
Computers in Biology and Medicine 134 (2021) 104460

Available online 12 May 2021
0010-4825/© 2021 Elsevier Ltd. All rights reserved.

AweGNN: Auto-parametrized weighted element-specific graph neural
networks for molecules
Timothy Szocinski a, Duc Duy Nguyen b, Guo-Wei Wei a,c,d,*

a Department of Mathematics, Michigan State University, MI, 48824, USA
b Department of Mathematics, University of Kentucky, KY, 40506, USA
c Department of Biochemistry and Molecular Biology, Michigan State University, MI, 48824, USA
d Department of Electrical and Computer Engineering, Michigan State University, MI, 48824, USA

A R T I C L E I N F O

Keywords:
Automated feature extraction
Deep neural network
Mathematical representation
Toxicity
Solvation

A B S T R A C T

While automated feature extraction has had tremendous success in many deep learning algorithms for image
analysis and natural language processing, it does not work well for data involving complex internal structures,
such as molecules. Data representations via advanced mathematics, including algebraic topology, differential
geometry, and graph theory, have demonstrated superiority in a variety of biomolecular applications, however,
their performance is often dependent on manual parametrization. This work introduces the auto-parametrized
weighted element-specific graph neural network, dubbed AweGNN, to overcome the obstacle of this tedious
parametrization process while also being a suitable technique for automated feature extraction on these inter-
nally complex biomolecular data sets. The AweGNN is a neural network model based on geometric-graph fea-
tures of element-pair interactions, with its graph parameters being updated throughout the training, which
results in what we call a network-enabled automatic representation (NEAR). To enhance the predictions with
small data sets, we construct multi-task (MT) AweGNN models in addition to single-task (ST) AweGNN models.
The proposed methods are applied to various benchmark data sets, including four data sets for quantitative
toxicity analysis and another data set for solvation prediction. Extensive numerical tests show that AweGNN
models can achieve state-of-the-art performance in molecular property predictions.

1. Introduction

Automated feature extraction techniques, like those used in con-
volutional neural networks (CNNs) and recurrent neural networks
(RNNs), have been very successful in deep learning applications [17,32].
They have made inroads in a variety of fields now, producing
state-of-the-art results in signal and information processing fields [10],
such as speech recognition, image recognition [8], and natural language
processing [35]. These kinds of automated feature extraction tech-
niques, however, are only highly successful on data that is relatively
simple in structure, such as with images, text, etc. For data sets with
complex internal structures, such as molecules or macro-molecules,
hand-crafted descriptors, or representations, are indispensable for
developing top-quality predictive models [25].

There are many physical, biological and man-made objects that have
intricate internal structures. For example, proteins, chromosomes,
human bodies, and cities have very complex structures. Tools from

abstract mathematics such as algebraic topology, differential geometry,
and combinatorics can be utilized to simplify the structural complexities
of data [23,25,39]. For molecules and macro-molecules, molecular
fingerprint representations obtained from persistent homology, curva-
ture analysis of surface electrostatic potentials, and eigenvalues of
weighted adjacency matrices derived from atomic distances have all be
used for this endeavor [25]. From the point view of machine learning,
molecular representations which include detailed chemical and physical
information can be extremely high-dimensional, especially when the
biomolecules in question are made of thousands of atoms, such as in the
case of protein-ligand complexes [2,5,6,9]. By using lower dimensional
mathematical representations to train simple machine learning models,
such as gradient-boosting trees (GBT) and random forest (RF) models,
one can achieve stellar performance.

Some of our hand-crafted mathematical features are somewhat
limited in their scope [40], in which we mean they are generated by a
fixed procedure, with little possibility for making fine adjustments to

* Corresponding author. Department of Mathematics, Michigan State University, MI, 48824, USA.
E-mail address: wei@math.msu.edu (G.-W. Wei).

Contents lists available at ScienceDirect

Computers in Biology and Medicine
journal homepage: www.elsevier.com/locate/compbiomed

https://doi.org/10.1016/j.compbiomed.2021.104460
Received 11 February 2021; Received in revised form 23 April 2021; Accepted 26 April 2021

mailto:wei@math.msu.edu
www.sciencedirect.com/science/journal/00104825
https://www.elsevier.com/locate/compbiomed
https://doi.org/10.1016/j.compbiomed.2021.104460
https://doi.org/10.1016/j.compbiomed.2021.104460

Computers in Biology and Medicine 134 (2021) 104460

2

produce more favorable representations. Other mathematical features
that we have used are based on a choice of kernel function or functions
along with adjustable parameters, in which a careful tuning of these
parameters can deliver optimal performance [26,28]. This process of
tuning, however, can be very time-consuming and requires experience.
Although the kernel parameters introduce new dimensions to enhance
our models, the cost of tweaking becomes tedious when more than a
small handful are introduced.

In this work, motivated by the automation of simple feature-
extraction techniques as in CNNs, we seek to automate the parameter
optimization for our mathematical representations. Specifically, we
automate the selection process of kernel parameters either partially or
fully, meaning that we would like to have some or all of the parameters
automatically chosen for us during training. Neural networks are trained
in a series of epochs where the weights of the network are updated at
each step through gradient descent, and so they are a perfect starting
point for exploring this idea of automated parameter selection. In our
approach, back propagation is extended further to include the kernel
parameters of our molecular representations, leading to the simulta-
neous update of our kernel parameters and neural weights at each batch
of training. To this end, we introduce auto-parametrized weighted
element-specific graph neural networks (AweGNNs). The AweGNN im-
plements the above scheme of parameter updates by using a represen-
tation based on kernel-weighted geometric subgraphs, with features
similar to the correlation functions of flexibility-rigidity index (FRI) used
in a previous work [28,41]. The representations resulting from updating
the kernel parameters through training the network are then referred to
as network-enabled automatic representations (NEARs). To validate
these NEARs, we implement them on RF and GBT models, leading to
accurate predictions. We further show that ensemble learning can in
some cases bolster our network predictions through consensus.

To test our AweGNN models, we employ four toxicity data sets of
various sizes. Toxicity is a measure of the degree to which a chemical can
harm an organism [40]. The harmful effects can be measured qualita-
tively or quantitatively. A qualitative approach only categorizes chem-
icals as toxic or nontoxic, while quantitative toxicity data records the
minimal amount of a substance that would produce lethal effects.
Experimental measurement of toxicity is expensive, time-consuming,
and subject to ethical constraints. In this light, machine learning
models are extremely useful in that they do not have these same chal-
lenges. The working principal of the machine learning approach for
toxicity analysis is that molecules with similar structures have similar
activities, which is called the quantitative structure-activity relationship
(QSAR) approach. By analyzing the relationship between molecular
structures, one can predict their biological functions. We can create
AweGNN models that predict these toxicity endpoints without having to
conduct any lab experiments [3,14,19,33]. To further improve our
AweGNN predictions on the sparsity of data [13], we construct
multi-task (MT) AweGNNs. MT learning or transfer learning [7] learns
from related tasks to improve the performance on the smaller data sets in
particular. It is frequently used to compensate if there are similar data
sets at hand. We find that AweGNN models perform well on these data
sets when we compare our results to state-of-the-art QSAR techniques,
such as the ones that were pursued by our group [27,40] previously and
by others [21,22], with particularly excellent performance on the larger
data sets.

To further showcase our AweGNN, we apply our models on a
different data set; a small data set concerning the solvation of molecules.
Solvation free energy is a very important quantity in solvation analysis,
which can be very beneficial in studying other complex or biological
processes [18,20,24,37]. This data set is relatively small compared to
the toxicity data sets, but we found that the AweGNN was able to
perform extremely well, beating all other methods in the literature [27].
This proves that the AweGNN is useful in application to molecular
problems that are not just restricted to toxicity analysis. In addition to
this, we can find that the concept of the AweGNN can be extended

further to other kernel-based methods, in which we can automate the
kernel parameters as we train a network, such as with the differential
geometry work done by Nguyen et al. [27]. Finally, we note that
although we have not used multi-scale approaches in this work, we have
seen them perform well in previous work [27,28], so it is likely to be
worthy of exploration in further works.

2. Theory and methods

In this section, we will briefly review single and multi-task neural
networks, then describe our AweGNN models. We discuss AweGNN
through the frameworks of element-specific geometric graph represen-
tations, dynamic normalization functions, explicit derivative calcula-
tions, and instructions on how to update the parameters. Some
variations on the generation of features are included even though these
variations might have not been used to train the final models.

2.1. Neural networks

Neural networks are predictive models that consist of layers which
are made up of neurons in which each neuron is connected to every
other neuron in the next layer of the layer sequence. A weight is asso-
ciated with each connection that determines how much a neuron con-
tributes to the input of the neuron in the next layer, and a bias term is
introduced to shift the activations. Activation functions, such as the
logistic sigmoid, grant the network a level of non-linearity for additional
complexity. A feature vector, in which each feature corresponds to a
neuron in the input layer, can be pushed through the layers of the
network all the way to the output layer in a process called forward
propagation. Neural networks can be trained as classification models
that categorize data, or regression models that predict continuous
quantities. In this work, we only develop regression models.

Neural networks are trained by updating the weights and biases of
the network in a series of steps through gradient descent, in which an
appropriate loss function is minimized. The process of calculating the
errors of a neural network is called back propagation, in which de-
rivatives are calculated in the backwards direction starting from the
output layer, where the loss (or error) is calculated, and propagating
backward through each layer all the way back to the input layer, after
which the weights are then updated by following the negative direction
of the gradient. The gradient descent process finds a local minimum of
the loss function when viewed with respect to the weights. This process
fits the network to the data set in question.

A general neural network consists of an input layer, an output layer,
and any number of hidden layers in between. Deep neural networks are
characterized by having many more layers and neurons, allowing the
network to be more complex. There are many additions to the neural
network architecture that can be included for training a model. Acti-
vation functions bring non-linearity to a network, and a proper choice of
activation function can have an effect on training and performance of a
network. Dropout [34] layers prevent over-fitting by dropping out
random neurons during each step of training. Weight decay is another
technique that regularizes the network to prevent over-fitting by
decreasing the magnitude of each weight throughout the training. Batch
normalization [12] layers normalizes the outputs of each layer to speed
up the training time, improve performance, and allow deep networks to
be trained with stability by reducing internal covariant shift. Adaptive
learning rates are learning rates that change during the training of the
network, such as in a momentum approach to gradient descent that
“gains speed as it descends down a valley”, that can find local minimums
faster and sometimes have the ability to jump out of “undesirable” local
minimums. We use batch normalization, ReLU activation, and the
AMSGrad [31] variant of the popular Adam [15] optimization adaptive
learning rates in our work. Dropout and weight decay increased the
training time dramatically and so were not used in our final models, but
may be explored further in the future.

