563 0.406 0.998 
MT-network 0.658 0.001 0.993 0.565 0.411 0.998 
Consensus models 
network-consensus 0.665 0.000 0.995 0.558 0.404 0.998 
ST-consensus 0.665 0.001 0.997 0.559 0.406 0.998 
MT-consensus 0.664 0.001 0.996 0.560 0.409 0.998 
final-consensus 0.667 0.001 0.997 0.557 0.405 0.998  
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this data set, the effectiveness of the Wu models wanes, with the Wu-MT 
model failing to perform decisively better than the TEST consensus 
(although, Wu-MT does indeed do slightly better in RMSE and MAE in 
comparison to TEST consensus). 

For this data set, we see the best performance from our models. Even 
our ensemble models do quite well. In fact, our ST-GBT and MT-GBT 
models, with respective R2 scores of 0.643 and 0.641, outperform any 
TEST model and any Wu models aside from the Wu-consensus model. All 
of our non-ensemble models out-perform every single other model, 
including Wu-consensus, with our best performing model, final- 
consensus, having an R2 of 0.667, RMSE of 0.557, and MAE of 0.405. 
This decisively beats the Wu-consensus model having an R2 score of 
0.653, RMSE of 0.568, and MAE of 0.421. 

We notice that for this data set, we finally required the consensus of 
the GBT models to get our best prediction, as opposed to the other data 
sets in which we obtained the best result from our MT-network models. 
Our AweGNN models seem to shine relative to other groups models 
when the data sets are the largest, in which the networks are able to 
generate their most generalizable representations, and the predictions 
are the most accurate. 

3.3. Solvation data set 

In this section, we explore the results of the solvation data set, model 
III. Model III has a total of 387 molecules (excluding ions), and is split 
into a training set of 293 molecules and a test set of 94 molecules. We use 
the same training set, but we omit molecules based on obscure chemical 
names in the PubChem database and due to some difficulties with the 
Schrödinger software in generating mol2 files. The test set is unaltered, 
so these difficulties leading to our smaller training set of 280 molecules 
should disfavor our method. In addition to this, there is only one data set 
for solvation that we analyze, so we cannot apply our MT method. We 
simply train ST models and report one consensus with the GBT model 
and the network model, following the same procedure as before. The 
results are shown below in Table 6, where they are compared to other 
models mentioned previously [27,36,38]. 

We see that in this instance, we get our best performance relative to 
other group’s models. This is quite surprising, as we found that with the 
toxicity data, the AweGNN seemed to perform very well only when the 
data sets were very large. Our greatest model, the ST-network model, 
significantly outperforms every other model in every metric. Even our 
GBT model is able to greatly outperform all other models outside this 
group, though our RF model performs only satisfactory. In fact, the 
supplementary material from Nguyen et al. [27] contains models whose 
kernel parameters were optimized specifically on the test data, giving a 

further advantage. These can be seen in Table 7. Again, we see that even 
our GBT model is able to win in every metric against every model in this 
table, let alone our ST-network with an MAE gap of 0.145, an RMSE gap 
of 0.229, and an R2 score gap of 0.032 when compare to the best metrics 
of any chosen opposing model. This analysis shows that there is great 
promise for applying the AweGNN method for solvation free energy 
prediction. 

4. Discussion 

In this section, we will discuss the impact of automated parameter 
selection, analyze some elements of feature importance, and discuss a 
new paradigm of auto-parametrized kernel-based networks that could 
lead to many more possibilities. 

4.1. Impact of automating selection of Kernel parameters 

When selecting kernel parameters to optimize the choice of repre-
sentation, our group was previously using the grid search method to 
determine which parameters were optimal [25]. This is not so much of a 
hindrance if there are only a handful of parameters to tune, but as the 
number of parameters to tune increases, the number of models that need 
to be trained increases exponentially. In addition, grid searches require a 
discrete set of parameters to experiment with, which is a coarse way to 
tune parameters and leads to some inefficiency. These problems can 
severely restrict the potential of these kernel-based representations, and 
largely restrict us to the use of machine learning algorithms that do not 
have many tunable parameters, such as RF or GBT. 

