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Abstract

The ongoing massive vaccination and the development of effective intervention offer the long-awaited
hope to end the global rage of the COVID-19 pandemic. However, the rapidly growing SARS-CoV-2 vari-
ants might compromise existing vaccines and monoclonal antibody (mAb) therapies. Although there are
valuable experimental studies about the potential threats from emerging variants, the results are limited to
a handful of mutations and Eli Lilly and Regeneron mAbs. The potential threats from frequently occurring
mutations on the SARS-CoV-2 spike (S) protein receptor-binding domain (RBD) to many mAbs in clinical
trials are largely unknown. We fill the gap by developing a topology-based deep learning strategy that is
validated with tens of thousands of experimental data points. We analyze 796,759 genome isolates from
patients to identify 606 non-degenerate RBD mutations and investigate their impacts on 16 mAbs in clin-
ical trials. Our findings, which are highly consistent with existing experimental results about Alpha, Beta,
Gamma, Delta, Epsilon, and Kappa variants shed light on potential threats of 100 most observed muta-
tions to mAbs not only from Eli Lilly and Regeneron but also from Celltrion and Rockefeller University that
are in clinical trials. We unveil, for the first time, that high-frequency mutations R346K/S, N439K, G446V,
L455F, V483F/A, F486L, F490L/S, Q493L, and S494P might compromise some of mAbs in clinical trials.
Our study gives rise to a general perspective about how mutations will affect current vaccines.

� 2021 Elsevier Ltd. All rights reserved.

Introduction

Since the first positive cases of coronavirus
disease, 2019 (COVID-19) caused by severe
acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) was reported in late December 2019, over
2.5 million lives have been taken away in the
COVID-19 pandemic up to March 10, 2021. The
developments of vaccines and antibody therapies
are the most significant scientific
accomplishments that offer essential hope to win
the battle against COVID-19. Nonetheless, the

emerging SARS-CoV-2 variants signal a major
threat to existing vaccines and antibody drugs.
SARS-CoV-2 is a novel b-coronavirus, which is

an enveloped, unsegmented positive-sense
single-strand ribonucleic acid (RNA) virus. It gains
entry into the host cell through the binding of its
spike (S) protein receptor-binding domain (RBD)
to the host angiotensin-converting enzyme 2
(ACE2) receptor, primed by host transmembrane
protease, serine 2 (TMPRSS2).1 According to epi-
demiological and biochemical studies, the binding
free energy (BFE) between the S protein and
ACE2 is proportional to the infectivity of different
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SARS-CoV-2 variants in the host cells.2,3 Intrinsi-
cally, the mutation-induced BFE changes (DDG)
of S protein and ACE2 complex provide a method
to measure the infectivity changes of a SARS-
CoV-2 variant compared to the first SARS-CoV-2
strain that deposited to GenBank (Access number:
NC 045512.2).4 Specifically, a positive mutation-
induced BFE change of S and ACE2 indicates that
this mutation would strengthen the infectivity of
SARS-CoV-2, while a negative mutation-induced
BFE change reveals the possibility of the weaken-
ing transmissible and infectious. Therefore, one
can predict the impact of SARS-CoV-2 RBD vari-
ants on infectivity by estimating their BFE
changes.4–6

Moreover, the binding of S protein and ACE2 will
trigger the host adaptive immune system to produce
antibodies against the invading virus.7,8 As illus-
trated in Fig. 1, antibodies are secreted by a type
of white blood cell called B cell (mainly by plasma
B cells or memory B cells). An antibody can either
attach to the surface of B cell (called B-cell receptor
(BCR)) or exist in the blood plasma in a solute form.
An antibody can be generated in three different
ways: (1) Once SARS-CoV-2 invades the host cell,
the adaptive immune system will be triggered, and
the B cells will generate and secrete antibodies.
(2) In antibody therapies, antibodies are initially
generated from patient immune response and T-
cell pathway inhibitors,7 which are called antibody
drugs.8 Most COVID-19 antibody drugs primarily
target S protein. (3) The vaccine is designed to stim-
ulate an effective host immune response, which is
another way to make B cells secrete antibodies.9

At this stage, various vaccines, including twomRNA
vaccines designed by Pfizer-BioNTech and Mod-
erna, have been granted authorization for emer-
gency use in many countries, aiming to give our

human cells instructions to make a harmless S pro-
tein piece to initiate the immune response actively.
Although COVID-19 vaccines are the gamechan-
ger, S protein mutations might weaken the binding
between the SARS-CoV-2 S protein and antibodies
and thus, reduce the efficiency and efficacy of the
existing vaccines and antibody therapies.10

Although SARS-CoV-2 has a higher fidelity in the
replication process which benefits from its genetic
proofreading mechanism regulated by the non-
structural protein 14 (NSP14) and RNA-dependent
RNA polymerase (RdRp),11,12 over 5,000 unique
mutations has been found on SARS-CoV-2 S pro-
tein,5 which raises the question that how these
mutations on S protein will affect the existing vacci-
nes and antibody drugs. Antibody resistance of
SARS-CoV-2 variants Alpha (B.1.1.7) and Beta
(B.1.351) was reported.10Mutation E484K onS pro-
tein RBD may help SARS-CoV-2 slip past the host
immune defenses, is broadly founded in the Beta
(a.k.a 20H/501Y.V2) variant 13 and the Gamma
(P.1) (a.k.a 20 J/501Y.V3) variant.14 The ongoing
evaluation of susceptibility of variants in subjects
treated with the antibody-drug bamlanivimab shows
that E484K substitution in Alpha, Beta, and Iota
(B.1.526) variants have reduced susceptibility to
bamlanivimab.15 Moreover, the K417N+E484K
+N501Y substitutions in Beta and Gamma variants
have also reduced susceptibility to bamlanivimab.15

Specifically, a 50% increment in the transmission of
the Beta variant is estimated.16 Both Beta and
Gamma variants cause negative effects on the neu-
tralization by emergency use authorization (EUA)
monoclonal antibody therapeutics,17,18 and the
moderate reductions in neutralizing activity were
observed by using convalescent and post-
vaccination sera.19 Furthermore, the Epsilon
(B.1.427/B.1.429) variant carries an L452R muta-

Figure 1. SARS-CoV-2 S protein antibodies are secreted by B cells in aiming to compete with the host ACE2 for

binding to the S protein RBD.
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tion on the S protein RBD, which approximately
increases 20% of the transmissibility of SARS-
CoV-2,19 and has amild negative impact on neutral-
ization by some EUA therapeutics according to the
Food and Drug Administration (FDA) report.15,20