T. Szocinski et al.

Computers in Biology and Medicine 134 (2021) 104460

3

Single-task (ST) neural networks are networks trained on a single
data set and have a single output (at least in the regression case). An ST
network is trained by the minimization problem:

min
W,b

[

α ⋅

⃒

⃒

⃒

⃒

⃒

⃒

⃒

⃒

⃒

⃒

W

⃒

⃒

⃒

⃒

⃒

⃒

⃒

⃒

⃒

⃒

2

2

+
∑

N

i

L(yi, f (xi; {W,b}))
]

, (1)

where ⃒⃒⃒⃒⋅⃒⃒⃒⃒2 denotes the L2 norm, α represents the regularization con-
stant, f is a function parametrized by the weights, W, and biases, b, that
represents the output of the network, and xi and yi are the feature vector
and the label of the ith data point respectively of a data set with N
samples.

Single-task networks are, however, limited in their usefulness when
being trained on small data sets. Multi-task (MT) networks have been
developed to take advantage of large data sets to bolster the training of a
network on a smaller data set. The idea is to train the models on multiple
tasks simultaneously by sharing weights, thus highlighting relevant
features that are important across all the related tasks. The details of
their training are as follows:

If we let T be the number of tasks and {(xt
i , yt

i)}
Nt
i=1 is the training data

for the tth task where Nt is the number of samples of the tth task, xt
i is the

feature vector of the ith sample of the tth task, and yt
i is the label for the ith

sample of the tth task. The training strategy is to minimize the chosen loss
function, L, for all tasks simultaneously. We define the loss for task t, Lt ,
below.

Lt =
∑

Nt

i=1

L
(

yt
i, f

t
(

f s
(

xt
i; {Ws,bs}

)

; {Wt,bt}
))

, (2)

where f t is the part of the network that predicts the labels for the tth task
parametrized by weights, Wt , and bias, bt; f s is the part of the network
that has shared weights, Ws, and bias, bs. To train all models simulta-
neously, we provide a single loss function to minimize so our problem is
then:

argmin ​

[

β ⋅

⃒

⃒

⃒

⃒

⃒

⃒

⃒

⃒

⃒

⃒

Ws

⃒

⃒

⃒

⃒

⃒

⃒

⃒

⃒

⃒

⃒

2

2

+ 1

T

∑

T

t=1

(

Lt + α ⋅
⃒

⃒

⃒

⃒Wt
⃒

⃒

⃒

⃒

2

2

)

]

, (3)

where ⃒⃒⃒⃒⋅⃒⃒|2 denotes the L2 norm and α and β represent the regularization
constants that set the magnitudes of the weight decay during training. In
practice, if weight decay is used, we generally set α = β.

2.2. Overview of auto-parametrized weighted element-specific graph
neural networks (AweGNNs)

We now wish to describe the concept of AweGNNs applied to mo-
lecular data sets. As in most machine learning endeavors, we seek to
frame the task at hand as a minimization problem. To detail our su-
pervised learning algorithm, we first start with a biomolecular data set,
χ, where χi will represent the ith element of the training data set. We
want a function F(χi; {η, κ}) that encodes the geometric and chemical
information into an abstract representation parametrized by a set of
parameters, {η,κ}. Then, the minimization problem becomes:

min
η,κ,W,b

α ⋅

⃒

⃒

⃒

⃒

⃒

⃒

⃒

⃒

⃒

⃒

W

⃒

⃒

⃒

⃒

⃒

⃒

⃒

⃒

⃒

⃒

2

2

+
∑

i∈I

L(yi, f (F(χi; {η, κ}); {W,b})), (4)

where L is the chosen scalar loss function to be minimized, α is the
regularization constant that determines the magnitude of the weight
decay, and yi is the label of the ith data point in our biomolecular data
set. The function, f, is the function parametrized by the weights, W, and
biases, b, that represent the output of the neural network. Notice the
difference with the formulations in the previous section. The output of
the function, F, on the data χi acts as the feature vector, xi, given pre-
viously. The parameters, {η, κ}, that parametrize F are included in the

minimization process. This simultaneous update of the parameters of the
representation function is the novel idea driving this work.

The AweGNNs are trained for the regression task of predicting the
toxicity endpoints and the solvation free energy of various small mole-
cules, with the standard choice of mean squared error (MSE) as our loss
function, L. The regularization constant, α, as noted before, is omitted in
our work for both the single and multi-task models due to a lack of
noticeable increase in performance, but with a moderate increase in
training time. F will be based on element-specific calculations that are
controlled by pairs of tunable kernel parameters that capture different
geometric features of the molecules based on the values of those kernels
chosen. Each element-specific group will be assigned a pair of these
parameters and will be updated throughout the training by back prop-
agation. The representations generated by F after the training of the
AweGNN are called network-enabled automatic representations
(NEARs), and will be used later for training other models to demonstrate
their performance. The procedure is summarized in Fig. 1 below.

More specifically, we wish to understand how to back propagate
through F. This will require us to, at each batch or epoch, back propa-
gate throughout the entire network, then use that information to back
propagate through F all the way to the kernel parameters that F is
dependent on. In reality, F, should be a composition of a function that
outputs vector representations of biomolecules along with the normal-
ization of the output of that function. Thus, we can represent F as F =
N∘R, where N is the normalization function, and R is the raw repre-
sentation function. The normalization function is important because it
avoids instability in the network. Now when considering back propa-
gation through the function, F, we have to keep in mind the chain rule,
∂F
∂x = ∂N

∂R
∂R
∂x, as we calculate our partial derivatives.

If we want to be able to calculate these derivatives, then we must
make sure that they are differentiable functions. Some normalization
functions, however, will not be differentiable everywhere, but will
usually still be differentiable almost everywhere and continuous almost
everywhere, so they will be practical functions to use. Representation
functions themselves can be very discontinuous and non-differentiable
depending on the method of calculating features, so we must be espe-
cially careful in selecting the function, R. We would also like both the
representation function and normalization function to be easy to
calculate since we must calculate the normalized features at each epoch
of training. We will later describe in detail the geometric graph repre-
sentation function, R, that we used for our AweGNN that is continuous
and differentiable everywhere, and easy to calculate.

We will be testing both single-task (ST) and multi-task (MT)
AweGNN models that follow much the same structure, again as outlined
in Fig. 1. The ST model takes batches and from a data set, generates a
representation, then normalizes it with batch normalization before
feeding it into the artificial neural network portion of the AweGNN and
then updating the parameters as above. The MT-AweGNN consists of a
common set of parameters that are used for all 4 toxicity data sets,
shared weights for the hidden layers of the artificial neural network
portion, but separate weights for the 4 output layers. The normalization
is done also in batches, by placing a number of data points into the batch
from each data set proportional to the size of that data set with respect to
all the data sets combined. For example, if the batch size is 100, and
there are data sets with size 200, 400, 600, and 800, then each batch
would have 10 samples from the first data set, 20 from the second, 30
from the third, and 40 from the last data set. This MT structure is
illustrated below in Fig. 2.

2.3. Normalization function

For the normalization function, we choose the standard normaliza-
tion function, Nσ , which centers each feature about the mean and scales
by the standard deviation of the training samples. More precisely, if x is
the feature, μ the mean, and σ the standard deviation, then Nσ(x) = x−μ

σ
.

T. Szocinski et al.

Computers in Biology and Medicine 134 (2021) 104460

4

This function is continuous and differentiable everywhere except when
the standard deviation is zero. By a slight modification, we can add an
error constant for numerical stability and to make Nσ continuous and
differentiable everywhere, where Nσ(x) = x−μ

̅̅̅̅̅̅̅̅

σ2+ε
√ with ε being a very

small number such as 10−5. When training in batches, we normalize
each batch individually with separate batch mean, μB , and batch stan-
dard deviation, σB . These statistics are tracked and a batch momentum
value of 0.1 is used to record accumulated batch statistics to obtain a

Fig. 1. Pictorial visualization of the AweGNN training process. The first stage is splitting up the molecules in the data set into the element-specific groups, with
initialized η and κ kernel parameters for each group. Then, a molecular representation is generated based on the kernel parameters, given by F in the diagram. This
representation is fed into the neural network, then the kernel parameters are updated by back propagation through the neural network and through the repre-
sentation function, F.

Fig. 2. Diagram depicting the structure and automation of the MT-AweGNN. The model is trained by collecting samples from each data set proportionally and then
generating their representations according to shared parameters. The representations are normalized together, then pushed through the artificial neural network and
then to their corresponding outputs. Back propagation goes through the feature matrix, normalization function, and finally the representation function to update the
kernel parameters.

T. Szocinski et al.

Computers in Biology and Medicine 134 (2021) 104460

5

more stable reading of the distribution of the features in the whole data
set, as detailed in Ioffe and Szegedy [12]. During evaluation time, the
recorded statistics are used to transform the output of the representation
function, R.

The normalization procedure is similar to batch normalization in
neural networks, except that the affine transformation is omitted, and
the expression for ∂N

∂R can be found in the paper written by Ioffe and
Szegedy [12], along with the rest of the details for batch normalization.
Although the above procedure omits the affine transformations, we
chose to apply the affine transformations in our work because the
models performed well with them. In practical terms, the PyTorch [29]
library is utilized for applying this batch normalization. A BatchNorm1d
layer is placed in front of the molecular representation layer with pa-
rameters: eps = 1e-05, momentum = 0.1, affine = True, and track_-
running_stats = True, which are the default settings in PyTorch [29].

2.4. Biomolecular geometric graph representations

We seek a general formulation of a geometric graph representation of
biomolecular structures from which we can extract features to create our
sought after representation function, R. We use this method to generate
descriptors for the toxicity analysis of small molecules, but the idea can
extend beyond this concept quite naturally to provide useful represen-
tations. In our work, we want to use a weighted and vertex-labeled graph
in which we can generate descriptors from special subgraphs of the
graph representation of each molecular structure. We begin by looking
for a set, T , of element types that are suitable for our analysis. Generally
the choice of element types will be chosen by looking at the commonly
occurring element types found in a given data set, or we might choose to
omit certain element types to avoid elements that have uncertain posi-
tioning or negligible influence in molecular interactions. Usually, we
will have at least C, N, O, S ∈ T , but in most cases we will also include
H, P, Cl, and Br. We define
V =

{(

rj,αj

)

∈R3 ×T
⃒

⃒ rj; αj ∈T ; j= 1, 2,…,N
}

to be the vertex set, in which N denotes the number of atoms in the
molecule that are of an element type that is a member of T . This vertex
set has a labeling that describes the atom coordinates and the element
type of the atom at each vertex. We will use these labels to determine
element specific subgraphs from which to extract features.

