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SUMMARY

Sparse principal component analysis (PCA) is an important technique for simultaneous dimen- 15

sionality reduction and variable selection of high-dimensional data. In this work we combine the
unique geometric structures of the sparse PCA problem with recent advances in convex opti-
mization to develop novel gradient-based sparse PCA algorithms. These new algorithms enjoy
the same global convergence guarantee as the original alternating direction method of multipliers,
and can be more efficiently implemented with the rich toolbox developed for gradient methods 20

in the deep learning literature. Most notably, these gradient-based algorithms can be combined
with stochastic gradient descent methods, leading to efficient online sparse PCA algorithms with
provable numerical and statistical performance guarantees. The practical performance and use-
fulness of the new algorithms are demonstrated in various simulation studies. As an application,
the scalability and statistical accuracy of our method enable us to find interesting functional gene 25

groups in high-dimensional RNA sequencing data.

Some key words: Sparse principal component analysis, Dimensionality reduction, Convex optimization, Gradient
descent, Online learning

1. INTRODUCTION

Principal component analysis (PCA, Pearson, 1901; Hotelling, 1933) is a classical yet indis- 30

pensable dimensionality reduction technique in statistics and machine learning. PCA generates
higher-level features of the raw data by computing uncorrelated linear combinations of the orig-
inal variables that retain the maximum amount of variation of the raw data. See Jolliffe (2002)
for a more detailed introduction and applications.

In high-dimensional settings, where the number of variables can be comparable to or larger 35

than the sample size, standard PCA may suffer from the curse-of-dimensionality. For instance,
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Johnstone & Lu (2009) and Jung & Marron (2009) showed that when the number of variables
is much larger than the sample size, PCA can behave poorly in estimating the principal compo-
nents even with a simple population covariance structure, producing misleading results. These
theoretical works motivated the sparse PCA method, which overcame many of the limitations of40

standard PCA in high-dimensional settings. Sparse PCA works similarly to standard PCA, but
requires the principal components to be sparse, so that they only involve a few original variables
in the linear combinations. Such a sparsity requirement greatly reduces the parameter space, and
enhances the interpretability of the estimated principal components. Pioneering work on sparse
PCA includes Jolliffe et al. (2003); Johnstone & Lu (2009) and Zou et al. (2006). Since then45

sparse PCA has found wide applications in keyword extraction for text data (Zhang & Ghaoui,
2011), fault detection for industrial processes (Grbovic et al., 2012; Gajjar et al., 2018), genomics
and genetics (Lee et al., 2012; Zhu et al., 2017), among many others.

Despite the theoretical advantage of sparse PCA, its practical application remains a challenge,
especially in modern large-scale data sets. The main bottleneck is that sparse PCA involves50

solving a nonconvex optimization problem (Jolliffe et al., 2003). Existing fast algorithms using
nonconvex objective functions (Zou et al., 2006; Witten et al., 2009; Journée et al., 2010) gener-
ally do not guarantee global convergence and are sensitive to the initial values, or require special
structures on the true covariance matrix (Ma, 2013). Convex relaxation methods (d’Aspremont
et al., 2005; Vu et al., 2013) are guaranteed to converge globally and have desirable statistical55

properties, but rely on semidefinite programming, which is computationally expensive for large
input covariance matrices.

Another major challenge in using sparse PCA in practice is the limited development of on-
line algorithms. Online algorithms, such as the celebrated stochastic gradient descent method,
provide the most powerful and efficient framework for large-scale optimization problems. While60

online PCA algorithms have been extensively studied in the recent literature (Oja & Karhunen,
1985; Warmuth & Kuzmin, 2008; Marinov et al., 2018; Li et al., 2018), online sparse PCA has
seen much less progress (Yang & Xu, 2015; Wang & Lu, 2016). The difficulty is that existing
methods could not express sparse PCA as an easy-to-solve unconstrained or trivially constrained
optimization problem, due to the complex structure of the constraint set.65

In this article we improve the applicability and computational efficiency of sparse PCA in two
important ways. First, we develop a gradient-based algorithm that solves the same sparse PCA
problem with convex relaxation (d’Aspremont et al., 2005; Vu et al., 2013). The new algorithm
can be implemented with cutting-edge tools developed for gradient descent methods, and hence
enjoys superior computational efficiency than the original alternating direction method of mul-70

tipliers (Boyd et al., 2011), especially for large-scale problems. Second, we further extend the
gradient-based algorithm to the online setting, where variants of stochastic gradient descent can
be applied. To our best knowledge, this is the first online sparse PCA algorithm that can be com-
puted efficiently in a genuine online fashion without diverging minibatch sizes, and has global
convergence as well as statistical estimation accuracy guarantees for a general covariance model.75

At the core of our algorithmic development is a novel and profound understanding of the ge-
ometry of the sparse PCA problem. Roughly speaking, the main challenge in solving the sparse
PCA problem, even after convex relaxation, is the complexity of the constraint set, which in-
volves the intersection of three convex bodies in the space of symmetric matrices. In order to
transform such a constrained problem to a trivially constrained problem using recent advances in80

convex optimization (Kundu et al., 2018; Mahdavi et al., 2012; Yang et al., 2017), a key interme-
diate step is to understand the relationship between the projection operators of these individual
convex bodies and the projector of their intersection. The convex constraint set in the PCA prob-
lem is called the Fantope, which is the convex hull of all projection matrices of a certain rank.
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To solve this problem, our main theoretical result, Theorem 2, uses an analytic representation of 85

the Fantope to derive an upper bound of its projection distance in terms of simpler projections.
The practical implementation and performance of the proposed algorithms are demonstrated

by various simulation experiments. For the batch version sparse PCA, our simulation shows that
the new algorithm converges much faster than the alternating direction method of multipliers. In
online settings, the proposed algorithms also have convergence properties prescribed by the the- 90

ory. Moreover, we apply the new sparse PCA algorithm to a real high-dimensional gene expres-
sion data set, successfully detecting differential co-expression patterns in schizophrenia subjects
compared to a control group. Our core algorithm is implemented in the gradfps R package
available at https://github.com/yixuan/gradfps, and the code to reproduce the re-
sults in this paper is provided in the supplementary material. 95

2. PRELIMINARIES

Suppose the data set is a sample of independent and identically distributed random vec-
tors Z1, . . . , Zn 2 Rp with zero means and population covariance matrix ⌃ = E(Z1Z

T
1 ). Let

(✓j , �j)
p
j=1 be the eigenvalue-eigenvector pairs of ⌃ such that ✓1 � · · · � ✓p � 0. The PCA prob-

lem is concerned with estimating the top d eigenvectors of ⌃ for some small positive integer d. In 100

the high-dimensional setting where p is comparable to or larger than n, estimating the principal
components can be statistically hard, and hence we consider the following sparsity condition.

Assumption 1. The factor loading matrix � = [�1, . . . , �d] has at most s nonzero rows, and the
dth eigen-gap of ⌃ is nonzero, �d = ✓d � ✓d+1 > 0.

Such a sparsity assumption is called the “row sparsity” in Vu & Lei (2013), and facilitates 105

both theoretical understanding and practical interpretation. In high-dimensional problems such as
genetics, a sparse factor loading matrix provides simultaneous dimension reduction and variable
selection. The eigen-gap condition is required so that subspace spanned by the top d eigenvectors
is uniquely defined.