Notably, by using convalescent and post-
vaccination sera, moderate reductions in neutraliz-
ing activity of L452R were observed.19

However, the determination of whether a
mutation will reduce susceptibility to the existing
antibodies and antibody drugs from wet laboratory
experiments is time-consuming. Current
experimental studies are restricted to only a small
fraction of known RBD mutations that have been
observed. There is no reliable measurement about
whether a mutation will evade a vaccine because
none knows how many different antibodies will be
created from the vaccination of the general
population of different races, genders, ages, and
health conditions. Based on the molecular
mechanism of SARS-CoV-2 infectivity, antibody,
and vaccine, one can quantitatively estimate
mutation impacts on SARS-CoV-2 infectivity and
an antibody-drug through computing mutation-
induced BFE changes of the S protein-ACE2
complex and the S protein-antibody complex,
respectively. Using machine learning models to
predict protein-protein interaction binding free
energies can efficiently deliver consistent
results.21–23 However, applying a machine learning
model in practical studies requires validation with
experimental data. In our earlier work, we proposed
a TopNetTree model to predict the RBD-induced
binding free energy (BFE) changes of S protein with
ACE2 and 106 antibodies,5,24 where we also illus-
trated the validation on experimental data 25–29.
We showed that RBD mutation N501Y could signif-
icantly strengthen SARS-CoV-2 infectivity,5 which
is consistent with experiment.16 Our results indi-
cated that K417N, E484K, and L452R are all
antibody-escape and infectivity-strengthening
mutations, which are consistent with the findings
from many experimental labs.10,24,5 Among them,
mutation L452R in the Epsilon variant can signifi-
cantly increase infectivity.5 We found that the
T478K mutation in variant B.1.1.222, which has a
rapid growth rate in Mexico, has the highest value
of predicted BFE changes among high-frequency
mutations.24,5 Our prediction is confirmed from a
report that mutation T478K is spreading at an
alarming speed.30 Containiingg both T478K and
L452R, the Delta variant is about four times more
infectious than the original virus. We also predicted
1149 most likely, 1912 likely, and 625 unlikely
receptor-binding domain (RBD) mutations.6 Cur-
rently, all known RBD mutations were correctly pre-
dicted as the most likely ones in our work.6,5 Most
recently, we have analyzed 506,768 SARS-CoV-2
genome isolates from patients and found that
essentially all of 100 most observed RBDmutations
have favorable predicted BFE changes, which

provides a population-level confirmation of the relia-
bility of our predictions. 24

The objective of this work is to reveal the
mutational threats to 16 antibody drug candidates
that are either in clinical trials or associated with
clinical trial antibodies, as shown in Fig. 3. To this
end, we analyze 796,759 complete SARS-CoV-2
genome sequences isolated from patients to
identify 27,960 unique single mutations up to May
24, 2021 (see our Mutation Tracker
https://users.math.msu.edu/users/weig/SARS-CoV-
2_Mutation_Tracker.html).11 Among them, 606 non-
degenerate mutations are found on the S protein
RBD of SARS-CoV-2. We develop an algebraic
topology-based deep learning model to estimate
the mutation-induced BFE changes. Our study of
antibody-drug candidates is invaluable and
complementary to experimental results in the
following senses. First, our machine learning and
deep learning models validated with tens of
thousands of experimental data points, including
SARS-CoV-2 related deep mutations, are reliable
as confirmed by emerging experimental data on
various SARS-CoV-2 variants. Second, many fast-
growing RBD mutations around the world pose
imminent threats to existing and future vaccines
and antibody therapies. The current experimental
capability lags behind the rapidly growing RBD
mutations. For example, there is no experimental
study about the rapidly increasing B.1.1.222
variant. Our approach helps close the gap by
combining genotyping and mutation-induced BFE
change analysis. This work provides a threat
analysis of all 606 existing RBD mutations.
However, our emphasis is given to the 100 most
observed RBD mutations. Third, current
experiments in the literature are limited to two EUA
monoclonal antibody therapeutics from Regeneron
31 and Eli Lilly.8 We extend our analysis to many
other antibody therapeutic candidates that are in var-
ious stages of clinical trials, such as those from Cell-
trion 32 and the Rockefeller University. Finally, we
introduce an interactive website, “SARS-CoV-2
Mutation Analyzer” (https://weilab.math.msu.edu/
MutationAnalyzer/), to rank the worldwide frequency,
BFE change, and antibody disruption of all observed
mutations.

Results

Analysis of observed S protein RBD mutations

We first construct an interactive website, “SARS-
CoV-2 Mutation Analyzer” (https://weilab.math.
msu.edu/MutationAnalyzer/) to present a
summary of 606 observed RBD mutations as
shown in Fig. 2. The interactive website allows
one to choose different display options. Note that
infectious mutation N501Y in Alpha, Beta, and
Gamma variant has been observed 388,294 times
worldwide. Mutations E484K, S477N, and L452R
have been found over 25,000. Among them,
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E484K and L452R are vaccine-escapemutations.24

In particular, mutation L452R, which is in Delta,
Epsilon, and Kappa variants, is as infectious as
N501Y and as antibody disruptive as E484K. Muta-
tion T478K in variant B.1.1.222 is the most infec-
tious one among frequently observed mutations.
Therefore, all significant variants have at least one
infectious mutation.

Antibodies in clinical trials

In this work, we study 16 antibodies, including 5
antibodies in phase 3 clinical trials or EUA, and 2
antibodies in phase 1 clinical trials. The rest of the
antibodies are closely related to those in clinical
trials. For the 5 antibodies in phase 3 clinical trials
or EUA, there are two antibody combination
treatments, casirivimab/imdevimab (REGN10933/
REGN10987), and bamlanivimab/etesevimab (LY-
CoV555/LY-CoV016 (CB6)), and one single
antibody treatment, regdanvimab (CT-P59) from
Celltrion. C135 and C144 are two antibodies from
the Rockefeller University in phase 1 clinical trials.
The rest antibodies are C102, C105, C002, C104,
C110, C119, C121, LY-CoV481, and LY-CoV488.
Most of the antibodies are isolated or derived from
COVID-19 human neutralizing antibodies,33,32,34–36

while REGN10933 and REGN10987 are derived
from the treatments for Ebola – one from humanized
mice and one from a convalescent patient.31

According to the literature,33,31,34 antibodies
REGN10933, REGN10987, LY-CoV555, and LY-
CoV016 were optimized through fluorescence-
activated cell sorters.
In Fig. 3, we align 16 three-dimensional (3D)

antibody structures with ACE2. Fig. 3(a) and (b)
show 7 antibodies that directly compete with
ACE2 on the binding domain. Three clinical-trial

antibodies, namely CT-P59, REGN10933, and LY-
CoV016, can be found in Fig. 3(a). Fig. 3(c)
shows 6 antibodies whose binding domains
partially overlap with that of ACE2. Among them,
LY-CoV555 and C144 are in clinical trials. Fig. 3
(d) shows 3 antibodies that partially share their
binding domains with ACE2. Antibodies
REGN10987 and C135 do not compete with
ACE2 directly and thus, they can be complements
of other antibodies.