Our edge set, E , is described by a choice of parameters, {ηkk′ } and
{κkk′ }, and a choice of a type of kernel function, Φ : R→R, which is
parametrized by them

E =
{

Φ
(
⃒

⃒

⃒

⃒ri − rj

⃒

⃒

⃒

⃒; ηkk
′ , κkk

′
)
⃒

⃒ αi = k∈T ,αj = k
′ ∈T ; i, j= 1, 2,…,N ;

⃒

⃒

⃒

⃒ri − rj

⃒

⃒

⃒

⃒> vi + vj + σ
}

,

where ||⋅|| denotes the Euclidean distance, vi and vj denote the Van der
Waals radius of the ith and jth atoms respectively, ri and rj represent the
ith and jth atom coordinates, and σ is the average of the standard de-
viations of vi and vj in the data set. Notice, the distance constraint
eliminates covalent interactions from being used in our calculations. We
remove the covalent interactions because many biomolecular properties
are known to be determined by non-covalent interactions, As noted in
Nguyen et al. [27], many biomolecular properties are known to be
determined by non-covalent interactions, so we remove the covalent
interactions because we do not want their contribution to overwhelm or
otherwise interfere with the contributions of the non-covalent in-
teractions. The parameters, ηkk′ and κkk′ , are values tied to the element
specific pair, kk′ , which can be tied to the properties of the element types
in question. The types of kernels that determine the weights of our edges
are always chosen to be decreasing functions that have the properties:
Φ(x)→ 1 ​ as ​ x→0 (5)

and
Φ(x)→ 0 ​ as ​ x→∞. (6)

This characterization gives the property that atoms that are closest
will contribute the most, and atoms that are too far away, will contribute
almost nothing. Most radial basis functions can be used, but the most
popular choice of kernel types are the generalized exponential and the
generalized Lorentz functions, given by

ΦE(x; η, κ)= e
−
(

x
η

)κ

(7)

and

ΦL(x; η, κ)= 1

1 +
(

x
η

)κ, (8)

respectively. These kernel types have been used to create successful
models for protein-ligand binding prediction, predicting toxicity end-
points, and many other applications [25,27,28]. They act as low-pass
filters that capture the most important element interactions, where the
η value determines the cutoff point, and the κ value determines the
sharpness of the cutoff. In summary, we have procured a vetex-labeled,
weighted graph, G(V ,E), in which we can extrapolate features from
special element specific subgraphs.

Let Gkk′ be the subgraph of G whose vertex set, V kk′ , contains the
vertices that are labeled element type k or k′ ; and the edge set, E kk′ ,
contain only the edges connecting a vertex labeled with element k to a
vertex labeled with element type k′ . This is called the element specific
subgraph generated by the element pair kk′ . For a given element specific
subgraph, Gkk′ , we define the following descriptor associated with that
subgraph:
μG

kk
′ ,Φ =

∑

(i,j)∈E
kk
′

wj⋅Φ
(

||ri − rj||; ηkk
′ , κkk

′
) (9)

where the wj term is usually a constant 1 or a value associated with the
jth atom, such as a partial charge. The ηkk′ and κkk′ values represent the
respective η and κ values for the kk′ group, while ri and rj represent the
atom coordinates as before. We get a sum over the weights of the sub-
graph in which additional atom specific weights can be applied to
enhance the meaning of the feature. This abstractly defines the total
strength of the non-covalent interactions between the atoms of element

Fig. 3. This shows an element specific subgraph corresponding to the element
types C and O of aminopropanoic acid, C3H6NO2 (with the hydrogens omitted).
The dashed orange edges represent the edges of the subgraph that are weighted
by the chosen kernel function, Φ, while the solid blue lines represent covalent
bonds. Notice the 3rd carbon atom does not connect to the oxygen atoms since
it is covalently bonded to both of them.

T. Szocinski et al.

Computers in Biology and Medicine 134 (2021) 104460

6

type k and the atoms of element type k′ . This is illustrated in Fig. 3
below.

With these descriptors detailed above, we can describe a represen-
tation function by obtaining one or more features from each element
specific subgraph. We can extract multiple features per subgraph by
considering different statistics of our features such as the mean of the
sum above, the standard deviation of the terms in the sum, choosing
various values of wj above according to chemical or physical properties
of specific atoms, etc. In summary, the features that we generate using
this approach measures the aggregate interaction strength between
groups of atoms of specific element types, which we call element-specific
groups. This gives us a representation of the internal structure of a
molecule that fits into the QSAR paradigm, which promotes the idea that
similar molecular structures have similar physical properties.

The representation function used in our work for the toxicity data
sets consisting of small molecules considers the element type set T =
{H,C,N,O,S,P,F,Cl,Br, I}. For each element specific pair, we calculate 4
descriptors: The first is calculated with each wj = 1, the next with the
wj’s set to be equal to the partial charge of the jth atom, and the
remaining 2 descriptors are generated by dividing the first 2 descriptors
by the number of edges in the element specific group, giving us a
measure of the mean interaction of the elements. Since we have 10
different element types, we can form 100 element specific groups; and
since we have 4 descriptors per element specific group, we have 400
descriptors for every set of parameters and choice of kernel. In our work,
we only use the Lorentz functions, ΦL

η,κ, for our feature generation and
results.

2.5. Parameter adjustment and initialization

When considering our molecular representation function in the
context of the parameter automation task, we can make a few choices in
terms of the parameters that we will be adjusting at each epoch or batch.
Below are 3 possible avenues to consider:

η-adjustable Here, we set the η values for each element specific pair
randomly within some range. We note that these assignments that are
made for each element specific pair are common for all of the biomol-
ecular structures in your data set. We can combine several sets of fea-
tures to make multi-scale models that would have multiple
initializations of the η values, but we will be assuming a 1-scale model at
present. If we set the η values this way, these will be the parameters that
we will be updating in our gradient descent.

τ-adjustable For an element specific pair, kk′ , we set the charac-
teristic value to be ηkk′ = τ(vk + vk′), where vk is the Van der Waals
radius of element type, k, and vk′ is the Van der Waals radius of element
type, k′ . Similar to the previous situation, the τ value assigned de-
termines the element specific η values for the entire data set. Again, if we
consider multi-scale models, then we may choose different values of τ

for each set. In the τ-adjustable case, we will be seeking to update the τ

value at each step of the training.
κ-adjustable In the previous two situations, we were assuming a

fixed κ value, but we can also update this parameter in conjunction with
the others. There are two ways to introduce this technique. The first way
is to introduce one κ and update that with respects to all of the element
specific groups. The second way is to introduce a κ value for all the
element specific groups and update those separately. Multi-scale models
are handled in a similar way as above.

Aside from choosing which parameters to update throughout the
training of the AweGNNs, we also must consider how we want to
initialize each parameter before training. We notice that τ, κ, and η all
have to take values greater than zero to maintain continuity and/or
satisfy the conditions of a radial basis function. Also, we want to make
certain that the values are not too large. A large η value will capture all
of the atoms in a molecule and the kernel value will be effectively a
constant 1 at all measured distances. A large κ value will make the kernel

function approach the form of an ideal low-pass filter, where it is either a
constant 0 or constant 1. In both cases, the magnitude of the derivatives
will be extremely small and the model will not be able to update
effectively.

In our experimentation, we use 100 η-adjustable and 100 κ-adjust-
able parameters per scale (1 η and 1 κ value per element specific group)
giving us 200 total adjustable variables per scale for our molecular
representation function. The η-initialization for each scale is chosen by a
single random tau value from a uniform distribution with a range of
0.5–1.5, in which all the η values are set according to the Van der Waals
radii as described above. The κ-initialization for each scale is done by
chosing a value of κ for each element-specific group from a uniform
distribution with a range of 5–8.

The adjustment of parameters throughout the training of our
AweGNN will be like an evolving kernel function at each element-
specific group that attempts to create an optimal filter that provides
the best representation for the network. The η values determine the
center of the cutoff region and the κ values control the sharpness of the
cutoff. In Fig. 4, we see the evolution of the kernel function of a MT-
AweGNN model, where the kernel functions are graphed at various
choices of the number of epochs of training, so that the transformation of
the kernel function can be clearly seen.

2.6. Derivatives of the representation function

Our main goal is to update the parameters of our feature represen-
tation during the training of our neural network. We must first show how
to calculate the derivatives of the representation functions with respect
to parameters κ, η, and τ values. We will then use these derivatives to
show how to complete the back propagation through all the way to the
parameters. We begin with a representation function, R : Rn→Rd×m, and
focus on a given element-specific subgraph; where this could be a single
or multi-scale representation function.

Suppose that ν is the set of update-able parameters for R. Then we
can represent R by:
R(ν)i,j =

∑

(a,b)∈G

qb⋅Φ(||ra − rb||; νG), (10)

Where G is the element specific subgraph which is used in the calcula-
tion of the jth descriptor of the ith sample, qb represents a value that may
be associated with the atom labeled b, ra and rb represent the co-
ordinates of the atoms labeled a and b respectively, and νG is the subset
of ν that corresponds to the calculations that are associated with G.

Now, since differential operators are linear and our features are
calculated by a summation of differentiable functions, we need only
know how to calculate the derivative of each term, i.e., for any variable,
x, we have:
(

∂R(ν)
∂x

)

i,j

=
∑

(a,b)∈G

qb⋅
∂

∂x
Φ(||ra − rb||; νG). (11)

Thus, we want to find out the derivatives of the functions, ΦE
η,κ and

ΦL
η,κ, with respect to parameters η, τ, and κ. We start by finding the de-

rivative with respect to η.
The derivative of the generalized exponential function is:

∂ΦE
η,κ(r)
∂η

=
(

κ

η

)(

r

η

)κ

e−(r/η)κ

, (12)

and for the Lorentz generalized function, we have the derivative:

∂ΦL
η,κ(r)
∂η

=

(

κ
η

)(

r
η

)κ

(

1 +
(

r
η

)κ)2
(13)

Also, we calculate the derivatives with respect to κ parameters

T. Szocinski et al.

Computers in Biology and Medicine 134 (2021) 104460

7

starting with the generalized exponential function:
∂ΦE

η,κ(r)
∂κ

=
(r

η

)κ

ln
(η

r

)

e−(r/η)κ

, (14)

and for the Lorentz generalized function, we have the derivative:

∂ΦL
η,κ(r)
∂κ

=

(

r
η

)κ

ln
(

η

r

)

(

1 +
(

r
η

)κ)2
. (15)

Now, for the derivative with respect to the τ parameter, we can just
apply the chain rule with η = τ(v1 +v2) being a function of τ. Note that
∂η

∂τ
= (v1 + v2) = τ(v1+v2)

τ
= η

τ
. Then, for the exponential derivative, we

have:
∂ΦE

η,κ

∂τ
= ∂η

∂τ
⋅
∂ΦE

η,κ

∂η
=
(η

τ

)(κ

η

)(r

η

)κ

e−(r/η)κ =
(κ

τ

)(r

η

)κ

e−(r/η)κ

, (16)

and for the lorentz function, we have:

∂ΦL
η,κ

∂τ
= ∂η

∂τ
⋅
∂ΦL

η,κ

∂η
=
(η

τ

)

(

κ
η

)(

r
η

)κ

(

1 +
(

r
η

)κ)2
=

(

κ
τ

)(

r
η

)κ

(

1 +
(

r
η

)κ)2
(17)

Thus, we now know the derivatives ∂R
∂η

, ∂R
∂τ

, and ∂R
∂κ

; and we can use them
to calculate the gradient for our gradient descent when training our
neural network.