Following the sparsity assumption, sparse PCA estimators have been derived in many differ- 110

ent ways, including the lasso approach (Jolliffe et al., 2003), regression-based formulation (Zou
et al., 2006), iterative thresholding methods (Shen & Huang, 2008; Witten et al., 2009; She,
2017), the generalized power method (Journée et al., 2010), among many others. Also see Zou
& Xue (2018) for a recent review of various sparse PCA methods. These algorithms are typi-
cally solving nonconvex optimization problems, which possess local convergence at best, unless 115

additional structural assumptions are made on ⌃ (Ma, 2013).
In this paper we focus on another class of sparse PCA methods that use convex relaxation

with guaranteed global convergence in polynomial time (d’Aspremont et al., 2005; Vu et al.,
2013). Let S = n

�1Pn
i=1 ZiZ

T
i be the empirical covariance matrix, and X be a rank-d pro-

jection matrix in Rp⇥p. Then the total variance in the d-dimensional subspace corresponding to 120

X is tr(⌃X), with empirical version tr(SX), where tr(·) is the trace of a matrix. The convex
relaxation sparse PCA adds to the total variance a lasso-type penalty:

max
X

tr(SX)� �kXk1,1

s.t. O � X � I and tr(X) = d, (1)

where � is the sparsity penalty parameter, kAkp,q = {
Pn

j=1(
Pm

i=1 |aij |
p)q/p}1/q stands for the 125

Lp,q norm for an m⇥ n matrix A, O and I denote the zero and identity matrices, respectively,
and A � B means B �A is nonnegative definite. The convex feasible set Fd = {X : O � X �

I and tr(X) = d}, called the Fantope, is the convex hull of all rank-d projection matrices. Prob-



4 Y. QIU, J. LEI, AND K. ROEDER

lem (1) is called Fantope projection and selection (Vu et al., 2013). When d = 1, it becomes
equivalent to the direct formulation for sparse PCA proposed in d’Aspremont et al. (2005). The130

formulation (1) has attractive statistical properties (Vu et al., 2013; Lei & Vu, 2015), and can be
solved in polynomial time using alternating direction method of multipliers.

However, the existing algorithm is slow when p is moderately large (a few hundreds), since
each iteration requires projecting a p⇥ p matrix onto the Fantope, which involves a full eigen-
decomposition of the p⇥ p matrix. As a consequence, the applicability of Fantope projection135

and selection is substantially limited by the cubic growth of computing time per iteration.

3. A NEARLY PROJECTION-FREE CONVEX RELAXATION FOR SPARSE PCA
3.1. Optimization on Intersection of Convex Sets

Our approach to developing an efficient sparse PCA algorithm is based on converting the
constrained problem (1) to an equivalent but trivially constrained one, so that we can exploit140

many existing powerful tools from gradient-based unconstrained convex optimization. Here by
“trivially constrained” we mean the constraint has a simple form and the projection on to the
constraint set is easy to compute. The main challenge in applying the gradient based methods to
problem (1) stems from the constraint set, which is the intersection of three simpler convex sets:
F1 = {X : tr(X) = d}, F2 = {X : X ⌫ O}, and F3 = {X : X � I}. While each one of the145

three sets has a simple structure, the associated projection operator of the intersection becomes
the major obstacle for an efficient algorithm.

Our main strategy is to show that, under certain assumptions, the complex constraint can be
replaced by adding an appropriately calibrated penalty term to the objective function, resulting
in an equivalent problem with only a trivial constraint. Unlike the method of Lagrange multi-150

plier, the penalty term in the equivalent formulation is fixed and does not involve new auxiliary
variables. Moreover, the penalty term is decomposable with respect to the individual constraint
sets, significantly reducing the computational burden.

To this end, consider a general optimization problem of the following abstract form:

min
x2K

f(x), K = C1 \ · · · \ Cl \G1 \ · · · \Gm, (2)

where f(x) is a convex objective function defined on an Euclidean space, Ci’s are closed convex155

sets, and each Gi = {x : gi(x)  0} is defined by a convex function gi(x). We further assume
that K is contained in a closed convex set X ⇢ Rp whose projection operator PX is trivial, where
PC(x) = argminy2C ky � xk, with k · k being the Euclidean norm. The intersection set K is
decomposed in such a way that the projection operators PCi and the constraint functions gi(x)
are easy to compute.160

A special case of problem (2) with m = 0 has been studied in the literature (Kundu et al.,
2018). Another special case with l = 0 and m = 1 has been studied in Mahdavi et al. (2012) and
Yang et al. (2017). However, none of these special cases cover problem (1), which corresponds to
the case of l = 1 and m = 2. To the best of our knowledge, the general case with both l, m > 0
has not been studied in the literature.165

We make the following assumptions on the objects involved in (2).
Assumption 2. f(x) is Lipschitz continuous on X with Lipschitz constant L > 0: |f(x)�

f(y)|  Lkx� yk, 8x, y 2 X .
Assumption 3. For i = 1, . . . ,m, (a) x 2 X implies PGi(x) 2 X ; (b) there exists a constant ⇢i

such that infv2Di kvk � ⇢i > 0, where Di = {v : v 2 @gi(x), gi(x) = 0, x 2 X}, and @gi(x) =170

{v : gi(y)� gi(x) � v
T(y � x), 8y} is the subdifferential of gi at x.
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Assumption 4. There exists a multivariate function h : [0,+1)l+m
7! [0,+1) such that (a)

h(0, . . . , 0) = 0, (b) h is non-decreasing in each argument, and (c) for all x 2 X ,

dK(x)  h (dC1(x), . . . , dCl(x), dG1(x), . . . , dGm(x)) , (3)

where dC(x) = kx� PC(x)k is the distance between x and C.
Assumption 2 is a common smoothness condition for objective functions. Assumption 3 is 175

derived from Yang et al. (2017), and can also be easily verified given concrete gi(x) functions.
Assumption 4 is the most non-trivial one and is the key to removing the constraints in problem
(2). It reflects the geometric features of the constraint set and often requires case-by-case analy-
sis. Verifying Assumption 4 for problem (1) is a major technical contribution of this paper, and
is the focus of Section 3.2 below. 180

Define the function

L(x;µ) = f(x) + µh
�
dC1(x), . . . , dCl(x), ⇢

�1
1 [g1(x)]+, . . . , ⇢

�1
m [gm(x)]+

�
,

where [x]+ = max{x, 0}. Then the following theorem, which can be seen as a generalization
to Proposition 2 of Kundu et al. (2018), states the equivalence between (2) and a trivially con-
strained optimization problem.

THEOREM 1. Suppose that Assumptions 2 to 4 hold, and define f⇤ = minx2K f(x) and L⇤ = 185

minx2X L(x;µ). Let x" 2 X be an approximate solution such that L(x";µ)  L⇤ + " for " > 0,

and y" = PK(x"). Then the following results hold: (a) If µ � L, then f⇤ = L⇤; (b) If µ � L+ 1,

then kx" � y"k  ", L(y";µ)  L⇤ + ", and f(y")  f⇤ + ".

Although the alternative problem minx2X L(x;µ) still involves a constraint set X , it is much
different from the original constrained one, as we require the projection operator PX to be trivial. 190

Therefore, optimizing L(x;µ) over X is a trivially constrained problem.