Impacts of SARS-CoV-2 on antibody efficacy
and infectivity

SARS-CoV-2 variants with specific genetic
markers are correlated to BFE changes on the
RBD, degrade the neutralization by antibody
treatments, or antibodies of the self immune
system, and increase the difficulty of virus
diagnostic or transmissible prediction. Especially,
the mutations that enhance transmissibility and
weaken antibody neutralization should be
prioritized in the investigation. In Fig. 4, we
illustrate RBD mutations involved in the Alpha,
Beta, Gamma, Delta, Epsilon, Kappa, and
B.1.1.222 variants. In this figure, each RBD
residue is colored by the maximum mutation-
induced BFE change on the S protein-ACE2
complex from 19 possible mutations. One can
notice that all the seven mutations in plethora
variants have positive BFE changes that enhance
the binding of S protein RBD and ACE2, and
consequently, the infectivity of SARS-CoV-2.
Fig. 5 illustrates SARS-CoV-2 S protein RBD

mutation-induced BFE changes to the complexes
of S protein with antibodies or ACE2. Here, we
only consider 100 most observed mutations that
have been observed with most times, and a

Figure 2. Analysis of observed S protein RBD mutations. Here, “BFE change” refers to the binding free energy

change for the S protein and human ACE2 complex induced by a single-site S protein RBD mutation. A negative BFE

change weakens the binding between S protein and ACE2, while a positive BFE change strengthens the binding

between S protein and ACE2, giving rise to a more infectious variant.5 “Counts” of antibody disruption give the number

of antibodies and S protein complexes disrupted by a specific mutation. We consider an antibody and S protein

complex to be disrupted if its binding affinity is reduced by more than 0.3 kcal/mol.24 “Ratio” shows the ratio of

disrupted antibody and S protein complexes out of 106 known complexes.24
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similar study for all known RBD mutations is
presented in the Supporting information. Note that
there is a strong correlation between the positive
predicted mutation-induced BFE changes and the

observed mutation frequencies. For a given
mutation, if its BFE changes for antibodies are
very negative value while for ACE2 very positive,
then this mutation has a combined antibody-

Figure 3. 3D structure superposition of 16 antibodies and ACE2 on the S protein RBD. (a) CT-P59 (7CM4),32

REGN10933 (6XDG),31 LY-CoV016 (CB6) (7C01).33 (b) LY-CoV488 (7KMH),34 LY-CoV481 (7KMI),34 C102

(7K8M),35 C105 (6XCM).36 (c) LY-CoV555 (7KMG),34 C002 (7K8T),36 C104 (7K8U),36 C119 (7K8W),36 C121

(7K8X),36 C144 (7K90).36 (d) REGN10987 (6XDG),31 C110 (7K8V),36 C135 (7K8Z).36

Figure 4. 3D structure of human ACE2 (hACE2) and RBD (PDB 6M0J)27. Color on the RBD structure indicates the

BFE changes induced by mutations, where blue means binding strengthening and red means weakening.

Figure 5. Illustration of the BFE changes of the complexes of S protein and antibodies or ACE2, induced by RBD

mutations with frequencies being greater than 10. Positive changes strengthen the binding while negative changes

weaken the binding. Here, only mutations that occurred on the relevant random coil of the S protein RBD are

considered. The Grey color indicates that PDB structures do not involve specific residues.
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escape and infectivity-strengthening effort.
Therefore, one can observe that mutations,
R346K/S, K417N, L452R, E484K/Q, F486L,
F490L/S, S494P, and N501Y, have this effect,
while R346K/S and N501Y induce a relatively
moderate weakening effect to most antibodies.
Fig. 6 shows the BFE changes induced by seven

RBD mutations (K417N, K417T, L452R, T478K,
E484K, E484Q, and N501Y) for the S protein
complexes with antibodies and ACE2. First of all,
it is noted that all RBD mutations give positive
BFE changes for binding to ACE2, leading to
more infectious variants. Additionally, the
magnitude of BFE changes on each mutation is
correlated to the distance to antibodies. Therefore,
antibodies having more overlap with ACE2 are
impacted more significantly by mutations. For
example, according to their 3D alignment in Fig. 3,
LY-CoV016, CT-P59, REGN10933, C102, C105,
LY-CoV481, and LY-CoV488 that are directly
competing with ACE2 have large BFE changes in
five mutations. Antibodies that partially overlap
with ACE2 in terms of binding domain, i.e., C002,

C104, C119, C121, C144, and LY-CoV555, have
only a few significant BFE changes. Antibodies
C110, C135, and REGN10987, which bind to the
other side of the RBD, have very mild changes in
all the mutations.
More specifically, mutation T478K whose

frequency has risen exponentially since early 2021
in Mexico (B.1.1.222), induces a very large
positive BFE change in the ACE2-S protein
complex. This could explain why T478K is a fast-
growing mutation although it might not affect the
binding of antibodies to the S protein. As for three
variants from Alpha, Beta, and Gamma, they
share the same mutation, N501Y, while the Alpha
variant is the only one that contains one mutation
on RBD and Beta and Gamma variants contain
other mutations K417N/T and E484K. Meanwhile,
the experimental results show that most
antibodies demonstrate neutralizing capability
against the Alpha variant.17,18,37 Interestingly, as
reported by EuropeanMedicines Agency,38 regdan-
vimab (CT-P59) shows neutralizing ability against
the Alpha variant. These results are highly consis-

