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Directed evolution, a strategy for protein engineering, optimizes protein properties (that is, fitness) by expensive and time-
consuming screening or selection of a large mutational sequence space. Machine learning-assisted directed evolution (MLDE),
which screens sequence properties in silico, can accelerate the optimization and reduce the experimental burden. This work
introduces an MLDE framework, cluster learning-assisted directed evolution (CLADE), which combines hierarchical unsuper-
vised clustering sampling and supervised learning to guide protein engineering. The clustering sampling selectively picks and
screens variants in targeted subspaces, which guides the subsequent generation of diverse training sets. In the last stage,
accurate predictions via supervised learning models improve the final outcomes. By sequentially screening 480 sequences out
of 160,000 in a four-site combinatorial library with five equal experimental batches, CLADE achieves global maximal fitness
hit rates of up to 91.0% and 34.0% for the GB1 and PhoQ datasets, respectively, improved from the values of 18.6% and 7.2%

obtained by random sampling-based MLDE.

that is used to improve a particular property (for example,

fitness) of a target protein by mimicking the process of
natural selection'. The evaluation of fitness is expensive and time-
consuming, especially when high-throughput selection or screening
is not available. The fitness landscape is a high-dimensional sur-
face that maps amino-acid sequences to properties such as activity,
selectivity, stability and other physicochemical features. The goal of
DE is to find the global maximal sequence using minimal experi-
mental resources in an unlabeled candidate sequence library, S:

D irected evolution (DE) is a protein-engineering approach

x" = argmax,_gf(x), (1)

where x is a sequence and f{(x) is an unknown sequence-to-fitness
map. DE is one type of black-box optimization problem that sequen-
tially queries sequences for experimental screening. Greedy search
is effective at finding improved sequences with minimal experi-
ments, but it is generally restricted to exploring local optima due
to the prevalent epistasis in the fitness landscape’. On the other
hand, random exploration via multi-site-saturation mutagenesis is
inevitably associated with a huge combinatorial library, which often
overwhelms the screening capacity®. An effective searching strategy
for the epistatic landscape with minimal experimental burdens is
highly desirable.

The last decade has witnessed the rapid development of machine
learning (ML) (including deep learning, DL) algorithms for biologi-
cal data®'’. Supervised models can learn relationships between pro-
teins and fitness, and provide quantitative predictions of enzyme
activity and selectivity’, protein thermostability'!, protein folding
energy'>", protein solubility'®, protein-ligand binding affinity'
and protein-protein binding affinity'®. Owing to the high cost of
acquiring supervised labels, self-supervised protein embedding has
emerged as an important paradigm in protein modeling. Trained
on vast unlabeled sequence data resulting from natural evolution,
self-supervised protein embedding can capture the substantial
latent biological information of sequences and pass the informa-
tion to the downstream supervised task'”'®. Adapted from natural
language processing, many model architectures (such as variational

autoencoders'’, recurrent neural networks***' and transformers®?)
have been used to train the protein embedding models”. On the
other hand, unsupervised clustering methods can identify the inter-
nal characteristics of unlabeled data by dividing them into multiple
subspaces. Clustering methods, including distance-based cluster-
ing”*, community-based clustering®, density-based clustering”
and graph-based clustering’*, have been widely applied to tran-
scriptomic data analysis®, pattern recognition®’ and image process-
ing® to reveal data heterogeneity.

Machine learning-assisted directed evolution (MLDE) is a new
strategy for protein engineering that can be applied to a range of
biological systems, such as enzyme evolution®*, engineering of fluo-
rescence proteins®, the localization of membrane proteins™, protein
thermostability optimization®™ and therapeutic antibody optimi-
zation™. Active learning is a popular approach in MLDE, where
sequential selections of sequences are decided by the combination
of a surrogate model and an acquisition function. The former is used
to learn the sequence-to-fitness map from labeled data and the latter
utilizes the predictions from the surrogate model to prioritize a set
of sequences to be screened at the next round of experiments”. The
acquisition function needs to balance the exploration-exploitation
trade-off’>”. Uncertainty surrogate models such as the Gaussian
process (GP) have been widely applied in MLDE*-*. Rather than
making use of sequential iterations in experiments, focused training
of the MLDE method was proposed to minimize the experimental
burden to only two iterations®. This utilizes unsupervised zero-shot
predictors'**>*"*! to predict fitness without experiments, and is used
to restrict the training set selection within a small informative sub-
set. The downstream supervised learning model performs a greedy
search to optimize protein fitness. With this approach, state-of-the-
art results were achieved.