2.7. How to update the parameters

Now that we have the derivatives of the representation function, we
will be able to calculate the derivatives of the loss function that we have
chosen, L, with respect to our parameters, η, τ, and κ. We must
remember that in our process of feature calculation, we have decided to
normalize the features. We chose to use the standard normalization, Nσ ,
and we denoted the normalized representation function to be F = N∘ R,
with R being the un-normalized representation function. By the chain
rule, we obtain ∂F

∂x = ∂N
∂R

∂R
∂x, where x = η, κ, or τ. We have also discussed

what ∂N
∂R looks like, so in fact we should now have a full description of the

derivatives of the normalized representation function with respect to our
parameters.

Now, to get our final update rule, we have to extend the back
propagation of our neural network to the features, obtaining the de-
rivatives, ∂L

∂F. Then our derivatives that we calculated earlier, ∂F
∂x, will be

used in the chain rule again to get: ∂L
∂x = ∂L

∂F
∂F
∂x, where x = η, κ, or τ. This

gives us the update rule for our parameters. In more detail, the update
rule actually looks like ∂L

∂x = ∑

i,j
∂L
∂Fij

∂Fij
∂x . Remember that the τ, κ, and η

parameters are all constrained to be greater than zero. As a precaution
we propose that after every epoch, the parameters be clipped so that
they are constrained to values that are 0.01 or higher to avoid forbidden
values.

2.8. Multi-scale models

Multi-scale models are models that are trained on features generated
by multiple sets of parameters. More specifically, for 2 representation
functions, R1 : Rn→Rd×m and R2 : Rn→Rd×m, we can get the 2-scale
representation function, [R1, R2] : Rn→Rd×2m, by concatenating the
outputs of R1 and R2 so that the features of each data point match up.

We can extend this idea of a 2-scale model to any scale. Let
R1 : Rn→Rd×m, …, Rk : Rn→Rd×m be representation functions with the
same parameter types. Then, combining the functions together one at a
time as above, then we get a new multi-scale representation function,
[R1, R2, …, Rk] : Rn→Rd×(k⋅m). These multi-scale methods have been
shown to be very effective in improving the performance of single-scale
models [27,28].

2.9. Model architectures and hyper-parameters

We wish to now describe the specific network architecture of the
AweGNN model. For the artificial neural network (ANN) portion of the
AweGNN, we choose a very simple 4-layer network with 400 neurons in
the first two hidden layers and 20 neurons in the last two hidden layers.
The ANN architecture and parameters were chosen through a quick
parameter search of the multi-task network where the models were
tested on a randomized validation set of 10% of the training data of each
toxicity data set to obtain good average predictions across all 4 data sets
and was modified to ensure relative convergence for the kernel pa-
rameters. The convergence assures that we have stable choices for the
parameters of the kernel function, which we will use for later analysis.

Fig. 4. Evolution of the kernel function of the C–N group for a MT-AweGNN. The picture below shows a series of kernel functions that were used to evaluate the 4
features corresponding to the C–N element-specific group at different points in the training of an MT-AweGNN. We choose specific snapshots during training that
show a smooth change in the kernel function as the η-κ pair is updated.

T. Szocinski et al.

Computers in Biology and Medicine 134 (2021) 104460

8

Dropout and weight decay are omitted since they did not notably in-
crease performance, but increased the training time significantly.

The AMSGrad [31] variant of the Adam optimizer is used because it
has been shown to improve the convergence of the kernel parameters
while still achieving large gradients that allow the model to explore a
larger parameter space, and allows a more interesting analysis of the
parameter trajectories. A large learning rate of 0.1 is also applied with a
learning rate decay of 0.999 per epoch of training, for the total of 2000
epochs, leaving the final learning rate at a value of approximately
0.01352 at the end of the training. The decay gives the network and
kernel parameters an opportunity to settle down in a local minimum,
while the large learning rate gives the models a chance to explore more
parameter choices while also regularizing the network. The network was
further improved by applying batch normalization, which is known to
speed up the training of a network and provides an additional source of
regularization that reduces the need for dropout [12]. Finally, the batch
size used was 100 for the ST models, while the MT models used a total of
40 batches per epoch, with sizes as even as possible and number of
samples from each data set proportional to their respective size.

For all of the network models, we use the PyTorch [29] API in
conjunction with cython [4] and Numba [16] to speed up the calculation
of the geometric graph descriptors. All hidden layers are actually
composed of 3 different layers: a linear unit, followed by a batch
normalization layer with affine transformations active and momentum
set to 0.1 (default PyTorch setting), then a ReLU activation. The input
layer is constructed with 2 layers: a Geometric Graph Representation
(GGR) layer followed by a batch normalization layer again with affine
transformations and the same momentum setting. The GGR layer is the
representation function, R, and the batch normalization layer is the Nσ

normalization function, as described in detailed previously to generate
our normalized representation function, F = Nσ∘R. Finally, the output
layer is simply a linear activation into either 1 or 4 outputs, depending
on if we are using a multi-task or single-task model. The details of the
full AweGNN architecture are illustrated in Fig. 5 below.

As discussed earlier, the network-enabled automatic representation
(NEAR) generated from training an AweGNN can be used as inputs for
ensemble models. By examining the performance of these models, we
can see if the representations generated by AweGNNs can produce
meaningful features for a broad range of machine learning models. We
use two ensemble models, random forest regressor (RF) and gradient
boosting regressor (GBT), from the scikit-learn v0.23.2 package [30]. A
search for reasonable parameter choices was made on the same vali-
dation sets above. For the RF models, we use the parameters:

n_estimators = 8 000, max_depth = 27, min_samples_split = 3, and
max_features = sqrt, with any remaining parameters considered to be set
at the default setting. For the GBT models, we use the same parameters
as the RF models above along with the additional parameters: loss = ’ls’,
learning_rate = 0.1, and subsample = 0.2, with any remaining param-
eters set to the default choice.

3. Results

In this section, we give a description of the different quantitative
toxicity data sets, and then we compare the results of our best models to
the models generated by other published methods [21,22,27,40]. We
note that in the work by Nguyen et al. [27], we only report the results
from one consensus model trained and tested on the Tetrahymena pyr-
iformis IGC50 data set that performed the best, which is labeled as
Nguyen-best. For the work done by Wu et al. [40], we only report the
results for the models that utilized all the descriptors detailed in that
paper. The results of the random forest models are referred to as Wu-RF,
the gradient boosting models are referred to as Wu-GBT, the ST models
are Wu-ST, the MT models are Wu-MT, and the consensus of Wu-GBT
and Wu-MT is Wu-consensus. Except in the case of the Daphnia Magna
LC50, the best scoring Wu models were those that relied on all de-
scriptors, but any such important detail will be mentioned when
relevant.

We also introduce a solvation data set, Model III, as in the paper by
Nguyen et al. [27]. The performance of our AweGNN models, when
trained on this data set, is compared to those of differential geometry
based models developed earlier [27], and other state-of-the-art methods
[36,38]. The models in this particular section are named as they are in
the previously referenced paper [27], where the names refer to various
choices of kernel options/kernel parameters used in the calculation of
differential geometric descriptors.

As for our own models, we report them in many ways and in many
combinations. We train multiple models for each data set and each
model type, then we combine those in that instance by averaging their
predictions to get one consensus prediction. This is done to reduce
variance from random weight initializations and to improve our final
results. We also combine the predictions of different model types in
consensus to see if those will possibly yield better results, as we see in
Wu [40]. We note that models were trained in sets of 42 instead of sets of
40 or 50 models due to the constraints of our computing architecture. If
there are computational concerns, we could also significantly reduce the
number of models trained (perhaps to 5 or 10 models), and still obtain

Fig. 5. Internal architecture of our Auto-parametrized weight element-specific Graph Neural Network (AweGNN) model for the toxicity data sets. The input layer
consists of our novel Geometric Graph Representation (GGR) layer and a batch norm with no affine transformation. Hidden layers include a linear transformation
followed by regular batch normalization and ReLU activation, while the output layer has the standard linear activation.

T. Szocinski et al.

Computers in Biology and Medicine 134 (2021) 104460

9

similar results. For each data set, we train 42 ST and MT AweGNNs with
randomized initial weights and obtain a consensus prediction for both
types, labeled ST-network and MT-network respectively. Then, we train
one ensemble model for each of the NEARs generated by training the
networks. Thus, for random forest, we train 42 models based on the
NEARs resulting from the ST models and 42 more on the NEARs
resulting from the MT models, in which we get the corresponding
consensus predictions, ST-RF and MT-RF. Similarly, we get predictions
from the GBT models, ST-GBT and MT-GBT. Finally, we obtain various
consensus predictions by combining the previous predictions mentioned
above. First, we average the prediction ST-network and MT-network to
get the consensus, network-consensus. Next, we combine ST-network
and ST-GBT to get ST-consensus. Similarly, we obtain MT-consensus
by combining MT-network and MT-GBT. Finally, we get the predic-
tion, final-consensus by taking the consensus between ST-consensus and
MT-consensus. These predictions and their performances on the test sets
are recorded in the tables in section 3.2, and a summary of this entire
process is depicted in Fig. 6.

3.1. Evaluation metrics

A protocol was proposed by Golbraikh et al. [11] to determine if a
QSAR model has true predictive power, as summarized in the following
four points:

1. q2 > 0.5
2. R2 > 0.6
3. R2−R2

0
R2 < 0.1

4. 0.85 ≤ k ≤ 1.15

Where q2 is the square of the leave one out correlation coefficient for
the training set, R2 is the square of the Pearson correlation coefficient

between the experimental and predicted toxicity endpoints of the test
set, R20 is the square of the correlation coefficient between the experi-
mental and predicted toxicity for the test set in which the intercept is set
to zero for a linear regression performed on the predicted and experi-
mental labels given by X and Y respectively so that the regression is
given by Y = kX (from which the k value is extrapolated).

For each numerical experiment involving toxicity, we record the
metrics above, although we omit the q2 coefficient due to the compu-
tational cost. We also record the root-mean-squared error (RMSE) and
the mean-absolute error (MAE) since these are standard metrics for
evaluating the performance of a model. The final metric to report is
coverage, or the fraction of chemicals predicted, which is important
because a lower coverage can unfairly improve prediction accuracy. For
the solvation data sets, we only report the MAE, RMSE, and the R2 score
as in Nguyen et al. [27].

3.2. Toxicity data sets

This paper analyzes 4 different quantitative toxicity data sets [21].
These are the 96h fathead minnow LC50 data set, the 48h Daphnia
magna LC50-DM data set, the 40h Tetraphymena pyriformis IGC50 data
set, and the oral rat LD50 data set. The LC50 (LC50-DM) set report the
concentration in milligrams per liter of test chemicals placed in water
that it takes to cause 50% of fathead minnows (Daphnia magna) to die
after 96(48) hours. These were downloaded from the ECOTOX aquatic
toxicity database via the web site e http://cfpub.epa.gov/ecotox/and
were preprocessed using filter criterion including media type, test
location, etc. The IGC50 data set measures the 50% growth inhibitory
concentration of the Tetrahymena pyriformis organism after 40 h and
was obtained by Schultz and co-workers [1,43]. The last data set, LD50,
represents the concentration of chemicals that kill half of rats when
orally ingested. This data set was constructed from the ChemIDplus
database (http://chem.sis.nlm.nih. gov/chemidplus/chemidheavy.jsp)

Fig. 6. Pictorial representation of the overall strategy. The arrows show the flow of the processes of training, extracting representations from trained AweGNNs, and
making predictions. Blue corresponds to molecular data sets, light green corresponds to machine learning models, orange corresponds to molecular representations,
and dark green corresponds to predictions.