Figure 6. BFE changes induced by new SARS-CoV-2 mutations, K417N, K417T, L452R, T478K, E484K, E484Q,

and N501Y. C110* and C135*: no results due to incomplete PDB structure.
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tent with the small positive BFE changes of N501Y
on antibodies in Fig. 6. For the key substitution,
L452R, of Epsilon, regdanvimab (CT-P59), and
bamlanivimab (LY-CoV555) have large negative
BFE changes. Here, we define large negative
BFE changes as BFE change values are less than
�0.5 kcal/mol. In the FDA report of bamlanivimab
(LY-CoV555) and etesevimab (LY-CoV016),17,18

the mutation L452R has a large fold reduction in
susceptibility of single bamlanivimab and mild fold
reduction of the combination of bamlanivimab and
etesevimab. Lastly, we study the Beta and Gamma
variants, which share the same mutations E484K
and N501Y but are different in K417N/T. For anti-
bodies in EUA, REGN10987 has mild changes on
mutations, K417N/T and E484K, while REGN10933
and LY-CoV016 respond with large negative
changes and LY-CoV555 has a significant negative
change on E484K. Our predictions for the Beta and
Gamma variants are in excellent agreement with
experimental data.37,39

Mutation impacts on antibodies in clinical
trials

In this section, we study five antibodies in clinical
trials or emergency use authorization. Two
antibodies of Regeneron Pharmaceuticals,
casirivimab and imdevimab, are studies together,
followed by other three antibodies in phase 3,
regdanvimab, bamlanivimab, and etesevimab.
Two antibodies in phase 1 are discussed in the
end as well. We emphasize 100 most observed
RBD mutations and denoted them as high-
frequency mutations. A complete study of all
known RBD mutations is given in the Supporting
information.

Regeneron Aatibodies REGN10933 and

REGN10987 (aka Casirivimab and Imde-

vimab). Regeneron’s Casirivimab and Imdevimab
antibody cocktail against SARS-CoV-2 is the first
combination therapy, which receives an FDA
emergency use authorization. As the only one in
the clinical trial antibodies that have the 3D
structure of two antibodies binding to the RBD, we
first study the BFE changes of them as an
antibody combination. We examine the BFE
changes induced by RDB mutations whose

frequencies are greater than 10 in Fig. 7 of the
antibody cocktail, REGN10933 and REGN10987,
binding to the S protein RBD. The single antibody
analysis is provided in the Supporting information.
Notably, mutations K417T, N439K, G446V,
E484K, and F486L lead to large negative BFE
changes. For positive BFE changes, it is good to
see that there are high-frequency mutations,
which indicates that this antibody combination
potentially prevents the new variants of SARS-
CoV-2, especially for variants with mutations
L452R, S477N, and K501Y. However, some
mutations with negative BFE changes have a very
large magnitude, indicating that the antibody
combination of REGN10933 and REGN10987
was an immune product optimized for the original
un-mutated S protein. In general, parts of the
mutations on the S protein weaken the
REGN10933+REGN10987 binding and make the
antibodies less competitive to ACE2. This cocktail
is prone to Beta and Gamma variants (K417N/T,
E484K) but remains effective for Alpha and
Epsilon variants (L452R and K501Y) (see Fig. 8).
Additionally, these two antibodies can be studied

separately, as shown in Figs. 9 and 10. By
comparing the stand-alone BFE predictions to
those in Fig. 7, it can be concluded that antibody
REGN10933 plays the main role in the antibody
neutralization, while the antibody REGN10987 is a
complement for two reasons. First, the antibody
REGN10933 shares the same disrupted mutations
with the combination and has larger BFE changes
on those mutations. Secondly, the BFE changes
for REGN10987 are mild, and most of them are
positive values. According to the 3D alignment,
the antibody REGN10987 does not directly
compete with ACE2. Lastly, in the comparison,
one can notice that the magnitude of BFE
changes is smaller on the mutations for the
combination. This indicates a more stable binding
of the antibody combination.

Eli Lilly antibodies LY-CoV555 and LY-CoV016

(aka Bamlanivimab and Etesevimab). Bam-
lanivimab (LY-CoV555) was first developed as a
single antibody therapy for the treatment of mild to
moderate COVID-19 illness. However, it is not
distributed alone due to the SARS-CoV-2 variant

Figure 7. Illustration of SARS-CoV-2 mutation-induced binding free energy changes for the complexes of S protein

and antibodies REGN10933 and REGN10987 (PDB 6XDG).31 Here, mutations K417T, N439K, G446V, E484K, and

F486L could potentially disrupt the binding of antibodies and S protein RBD.
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resistance and is used as an antibody combination
with Etesevimab (LY-CoV016 (CB6)). Here, we first
examine Bamlanivimab’s response to S protein
RBD mutations followed by the discussion of
Etesevimab.
In the BFE changes prediction of LY-CoV555

(PDB 7KMG) as shown in Fig. 12, most mutations
have mild changes, while mutations L452R,
V483F/A, E484K/Q, F486L, F490L/S, and S494P
have large negative BFE changes. For positive
BFE changes, the largest value is only
0.75 kcal/mol and the average of positive BFE
changes is 0.16 kcal/mol. However, many

mutations with negative BFE changes have very
large magnitudes, such that 7 mutations having
binding free energy less than �2 kcal/mol, and the
least value is �4.1 kcal/mol for E484K. This could
indicate that antibody LY-CoV555 was an immune
product optimized with respect to the original un-
mutated S protein. In general, the mutations on S
protein weaken the LY-CoV555 binding to S
protein and make it less competitive with ACE2 as
most mutations strengthen the S protein and
ACE2 binding. The Beta variant (E484K) and
Epsilon variant (L452R) have a strong antibody-
escape effect.

Figure 8. The binding complex of S protein RBD and REGN10933+REGN10987 (PDB 6XDG).31

Figure 9. Illustration of SARS-CoV-2 mutation-induced binding free energy changes for the complexes of S protein

and antibody REGN10933 (PDB 6XDG)31. Here, mutations K417T, N439K, G446V, E484K/Q, and F486L could

potentially disrupt the binding of antibody and S protein RBD.

Figure 10. Illustration of SARS-CoV-2 mutation-induced binding free energy changes for the complexes of S

protein and antibody REGN10987 (PDB 6XDG).
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In Fig. 13, we illustrate the mutation-induced BFE
changes for antibody LY-CoV016 (PDB 7C01),
which directly competes with ACE2. One can
notice that K417T/N, A475S, and N501Y, have
large negative BFE changes, and three of them
belong to SARS-CoV-2 variants. The rest
mutations have a small magnitude of changes.
There are no large positive BFE changes.
Antibody LY-CoV016 is isolated from peripheral
blood mononuclear cells of patients convalescing
from COVID-19 at the early stage and optimized
based on an early version of the SARS-CoV-2 virus.
In the 3D structure superposition of Fig. 11 right

chart, antibodies LY-CoV555 and LY-CoV016
share a partial binding domain with ACE2.
Therefore, they are not only competing with ACE2

but also with each other. Comparing the BFE
change prediction on both LY-CoV555 and LY-
CoV016, one can note that two antibodies
respond to S protein RBD mutations differently
and thus are complementary. We deduce that the
combined antibody will enhance the single
antibody neutralization.