3.2. The Gradient FPS Algorithm

For clarity we first define the following notations:

S = {X 2 Rp⇥p : X = X
T
}, X = {X 2 S : kXk2F  d},

F1 = {X 2 S : tr(X) = d}, F2,3 = {X 2 S : O � X � I}, 195

G1 = {X 2 S : g1(X)  0}, g1(X) = ✓1(X)� 1,

G2 = {X 2 S : g2(X)  0}, g2(X) = �✓p(X),

K = F1 \G1 \G2, f(X) = �tr(SX) + �kXk1,1,

where k · kF is the Frobenius norm and ✓j(·) is the jth largest eigenvalue. Then it is easy to find
that problem (1) can be written in the form of (2) with l = 1,m = 2, C1 = F1, and the f, g1, g2 200

functions defined above.
To apply Theorem 1, we need to verify Assumptions 2 to 4, among which Assumption 4 plays

a central role. The following theorem, which describes the geometry of the Fantope, is the key
to validating this assumption.

THEOREM 2. For any 1  d  (p� 1)/2 and any p⇥ p symmetric matrix X , 205

dFd(X)  (
p
2 + 1)p1/2

n
(d+ 1)�1/2

· dF1(X) + dF2,3(X)
o
. (4)

Theorem 2 is proved using the properties of normal cones of convex polytopes, with a combi-
nation of analytical and geometrical arguments. With inequality (4), we are able to verify the
required assumptions in the following corollary.

COROLLARY 1. For problem (1), if d  (p� 1)/2, then
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1. f(X) satisfies Assumption 2 with some L  kSkF + �p.210

2. Assumption 3 holds with ⇢1 = d
�1/2

and ⇢2 = p
�1/2

.

3. dK(X)  (
p
2 + 1)p1/2

�
(d+ 1)�1/2

· dC1(X) + dG1(X) + dG2(X)
 

.

As a consequence, define

L(X) = �tr(SX) + �kXk1,1 + µ (dC1(X) + r1[g1(X)]+ + r2[g2(X)]+) , (5)

and then for any µ � (
p
2 + 1)(L+ 1){p/(d+ 1)}1/2, r1 � {d(d+ 1)}1/2, and r2 � {p(d+

1)}1/2, we have minX2K f(X) = minX2X L(X).215

Corollary 1 is significant as it opens the door to a large collection of tools to solve the trivially
constrained problem (5), as a substitute for the once highly constrained and difficult form (1).
For illustrative purpose, we consider two algorithms to solve (5) as some natural and familiar
choices. We expect that more advanced and efficient methods can also be used, such as various
optimization techniques broadly used in the deep learning community (Duchi et al., 2011; Zeiler,220

2012; Kingma & Ba, 2015; Luo et al., 2019).
In what follows, S↵(x) = sign(x) ·max{|x|� ↵, 0} is the soft-thresholding operator, and for

a matrix argument X , S↵(X) means applying S↵ to X elementwise. The proximal operator of a
convex function f is defined as prox↵f (x) = argminu

�
f(u) + (2↵)�1

ku� xk
2
 

, where ↵ is
the step size.225

Algorithm 1: Subgradient method. The first and most straightforward algorithm is the subgra-
dient descent method, which, at step k, performs the update Xk+1 = PX (Xk � ↵krL(Xk)),
where ↵k is the step size and rL(Xk) is the subgradient of L(X) at Xk. The eigenvalues
and eigenvectors are computed using the implicitly restarted Lanczos method (Sorensen, 1997),
which can be viewed as an improved power method (Warsa et al., 2004). Algorithm 1 is a variant230

of the conventional subgradient descent called incremental proximal method (Bertsekas, 2011).
When the step sizes ↵k are at the order of O(k�1/2), Algorithm 1 has a convergence rate of
O(T�1/2) on the optimization error, where T is the number of iterations. This rate is slower than
that of Algorithm 2 introduced below, but it is computationally efficient, and is typically used in
the early exploration of solutions. More importantly, we show in Section 4.2 that the subgradient235

method is especially powerful in dealing with streaming data.
Algorithm 2: Proximal-proximal-gradient method. The second algorithm, which has a better

convergence rate of O(T�1), is the proximal-proximal-gradient method (Ryu & Yin, 2019) given
in Algorithm 2, where

f1(X) = �kXk1,1, prox↵f1(X) = S↵�(X),240

f2(X) = �tr(SX) + µdC1(X)+ prox↵f2(X) : Appendix A.3.
µr1[g1(X)]+ + µr2[g2(X)]+,

The computation of prox↵f2(X), with details in Appendix A.3, requires retrieving the leading
eigenvalues of a dense matrix and the associated eigenvectors, possibly more than one. In each
iteration, Algorithm 2 is faster than a full eigen-decomposition as in the existing alternating245

direction method of multipliers for (1).
Remark 1. In practice we recommend using a hybrid approach to combine the best of both

algorithms: we first run the fast subgradient method a few iterations to rapidly decrease the
objective function value in the early stage, and then use Algorithm 2 for fine-tuning. We term
this method, given in Algorithm 3, as the gradient-based sparse PCA. Also, since the subgradient250

method is only for computing the warm start, its step size sequence {↵k} does not need to strictly
follow the O(k�1/2) order, and can take larger values in practice.
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Algorithm 1: The subgradient algorithm to solve (5)
Input: S, T , {↵k}, initial value X0 2 X

Output: X̂

1: for k = 1, . . . , T do

2: X
(0)
k  Xk�1

3: X
(1)
k  S↵k�(X

(0)
k )

4: X
(2)
k  X

(1)
k � ↵kµr11{✓1 > 1}�1�T

1 + ↵kµr21{✓p < 0}�p�T
p ,

where ✓i = ✓i(X
(1)
k ), �i = �i(X

(1)
k ), i = {1, p}

5: X
(3)
k  X

(2)
k +min{�, 1} · s · I , where s = {d� tr(X(2)

k )}/p, � = ↵kµ/(p1/2|s|)

6: Xk  PX

⇣
X

(3)
k + ↵kS

⌘
= min

n
1, d1/2/kX(3)

k + ↵kSkF

o
·

⇣
X

(3)
k + ↵kS

⌘

7: end for

8: return X̂ = T
�1PT

k=1Xk

Algorithm 2: The proximal-proximal-gradient algorithm to solve (5)
Input: S, T , ↵, initial value X0 2 X

Output: X̂

1: Set Z(1)
0 = Z

(2)
0  X0

2: for k = 0, 1, . . . , T � 1 do

3: Z̄k  (Z(1)
k + Z

(2)
k )/2

4: Xk+1  PX
�
Z̄k

�
= min

�
1, d1/2/kZ̄kkF

 
· Z̄k

5: Z
(1)
k+1  Z

(1)
k �Xk+1 + prox↵f1(2Xk+1 � Z

(1)
k )

6: Z
(2)
k+1  Z

(2)
k �Xk+1 + prox↵f2(2Xk+1 � Z

(2)
k )

7: end for

8: return X̂ = T
�1PT

k=1Xk

Algorithm 3: The gradient-based sparse PCA

Input: S, B, T , {↵k}, ↵, initial value X̃0 2 X

Output: X̂

1: X0  subgradient algorithm(S,B, {↵k}, X̃0), given by Algorithm 1
2: X̂  ppg algorithm(S, T,↵, X0), given by Algorithm 2