T. Szocinski et al.

http://cfpub.epa.gov/ecotox/
http://chem.sis.nlm.nih

Computers in Biology and Medicine 134 (2021) 104460

10

and then filtered according to several criteria [21].
The final sets in this work are identical to the sets preprocessed to

develop the Toxicity Estimation Software Tool (TEST) [21]. The 2D sdf
format molecular structures and toxicity endpoints are available on the
TEST website. 3D mol2 format molecular structures were created with
the Schrödinger software in an earlier work [40]. We should note that
the units of the toxicity endpoints are not uniform between the data sets.
The LD50 set endpoints are in -log10(T ​ mol /kg) while the endpoints of
the remaining sets are in units of -log10(T ​ mol /L). No attempt has been
made to rescale the values. Finally, the data sets all have differing sizes
and compositions, and so the effectiveness of our method varies greatly
between them.

Statistics of each data set are detailed below in Table 1. Numbers
inside parentheses indicate the actual number of molecules that were
used for training and evaluating models. The first 3 data sets include all
available molecules, but for the last data set (LD50), some molecules
were dropped out due to force field failures when applying the
Schrödinger software. Despite this, our coverage is greater than any of
the TEST models and so is more widely applicable in use.

3.2.1. LC50-DM (Daphnia Magna) set
The Daphnia magna LC50 set is the smallest data set with 283 mole-

cules in the training set and 70 molecules in the test set. Given the small
size of the data set, it can be difficult to train robust QSAR models, thus
multi-scale models are extremely important for obtaining reasonable
results. Table 2 shows the results of various QSAR models on the
LC50DM data set. The TEST consensus had the highest R2 score (R2 =
0.739) out of all the models shown, although Wu et al. [40] reported a
much higher R2 score of 0.788, which does not appear in the table, when
only using topological descriptors for a multi-task model. This high
result with fewer descriptors may be due to the nature of neural net-
works to overfit when trained on small data sets and many descriptors.
When comparing the result of Wu-MT as reported in the table (using all
descriptors) to the TEST consensus, we notice that although the R2 score
was lower, the RMSE and MAE are better. The group contribution scored
exceptionally well in RMSE and MAE, but doubt was cast on the accu-
racy of those results [40].

The performance of our ensemble models was fairly poor in com-
parison to the results from Wu. Our RF-ST and RF-MT models scored
0.439 and 0.443 respectively vs. the 0.460 R2 score achieved by Wu-RF.
Our MT-GBT model was a bit better in performance than the Wu-RF
model, but it could not beat the Wu-GBT model. We do see however
that our MT-GBT model had outperformed the ST-GBT model notice-
ably, going from an R2 score of 0.457–0.471, showing a slight benefit
from using the MT-NEAR for GBT models. As for the network models, we
see a descent show for our ST-network model vs. the Wu-ST model.
Although ST-network has an R2 score of 0.448 vs. the 0.459 for Wu-ST,
we see that the ST-network RMSE of 1.315 beats quite decisively the
RMSE of 1.407 for Wu-ST. Our MT-network model had unfortunately
performed much worse than the Wu-MT model, even though its results
are comparable with many of the TEST models reported. The Wu-MT
model R2 score of 0.726 is significantly higher than the score of 0.664
from MT-network. All of our other models do not do well enough to the
comment on.

3.2.2. Fathead minnow LC50 set
The fathead minnow LC50 set was randomly divided into a training

(80% of the entire set) and a test set (20% of the entire set) [21]. Table 3
shows the performance of all of the various models trained and tested on
the LC50 data. This is the second smallest data set that we are analyzing
in this work. The best TEST model is again the TEST consensus, at an R2

score of 0.728. Notice that this is lower than the previous TEST
consensus on the LC50 at an R2 of 0.739, although the coverage increase

Table 1
Set statistics for quantitative toxicity data.

data set # of
molecules

train set
size

test set size max
value

min
value

LC50-DM 353 283 70 10.064 0.117
LC50 823 659 164 9.261 0.037
IGC50 1792 1434 358 6.36 0.334
LD50 7413 (7398) 5931

(5919)
1482
(1479)

7.201 0.291

Table 2
Comparison of prediction results for the LC50DM test set.

model R2 R2 − R20
R2

k RMSE MAE coverage

Results with TEST models
Hierarchical [21] 0.695 0.151 0.981 0.979 0.757 0.886
single model [21] 0.697 0.152 1.002 0.993 0.772 0.871
FDA [21] 0.565 0.257 0.987 1.190 0.909 0.900
group contribution

[21]
0.671 0.049 0.999 0.803 0.620 0.657

nearest neighbor
[21]

0.733 0.014 1.015 0.975 0.745 0.871

TEST consensus [21] 0.739 0.118 1.001 0.911 0.727 0.900
Results with previous methods from our group
Wu-RF [40] 0.460 1.244 0.955 1.274 0.958 1.000
Wu-GBT [40] 0.505 0.448 0.961 1.235 0.905 1.000
Wu-ST [40] 0.459 0.278 0.933 1.407 1.004 1.000
Wu-MT [40] 0.726 0.003 1.017 0.905 0.590 1.000
Wu-consensus [40] 0.678 0.282 0.953 0.978 0.714 1.000
Ensemble models
ST-RF 0.439 0.014 0.956 1.312 0.983 1.000
ST-GBT 0.457 0.004 0.966 1.280 0.954 1.000
MT-RF 0.443 0.012 0.960 1.304 0.985 1.000
MT-GBT 0.471 0.003 0.970 1.261 0.953 1.000
AweGNN models
ST-network 0.448 0.060 0.959 1.315 0.959 1.000
MT-network 0.664 0.000 0.983 1.002 0.741 1.000
Consensus models
network-consensus 0.583 0.005 0.984 1.112 0.826 1.000
ST-consensus 0.465 0.015 0.933 1.272 0.933 1.000
MT-consensus 0.602 0.000 0.981 1.090 0.820 1.000
final-consensus 0.541 0.001 0.979 1.171 0.872 1.000

Table 3
Comparison of prediction results for the LC50 test set.

model R2 R2 − R20
R2

k RMSE MAE coverage

Results with TEST models
hierarchical [21] 0.710 0.075 0.966 0.810 0.574 0.951
single model [21] 0.704 0.134 0.960 0.803 0.605 0.945
FDA [21] 0.626 0.113 0.985 0.915 0.656 0.945
group contribution

[21]
0.686 0.123 0.949 0.810 0.578 0.872

nearest neighbor
[21]

0.667 0.080 1.001 0.876 0.649 0.939

TEST consensus [21] 0.728 0.121 0.969 0.768 0.545 0.951
Results with previous methods from our group
Wu-RF [40] 0.727 0.322 0.948 0.782 0.564 1.000
Wu-GBT [40] 0.761 0.102 0.959 0.719 0.496 1.000
Wu-ST [40] 0.692 0.010 0.997 0.822 0.568 1.000
Wu-MT [40] 0.769 0.009 1.014 0.716 0.466 1.000
Wu-consensus [40] 0.789 0.076 0.959 0.677 0.446 1.000
Ensemble models
ST-RF 0.697 0.028 1.018 0.836 0.589 1.000
ST-GBT 0.687 0.000 0.995 0.820 0.562 1.000
MT-RF 0.703 0.029 1.019 0.829 0.582 1.000
MT-GBT 0.706 0.001 0.998 0.795 0.543 1.000
AweGNN models
ST-network 0.682 0.003 0.987 0.830 0.566 1.000
MT-network 0.749 0.000 0.999 0.735 0.481 1.000
Consensus models
network-consensus 0.739 0.000 0.996 0.748 0.505 1.000
ST-consensus 0.711 0.000 0.994 0.788 0.540 1.000
MT-consensus 0.747 0.001 1.001 0.739 0.494 1.000
final-consensus 0.737 0.001 0.998 0.753 0.507 1.000

T. Szocinski et al.

Computers in Biology and Medicine 134 (2021) 104460

11

from 0.900 to 0.951. For the Wu models, the best result is a whopping
0.789 R2 score for Wu-consensus. Wu-consensus also boasts the best
overall RMSE and MAE. The other 2 high scoring models from that
category are Wu-MT and Wu-GBT, which come at R2 scores of 0.769 and
0.761, respectively (see Table 3).

Our ensemble models do comparably well when compared to the
TEST models, except for the TEST consensus. Our ST-network model did
similarly in performance to many of the TEST models, notably FDA,
group contribution, and nearest neighbor. Our best model, MT-network,
with an R2 score of 0.749 and RMSE of 0.735 beats all TEST models, and
all of our consensus models do equal to or better than the TEST
consensus model, except for the ST-consensus, which was weighed down
by the oddly poor performance of the ST-GBT model (ST-GBT performed
more poorly than did the ST-RF model, with an R2 score of 0.687 vs.
0.697).

In comparison to the Wu models, we notice that all of our ensemble
models are far behind in performance to either Wu-RF or Wu-GBT, with
our best R2 score of 0.706 from our MT-GBT model being overtaken by
the lowest ensemble score of 0.727 from the Wu-RF model. The per-
formance of our ST-network model is comparable to Wu-ST with an R2 of
0.682–0.692, with even closer RMSE and MAE scores. As far as the MT
models go, we see a much greater difference between MT-network and
Wu-MT. We cannot come close to the R2 score of 0.789 from the Wu-MT
model, which is the best of the models from Wu for this data set [40].

3.2.3. Tetraphymena pyriformis IGC50 set
The IGC50 data set is the second largest of the data sets we are

analyzing. The diversity of the molecules is relatively low compared to
the other data sets, which allows for more coverage in the TEST models.
The amount of data points in the set is large enough to train robust
models, which translates into the high R2 scores for the models that are
compared in this section. The results for this data set are shown in
Table 4. We notice that the TEST models are far more variant in their
results than in the previous 2 data sets, with R2 scores ranging from
0.600 to 0.764. Again, the TEST consensus gets the highest R2 score
(0.764). Among the Wu models, the Wu-consensus model is again the

supreme champion with an R2 score of 0.802. As usual, the Wu-MT
model also did very well, trumping all TEST models with respect to
every metric. We also introduce the best IGC50 model from the work
done by Nguyen et al. [27] in which GBT models were trained on rep-
resentations derived from differential geometry based descriptors.
Though the model was trained without help from other data sets, it was
able to defeat the Wu-MT model in all metrics. The GBT Nguyen-best
model is however narrowly defeated by the Wu-GBT model with an R2

score of 0.781 compared to 0.787.
Our ensemble models are relatively low in comparison to the per-

formance of the rest of the models, although our MT-GBT model does
perform better than all TEST models except for the TEST consensus
model. Our ST-network model outperforms all TEST models single-
handedly with an R2 score of 0.778. All of our remaining models
outperform our own ST-network model, and thus also every TEST model
as well.