Celltrion antibody CT-P59. Regdanvimab (CT-
P59) has been approved for emergency use
treatment in South Korea and is under review by
European Medicines Agency (EMA) (see Fig. 14).
We present the BFE changes in Fig. 15. Antibody
CT-P59 shares a similar binding domain with
ACE2 and is a potent candidate for the direct
neutralization of SARS-CoV-2. Most mutations

Figure 11. The binding complexes of S protein RBD with Left: LY-CoV555 (PDB 7KMG)34 andMiddle: LY-CoV016

(7C01)33. Right: a crash at the interface between two antibodies.

Figure 12. Illustration of SARS-CoV-2 RBD mutation-induced binding free energy changes for the complexes of S

protein and antibody LY-CoV555 (PDB 7KMG). Here, mutations L452R, V483F/A, E484K/Q, F486L, F490L/S,

Q493K/R, and S494P could potentially disrupt the binding of antibodies and S protein RBD.

Figure 13. Illustration of SARS-CoV-2 mutation-induced binding free energy changes for the complexes of S

protein and antibody LY-CoV016 (PDB 7C01). Here, mutations K417T/N, A475S, and N501Y could potentially disrupt

the binding of antibody and S protein RBD.
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induce small changes in the binding free energy,
while mutations Y449H, L452R, L455F, E484K,
F490L/S, Q493K/R, and S494P induce large
negative BFE changes. This indicates antibody
CT-P59 has an antibody-escape effect for many
variants, including the Beta variant (B.1.351 with

E484K) and the Epsilon variant (with L452R). It is
noticed that CT-P59 has a large positive BFE
change for mutation N501Y, indicating CT-P59
can neutralize the SARS-CoV-2 Alpha variant
(B.1.17).

Rockefeller University antibodies C135 and C144.

Lastly, we study C135 and C144, another antibody
combination treatment currently on phase 1 study.
Due to fact that there is no 3D structure of C135
and C144 binding to RBD simultaneously, we
present their BFE change predictions based on
PDB 7K8Z and 7K90, separately (see Fig. 16).
In the BFE change calculation of antibody C135

on Fig. 17, most mutations have mild BFE
changes, while two mutations, R346K/S, induce
large negative BFE changes, and three mutations,
N440K, N450K, and P499H, lead to positive BFE
changes greater than 0.5 kcal/mol. Notably, C135
is not an antibody that directly competes with
ACE2 in terms of the binding domain. For
mutations of emergent variants, K417T/N, L452N,
and N501Y, they all have small BFE changes.

Figure 14. The binding complex of S protein and

CT-P59 (PDB 7CM4)32.

Figure 15. Illustration of SARS-CoV-2 mutation-induced binding free energy changes for the complexes of S

protein and antibody CT-P59 (PDB 7CM4).32 Here, mutations Y449H, L452R, L455F, E484K, F490L/S, Q493K/R,

and S494P could potentially disrupt the binding of antibodies and S protein RBD.

Figure 16. The binding complexes of S protein and antibodies C135 (PDB 7K8Z)36 and C144 (PDB 7K90)36.
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With mild changes of most mutations, the antibody
C135 could be a complement for other antibodies
that are directly competing with ACE2 on the
binding domain.
The last antibody is C144 on Fig. 18, which

shares a part of the binding domain with ACE2. It
is obvious that except for mutations E484K/Q, the
rest mutations induce mild BFE changes. As the
mutation E484K is part of the Gamma and Beta
variants, this antibody treatment could have
antibody-escape effects. However, since most
mutations lead to mild BFE changes and
mutations K417N/T, L452R, T478K, and N501Y
render mild positive BFE changes, this antibody
can have neutralizing efficacy for many emerging
variants, such as the Alpha, Epsilon, and
B.1.1.222 variants.

Discussion and Conclusion

There are emerging variants spreading
worldwide, which increase the virus
transmissibility, reduce the neutralization of
antibodies, and degrade the efficacy of antibody
treatments or vaccines. The S protein plays the
most important role in leading the virus to access
the host cell. The RBD of S protein directly
contacts ACE2, and its substitutions induced by
variants can significantly weaken its binding with
original antibodies either created from current
vaccines or induced through existing antibody
therapies. RBD mutations that enhance the RBD
binding to ACE2 and weaken the RBD binding to

many antibodies pose potential threats to
vaccines and antibody therapies. Figure S1 in the
Supporting information provides a detailed
analysis of the 606 RBDmutations to 16 antibodies.
Alpha B.1.1.7 lineage The Alpha variant has one

mutation, N501Y, on the RBD and was detected
from the COVID-19 pandemic in the United
Kingdom 40, which increases viral transmission 16

and severity based on hospitalizations.41 However,
for antibodies in clinical trials, it has a minor impact
on neutralization in terms of BFE changes based on
our predictions. Similar findings for the B.1.1.7 lin-
eage have been reported for experimental neutral-
ization by EUA therapeutics 42,17,18 and for other
antibodies.10

Beta B.1.351 lineage The Beta variant is
different from the Gamma variant only for one
RBD mutation, i.e., K417N and is first reported in
South Africa 40. We can claim a similar statement
but moderate impacts on all the clinical trial antibod-
ies. The same pattern can be found in the CDC
report 17,18 and the literature.10

Gamma P.1 lineage The Gamma variant has
three RBD mutations K417T, E484K, and N501Y,
which was reported by the National Institute of
Infectious Diseases, Japan, in people who had
travel experience of Brazil 14. According to our
BFE predictions, casirivimab (REGN10933) is mod-
erately influenced by K417N and E484K on neutral-
ization, while for imdevimab (RENG10987), the
mutation impact is less significant. Regdanvimab
(CT-P59) could still maintain its neutralizing capabil-
ity. Bamlanivimab (LY-CoV555) shows a large fold
reduction in susceptibility on mutation E484K in

Figure 17. Illustration of SARS-CoV-2 mutation-induced binding free energy changes for the complexes of S

protein and antibody C135 (PDB 7K8Z).36 Here, mutations R346K/S could potentially disrupt the binding of antibodies

and S protein RBD.