Remark 2. The theoretical upper bound of the constant µ provided in Corollary 1 may be
very large, especially when p is large. This is a conservative choice to make the upper bound
argument in Theorem 1 valid for all x 2 X . In practice there is no reason to stick with such a 255

conservative choice. For most “typical” regions in the space X , the penalty parameter can take
much smaller values. See Appendix A.1 for an illustration of this point. Inspired by Lepskii’s
method of selecting tuning parameters (Lepskii, 1991), we use the following scheme in the actual
implementation: fix a small value µ = µ0, and compute the solution X̂; then double the size of
µ with µ = 2µ0 and obtain the new solution X̂

0. If kX̂ 0
� X̂kF < " for some tolerance ", then 260

accept X̂ 0 as the final solution; otherwise repeat this procedure until the solution is stable under
doubling the value of µ.
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Remark 3. One may also wonder about applying the proximal-proximal-gradient algorithm
directly to problem (1) with the constraints represented by convex indicators in the objective
function. Indeed, this method may result in different algorithms to solve (1) by appropriately265

decomposing the objective function into simpler components. However, a notable difference
between this version and (5) is that the new objective function in (5) is always finite, even for
infeasible iterates; more importantly, it is also Lipschitz continuous, thus leading to a sublinear
convergence speed as demonstrated in Theorem 3. In contrast, the non-differentiability and the
possible infinite value of the indicators will break such theoretical guarantee. For example, it270

is possible that the iterates are always infeasible for some constraints, and hence the objective
function value stays at 1. This unfavorable property makes it hard to track the optimization
progress and test convergence.

3.3. Convergence Analysis

One remarkable benefit of the gradient-based algorithm is that we can bound its optimization275

error at any finite iteration step. With a sufficiently large number of iterations, Algorithm 3 can
be shown to output an approximate solution with an arbitrary precision. Since the subgradient
descent stage is only used for the warm start, without loss of generality we assume B = 0 in
Algorithm 3. Theorem 3 below provides an explicit upper bound for the optimization error.

THEOREM 3. The output X̂ of Algorithm 3 satisfies280

L(X̂)  min
X2X

L(X) +
C

T
and dK(X̂) 

C

T
,

where C = C(S,X0,↵,�, p, d) is a constant free of T , with the explicit expression given in

Appendix A.2.

Remark 4. Unlike common statistical estimation error bounds, Theorem 3 provides an op-

timization error of the algorithm, which bounds the difference between the theoretical global
optimum and the finite step solution. Here the optimization problem is treated as fixed and we285

seek a good dependence on T , the number of iterations. The constant C in the statement of
the theorem (see also in Corollary 2 and Theorem 4) may depend on the optimization problem,
which involves p. However, as we noted in Remark 2, in practice the actual dependence of C on
p is usually much better than the worst case.

If the optimization problem minX2X L(X) is solved exactly with the solution X̂⇤, then the290

statistical property of X̂⇤ has already been studied by Vu et al. (2013). In practice, only a finite-
precision solution X̂ can be obtained, which usually does not exactly minimize the objective
function, and is not in the constraint set K. Corollary 2 below ensures that X̂ is still a good
estimator for the principal subspace projector ⇧ = ��T, with an explicit upper bound for the
estimation error as a function of the sample size n and the number of iterations T .295

Assumption 5. There exists a constant � > 0 such that maxi,j P (|Sij � ⌃ij | � u) 
2 exp(�4nu2/�2) for all u  �.

Assumption 5 has been used in the sparse PCA literature before Vu et al. (2013), and holds in
many prototypical settings such as when the random vector Z1 is �-sub-Gaussian.

COROLLARY 2 (ESTIMATION ERROR BOUND). Suppose that Assumptions 1 and 5 hold, and300

take � = �{log(p)/n}1/2. Then with probability at least 1� 2/p2, we have

kX̂ �⇧kF 
4�s{log(p)}1/2

�dn
1/2

+
(2C/�d)1/2

T 1/2
+

C

T
, (6)

where C is given in Theorem 3.
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If a rank-d projector is wanted, let ⇧̂ be the leading rank-d projector of X̂ . Using triangle
inequality k⇧̂�⇧kF  k⇧̂� X̂kF + kX̂ �⇧kF and the fact that k⇧̂� X̂kF  k⇧� X̂kF ,
we have k⇧̂�⇧kF  2kX̂ �⇧kF so that the estimation error k⇧̂�⇧kF is upper bounded by 305

twice the right hand side of (6) with a high probability.
The error bound (6) has an intuitive interpretation. The first term quantifies the statistical

error, which depends on the log(p) term that is common in high-dimensional data analysis. The
second term is the optimization error, which decays at the O(T�1/2) rate. The last term is the
feasibility error, since X̂ is not necessarily a projection matrix. 310

4. ONLINE SPARSE PCA
4.1. Online Learning Setting

In this section we consider the scenario in which data are obtained in a streaming fash-
ion. Streaming data reflect many practical needs that data acquisition and computation happen
roughly at the same time. For instance, the complete data collection procedure may span a long 315

period of time, or the data set is too large to be stored entirely on the machine. In both cases,
it is desirable to make full use of the existing data, and then update the model parameters when
new data points come in. Such algorithms are typically called online learning algorithms. Corre-
spondingly, the algorithms that use the whole data set, for instance Algorithm 3, are referred to
as offline learning or batch learning algorithms. 320

Formally, we assume that there is an infinite sequence of independent random vectors
Z1, Z2, . . . 2 Rp with E(Zt) = 0 and cov(Zt) = E(St) = ⌃, t � 1, where St = ZtZ

T
t . We con-

sider the same sparsity assumption (Assumption 1) for the population covariance matrix ⌃, and
the estimation target is the top-d projection matrix ⇧ of ⌃. We define the online learning proce-
dure as follows. At each time point t, the data analyst constructs an estimator Xt for ⇧. To match 325

the nature of streaming data, we require that Xt only depends on Zt, Xt�1, and optionally some
other quantities that depend on the history {Zi}

t
i=0 with a storage size not growing with t. The

procedure stops at time T , and a final estimator X̂T is output by the online learning algorithm.
For clarity, T is also called the sample size of the streaming data in this context.