In this Article we propose a cluster learning-assisted directed
evolution (CLADE) framework to guide protein engineering. The
CLADE framework introduces an unsupervised clustering strategy
to supervised learning to preselect the training sets and virtually
navigate the fitness landscape. Through the unsupervised clus-
tering, the fitness heterogeneity can be identified where clusters
have substantially different populations of high-fitness variants.
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By exploiting the fitness heterogeneity, we identify and sample the
clusters enriched with high-fitness variants through sequential
iterations with experimental screening. By introducing a hierarchi-
cal clustering, CLADE makes the random-sampling-based MLDE
more accurate and robust. CLADE is a two-stage strategy in which
the first-stage clustering sampling can improve the sampling effi-
cacy by selectively exploring critical subspaces and the second-stage
greedy search using the ensemble regressor has advantages over the
conventional GP in MLDE. CLADE shows further improvements
by coupling with zero-shot predictors. On sequentially screening a
total of 480 sequences in five equal batches, CLADE successfully
identified a global maximum with frequency of 91% and 34% for
the benchmark datasets GB1 and PhoQ, respectively. This general
CLADE framework provides improvement over state-of-the-art
methods, suggesting it is an accurate, robust and efficient frame-
work for protein engineering.

Results

Overview of CLADE. The CLADE framework is a two-stage pro-
cedure consisting of three components: experimental screening,
unsupervised clustering and supervised learning. Unsupervised
clustering sampling complements supervised learning to guide
experimental screening to discover variants with optimal fitness in
DE (Fig. 1a). Before CLADE analysis, a target protein and an unla-
beled candidate mutant sequence library, S, need to be constructed
by expert selection (Fig. 1b). The unknown specific fitness infor-
mation can be determined through experimental screening, but
usually only a small subset of variants is screened because of experi-
mental constraints. Although specific fitness information is largely
unknown, sequence encoding methods can reveal general biologi-
cal information for all variants in the library (Fig. 1b). At the first
stage of CLADE, unsupervised clustering guides coarse exploration
and selection over clusters. Encoded with general biological infor-
mation, unsupervised clustering divides the sequence library into
multiple clusters with different internal characteristics. Variants in
the same cluster have similar general biological properties as well
as fitness properties of interest, although their values are unknown.
Instead of global sampling over the entire sequence library, CLADE
performs a clustering sampling. To select one variant, one cluster
is first selected according to the predefined cluster-wise sampling
probabilities (clusters containing more high-fitness variants have
higher probabilities to be selected). A sampling method is then
employed to select a variant within this cluster. Random sam-
pling is the simplest sampling method for the in-cluster sampling,
but arbitrary sampling methods such as e-greedy, Thompson and
upper confidence bounds (UCBs) can also be implemented easily
with CLADE. The selected variants are experimentally screened to
obtain their fitness values. The clustering sampling iteratively selects
variants and updates both the cluster-wise and in-cluster sampling
strategies. The second stage of CLADE takes the labeled sample set
as training data to train a supervised learning model and provides
predictions of the rest of the sequence library. Greedy search is
used in this stage, where the top predicted variants are screened by
experiments. Optimal variants can be picked from all experimen-
tally measured variants (Fig. 1c). In this process, the same sequence
encoding method (that is, general biological information) is used
for both clustering and supervised learning.