Figure 18. Illustration of SARS-CoV-2 mutation-induced binding free energy changes for the complexes of S

protein and antibody C144 (PDB 7K90). Here, mutations E484K/Q could potentially disrupt the binding of antibodies

and S protein RBD.
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our prediction, which is consistent with a CDC
report,18 while the combination of bamlanivimab
and etesevimab gives a better response to P.1 lin-
eage.17 We hypothesize that LY-CoV016 competes
with LY-CoV555 and preserve its neutralization
capacity with E484K. The combination of bam-
lanivimab and etesevimab has a large BFE reduc-
tion from P.1 lineage, which indicates that K417T
has a negative impact on the binding.
Delta B.1.617.2 lineage This variant has two

RBD mutations L452R and T478K detected in
India.40 These two mutations have two different
types of impacts on the neutralization for antibody
therapies. While L452R will have a native impact
on the neutralization for regdanvimab (CT-P59)
and bamlanivimab (LY-CoV555) and a mild impact
on others, themutation T478K has a positive impact
on almost all the known antibodies but strongly
strengthens the binding of S protein and ACE2.
Epsilon B.1.427/429 lineage For the Epsilon

variant, mutation L452R has a negative impact on
the neutralization for regdanvimab, but a minimal
impact on the neutralization by the two antibody
combinations. L452R reduces the capacity of
bamlanivimab, which can be shown by the
prediction and the CDC report.18 Interestingly, the
fact of a small impact on the antibody combination,
bamlanivimab and etesevimab, shown by the pre-
diction and report 17 indicates that etesevimab dom-
inants the binding process. The Epsilon variant was
first detected in California, US.40

Iota B.1.526 lineage The Iota variant is studied
by only considering E484K and had spread rapidly
in New York, US40. It reduces the neutralization of

REGN10933, C144, and LY-CoV555. Based on
our predictions, the impact on REGN10933 can be
reduced if REGN10987 is also used in the treatment
as well.
Kappa B.1.617.1 lineage The Kappa variant has

two RBD mutations L452R and E484Q, and was
first detected in India.40 It has mutation L452R
shared with Delta and Epsilon variants. The Kappa
variant has a mutation E484Q, which is different
from the rest. According to the BFE prediction,
mutation E484Q has a negative impact on antibod-
ies REGN10933, C144, and LY-CoV555. Similar to
E484K, the Regeneron antibody combination can
reduce Kappa variant’s negative impact on
REGN10933.
B.1.1.222 lineage The B.1.1.222 variant involves

RBDmutation T478K and has a larger positive BFE
change on the binding of ACE2 and RBD. However,
it has minor effects on existing antibodies.
Fig. 19 illustrates two comparisons of

experimental data and our BFE change
predictions. The left chart is the comparison of
natural log of experimental escape fraction 28 and
our BFE change predictions. It is seen that BFE
change predictions have a high correlation, i.e.,
R ¼ 0:80, to the natural log of escape fraction.
Especially, for variants significantly escaping anti-
bodies (with escape fraction close to 1), the BFE
predictions have large negative changes. The sec-
ond comparison on the right chart is about virus
infectivity changes induced by mutations. The
experimental pseudovirus infection changes
induced by N501Y or L452R in reference to
D614G were reported in relative luciferase units.19

Figure 19. (a) Comparison of the natural log of experimental escape fraction 28 and predicted BFE changes for

various RBD mutations associated with major antibody therapeutic candidates. The escape fraction is from 0 to 1 and

is the descriptor of a given mutation that escapes antibody binding with the S protein. The natural logarithm is taken

according to the equation of the enrichment ratio used in deep mutational scanning raw data. The Pearson correlation

of natural logs of escape fractions and BFE changes is 0.80. (b) Comparison of relative luciferase units 19 for

pseudovirus infection changes and predicted BFE changes of ACE2 and S protein complex induced by mutations

L452R and N501Y.
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These results are compared with our predicted BFE
changes of the RBD and ACE2 complex for N501Y
or L452R. It is seen that two results match extre-
mely well, suggesting that SARS-CoV-2 infectivity
is mainly determined by the RBD and ACE2
binding.
Fig. 20 gives an overall comparison of

experimental and predicted patterns of variant
impacts on major antibody drug candidates. There
is an excellent agreement between our predictions
and various experimental data, except for a minor
discrepancy. Specifically, our prediction shows a
potentially twofold reduction in binding strength for
LY-CoV016 from B.1.1.7 due to N501Y
(see Fig. 6), while the experiment records little
change 10, which is the only difference between a
large number of experimental reports and our
predictions.
Conclusion In summary, the Eli Lilly antibody

therapies bamlanivimab and etesevimab are likely
compromised by known emerging variants and
other high-frequency mutations V483F/A, E484Q/
V/A/G/D, F486L, F490L/V/S, Q493L, and S494P.
For Regeneron antibody therapies casirivimab and
imdevimab, while there is no experimental data
regarding K417T from variant P.1, our predictions
indicate that there is a potential compromise from
mutation K417T. Additionally, Regeneron
antibodies are prone to high-frequency mutations
N439K, G446V, E484G, and F486L. The Celltrion
antibody therapy regdanvimab (i.e., CT-P59) is
predicted to be compromised by variants P.1,
B1.351, B.1.427, and B.1.526, although there is
no experimental data now. It can also be
weakened by high-frequency mutations L455F,
E484A, F490L/S, and S494P/L. Rockefeller
University antibody C135 can be evaded by high-
frequency mutations R346K/S. The antibody C144
from Rockefeller University is prone to variants
P.1, B1.351, and B.1.526, while the experiment
has only confirmed the adversarial impact of

variant B.1.526. Additionally, it can be
compromised by high-frequency mutations
E484Q/A. In the Supporting information, we
further identify that low-frequency RBD mutations
V401I/L, I402V, E406G, Q409L, I410V, D420A/G,
N422S, N448D, N450D, Y453F, F456L, Y473F,
E484Q/A/G/D, G485S/R/C/V, F486L/V/C, F490I/L/
V/Y/S, S393A/L, N501I, and Y508S have potential
to become future vaccine or antibody escape
variants. These mutations are predicted to
enhance the RBD binding to ACE2 while weaken
the binding between RBD and most antibodies.

Methods

Genome sequence data and pre-processing

Complete SARS-CoV-2 genome sequences are
available from the GISAID database.40 In this work,
a total of 796,759 complete SARS-CoV-2 genome
sequences with high coverage and exact collection
date are downloaded from the GISAID database 40

(https://www.gisaid.org/) as of May 24, 2021. We
take the first complete SARS-CoV-2 genome from
the GenBank (NC_045512.2) as the reference
genome,45 and the multiple sequence alignment is
applied by the Clustal Omega 46,47 with default
parameters, which results in 27,960 single nucleo-
tide polymorphism profiles. On the S protein RBD,
i.e., residues 329 to 530, a total of 606 non-
degenerate mutations are found. Among them,
100 mutations have been observed more than 40
times.