After each Xt is constructed, we use it to predict the next data point Zt+1 with loss function 330

`t(Xt, Zt+1) = �Z
T
t+1XtZt+1 + �kXtk1,1 + ⌫dK(Xt), (7)

where � and ⌫ are constants. In this loss function, the first term quantifies the (negative) explained
variance on new data if Xt is treated as a projection matrix, the second term encourages the
sparsity of Xt, and the third term penalizes the deviation from the constraint set K = F

d. For
the whole sequence, define the total excess loss

R({Xt}, {Zt}, T ) =
TX

t=1

`t(Xt, Zt+1)�
TX

t=1

`t(⇧, Zt+1) . (8)

Naturally, a good online learning algorithm should have a strict control of the regret, defined as 335

the expected total excess loss, as a function of T .
Unlike most online optimization algorithm studies, our analysis also covers the statistical es-

timation error of the final output of the online learning algorithm, measured by the quantity
kX̂T �⇧kF . In our setting, the final output X̂T depends on the data stream in a complicated
way, as the model is updated using both historical and new information, making the model in- 340

crement Xt �Xt�1 correlated across iterations. Therefore, bounding the statistical error of X̂T

becomes a non-trivial yet important problem in online estimation scenarios.
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Algorithm 4: The online gradient-based sparse PCA
Input: {Zt}, T , {↵t}, initial value X0

Output: X̂T

1: for t = 1, . . . , T do

2: X
(0)
t  Xt�1

3: X
(1)
t  S↵t�(X

(0)
t )

4: X
(2)
t  X

(1)
t � ↵t⌫0(pd)1/21{✓1 > 1}�1�T

1 + ↵t⌫0p1{✓p < 0}�p�T
p ,

where ⌫0 = (
p
2 + 1)⌫, ✓i = ✓i(X

(1)
t ), �i = �i(X

(1)
t ), i = {1, p}

5: X
(3)
t  X

(2)
t +min{�, 1} · s · I , where s = (d� tr(X(2)

t ))/p, � = ↵t⌫0/{(d+ 1)|s|}

6: Xt  PX

⇣
X

(3)
t + ↵tSt

⌘
= min

n
1, d1/2/kX(3)

t + ↵tStkF

o
·

⇣
X

(3)
t + ↵tSt

⌘

7: end for

8: return X̂T = T
�1PT

t=1Xt

4.2. The Online Gradient-based Sparse PCA

Under the setting in Section 4.1, we propose a gradient-based algorithm to solve the streaming
sparse PCA problem, aiming at efficient iterations with provable control of the regret and statis-345

tical estimation error. Given the nature of streaming data, our development will focus on the case
of large T , while treating the dimension p as a fixed number.

Thanks to the trivially constrained form of the objective function in Corollary 1, the stochastic
subgradient method can be used to compute sparse PCA on streaming data. The proposed online
gradient-based sparse PCA, outlined in Algorithm 4, is the online version of Algorithm 1. The350

only non-trivial step in Algorithm 4 is to compute the eigenvalues of X(1)
t , which is a sparse

matrix as a result of the soft-thresholding operator. Computing the largest and smallest eigen-
values of a sparse matrix is much more efficient than the full eigen-decomposition of a dense
matrix, since its complexity mostly depends on the number of nonzero elements. As a result, the
per-iteration cost of Algorithm 4 is very small.355

Besides the computational advantage, the following theorem shows that if kStkF is properly
bounded, then the average regret of Algorithm 4 decays at the rate of O(T�1/2), which matches
the best known result for the online subgradient method with a non-strongly-convex objective
function (Abernethy et al., 2008).

Assumption 6. The data sequence {Zt} can be expressed as Zt = RUt, where R is a p⇥ p360

matrix, and {Ut} is an infinite sequence of independent random vectors. Each Ut has indepen-
dent components Ut,1, . . . , Ut,p, where Ut,i is a zero-mean sub-Gaussian random variable, i.e.,
E(e�Ut,i)  e

�2/2 for all � 2 R.
THEOREM 4. Let ↵1 = ↵0 > 0 and ↵t = ↵0(t� 1)�1/2

for t � 2. Then there exist constants

C
0
, C

00
depending on the optimization problem and the model parameters in Assumption 6 such365

that:

(Optimization regret bound) If kStkF is bounded, then T
�1

R({Xt}, {Zt}, T )  C
0
· T

�1/2
.

(Statistical estimation error) If Assumptions 1 and 6 hold, and ⌫ � �p+ k⌃kF + 1, then for

any fixed " 2 (0, 1),

kX̂T �⇧kF  C
00
h
T
�1/4

{log(1/") + ⌫
2
}
1/2 + T

�1/2 log(1/"){⌫ log(T )}1/2 + �
1/2

i

holds with probability at least 1� ".370

The explicit expressions of C
0

and C
00

are given in Appendix A.2.
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Theorem 4 indicates that � cannot be too large if the primary goal is to use the final output
X̂T for estimation. Otherwise, a moderate � leads to more sparse intermediate results and is thus
better for interpretation.

5. SIMULATION STUDY 375

5.1. Simulation Setting

In this section we conduct a number of numerical experiments to evaluate the performance of
the sparse PCA algorithms proposed in this article. The problem setting is as follows. We assume
that the data Z1, . . . , Zn follow independent and identically distributed multivariate normal dis-
tribution N(0,⌃) in Rp. For online learning algorithms, the data sequence is of infinite length, 380

and the online algorithm will choose a terminal sample size T . The p variables are categorized
into three groups: the first signal group contains d1 = 20 variables, the second signal group con-
tains d2 = 15 variables, and the last noise group consists of (p� d1 � d2) noise variables. Figure
1(a) gives a visualization of the true covariance matrix ⌃ with p = 100, which shows that most
variables are weakly correlated with each other, but the ones within the same signal group have 385

higher correlations. In different experiments, n and p may vary, but d1 and d2 are kept fixed.

(a) (b)

Fig. 1: (a) The true covariance matrix ⌃ with p = 100. (b) The eigenvectors of ⌃ associated with
the five largest eigenvalues.

We generate ⌃ as follows. Let Ur1:r2,c1:c2 denote the submatrix of a p⇥ p matrix U , with row
indices r1 to r2 and column indices c1 to c2. When r1 = r2 or c1 = c2, a single index is used. First
simulate a U matrix with independent entries such that U1:d1,1 ⇠ Unif(0.9, 1.1), U(d1+1):p,1 =
0, U1:d1,2 = 0, U(d1+1):(d1+d2),2 ⇠ Unif(0.9, 1.1), U(d1+d2+1):p,2 = 0, and U1:p,3:p ⇠ N(0, 1). 390

Then a QR decomposition is performed as U = QR. Next, let ⇤ = diag{12, 6,�3, . . . ,�p},
where �i ⇠ Unif(0, 2), and then ⌃ is computed as ⌃ = Q⇤QT. We design the factor loading
matrix in such a way that the first two eigenvectors are sparse, whereas the others are all dense.
The nonzero coefficients in the sparse eigenvectors are intentionally made unequal, to avoid
cases that are too special. Figure 1(b) shows the first five columns of Q, and clearly the first 395

d = 2 columns of Q contain the sparse eigenvectors.

5.2. Batch Algorithms

Since the proposed algorithm (Algorithm 3) solves the same optimization problem as the
existing one based on alternating direction method of multipliers (Vu et al., 2013), the focus
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of this experiment is to compare their computational efficiency and convergence speed with400

different sizes of data. Under each pair of (n, p), a data set Z1, . . . , Zn is simulated to com-
pute the sample covariance matrix S = n

�1Pn
i=1 ZiZ

T
i , and the sparsity parameter is set to

� = 0.5 · {log(p)/n}1/2. We compute the estimator X̂ using both algorithms with initial value
X0 = V2V

T
2 , where V2 contains the top two eigenvectors of S. For both algorithms, the best

step size parameter is chosen by trying ten equally-spaced values ranging from 0.01 to 0.1. In405

the proposed algorithm we run the subgradient algorithm for B = 30 iterations, followed by the
proximal-proximal-gradient algorithm towards convergence.

Fig. 2: Comparing the computational efficiency of the existing and proposed algorithms for
sparse PCA with convex relaxation. The horizontal axis is the elapsed time in seconds, and the
vertical axis stands for the estimation error kX̂ �⇧kF .