Our ensemble models under-perform yet again in comparison to the
RF and GBT models set forth by Wu. When comparing our network
models, we see that our ST-network model strongly defeats the Wu-ST
model with an R2 score of 0.749 and even outperforms the Wu-MT
model with an R2 of 0.770. ST-network is, however, beaten by Wu-
consensus, and even by the model put forth by Nguyen, that is,
Nguyen-best. Our MT-network model is the best scoring model in the
whole table in all metrics except for MAE, with an R2 score of 0.803,
RMSE of 0.436, and MAE of 0.310. Only Wu-consensus has a lower MAE
of 0.305, but that MAE is beaten by our model, network-consensus, with
an MAE of 0.304. Although MT-network technically performs slightly
better than Wu-consensus, they are effectively identical in performance.

3.2.4. Oral rat LD50 set
The oral rat LD50 set contains the most molecules. The data set is

quite large (7413 molecular compounds), so naturally full coverage is
not available for any of the methods proposed, although most models
still have very high coverage. The labels of this data set are quite difficult
to predict because of the high experimental uncertainty in obtaining the
toxicity endpoints, as noted in Zhu et al. [42]. Table 5 shows the results.
As in Wu et al. [40], we omit the single model and group contribution
TEST methods from the table in our analysis. As always, the TEST
consensus provides the greatest results amongst the TEST models. For Table 4

Comparison of prediction results for the IGC50 test set.
model R2 R2 − R20

R2
k RMSE MAE coverage

Results with TEST models
hierarchical [40] 0.719 0.023 0.978 0.539 0.358 0.933
FDA [40] 0.747 0.056 0.988 0.489 0.337 0.978
group contribution

[40]
0.682 0.065 0.994 0.575 0.411 0.955

nearest neighbor
[40]

0.600 0.170 0.976 0.638 0.451 0.986

TEST consensus [40] 0.764 0.065 0.983 0.475 0.332 0.983
Results with previous methods from our group
Wu-RF [40] 0.736 0.235 0.981 0.510 0.368 1.000
Wu-GBT [40] 0.787 0.054 0.993 0.455 0.316 1.000
Wu-ST [40] 0.749 0.019 0.982 0.506 0.339 1.000
Wu-MT [40] 0.770 0.000 1.001 0.472 0.331 1.000
Wu-consensus [40] 0.802 0.066 0.987 0.438 0.305 1.000
Nguyen-best [27] 0.781 0.004 1.003 0.463 0.324 1.000
Ensemble models
ST-RF 0.713 0.013 1.006 0.535 0.377 1.000
ST-GBT 0.745 0.000 0.994 0.496 0.329 1.000
MT-RF 0.716 0.013 1.006 0.532 0.377 1.000
MT-GBT 0.753 0.000 0.995 0.489 0.327 1.000
AweGNN models
ST-network 0.778 0.000 1.003 0.463 0.309 1.000
MT-network 0.803 0.000 0.999 0.436 0.310 1.000
Consensus models
network-consensus 0.799 0.000 1.001 0.440 0.304 1.000
ST-consensus 0.777 0.000 1.000 0.464 0.309 1.000
MT-consensus 0.795 0.000 0.998 0.445 0.305 1.000
final-consensus 0.789 0.000 0.999 0.451 0.306 1.000

Table 5
Comparison of prediction results for the LD50 test set.

model R2 R2 − R20
R2

k RMSE MAE coverage

Results with TEST models
hierarchical [21] 0.578 0.184 0.969 0.650 0.460 0.876
FDA [21] 0.557 0.238 0.953 0.657 0.474 0.984
nearest neighbor

[21]
0.557 0.243 0.961 0.656 0.477 0.993

TEST consensus [21] 0.626 0.235 0.959 0.594 0.431 0.984
Results with previous methods from our group
Wu-RF [40] 0.619 0.728 0.949 0.603 0.452 0.997
Wu-GBT [40] 0.630 0.328 0.960 0.586 0.441 0.997
Wu-ST [40] 0.614 0.006 0.991 0.601 0.436 0.997
Wu-MT [40] 0.626 0.002 0.995 0.590 0.430 0.997
Wu-consensus [40] 0.653 0.306 0.959 0.568 0.421 0.997
Ensemble models
ST-RF 0.606 0.013 1.003 0.612 0.452 0.998
ST-GBT 0.643 0.002 0.995 0.578 0.424 0.998
MT-RF 0.596 0.012 1.003 0.619 0.456 0.998
MT-GBT 0.641 0.002 0.995 0.580 0.426 0.998
AweGNN models
ST-network 0.660 0.001 0.995 0.563 0.406 0.998
MT-network 0.658 0.001 0.993 0.565 0.411 0.998
Consensus models
network-consensus 0.665 0.000 0.995 0.558 0.404 0.998
ST-consensus 0.665 0.001 0.997 0.559 0.406 0.998
MT-consensus 0.664 0.001 0.996 0.560 0.409 0.998
final-consensus 0.667 0.001 0.997 0.557 0.405 0.998

T. Szocinski et al.

Computers in Biology and Medicine 134 (2021) 104460

12

this data set, the effectiveness of the Wu models wanes, with the Wu-MT
model failing to perform decisively better than the TEST consensus
(although, Wu-MT does indeed do slightly better in RMSE and MAE in
comparison to TEST consensus).

For this data set, we see the best performance from our models. Even
our ensemble models do quite well. In fact, our ST-GBT and MT-GBT
models, with respective R2 scores of 0.643 and 0.641, outperform any
TEST model and any Wu models aside from the Wu-consensus model. All
of our non-ensemble models out-perform every single other model,
including Wu-consensus, with our best performing model, final-
consensus, having an R2 of 0.667, RMSE of 0.557, and MAE of 0.405.
This decisively beats the Wu-consensus model having an R2 score of
0.653, RMSE of 0.568, and MAE of 0.421.

We notice that for this data set, we finally required the consensus of
the GBT models to get our best prediction, as opposed to the other data
sets in which we obtained the best result from our MT-network models.
Our AweGNN models seem to shine relative to other groups models
when the data sets are the largest, in which the networks are able to
generate their most generalizable representations, and the predictions
are the most accurate.

3.3. Solvation data set

In this section, we explore the results of the solvation data set, model
III. Model III has a total of 387 molecules (excluding ions), and is split
into a training set of 293 molecules and a test set of 94 molecules. We use
the same training set, but we omit molecules based on obscure chemical
names in the PubChem database and due to some difficulties with the
Schrödinger software in generating mol2 files. The test set is unaltered,
so these difficulties leading to our smaller training set of 280 molecules
should disfavor our method. In addition to this, there is only one data set
for solvation that we analyze, so we cannot apply our MT method. We
simply train ST models and report one consensus with the GBT model
and the network model, following the same procedure as before. The
results are shown below in Table 6, where they are compared to other
models mentioned previously [27,36,38].

We see that in this instance, we get our best performance relative to
other group’s models. This is quite surprising, as we found that with the
toxicity data, the AweGNN seemed to perform very well only when the
data sets were very large. Our greatest model, the ST-network model,
significantly outperforms every other model in every metric. Even our
GBT model is able to greatly outperform all other models outside this
group, though our RF model performs only satisfactory. In fact, the
supplementary material from Nguyen et al. [27] contains models whose
kernel parameters were optimized specifically on the test data, giving a

further advantage. These can be seen in Table 7. Again, we see that even
our GBT model is able to win in every metric against every model in this
table, let alone our ST-network with an MAE gap of 0.145, an RMSE gap
of 0.229, and an R2 score gap of 0.032 when compare to the best metrics
of any chosen opposing model. This analysis shows that there is great
promise for applying the AweGNN method for solvation free energy
prediction.

4. Discussion

In this section, we will discuss the impact of automated parameter
selection, analyze some elements of feature importance, and discuss a
new paradigm of auto-parametrized kernel-based networks that could
lead to many more possibilities.

4.1. Impact of automating selection of Kernel parameters

When selecting kernel parameters to optimize the choice of repre-
sentation, our group was previously using the grid search method to
determine which parameters were optimal [25]. This is not so much of a
hindrance if there are only a handful of parameters to tune, but as the
number of parameters to tune increases, the number of models that need
to be trained increases exponentially. In addition, grid searches require a
discrete set of parameters to experiment with, which is a coarse way to
tune parameters and leads to some inefficiency. These problems can
severely restrict the potential of these kernel-based representations, and
largely restrict us to the use of machine learning algorithms that do not
have many tunable parameters, such as RF or GBT.

One of our goals in this work was to alleviate these issues. Auto-
matically updating kernel parameters is a great solution in theory and in
practice, as we have seen with the success of our AweGNN in this work.
The AweGNN seeks the optimal choice of parameters within a contin-
uous space, so the parameter selection is done in a smooth way and can
select the values that are not present in a grid search. In our case, we
incorporate the parameter selection into the gradient descent process of
training a neural network. This association with the gradient descent
allows us to update very many kernel parameters at the same time as the
weights of the neural network, but has a moderate computational cost
associated with it that is commensurate with the computational cost of a
moderately sized network. More specifically, a quick analysis on the
IGC50 data shows that a network consisting of the GGR layer (producing
400 features) with normalization takes the same amount of time on
average to cycle though an epoch as does the network with the GGR +
normalization layer along with a 4-layer network of 1600 neurons each,
thus the GGR + normalization layer is equivalent to a 4-layer 1600
neuron network in terms of computational cost. This cost is certainly not
prohibitive, and ultimately saves us an inordinate amount of time,
especially since we are able to tune 200 kernel parameters simulta-
neously (which would be impossible with a grid search).

As kernel methods require careful tuning to reach their full potential,
neural networks were effectively off limits for training effective models
with kernel-based representations. The AweGNN proves that kernel-
based representations can be used to train high performing models
and brings many new possibilities for developing excellent predictive
models for biomolecular data.

Table 6
Comparison of prediction results for the solvation test set.

model MAE (kcal/mol) RMSE (kcal/mol) R2

Results from outside sources
WSAS [38] 0.66 – –

FFT [36] 0.57 – –

Results from Nguyen et al. [27]
EICH

E,3.5,0.3 0.575 0.921 0.904
EICH

E,3.5,0.3;E,2.5,1.3 0.558 0.857 0.920
EICH

L,3,1.3 0.592 0.931 0.906
EICH

L,3,1.3;L,6.5,0.3 0.608 0.919 0.907
ConsensusH 0.567 0.862 0.920
Ensemble models
ST-RF 0.698 1.001 0.893
ST-GBT 0.496 0.666 0.951
AweGNN model
ST-network 0.373 0.569 0.963
Consensus model
ST-consensus 0.401 0.583 0.962

Table 7
Supplementary results for solvation data set from Nguyen et al. [27].