In clustering sampling, cluster-wise sampling probabilities are
dynamically updated after each batch of variants is screened (Fig.
1d). In the first few batches, all clusters are selected uniformly to
obtain a coverage of all clusters. The sampling strategy then tends
to explore the high-fitness clusters. The sampling probability for
each cluster is defined by the average fitness of selected variants
in this cluster normalized by the summation of the average fitness
of selected variants in each cluster (Methods). To further explore
the high-fitness clusters, we propose a deep hierarchical clustering

structure (Fig. 1d). Clusters with higher average fitness are divided
into more subclusters, then the same sampling procedure is applied
to clusters at the new hierarchy. For maximum hierarchy N, the
increment of clusters at hierarchy i, K,(i<N), needs to be defined
before the simulation (Methods). Three examples of simulated
sampling using random in-cluster sampling are presented to fur-
ther illustrate the sampling process (Supplementary Section 3 and
Supplementary Fig. 1).

In experimental screening, a batch of variants is usually screened
in parallel and the batch size varies in systems with different
throughputs. To adopt CLADE in systems with different through-
puts, the frequency for updating the sampling probability or gener-
ating clusters at a new hierarchy needs to be multiples of the batch
size, as well as the number of training data and the number of top-
predicted variants being screened. In this work we take batch sizes
of 96 and 1 to simulate medium-throughput and low-throughput
systems (Methods). The outcome of CLADE consists of variants in
the training data and the top 96 predicted variants. The max fitness
and mean fitness are used to evaluate the CLADE outcome. Another
metric, the global maximal fitness hit rate, measures the frequency
with which CLADE successfully picks the global maximal variant
in training data, top predictions or their union. Details and more
metrics are provided in the Methods.

To test the performance of CLADE, the popular benchmark GB1
library was first used, then the PhoQ library, which was used pre-
viously in an early MLDE study*’. Although both datasets provide
suitable fitness for the CLADE algorithm, the PhoQ dataset may be
limited because its fitness may only weakly correlate to a meaning-
ful protein property (Datasets).

Revealing fitness heterogeneity with unsupervised clustering.
We describe how unsupervised clustering assists the selection of
training data. As a proof of principle we employed K-means clus-
tering and four physicochemical descriptors based on amino-acid
(AA) encoding, a subset of amino acid index dataset (AAindex)
(Methods), as the sequence encoding method on the GBI dataset,
where the fitness is the binding affinity to an antibody (Datasets).
We first divided the fitness landscape into K; =3 clusters. The three
clusters contain a similar number of variants and are well sepa-
rated in the projected principal components space. The popula-
tion of high-fitness variants (>0.3) is rare in the fitness landscape.
Interestingly, we found heterogeneity of high-fitness variants in
these clusters, with cluster 3 containing over 11-fold more high-fit-
ness variants (that is, 911 variants) than either cluster 1 (80 variants)
or cluster 2 (59 variants) (Fig. 2a).

Next, we performed K-means clustering with various numbers of
clusters K, (10, 40 and 100), and multiple independent repeats were
performed for each K, value. In a single simulation, clusters were
given a unique cluster ID, where cluster ID indicates the descending
ranking of the average fitness for all variants within the correspond-
ing cluster. The expected average fitness for clusters with identical
cluster IDs in multiple repeats was calculated (Fig. 2b). The distri-
bution of cluster average fitness reveals the fitness heterogeneity,
where the cluster with lower numbering has higher average fitness
(Fig. 2b). We found that the distribution of cluster average fitness
becomes more polarized near the origin as K increases. Specifically,
32%, 52% and 67% of high-fitness variants (that is, >0.3) are con-
tained in the top 10% clusters for K, values at 10, 40 and 100, respec-
tively (Fig. 2b).