One of our goals in this work was to alleviate these issues. Auto-
matically updating kernel parameters is a great solution in theory and in 
practice, as we have seen with the success of our AweGNN in this work. 
The AweGNN seeks the optimal choice of parameters within a contin-
uous space, so the parameter selection is done in a smooth way and can 
select the values that are not present in a grid search. In our case, we 
incorporate the parameter selection into the gradient descent process of 
training a neural network. This association with the gradient descent 
allows us to update very many kernel parameters at the same time as the 
weights of the neural network, but has a moderate computational cost 
associated with it that is commensurate with the computational cost of a 
moderately sized network. More specifically, a quick analysis on the 
IGC50 data shows that a network consisting of the GGR layer (producing 
400 features) with normalization takes the same amount of time on 
average to cycle though an epoch as does the network with the GGR +
normalization layer along with a 4-layer network of 1600 neurons each, 
thus the GGR + normalization layer is equivalent to a 4-layer 1600 
neuron network in terms of computational cost. This cost is certainly not 
prohibitive, and ultimately saves us an inordinate amount of time, 
especially since we are able to tune 200 kernel parameters simulta-
neously (which would be impossible with a grid search). 

As kernel methods require careful tuning to reach their full potential, 
neural networks were effectively off limits for training effective models 
with kernel-based representations. The AweGNN proves that kernel- 
based representations can be used to train high performing models 
and brings many new possibilities for developing excellent predictive 
models for biomolecular data. 

Table 6 
Comparison of prediction results for the solvation test set.  

model MAE (kcal/mol) RMSE (kcal/mol) R2  

Results from outside sources 
WSAS [38] 0.66 – – 

FFT [36] 0.57 – – 

Results from Nguyen et al. [27] 
EICH

E,3.5,0.3  0.575 0.921 0.904 
EICH

E,3.5,0.3;E,2.5,1.3  0.558 0.857 0.920 
EICH

L,3,1.3  0.592 0.931 0.906 
EICH

L,3,1.3;L,6.5,0.3  0.608 0.919 0.907 
ConsensusH  0.567 0.862 0.920 
Ensemble models 
ST-RF 0.698 1.001 0.893 
ST-GBT 0.496 0.666 0.951 
AweGNN model 
ST-network 0.373 0.569 0.963 
Consensus model 
ST-consensus 0.401 0.583 0.962  

Table 7 
Supplementary results for solvation data set from Nguyen et al. [27].  

Method MAE (kcal/mol) RMSE (kcal/mol) R2  

*EICH
E,3.5,0.3  0.575 0.921 0.904 

*EICHH
E,3.5,0.3;E,4.0,1.3  0.518 0.812 0.929 

*EICH
L,5,0.3  0.579 0.862 0.917 

*EICHH
L,5,0.3;L,0.5,0.9  0.559 0.842 0.922 

*ConsensusH  0.524 0.798 0.931  
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4.2. Feature importance and analyzing the trajectories of the Kernel 
parameters 

To find the most important features that influenced our predictions, 
we look at the feature importance ranking of the random forest (RF) 
models that were trained on the network-enabled automatic represen-
tations (NEARs) generated by the AweGNNs. This analysis will pinpoint 
the specific element-pair interactions that contributed the most to the 
creation of our predictive models. Then, we can analyze the average 
trajectories and final states of the kernel functions from the element- 
specific groups that generate the most important features. The average 
η values can tell us about the most beneficial interaction distances be-
tween those element pairs, and the average κ values can tell us about the 
most favorable degree of sharpness of the cutoff for including the edge 
cases centered around those η values. 

By closely examining the feature importance over all data sets and all 
models, we notice that, in general, the most important interactions tend 
to be the ones between hydrogen-hydrogen, carbon-carbon, and the 
interaction between those two elements. This would make sense, since 
the carbons and hydrogens are the most numerous elements in these 
structures and will be interacting most with the environment. The sec-
ond most important features are generated from the interactions be-
tween the hydrogen-oxygen and carbon-oxygen pairs. This again seems 
to be a natural result, for this can be indicating the importance of the 
polar bonds. Aside from these groups, however, there seems to be no 
broader pattern. Different data sets seem to prioritize different element 
specific groups, especially the largest data set, LD50, in which there are a 
great diversity of element pair interactions that are important, as can be 
seen in Fig. 7a, which illustrates the feature importance associated with 
each pair through a heat map. 