Method MAE (kcal/mol) RMSE (kcal/mol) R2

*EICH
E,3.5,0.3 0.575 0.921 0.904

*EICHH
E,3.5,0.3;E,4.0,1.3 0.518 0.812 0.929

*EICH
L,5,0.3 0.579 0.862 0.917

*EICHH
L,5,0.3;L,0.5,0.9 0.559 0.842 0.922

*ConsensusH 0.524 0.798 0.931

T. Szocinski et al.

Computers in Biology and Medicine 134 (2021) 104460

13

4.2. Feature importance and analyzing the trajectories of the Kernel
parameters

To find the most important features that influenced our predictions,
we look at the feature importance ranking of the random forest (RF)
models that were trained on the network-enabled automatic represen-
tations (NEARs) generated by the AweGNNs. This analysis will pinpoint
the specific element-pair interactions that contributed the most to the
creation of our predictive models. Then, we can analyze the average
trajectories and final states of the kernel functions from the element-
specific groups that generate the most important features. The average
η values can tell us about the most beneficial interaction distances be-
tween those element pairs, and the average κ values can tell us about the
most favorable degree of sharpness of the cutoff for including the edge
cases centered around those η values.

By closely examining the feature importance over all data sets and all
models, we notice that, in general, the most important interactions tend
to be the ones between hydrogen-hydrogen, carbon-carbon, and the
interaction between those two elements. This would make sense, since
the carbons and hydrogens are the most numerous elements in these
structures and will be interacting most with the environment. The sec-
ond most important features are generated from the interactions be-
tween the hydrogen-oxygen and carbon-oxygen pairs. This again seems
to be a natural result, for this can be indicating the importance of the
polar bonds. Aside from these groups, however, there seems to be no
broader pattern. Different data sets seem to prioritize different element
specific groups, especially the largest data set, LD50, in which there are a
great diversity of element pair interactions that are important, as can be
seen in Fig. 7a, which illustrates the feature importance associated with
each pair through a heat map.

A more contained display of the feature importance is portrayed in
Fig. 7b, based on the RF models trained to predict the toxicity for the
IGC50 data set with the NEARs generated from the multi-task (MT)
AweGNN models. The feature importance values are concentrated
within the pairs consisting of the hydrogen, carbon, nitrogen, and oxy-
gen elements. For the complete list of feature importance heat maps of
all the data sets, including feature importance measured by the gradient
boosting models, you may reference the Supporting information,
Figs. S1–S16.

To go into more detail of what is happening in each element-specific
group, we analyze how the parameters of the kernel functions of the top

10 groups evolve on average. This evolution can be seen in Fig. 8.
As the training progresses, element pairs have their kernel parame-

ters tend towards various η-κ combinations. Some element pairs have
high η values and moderate κ values, such as the H–H and C–N groups,
while others tend towards low η and low κ values (i.e, H–O), or even low
η and high κ (O–C). There are many physical interpretations that could
be valid, for example, the low η and κ value for the H–O group could be a
measure of the potential for hydrogen bond interactions with the envi-
ronment, or even internal short-range interactions that assess the sta-
bility of the molecule. In any case, we may note the convergence of the η

values especially for they might reveal important cutoff distances that
contribute to the measurement of toxicity.

4.3. Limitations and advantages

One of the limitations present in the study is with regards to applying
the AweGNN to very large molecules or systems of molecules. If too
many atoms are involved in the calculation of these features, then the
computational cost may become unbearable. Some provisions or rules
can be made to avoid heavy computational costs while dealing with
large scale biomolecular structures or systems of molecules. For
example, our method may be naturally extended to the problem of
protein-ligand binding. We can measure the interaction strength be-
tween atoms of a specific element type in the protein and atoms of
another element type in the ligand, instead of the interactions between
the atoms of two element types contained within a single molecule. A
standard cutoff distance from the ligand is applied to focus on the
strongest interactions, thereby leaving a reduced number of atoms for
the analysis. A cutoff that is very large might include too many atoms
from the protein and thereby incur a heavy computational cost that is far
beyond that of the small molecular data sets that we have used in this
study. Small cutoffs can be feasible and perhaps still quite effective since
long-range interactions may not carry as much weight in terms of
performance.

The advantage of the AweGNN is its ability to shape the kernel
function for each element-specific group so as to provide the optimal
filter for capturing the most important interactions between elements
within a molecule. Though there is much potential in this approach,
there is a danger of over-fitting with smaller data sets. This is perhaps
why we see the greatest performance with the largest LD50 data set, and
so practically we may want to train on the largest data sets that we can.

Fig. 7. Feature importance of MT-AweGNNs when applied to different data sets. We generate heat maps based on the average of feature importance across 42 RF
models trained on the corresponding NEARs of the MT-AweGNNs. The average feature importance of the 4 features of each element-specific group are summed
together to get the final scores shown above in the maps. Fig. 7a shows the results for the LD50 MT-RF models and Fig. 7b shows the results for the IGC50 MT-RF
models. Note that the maps are asymmetric due to the way that the electrostatics-based features of a group are generated.

T. Szocinski et al.

Computers in Biology and Medicine 134 (2021) 104460

14

However, we notice also that the AweGNN was incredibly successful
with the small solvation energy data set; and for the two smallest data
sets, LC50-DM and LC50, the results for the single task network are
similar to the RF models, which are known to be quite robust against
over-fitting. Thus, the danger of over-fitting may not be as present as
originally thought. Also, it may be the case that the multi-task method is
less effective when applying the AweGNN, for it may fit its features too
specifically to a particular task, and therefore be influenced by the larger
data sets more so than other methods, like Wu’s [40].

The computational cost associated with training our multi-task (MT)
AweGNN model, which is our largest computational endeavor, is under
135 min. The largest single task model (LD50 model), takes under 120
min, while the second largest IGC50 data set is trained in approximately
20 min, with the training time for the smaller data sets being signifi-
cantly lower (a handful of minutes). While the training time of our MT-
AweGNN takes almost 70% longer than, for instance, the MT-Wu model
(80 min training time) [40], we can see that the MT AweGNN can still
perform better on the larger data sets, so the 70% increase in training
time may be worth the performance boost when provided with more
samples. In addition to this, we note that our features are simple
kernel-based features, and do not require auxiliary physical descriptors
to achieve stellar performance. The AweGNN can in fact use those same
auxiliary features to bolster its own predictions, and is more flexible in
that it can also combine multiple kernel types to generate multi-scale
representations that have been highly successful in previous works
[27,28]. Finally, as our features are kernel-based, we noted in section
4.1 that these features would usually require a grid-search to optimize
the kernel parameters, but in our case, we are able to automate this
process while simultaneously training our network, thereby saving time
in that respect.

5. Conclusion

Recent years have witnessed much effort in developing mathemat-
ical representations for the machine learning predictions of chemical
and biological properties that are crucial to drug discovery. Advanced
mathematical tools from fields such as graph theory [26,28], differential
geometry [27], algebraic topology [40], and other mathematical area,
have been developed and demonstrated their superb performance. Many
of these representations were generated with a choice of kernel func-
tions in which each function depends on its own choice of parameters.
These kernel-based molecular representations then have to be fine tuned
to optimize their effectiveness for training machine learning models.

Increasing parameter choices leads to a rapid increas in the computa-
tional cost of optimization. This problem deteriorates in the case of deep
neural networks because of the already cumbersome task of choosing
network hyperparameters. Motivated by the automated feature extrac-
tion in convolutional neural network (CNN), we propose an
auto-parametrized element-specific graph neural network (AweGNN) to
automate and optimize the parameter selection in our geometric graph
approach. The resulting representation from training the AweGNN is
called a network-enabled automatic representation (NEAR). NEARs can
be used as input features for other machine learning models, such as
random forest (RF) and gradient-boosting tree (GBT) models.

AweGNN and NEAR-based ensemble methods are validated with five
data sets from quantitative toxicity and solvation predictions. Both
toxicity and solvation are important for lead hit, and structure optimi-
zation in drug discovery. Four quantitative toxicity data sets: 96 h
fathead minnow LC50, 48 h Daphnia Magna LC50 data set (or LC50-DM),
40 h Tetrahymena pyriformis IGC50 data set, and the oral rat LD50 data
set were used in our work. Our models were compared to state-of-the-art
models in various literature, i.e., the Toxicity Estimation Software Tool
(TEST) [21] listed by the United States Environmental Protection
Agency (EPA), a previous work by Wu et al. [40], and another work by
Nguyen et al. [27]. Given that we had 4 toxicity data sets of various sizes
with similar prediction tasks, we were able to employ the multi-task
(MT) learning method to greatly improve our performance. Our top
models were able to out-compete all TEST models in all but the smallest
data sets. When comparing with the top Wu models, our top models
were able to perform just as well or better when restricting to the largest
2 data sets, although our general models for the smaller data sets were
still able to perform relatively well when compared to many of the
earlier models.

To broaden our application, we also tested the AweGNN on the
solubility data set, Model III, used in the work by Nguyen al [27]. For
this instance, we were not able to apply MT learning because we only
had one data set to work with. Despite this, we were able to greatly
outperform any other models that we compared [27,36,38]. Although
there is a positive correlation between the relative effectiveness of the
AweGNN and the data set size with respect to the 4 toxicity data sets, we
see that in the case of solubility, the AweGNN can perform exceptionally
well even with a very small data set. Our work showcases the impressive
predictive capabilities of the AweGNN and ultimately introduces new
potential to improve the effectiveness of previous mathematical
methods.

Fig. 8. Average trajectories of kernel parameters for 42 MT-AweGNN models. The graph on the left shows how the average of the η values of our 42 MT models for 8
different element-specific groups changes as the models are trained. On the right, we see the κ counterpart of this analysis.

T. Szocinski et al.

Computers in Biology and Medicine 134 (2021) 104460

15

Model availability

The software for the Geometric Graph Representation (GGR) layer
and the AweGNN models is available at https://github.com/timoth
yszocinski/AweGNN/.

Data availability

The mol2 files that were used for the toxicity and solvation data sets
can be found at https://weilab.math.msu.edu/Database/.

Declaration of competing interest

We do not know any existing conflict interest.

Acknowledgments

This work was supported in part by NIH grant GM126189, NSF
Grants DMS-1721024, DMS-1761320, DMS-2052983, DMS-2053284,
and IIS1900473, NASA 80NSSC21M0023, Michigan Economic Devel-
opment Corporation, George Mason University award PD45722, Bristol-
Myers Squibb BMS-65109, Pfizer, and University of Kentucky Start-up
fund. The authors thank The IBM TJ Watson Research Center, The
COVID-19 High Performance Computing Consortium, and NVIDIA for
computational assistance.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.compbiomed.2021.104460.

References
[1] K.S. Akers, G.D. Sinks, T.W. Schultz, Structure–toxicity relationships for selected

halogenated aliphatic chemicals, Environ. Toxicol. Pharmacol. 7 (1) (1999) 33–39.
[2] P.J. Ballester, A. Schreyer, T.L. Blundell, Does a more precise chemical description

of protein–ligand complexes lead to more accurate prediction of binding affinity?
J. Chem. Inf. Model. 54 (3) (2014) 944–955.

[3] M. Barycki, A. Sosnowska, K. Jagiello, T. Puzyn, Multi-objective genetic algorithm
(MOGA) as a feature selecting strategy in the development of ionic liquids’

quantitative toxicity–toxicity relationship models, J. Chem. Inf. Model. 58 (12)
(2018) 2467–2476.