Machine learning datasets

Datasets are important to train accurate machine
learning models. Both the BFE changes and
enrichment ratios describe the effects on the
binding affinity of protein-protein interactions.
Therefore, integrating both kinds of datasets can

Figure 20. Comparison of experimental (Exp.) pattern and predicted (Pred.) pattern of the impact of SARS-CoV-2

variants on major antibody therapeutic candidates. Light green indicates mild or no change in neutralization; pink

indicates significant reduction in neutralization; grey indicates no available data. RBD mutations in various variants:

B.1.526: E484K; B.1.1.7: N501Y; B.1.427: L452R; P.1: K417T+E484K+N501Y; B.1.351: K417N+E484K+N501Y. The

BFE changes are accumulated for multi-mutation predictions. Data resource: REGN10933,10,39,43

REGN10987,10,39,43 REGN cocktail,10 LY-CoV016,10,?,? C135,44,10 C144,44 and LY-CoV555.18,10,43
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improve the prediction accuracy. Especially, due to
the urgency of COVID-19, the BFE changes of
SARS-CoV-2 data are rarely reported, while the
enrichment ratio data via high-throughput deep
mutations are relatively easy to obtain. The most
important dataset that provides the information for
binding free energy changes upon mutations is
the SKEMPI 2.0 dataset.48 The SKEMPI 2.0 is an
updated version of the SKEMPI database, which
contains new mutations and data from other three
databases: AB-Bind,49 PROXiMATE,50 and
dbMPIKT.51 There are 7,085 elements, including
single- and multi-point mutations in SKEMPI 2.0.
4,169 variants in 319 different protein complexes
are filtered as single-point mutations are used for
our TopNetTree model training. Moreover, SARS-
CoV-2 related datasets are also included to improve
the prediction accuracy after a label transformation.
They are all deep mutation enrichment ratio data,
mutational scanning data of ACE2 binding to the
receptor-binding domain (RBD) of the S protein,25

mutational scanning data of RBD binding to
ACE2,26,27 and mutational scanning data of RBD
binding to CTC-445.2 and of CTC-445.2 binding to
the RBD.27 Note that our training datasets used in
the validation do not include the test dataset, which
is a mutational scanning data of RBD binding to
ACE2.

Feature generation of PPIs

Algebraic topology 52,53 has had tremendous suc-
cess in describing biochemical and biophysical
properties.54 Element-specific and site-specific per-
sistent homology can effectively simplify the struc-
tural complexity of protein-protein complex and
extract the abstract properties of the vital biological
information in PPIs.21,6 The algebraic topological
analysis on PPIs is constructed based on a series
of atom subsets of complex structures, which are
atoms of the mutation sites, Am, atoms in the
neighborhood of the mutation site within a cut-off
distance r ;Amnðr Þ, antibody atoms within r of the
binding site, AAbðrÞ, antigen atoms within r of the
binding site, AAgðr Þ, and atoms in the system that
has atoms of element type of {C, N, O}, AeleðEÞ.
Additionally, a bipartition graph is introduced to
describe the antibody and antigen in PPIs. Then,
molecular atoms construct point clouds for simpli-
cial complex, which is a finite collection of sets of lin-
ear combinations of points. We apply the Vietoris-
Rips (VR) complex for dimension 0 topology, and
alpha complex for point cloud of dimensions 1 and
2 topology.54 Overall, element-specific and site-
specific persistent homology is devised to capture
the multiscale topological information over different
scales along a filtration 52 and is important for our
machine learning predictions.

Simplex and simplicial complex. Given a set of
independent k þ 1 points U ¼ fu0; u1; . . . ; ukg in
R

N , the convex combination is a point

u ¼
Pk

i¼0aiu i , where
P

iai ¼ 1 and ai � 0. The
convex hull of U is the collection of convex
combinations of U, and a k-simplex r is the
convex hull of k þ 1 independent points U. For
example, a 0-simplex is a point, a 1-simplex is an
edge, a 2-simplex is a triangle, and a 3-simplex is
a tetrahedron. A proper m-face of the k-simplex is
a subset of the k þ 1 vertices of a k-simplex with
m þ 1 vertices forms a convex hull in a lower
dimension and m < k . The boundary of a k-
simplex r is defined as a sum of all its ðk � 1Þ–
faces as

@kr ¼
Xk

i¼1

ð�1Þi hu0; . . . ; û i ; . . . ; uk i; ð1Þ

where hu0; . . . ; û i ; . . . ; uk iis a convex hull formed by

vertices of r excluding u i . A simplicial complex denotes

by K is a collection of finitely many simplices forms a

simplicial complex. Thus, faces of any simplex in K are

also simplices in K, and intersections of any 2

simplices are only faces of both or an empty set. A k-

simplex r ¼ hu i0 ; . . . ; u ik i is in Vietoris–Rips complex

R r ðUÞ if and only if Bðu i j ; r Þ \ Bðu i j 0 ; r Þ –£ for

j ; j 0 2 ½0; k � and is in alpha complex Ar ðUÞ if and only if

\ui j
2rBðu i j ; r Þ –£.

Homology. For a simplicial complex K, a k-chain
ck of K is a formal sum of the k-simplices in K
defined as ck ¼

P
airi , where ri is the k-

simplices and ai is coefficients. ai can be in
different fields such as R;Q, and Z. Typically, ai is
chosen to be Z2, which is f�1; 0; 1g and forms an
Abelian group Ck ðK ;Z2Þ. Then, the boundary
operator can be extended to a k-chain ck as

@kck ¼
X

ai@kri ; ð2Þ

such that @k : Ck ! Ck�1 and satisfies @k�1@k ¼£,

follows from that boundaries are boundaryless. The

chain complex is defined as a sequence of complexes

by boundary maps is called a chain complex

� � � �!
@ iþ1

C i ðK Þ�!
@ i

C i�1ðK Þ�!
@i�1

� � � �!
@2

C1ðK Þ�!
@1

C0ðK Þ�!
@0

0:

ð3Þ

The k-homology group is the quotient group defined by

taking k-cycle group module of k-boundary group as

Hk ¼ Z k=Bk ; ð4Þ

where Hk is the k-homology group, and k-cycle group Z k

and the k-boundary group Bk are the subgroups of Ck

defined as,

Z k ¼ ker@k ¼ fc 2 Ck j @kc ¼£g;

Bk ¼ im@kþ1 ¼ f@kþ1c j c 2 Ckþ1g
ð5Þ

The Betti numbers are defined by the ranks of kth

homology group Hk as bk ¼ rankðHk Þ. b0 reflects the

number of connected components, b1 reflects the

number of loops, and b2 reflects the number of cavities.
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Filtration and persistent homology. A filtration of
a topology space K is a nested sequence of K such
that

£ ¼ K 0#K 1# � � � #Km ¼ K : ð6Þ

Then, a sequence of chain complexes and a homology

sequence are constructed on the filtration. The pth

persistent of kth homology group of K t are defined as

H t ;p
k ¼ Z t

k=ðB
tþp
k

\
Z t

k Þ; ð7Þ

and the Betti numbers bt ;p
k ¼ rankðH t ;p

k Þ. These persistent

Betti numbers are applied to represent topological

fingerprints.