Fig. 3: Comparing the convergence speed of the existing and proposed algorithms for sparse PCA
with convex relaxation. The horizontal axis shows the number of iterations of each algorithm.

In Figure 2 and Figure 3, we plot the estimation errors against the computing time and the
number of iterations, respectively, showing the following interesting findings. First, as expected,
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our algorithm has demonstrated superior computational efficiency compared with the existing 410

one. It is clear in Figure 2 that the curves for the proposed gradient-based algorithm decrease
very quickly at early stages of the optimization, which indicates that it is able to provide reason-
ably accurate solutions from early on. Such a property is crucial, since a common practice for
computing sparse PCA is to use convex solutions as good initial values for fast nonconvex meth-
ods (Wang et al., 2014; Chen & Wainwright, 2015; Tan et al., 2018). Second, the curves for the 415

existing algorithm have irregular shapes, containing some long “plateaus” and even increasing
parts. In practice, such patterns are misleading for convergence tests. In contrast, the curves for
our algorithm mostly show a monotone progress after the warm-up stage. Even in the subgradient
updates, Figure 3 shows that the estimation error can have significant decrease, compared to the
slow convergence of alternating direction method of multipliers at early stages. Finally, even if 420

the same initial value is supplied to both algorithms, the proposed algorithm tends to make better
use of it, as the initial errors of our method are smaller than those of the existing algorithm.

5.3. Online Algorithms

The next experiment studies whether the sparsity assumption helps improve the estimation ac-
curacy of PCA in the online learning setting. Specifically, we compare our online gradient-based 425

sparse PCA (Algorithm 4) with a number of well-known online PCA algorithms in the literature,
including Oja’s stochastic approximation method (Oja & Karhunen, 1985), the incremental PCA
method (Arora et al., 2012), and the candid covariance-free incremental PCA (Weng et al., 2003).
We fix T = 200 and consider two dimension settings p = 800 and p = 1600, and in each case
data points Z1, . . . , ZT

iid
⇠ N(0,⌃) are drawn in a streaming fashion. The step size for online 430

learning algorithms is set to ↵t = 0.1 · t�1/2, and the sparsity parameter for online sparse PCA
is � = {log(p)/n}1/2.

For each method, let Xt be the estimator for the true projection matrix ⇧ = ��T after receiving
the data point Zt. Figure 4 plots the estimation error kXt �⇧kF against t. For each combination
of the data generation setting and online learning algorithm, we repeat the experiment ten times, 435

so each panel in Figure 4 shows ten error curves to reflect such variability. It is clear that in the
high-dimensional setting, existing online PCA methods have large estimation errors that decay
very slowly, whereas our online gradient-based sparse PCA has much better progress.

Moreover, in Figure 5 we visualize the factor loading matrix from the final output of each on-
line learning algorithm, and compare it with the true eigenvectors. As expected, existing online 440

PCA methods have noisy estimates for the factor loading coefficients, making the true signals
overwhelmed by the noise. In fact, the incremental PCA and the candid covariance-free incre-
mental PCA fail to detect the second signal group (variable 21 to 35), and Oja’s method for the
p = 1600 case show very weak coefficients for all signal variables (variable 1 to 35). In contrast,
the proposed method successfully detects the two signal groups in both settings, and gives near- 445

zero coefficient estimates for most noise variables. These findings further validate the theoretical
properties and practical usefulness of the proposed online sparse PCA algorithm.

6. APPLICATION

In this section we apply sparse PCA to an RNA sequencing data set to analyze the co-
expression relationship among genes. The aim of our analysis is to detect groups of genes, typ- 450

ically referred to as modules, with high co-expressions. Such an analysis is motivated by the
biological conjecture that genes in the same module are likely to be functionally related (Stuart
et al., 2003). A computationally efficient sparse PCA algorithm is particularly well suited to this
challenging problem for which expression data are available for tens of thousands of genes.
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Fig. 4: Estimation errors of various online PCA methods in two data generation settings. Each
panel shows ten error curves corresponding to ten independent simulation runs.

Fig. 5: Factor loadings of the first two principal components (showing the first 100 variables)
estimated by different online learning algorithms.

We study the brain gene expression data collected by the CommonMind Consortium, which455

contain p = 16, 423 genes from 258 schizophrenia subjects and 279 control subjects (Fromer
et al., 2016). Such a dimensionality makes the existing algorithm infeasible on an average com-
puter. The control group is used as a baseline, and our main interest is in the schizophrenia
group. We compute Pearson’s correlation coefficients between genes using the processed and
normalized expression data provided by the CommonMind Consortium, and then apply sparse460

PCA to the sample correlation matrix. The number of sparse principal components is chosen to
be d = 5, and the sparsity parameter � is selected in the following way. First, we compute the
solution paths of sparse PCA in both groups based on a common sequence of � values. Then for
each �, two active sets ⌦�

ctr,⌦
�
scz ⇢ {1, 2, . . . , p} are determined, where i 2 ⌦�

ctr if the ith gene
in the control group has at least one nonzero factor loading in the five sparse principal compo-465

nents, and i 2 ⌦�
scz is defined likewise. We limit the range of � so that min{|⌦�

ctr|, |⌦
�
scz|} � 50
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and max{|⌦�
ctr|, |⌦

�
scz|}  300, where |⌦| denotes the cardinality of a set ⌦. Define the over-

lapping coefficient as V (�) = |⌦�
ctr \ ⌦�

scz|/|⌦
�
ctr [ ⌦�

scz|, and � is chosen to maximize V (�),
indicating that these two groups share maximal common structures. Using this approach, we
select � = 0.85, under which |⌦ctr| = 292, |⌦scz| = 185, and |⌦ctr \ ⌦scz| = 114. 470

After computing the sparse PCA solution for the schizophrenia group at the selected �, the
genes in the active set are clustered based on their factor loadings, with the number of clusters
set to k = 5. For display, the indices of genes are reordered so that the genes in the same cluster
are adjacent. Figure 6 shows the sample correlation matrix and factor loadings based on the
reordered indices of selected genes. 475

Fig. 6: The reordered sample correlation matrix of the selected genes in the schizophrenia group
(left) and the reordered factor loadings (right).

It can be easily observed from Figure 6 that there are three major modules in the correlation
matrix, and the second and third modules have two sub-modules, respectively, resulting in five
clusters in total. Such a structure is clearly reflected in the factor loadings, in which the first three
components define the major modules, whereas the last two components add sub-structures to
the second and third modules. 480

To validate our results, we compare the clusters reflected in Figure 6 with the modules pub-
lished in the literature. Table 1 demonstrates the cross table for the two methods of module as-
signment on the selected genes, where the numbered modules are given by our approach, and the
ones labeled by color names are the results provided by Fromer et al. (2016), using the weighted
gene co-expression network analysis (Zhang & Horvath, 2005). It is clear that our modules are 485

well aligned with the published ones, with three extra advantages. First, our clusters have smaller
sizes and stronger within-group correlation. For instance, the Green module contains 414 genes,
whereas our M-1, a subset of the Green module, has only 19 genes. In many studies, researchers
are more interested in a small number of genes that are representative for the whole module. Sec-
ond, we have detected highly correlated genes that are assigned to different published modules. 490

As an example, the two genes in the Tan module are highly correlated with other M-4 genes (a
subset of Turquoise), with average sample correlation coefficients 0.817 and 0.794, respectively.
Finally, our clusters have revealed sub-structures within large modules, for example M-2 and
M-3 are sub-modules of Brown.