A more contained display of the feature importance is portrayed in 
Fig. 7b, based on the RF models trained to predict the toxicity for the 
IGC50 data set with the NEARs generated from the multi-task (MT) 
AweGNN models. The feature importance values are concentrated 
within the pairs consisting of the hydrogen, carbon, nitrogen, and oxy-
gen elements. For the complete list of feature importance heat maps of 
all the data sets, including feature importance measured by the gradient 
boosting models, you may reference the Supporting information, 
Figs. S1–S16. 

To go into more detail of what is happening in each element-specific 
group, we analyze how the parameters of the kernel functions of the top 

10 groups evolve on average. This evolution can be seen in Fig. 8. 
As the training progresses, element pairs have their kernel parame-

ters tend towards various η-κ combinations. Some element pairs have 
high η values and moderate κ values, such as the H–H and C–N groups, 
while others tend towards low η and low κ values (i.e, H–O), or even low 
η and high κ (O–C). There are many physical interpretations that could 
be valid, for example, the low η and κ value for the H–O group could be a 
measure of the potential for hydrogen bond interactions with the envi-
ronment, or even internal short-range interactions that assess the sta-
bility of the molecule. In any case, we may note the convergence of the η 

values especially for they might reveal important cutoff distances that 
contribute to the measurement of toxicity. 

4.3. Limitations and advantages 

One of the limitations present in the study is with regards to applying 
the AweGNN to very large molecules or systems of molecules. If too 
many atoms are involved in the calculation of these features, then the 
computational cost may become unbearable. Some provisions or rules 
can be made to avoid heavy computational costs while dealing with 
large scale biomolecular structures or systems of molecules. For 
example, our method may be naturally extended to the problem of 
protein-ligand binding. We can measure the interaction strength be-
tween atoms of a specific element type in the protein and atoms of 
another element type in the ligand, instead of the interactions between 
the atoms of two element types contained within a single molecule. A 
standard cutoff distance from the ligand is applied to focus on the 
strongest interactions, thereby leaving a reduced number of atoms for 
the analysis. A cutoff that is very large might include too many atoms 
from the protein and thereby incur a heavy computational cost that is far 
beyond that of the small molecular data sets that we have used in this 
study. Small cutoffs can be feasible and perhaps still quite effective since 
long-range interactions may not carry as much weight in terms of 
performance. 

The advantage of the AweGNN is its ability to shape the kernel 
function for each element-specific group so as to provide the optimal 
filter for capturing the most important interactions between elements 
within a molecule. Though there is much potential in this approach, 
there is a danger of over-fitting with smaller data sets. This is perhaps 
why we see the greatest performance with the largest LD50 data set, and 
so practically we may want to train on the largest data sets that we can. 

Fig. 7. Feature importance of MT-AweGNNs when applied to different data sets. We generate heat maps based on the average of feature importance across 42 RF 
models trained on the corresponding NEARs of the MT-AweGNNs. The average feature importance of the 4 features of each element-specific group are summed 
together to get the final scores shown above in the maps. Fig. 7a shows the results for the LD50 MT-RF models and Fig. 7b shows the results for the IGC50 MT-RF 
models. Note that the maps are asymmetric due to the way that the electrostatics-based features of a group are generated. 
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However, we notice also that the AweGNN was incredibly successful 
with the small solvation energy data set; and for the two smallest data 
sets, LC50-DM and LC50, the results for the single task network are 
similar to the RF models, which are known to be quite robust against 
over-fitting. Thus, the danger of over-fitting may not be as present as 
originally thought. Also, it may be the case that the multi-task method is 
less effective when applying the AweGNN, for it may fit its features too 
specifically to a particular task, and therefore be influenced by the larger 
data sets more so than other methods, like Wu’s [40]. 