[4] S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D.S. Seljebotn, K. Smith Cython, The
best of both worlds, Comput. Sci. Eng. 13 (2) (2010) 31–39.

[5] S. Brandt, F. Sittel, M. Ernst, G. Stock, Machine learning of biomolecular reaction
coordinates, J. Phys. Chem. Lett. 9 (9) (2018) 2144–2150.

[6] K.T. Butler, D.W. Davies, H. Cartwright, O. Isayev, A. Walsh, Machine learning for
molecular and materials science, Nature 559 (7715) (2018) 547–555.

[7] R. Caruana, Learning to Learn, Springer, 1998.
[8] D. Ciregan, U. Meier, J. Schmidhuber, Multi-column deep neural networks for

image classification, in: 2012 IEEE Conference on Computer Vision and Pattern
Recognition, IEEE, 2012, pp. 3642–3649.

[9] S.J. Darnell, L. LeGault, J.C. Mitchell, KFC server: interactive forecasting of protein
interaction hot spots, Nucleic Acids Res. 36 (suppl_2) (2008) W265–W269.

[10] L. Deng, G. Hinton, B. Kingsbury, New types of deep neural network learning for
speech recognition and related applications: an overview, in: 2013 IEEE
International Conference on Acoustics, Speech and Signal Processing, IEEE, 2013,
pp. 8599–8603.

[11] A. Golbraikh, M. Shen, Z. Xiao, Y.-D. Xiao, K.-H. Lee, A. Tropsha, Rational selection
of training and test sets for the development of validated qsar models, J. Comput.
Aided Mol. Des. 17 (2) (2003) 241–253.

[12] S. Ioffe, C. Szegedy, Batch normalization: accelerating deep network training by
reducing internal covariate shift, in: International Conference on Machine
Learning, PMLR, 2015, pp. 448–456.

[13] J. Jiang, R. Wang, M. Wang, K. Gao, D.D. Nguyen, G.-W. Wei, Boosting tree-
assisted multitask deep learning for small scientific datasets, J. Chem. Inf. Model.
60 (3) (2020) 1235–1244.

[14] A. Karim, A. Mishra, M.H. Newton, A. Sattar, Efficient toxicity prediction via
simple features using shallow neural networks and decision trees, ACS Omega 4 (1)
(2019) 1874–1888.

[15] D.P. Kingma, J. Ba Adam, A method for stochastic optimization, 2014 arXiv
preprint arXiv:1412.6980.

[16] S.K. Lam, A. Pitrou, S. Seibert Numba, A llvm-based python jit compiler, in:
Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC,
2015, pp. 1–6.

[17] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature 521 (7553) (2015) 436–444.
[18] L. Li, C. Li, E. Alexov, On the modeling of polar component of solvation energy

using smooth Gaussian-based dielectric function, J. Theor. Comput. Chem. 13
(2014) 1440002, 03.

[19] R. Liu, M. Madore, K.P. Glover, M.G. Feasel, A. Wallqvist, Assessing deep and
shallow learning methods for quantitative prediction of acute chemical toxicity,
Toxicol. Sci. 164 (2) (2018) 512–526.

[20] A.V. Marenich, C.J. Cramer, D.G. Truhlar, Performance of AM6, SM8, and SMD on
the sampl1 test set for the prediction of small-molecule solvation free energies,
J. Phys. Chem. B 113 (14) (2009) 4538–4543.

[21] T.M. Martin, User’s Guide for T.E.S.T. (Version 4.2) (Toxicity Estimation Software
Tool): A Program To Estimate Toxicity From Molecular Structure, USEPA, 2016.

[22] T.M. Martin, P. Harten, R. Venkatapathy, S. Das, D.M. Young, A hierarchical
clustering methodology for the estimation of toxicity, Toxicol. Mech. Methods 18
(2–3) (2008) 251–266.

[23] Z. Meng, D.V. Anand, Y. Lu, J. Wu, K. Xia, Weighted persistent homology for
biomolecular data analysis, Sci. Rep. 10 (1) (2020) 1–15.

[24] D.L. Mobley, K.L. Wymer, N.M. Lim, J.P. Guthrie, Blind prediction of solvation free
energies from the Sampl4 challenge, J. Comput. Aided Mol. Des. 28 (3) (2014)
135–150.

[25] D.D. Nguyen, Z. Cang, G.-W. Wei, A review of mathematical representations of
biomolecular data, Phys. Chem. Chem. Phys. 22 (8) (2020) 4343–4367.

[26] D.D. Nguyen, G.-W. Wei Agl-Score, Algebraic graph learning score for
protein–ligand binding scoring, ranking, docking, and screening, J. Chem. Inf.
Model. 59 (7) (2019) 3291–3304.

[27] D.D. Nguyen, G.-W. Wei, DG-GL: differential geometry-based geometric learning of
molecular datasets, Int. J. Numer.methods.Biomed. Eng. 35 (3) (2019), e3179.

[28] D.D. Nguyen, T. Xiao, M. Wang, G.-W. Wei, Rigidity strengthening: a mechanism
for protein–ligand binding, J. Chem. Inf. Model. 57 (7) (2017) 1715–1721.

[29] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, et al., Pytorch: an Imperative Style, High-Performance
Deep Learning Library, 2019 arXiv preprint arXiv:1912.01703.

[30] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, et al., Scikit-learn: machine
learning in python, J. Mach. Learn. Res. 12 (2011) 2825–2830.

[31] S.J. Reddi, S. Kale, S. Kumar, On the Convergence of Adam and beyond, 2019 arXiv
preprint arXiv:1904.09237.

[32] J. Schmidhuber, Deep learning in neural networks: an overview, Neural Network.
61 (2015) 85–117.

[33] N. Spinu, M.T. Cronin, S.J. Enoch, J.C. Madden, A.P. Worth, Quantitative adverse
outcome pathway (QAOP) models for toxicity prediction, Arch. Toxicol. 94 (2020)
1497–1510.

[34] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, Dropout: a
simple way to prevent neural networks from overfitting, J. Mach. Learn. Res. 15 (1)
(2014) 1929–1958.

[35] I. Sutskever, O. Vinyals, Q.V. Le, Sequence to Sequence Learning with Neural
Networks, 2014 arXiv preprint arXiv:1409.3215.

[36] B. Wang, C. Wang, K. Wu, G.-W. Wei, Breaking the polar-nonpolar division in
solvation free energy prediction, J. Comput. Chem. 39 (4) (2018) 217–233.

[37] E. Wang, H. Sun, J. Wang, Z. Wang, H. Liu, J.Z. Zhang, T. Hou, End-point binding
free energy calculation with MM/PBSA and MM/BBSA: strategies and applications
in drug design, Chem. Rev. 119 (16) (2019) 9478–9508.

[38] J. Wang, W. Wang, S. Huo, M. Lee, P.A. Kollman, Solvation model based on
weighted solvent accessible surface area, J. Phys. Chem. B 105 (21) (2001)
5055–5067.

[39] R. Wang, D.D. Nguyen, G.-W. Wei, Persistent spectral graph, Int. J. Numer.
methods.Biomed. Eng. 36 (9) (2020), e3376.

[40] K. Wu, G.-W. Wei, Quantitative toxicity prediction using topology based multitask
deep neural networks, J. Chem. Inf. Model. 58 (2) (2018) 520–531.

[41] K. Xia, K. Opron, G.-W. Wei, Multiscale multiphysics and multidomain
models—flexibility and rigidity, J. Chem. Phys. 139 (19) (2013) 11B614_1.

[42] H. Zhu, T.M. Martin, L. Ye, A. Sedykh, D.M. Young, A. Tropsha, Quantitative
structure-activity relationship modeling of rat acute toxicity by oral exposure,
Chem. Res. Toxicol. 22 (12) (2009) 1913–1921.

[43] H. Zhu, A. Tropsha, D. Fourches, A. Varnek, E. Papa, P. Gramatica, T. Oberg,
P. Dao, A. Cherkasov, I.V. Tetko, Combinatorial QSAR modeling of chemical
toxicants tested against tetrahymena pyriformis, J. Chem. Inf. Model. 48 (4) (2008)
766–784.

T. Szocinski et al.

https://github.com/timothyszocinski/AweGNN/
https://github.com/timothyszocinski/AweGNN/
https://weilab.math.msu.edu/Database/
https://doi.org/10.1016/j.compbiomed.2021.104460
https://doi.org/10.1016/j.compbiomed.2021.104460
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref1
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref1
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref2
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref2
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref2
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref3
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref3
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref3
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref3
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref4
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref4
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref5
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref5
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref6
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref6
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref7
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref8
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref8
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref8
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref9
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref9
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref10
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref10
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref10
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref10
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref11
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref11
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref11
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref12
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref12
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref12
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref13
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref13
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref13
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref14
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref14
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref14
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref15
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref15
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref16
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref16
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref16
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref17
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref18
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref18
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref18
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref19
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref19
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref19
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref20
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref20
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref20
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref21
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref21
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref22
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref22
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref22
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref23
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref23
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref24
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref24
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref24
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref25
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref25
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref26
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref26
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref26
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref27
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref27
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref28
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref28
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref29
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref29
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref29
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref30
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref30
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref30
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref31
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref31
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref32
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref32
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref33
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref33
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref33
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref34
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref34
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref34
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref35
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref35
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref36
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref36
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref37
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref37
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref37
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref38
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref38
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref38
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref39
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref39
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref40
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref40
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref41
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref41
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref42
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref42
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref42
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref43
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref43
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref43
http://refhub.elsevier.com/S0010-4825(21)00254-7/sref43

	AweGNN: Auto-parametrized weighted element-specific graph neural networks for molecules
	1 Introduction
	2 Theory and methods
	2.1 Neural networks
	2.2 Overview of auto-parametrized weighted element-specific graph neural networks (AweGNNs)
	2.3 Normalization function
	2.4 Biomolecular geometric graph representations
	2.5 Parameter adjustment and initialization
	2.6 Derivatives of the representation function
	2.7 How to update the parameters
	2.8 Multi-scale models
	2.9 Model architectures and hyper-parameters

	3 Results
	3.1 Evaluation metrics
	3.2 Toxicity data sets
	3.2.1 LC50-DM (Daphnia Magna) set
	3.2.2 Fathead minnow LC50 set
	3.2.3 Tetraphymena pyriformis IGC50 set
	3.2.4 Oral rat LD50 set

	3.3 Solvation data set

	4 Discussion
	4.1 Impact of automating selection of Kernel parameters
	4.2 Feature importance and analyzing the trajectories of the Kernel parameters
	4.3 Limitations and advantages

	5 Conclusion
	Model availability
	Data availability
	Declaration of competing interest
	Acknowledgments
	Appendix A Supplementary data
	References