Next, by comparing with the control group, we study the structural change of gene co- 495

expression relationship in the schizophrenia group. Consider the genes that are selected in the
schizophrenia group but not in the control group, forming the gene set ⌦U

scz = ⌦scz\⌦ctr. Figure
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Table 1: Cross table for sparse-PCA-based modules (row) and the published modules (column).
The numbers in the parentheses stand for the sizes of the published modules.

Green (414) Brown (528) Turquoise (1155) Tan (248) Blue (609)

M-1 19 0 0 0 0

M-2 0 24 0 0 0

M-3 0 34 0 0 0

M-4 0 0 49 2 0

M-5 0 0 53 0 4

7 illustrates the sample correlation matrices on ⌦U
scz for both the control group (left panel) and

the schizophrenia group (middle panel). In addition, to better visualize the correlation pattern,
density curves of off-diagonal correlation coefficients are shown in the right panel of Figure 7.500

Fig. 7: Comparison of correlation matrices on schizophrenia-group-specific genes ⌦U
scz . Left:

the correlation matrix on ⌦U
scz for the control group. Middle: the correlation matrix for the

schizophrenia group. Right: density curves for the off-diagonal correlation coefficients.

Figure 7 highlights an interesting difference between the control group and the schizophrenia
group. In both groups, the correlation matrices indicate a similar two-block structure, but density
curves of the correlations summarize the differences between groups. Both exhibit two modes,
representing the between-module and within-module correlation coefficients, respectively; how-
ever, the coefficients in the schizophrenia group are obviously more extreme than those in the505

control group. The first mode differs in sign, indicating that the small positive between-module
correlations in the control group are largely negative in the schizophrenia group. These findings
provide insights for future studies of schizophrenia based on brain gene expression data.

7. DISCUSSION

The framework used in our analysis has a great potential for further extensions. First, within510

the sparse PCA framework, the efficient algorithm can be developed for other types of problems
that come with a different convex penalty term, such as the trend filtering (Tibshirani, 2014) or
the localized functional PCA (Chen & Lei, 2015). Second, the two technical tools developed in
this article, the gradient-based and projection-free optimization method for highly constrained
problems, and the analysis of online learning algorithms, can be extended to other interesting515
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statistical models. An example is the graphical lasso (Friedman et al., 2008), where the precision
matrix is constrained in the positive semidefinite cone with an entry-wise `1 penalty. Similar to
sparse PCA, online learning algorithms may be developed for the graphical lasso using a trivially
constrained formulation of the objective function.
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A. APPENDIX

A.1. Conservativeness of µ in Corollary 1

In this section we use an example to demonstrate that the bound for µ developed in Corollary 1 may be
conservative, and in practice a smaller value for µ can be used that still results in the correct solution. Con- 540

sider the experiment in Section 5.2 with n = 50 and p = 200, and set µmax = (
p
2 + 1)(L+ 1){p/(d+

1)}1/2. Corollary 1 shows that any µ � µmax guarantees the equivalence between minX2K f(X) and
minX2X L(X), and we denote by X̂⇤ the solution to minX2K f(X).

Then we test different values of µ by solving X̂ = argminX2X L(X), where L(X) and X̂ implicitly
depend on µ. Figure 8 shows the relation between kX̂ � X̂⇤kF and µ, and it is clear that 0.05µmax suffices 545

to produce the correct solution.

Fig. 8: The computational error kX̂ � X̂⇤kF when different µ is used in (5).
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A.2. Expressions for constants and bounds

Theorem 3: The constant is C = max{↵�1(C2
0 + 4C0Lg), 2C0Lg}+ 2C0Lg , where

L
2
g = (�p)2 +

h
kSkF + µ

n
1 + (p+ d)1/2(d+ 1)1/2

oi2
,

and C0 > 0 is a constant that only depends on X0 and the optimal point of the optimization problem.
Theorem 4: The regret bound in explicit form is given by550

1

T
R({Xt}, {Zt}, T ) 

2d/↵0 + ↵0C2

T 1/2
+

↵0

2T

TX

t=1

kSt+1k
2
F + C1kSt+1kF

t1/2
, (9)

and the estimation error bound is kX̂T �⇧kF  C(T ) + (2/�d)1/2 · {�sd1/2 + C(T )}1/2, where
C(T ) = C3/T

1/2 + C4`(T )/T + C5{`(T )}2/3/T and `(T ) = log(T ) + 1. The relevant quantities are

C1 = �p+ ⌫0p
1/2

{(p+ d)1/2 + (d+ 1)�1/2
},

C2 = ⌫
2
0p(p+ d) + 2(�p)2 + 2�p⌫0{p(p+ d)}1/2 + 2⌫0{p/(d+ 1)}1/2C1,

C3 = 2d/↵0 + ↵0{C2 + 2kRk4(p2 + 16p) + C1kRk
2
p}+D1,555

C4 = ↵0C1kRk
2
D2/2,

C5 = ↵0kRk
4
D3,

D1 = max
n
C⌘kRk · kRkF (d

1/2 + 1)(2"l)
1/2

, 2c⌘kRk
2(d1/2 + 1)"l/T

1/2
o
,

D2 = 8 ·max
n
"l/`(T ), {p"l/`(T )}

1/2
o
,

D3 = 600p ·max
n
C

1/2
⇣ {"l + log(2)}1/2{`(T )}�1/6

, C
2
⇣ {"l + log(2)}2{`(T )}�2/3

o
,560

where ⌫0 = (
p
2 + 1)⌫, "l = log(3/"), and C⌘, c⌘, C⇣ are positive absolute constants.

A.3. Computation of prox↵f2(X)

By definition prox↵f2(X) = argminU2X
�
f2(U) + (2↵)�1

kU �Xk
2
F

 
. If Y = X + ↵S has the

eigen-decomposition Y =
Pp

i=1 ✓i�i�
T
i , then it can be verified that prox↵f2(X) =

Pp
i=1 ui�i�

T
i , where

u = (u1, . . . , up)T is the solution to the vector optimization problem565

min
u

1

2↵
ku� ✓k

2 + µp
�1/2

�����

pX

i=1

ui � d

�����+ µr1[max(u)� 1]+ + ↵µr2[�min(u)]+. (10)

Introduce auxiliary variables v1 = max(u), v2 = [v1 � 1]+, v3 = min(u), v4 = [�v3]+, and v5 =
|
Pp

i=1 ui � d|. Then (10) reduces to a quadratic programming problem

min
u,v

1

2↵
ku� ✓k

2 + µr1v2 + µr2v4 + µp
�1/2

v5

s.t. v3  ui  v1, v2 � 0, v2 � v1 � 1, v4 � 0, v4 � �v3, v5 �
Pp

i=1 ui � d, v5 � d�
Pp

i=1 ui,

which readily has efficient solvers.570

Next we show that u can actually be obtained without computing the full eigen-decomposition of Y .
First, u must be ordered, u1 � · · · � up, as ✓ is ordered. Second, since r2 is free to choose as long as r2 �
{p(d+ 1)}1/2, we intentionally set r2 = +1, which enforces the condition ui � 0. Finally, combined
with the penalty term |

Pp
i=1 ui � d|, we find that u is a sparse vector with the first few elements being

positive and all the rest being zero. Then u can be computed in the following way. Define the sub-vector575

✓1:I = (✓1, . . . , ✓I)T, and denote by u1:I the solution to (10) with ✓ replaced by ✓1:I . We test values I =

1, 2, . . . until uI = 0, and it is guaranteed that ui = 0 for i � I , leading to prox↵f2(X) =
PI�1

i=1 ui�i�
T
i .