The computational cost associated with training our multi-task (MT) 
AweGNN model, which is our largest computational endeavor, is under 
135 min. The largest single task model (LD50 model), takes under 120 
min, while the second largest IGC50 data set is trained in approximately 
20 min, with the training time for the smaller data sets being signifi-
cantly lower (a handful of minutes). While the training time of our MT- 
AweGNN takes almost 70% longer than, for instance, the MT-Wu model 
(80 min training time) [40], we can see that the MT AweGNN can still 
perform better on the larger data sets, so the 70% increase in training 
time may be worth the performance boost when provided with more 
samples. In addition to this, we note that our features are simple 
kernel-based features, and do not require auxiliary physical descriptors 
to achieve stellar performance. The AweGNN can in fact use those same 
auxiliary features to bolster its own predictions, and is more flexible in 
that it can also combine multiple kernel types to generate multi-scale 
representations that have been highly successful in previous works 
[27,28]. Finally, as our features are kernel-based, we noted in section 
4.1 that these features would usually require a grid-search to optimize 
the kernel parameters, but in our case, we are able to automate this 
process while simultaneously training our network, thereby saving time 
in that respect. 

5. Conclusion 

Recent years have witnessed much effort in developing mathemat-
ical representations for the machine learning predictions of chemical 
and biological properties that are crucial to drug discovery. Advanced 
mathematical tools from fields such as graph theory [26,28], differential 
geometry [27], algebraic topology [40], and other mathematical area, 
have been developed and demonstrated their superb performance. Many 
of these representations were generated with a choice of kernel func-
tions in which each function depends on its own choice of parameters. 
These kernel-based molecular representations then have to be fine tuned 
to optimize their effectiveness for training machine learning models. 

Increasing parameter choices leads to a rapid increas in the computa-
tional cost of optimization. This problem deteriorates in the case of deep 
neural networks because of the already cumbersome task of choosing 
network hyperparameters. Motivated by the automated feature extrac-
tion in convolutional neural network (CNN), we propose an 
auto-parametrized element-specific graph neural network (AweGNN) to 
automate and optimize the parameter selection in our geometric graph 
approach. The resulting representation from training the AweGNN is 
called a network-enabled automatic representation (NEAR). NEARs can 
be used as input features for other machine learning models, such as 
random forest (RF) and gradient-boosting tree (GBT) models. 

AweGNN and NEAR-based ensemble methods are validated with five 
data sets from quantitative toxicity and solvation predictions. Both 
toxicity and solvation are important for lead hit, and structure optimi-
zation in drug discovery. Four quantitative toxicity data sets: 96 h 
fathead minnow LC50, 48 h Daphnia Magna LC50 data set (or LC50-DM), 
40 h Tetrahymena pyriformis IGC50 data set, and the oral rat LD50 data 
set were used in our work. Our models were compared to state-of-the-art 
models in various literature, i.e., the Toxicity Estimation Software Tool 
(TEST) [21] listed by the United States Environmental Protection 
Agency (EPA), a previous work by Wu et al. [40], and another work by 
Nguyen et al. [27]. Given that we had 4 toxicity data sets of various sizes 
with similar prediction tasks, we were able to employ the multi-task 
(MT) learning method to greatly improve our performance. Our top 
models were able to out-compete all TEST models in all but the smallest 
data sets. When comparing with the top Wu models, our top models 
were able to perform just as well or better when restricting to the largest 
2 data sets, although our general models for the smaller data sets were 
still able to perform relatively well when compared to many of the 
earlier models. 

To broaden our application, we also tested the AweGNN on the 
solubility data set, Model III, used in the work by Nguyen al [27]. For 
this instance, we were not able to apply MT learning because we only 
had one data set to work with. Despite this, we were able to greatly 
outperform any other models that we compared [27,36,38]. Although 
there is a positive correlation between the relative effectiveness of the 
AweGNN and the data set size with respect to the 4 toxicity data sets, we 
see that in the case of solubility, the AweGNN can perform exceptionally 
well even with a very small data set. Our work showcases the impressive 
predictive capabilities of the AweGNN and ultimately introduces new 
potential to improve the effectiveness of previous mathematical 
methods. 

Fig. 8. Average trajectories of kernel parameters for 42 MT-AweGNN models. The graph on the left shows how the average of the η values of our 42 MT models for 8 
different element-specific groups changes as the models are trained. On the right, we see the κ counterpart of this analysis. 
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