Auxiliary features. Features of topological
invariants are not enough to reflect the whole
picture of PPIs. Importantly, chemical and physical
information, including surface areas, partial
charges, Coulomb interactions, van der Waals
interaction, electrostatic solvation free energy,
mutation site neighborhood amino acid
composition, pKa shifts, and secondary structure,
is added as auxiliary features to improve the
predictive power of the machine learning model.5

Machine learning and deep learning
algorithms

We illustrate the construction of a topology-based
network (TopNet) model for the BFE change
prediction of protein-protein interactions (PPIs) on
SARS-CoV-2 studying. These approaches have
been widely applied in studying protein-ligand and
protein-protein binding free energy predictions.6,5

Firstly, one ensemble method, gradient boosting
decision tree (GBDT), is studied as baseline in com-
parison to deep neural network methods. The
ensemble methods naturally handle correlation
between descriptors and are robust to redundant
features. Therefore, they usually do not depend
on a sophisticated feature selection procedure and
a complicated grid search of hyper-parameters.
The implemented GBDT is a function from the
scikit-learn package (version 0.22.2.post1).55 The
number of estimators and the learning is optimized
for ensemble methods as 20000 and 0.01, respec-
tively. For each set, 10 runs (with different random
seeds) were done and the average result is
reported in this work. Considering a large number
of features, the maximum number of features to
consider is set to the square root of the given
descriptor length for GBDT methods to accelerate
the training process. The parameter setting shows
that the performance of the average of sufficient
runs is decent.
A neural network is a network of neurons that

maps an input feature layer to an output layer.
The neural network simulates a biological brain
that solves problems with numerous neuron units
by backpropagation to update weights on each
layer. To reveal the facts of input features at

different levels and abstract more properties, one
can construct more layers and more neurons in
each layer, which is known as a deep neural
network. Optimization methods for feedforward
neural networks and dropout methods are applied
to prevent overfitting. In 10-fold cross-validations,
the neural network model has a slightly better
performance than the GBDT model, where
Pearson correlations for these algorithms are
0.864 and 0.838 and root mean square errors are
1.019 kcal/mol and 1.063 kcal/mol, respectively.
Thus, we applied the deep neural network for
predictions, validation, and comparison.

Optimization. To train feedforward neural
networks, backpropagation is applied where the
loss function is evaluated at the output layer and
is propagated backward through the network to
update the model’s weights and bias. As the
calculation of gradient required, one popular
approach is the stochastic gradient descent (SGD)
method with momentum, which estimates a small
portion of training data and applies the idea of
exponentially weighted averages. Thus, the
momentum term can accelerate the convergence
of the algorithm. A popular way to implement the
SGD with momentum is given as

V i ¼ bV i�1 þ grW i
LðW i ;b i Þ

W iþ1 ¼ W i � V i ;
ð8Þ

where W i is the parameters in the network, LðW i ; b i Þ is
the objective function, g is the learning rate, X and y

are the input and target of the training set, and

b 2 ½0; 1� is a scalar coefficient for the momentum term.

Dropout. Fully connected layers possess a large
number of degrees of freedom. This can easily
cause an overfitting issue, while the dropout
technique is an easy way of preventing network
overfitting.56 In the training process, hidden units
are randomly set zero values to their connected
neurons in the next layer. Suppose that a percent-
age of neurons at a certain layer is chosen to be
dropped during training. The number of computed
neurons of this layer is equal to the neuron number
multiplied by a coefficient such as 1-p, where p is
the dropout rate. Then, in the testing process, the
output of these layers is computed by randomly
dropouts the same rate of neurons, to approximate
the network in each training step.

Validation

Deep learning algorithms. A deep neural
network (DNN) consists of multi-layers of neurons.
In the output layer, the single neuron gets full
connections with the last hidden layer and
calculates predictions. Notice that the network is
constructed for mutation-induced BFE changes,
one should preserve the consistency of all labels.
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An optimizer is used to minimize the following loss
function:

argmin
W ;b

LðW ;bÞ ¼ argmin
W ;b

1

2

XN

i¼1

y i � f ðx i ; fW ;bgÞð Þ2

þ kkWk2 ð9Þ

where N is the number of samples, f is a function of the

feature vector x i parametrized by a weight vector W and

bias term b, and k represents a penalty constant.

Here, we present a validation of our BFE change
prediction for mutations on S protein RBD
compared to the experimental deep mutational
enrichment data.27 Fig. 21 presents a comparison
between experimental deep mutational enrichment
data and BFE change predictions on SARS-CoV-2
RBD binding to ACE2. In the heatmap of Fig. 21,
both BFE changes and enrichment ratios describe
the affinity changes of the S protein RBD-ACE2
complex induced by mutations. It is obvious that
the predicted BFE changes are highly correlated
to the enrichment ratio data. Pearson correlation
is 0.70. It should be noticed that the deepmutational
scanning data from different labs might vary dra-
matically due to different experimental conditions.
For example, the RBD deep mutational scanning
data of the SARS-CoV-2 RBD binding to ACE2
reported by two teams 26,27 have a relatively small
Pearson correlation of 0.666.

Data and Model Availability

The SARS-CoV-2 single nucleotide
polymorphism data in the world is available at

Mutation Tracker. The analysis of RBD mutations
is available at Mutation Analyzer. The machine
learning training datasets and the trained machine
learning model are available at TopNetmAb. The
related training process is described in Supporting
information.
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1 GISAID found in early June of 2021 that 14 SARS-CoV-2 records
submitted by three labs (Israel Institute for Biological Research, the
Institute of Virology at Hannover Medical School, and Laboratoire de
Biotechnologie) were wrong, which leads to a significant number of
artificial low-frequency single nucleotide polymorphisms (SNPs) in
worldwide research publications.
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