In other words, we only compute I eigen-pairs of Y instead of p, and most of the time I is just slightly
larger than d. In our actual implementation, we use the implicitly restarted Lanczos method (Sorensen,
1997) to compute eigenvalues and eigenvectors. Finally, the cost for the quadratic programming problems580

can be ignored compred to the eigenvalue computation.
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JOURNÉE, M., NESTEROV, Y., RICHTÁRIK, P. & SEPULCHRE, R. (2010). Generalized power method for sparse

principal component analysis. Journal of Machine Learning Research 11, 517–553.
JUNG, S. & MARRON, J. S. (2009). Pca consistency in high dimension, low sample size context. The Annals of

Statistics 37, 4104–4130. 620

KINGMA, D. P. & BA, J. (2015). Adam: A method for stochastic optimization. In International Conference on

Learning Representations.
KUNDU, A., BACH, F. & BHATTACHARYA, C. (2018). Convex optimization over intersection of simple sets: im-

proved convergence rate guarantees via an exact penalty approach. In Proceedings of the Twenty-First International

Conference on Artificial Intelligence and Statistics. 625

LEE, S., EPSTEIN, M. P., DUNCAN, R. & LIN, X. (2012). Sparse principal component analysis for identifying
ancestry-informative markers in genome-wide association studies. Genetic Epidemiology 36, 293–302.

LEI, J. & VU, V. Q. (2015). Sparsistency and agnostic inference in sparse pca. The Annals of Statistics 43, 299–322.
LEPSKII, O. (1991). On a problem of adaptive estimation in gaussian white noise. Theory of Probability & Its

Applications 35, 454–466. 630

LI, C. J., WANG, M., LIU, H. & ZHANG, T. (2018). Near-optimal stochastic approximation for online principal
component estimation. Mathematical Programming 167, 75–97.

LUO, L., XIONG, Y., LIU, Y. & SUN, X. (2019). Adaptive gradient methods with dynamic bound of learning rate.
In International Conference on Learning Representations.

MA, Z. (2013). Sparse principal component analysis and iterative thresholding. The Annals of Statistics 41, 772–801. 635

MAHDAVI, M., YANG, T., JIN, R., ZHU, S. & YI, J. (2012). Stochastic gradient descent with only one projection.
In Advances in Neural Information Processing Systems.

MARINOV, T. V., MIANJY, P. & ARORA, R. (2018). Streaming principal component analysis in noisy settings. In
35th International Conference on Machine Learning.

OJA, E. & KARHUNEN, J. (1985). On stochastic approximation of the eigenvectors and eigenvalues of the expectation 640

of a random matrix. Journal of Mathematical Analysis and Applications 106, 69–84.



20 Y. QIU, J. LEI, AND K. ROEDER

PEARSON, K. (1901). Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh,

and Dublin Philosophical Magazine and Journal of Science 2, 559–572.
RYU, E. K. & YIN, W. (2019). Proximal-proximal-gradient method. Journal of Computational Mathematics 37,

778–812.645

SHE, Y. (2017). Selective factor extraction in high dimensions. Biometrika 104, 97–110.
SHEN, H. & HUANG, J. Z. (2008). Sparse principal component analysis via regularized low rank matrix approxima-

tion. Journal of Multivariate Analysis 99, 1015–1034.
SORENSEN, D. C. (1997). Implicitly restarted arnoldi/lanczos methods for large scale eigenvalue calculations. In

Parallel Numerical Algorithms. Springer, pp. 119–165.650

STUART, J. M., SEGAL, E., KOLLER, D. & KIM, S. K. (2003). A gene-coexpression network for global discovery
of conserved genetic modules. Science 302, 249–255.

TAN, K. M., WANG, Z., LIU, H. & ZHANG, T. (2018). Sparse generalized eigenvalue problem: optimal statistical
rates via truncated rayleigh flow. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 80,
1057–1086.655

TIBSHIRANI, R. J. (2014). Adaptive piecewise polynomial estimation via trend filtering. The Annals of Statistics 42,
285–323.

VU, V. Q., CHO, J., LEI, J. & ROHE, K. (2013). Fantope projection and selection: a near-optimal convex relaxation
of sparse pca. In Advances in Neural Information Processing Systems.

VU, V. Q. & LEI, J. (2013). Minimax sparse principal subspace estimation in high dimensions. The Annals of660

Statistics 41, 2905–2947.
WANG, C. & LU, Y. M. (2016). Online learning for sparse pca in high dimensions: exact dynamics and phase

transitions. In 2016 IEEE Information Theory Workshop.
WANG, Z., LU, H. & LIU, H. (2014). Nonconvex statistical optimization: minimax-optimal sparse pca in polynomial

time. arXiv preprint arXiv:1408.5352 .665

WARMUTH, M. K. & KUZMIN, D. (2008). Randomized online pca algorithms with regret bounds that are logarithmic
in the dimension. Journal of Machine Learning Research 9, 2287–2320.

WARSA, J. S., WAREING, T. A., MOREL, J. E., MCGHEE, J. M. & LEHOUCQ, R. B. (2004). Krylov subspace
iterations for deterministic k-eigenvalue calculations. Nuclear Science and Engineering 147, 26–42.

WENG, J., ZHANG, Y. & HWANG, W.-S. (2003). Candid covariance-free incremental principal component analysis.670

IEEE Transactions on Pattern Analysis and Machine Intelligence 25, 1034–1040.
WITTEN, D. M., TIBSHIRANI, R. & HASTIE, T. (2009). A penalized matrix decomposition, with applications to

sparse principal components and canonical correlation analysis. Biostatistics 10, 515–534.
YANG, T., LIN, Q. & ZHANG, L. (2017). A richer theory of convex constrained optimization with reduced projections

and improved rates. In 34th International Conference on Machine Learning.675

YANG, W. & XU, H. (2015). Streaming sparse principal component analysis. In 32nd International Conference on

Machine Learning.
ZEILER, M. D. (2012). Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701 .
ZHANG, B. & HORVATH, S. (2005). A general framework for weighted gene co-expression network analysis. Sta-

tistical Applications in Genetics and Molecular Biology 4.680

ZHANG, Y. & GHAOUI, L. E. (2011). Large-scale sparse principal component analysis with application to text data.
In Advances in Neural Information Processing Systems.

ZHU, L., LEI, J., DEVLIN, B. & ROEDER, K. (2017). Testing high-dimensional covariance matrices, with application
to detecting schizophrenia risk genes. The Annals of Applied Statistics 11, 1810.

ZOU, H., HASTIE, T. & TIBSHIRANI, R. (2006). Sparse principal component analysis. Journal of Computational685

and Graphical Statistics 15, 265–286.
ZOU, H. & XUE, L. (2018). A selective overview of sparse principal component analysis. Proceedings of the IEEE

106, 1311–1320.