The clustering sampling is then able to oversample the high-
fitness clusters with the identified heterogeneity. In sampled data,
distributions of the expected cluster average fitness recapitulated
the polarized distributions revealed by the ground-truth fitness,
and the distributions become more polarized as K, increases
(Fig. 2b). Indeed, K-means can capture the fitness heterogeneity,
and our clustering sampling can recapitulate this heterogeneity
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Fig. 1| Overview of CLADE. a, Conceptual diagram of CLADE. CLADE consists of three components: experimental screening, unsupervised clustering
and supervised learning. Blue arrows illustrate the flow of information. The gray dashed arrow shows the flow of information not considered in this work.
b, Sequence library construction, showing a combinatorial library for site-saturation mutagenesis for the GB1 protein (PDB 2GI9). The L =4 mutation
sites are V39, D40, G41 and V54. Well-known general biological information encodes the library into a feature matrix X. The specific fitness information
is determined by experimental screening, but usually only a small subset of variants can be screened with limited experimental capacity. ¢, Flowchart of
CLADE. Unsupervised clustering divides the combinatorial library into multiple clusters by using the feature matrix X. Clustering sampling selects and
screen variants to construct a labeled sample set through iterations between the experimental screening and unsupervised clustering. The labeled sample
set is taken as training data passing to the supervised learning. Supervised learning learns from the training data, and predicts and prioritizes optimal
variants for screening. d, Schematic of clustering sampling. Through iterations with experimental screening, clusters with high average fitness tend to

be oversampled with higher probabilities. Deep hierarchical clustering divides the high-fitness clusters into more clusters at a new hierarchy to further

oversample these clusters.

to select more samples with high fitness. A community-based
clustering method, Louvain clustering®, also successfully cap-
tured the fitness heterogeneity (Supplementary Section 6 and
Supplementary Fig. 2).

Improving CLADE outcome with deep hierarchical structure.
Utilizing the fitness heterogeneity, CLADE performed differently
under different clustering architectures. First, we explored the
maximum hierarchy, N, for CLADE. Random in-cluster sampling
and simulated medium-throughput systems were employed. The
GBI dataset was used and encoded by AA encoding. For shallow
hierarchy N=1, CLADE using K-means improves over random-
sampling-based MLDE on all evaluated metrics, including expected
max fitness, expected mean fitness, global maximal fitness hit rate,
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normalized discounted cumulative gain (NDCG), cross-validation
errors and testing errors (Supplementary Data 1). In particular,
the global maximal fitness hit rate can reach 40.2% when K, =90,
a 2.2-fold improvement over the random-sampling-based MLDE
(Table 1). Similarly, CLADE using Louvain clustering can lead to
an almost twofold improvement in global maximal fitness hit rate
(36.4%, Table 1). For clustering with deep hierarchy, the number of
variants in a cluster decreases quickly with its hierarchy. To ensure
that any cluster has enough variants for partition at the next hier-
archy, cluster increments (K, K,, K; and so on) were explored in
smaller ranges for deep hierarchy. CLADE performance was fur-
ther improved with deeper hierarchy (Supplementary Data 1). A
2.7-fold improvement of the global maximal fitness hit rate (50.8%)
was observed for both N=2 and N=3 (Table 1). Moreover, the
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Fig. 2 | Fitness heterogeneity revealed by K-means clustering. a, Visualization of GB1 variants in the reduced two-dimensional space spanned by the

first two principal components (PC1and PC2). Three clusters were obtained from K-means clustering. AA encoding was employed. Dots with different
colors represent variants in different clusters. Individual clusters were plotted in each subplot from the second to the fourth subplot, where variants with
fitness lower or higher than 0.3 are denoted by light or dark colors. b, K-means clustering and the follow-up clustering sampling on the GB1 dataset with
500 independent repeats. Three sets of parameters are presented individually in different plots: K;=10 (blue), 40 (red) and 100 (yellow). In a single
simulation, each cluster is numbered by a unique cluster ID, where cluster ID indicates the descending ranking of the average fitness for all variants within
the corresponding cluster. Then, clusters with identical cluster IDs in multiple repeats were used to calculate the expected average fitness shown in the bar
plots. Bar plots above the abscissa (dark color) show the expected average ground-truth fitness for all variants contained in each cluster. Bar plots below
the abscissa (light color) show the expected average fitness for variants selected from the clustering sampling in each cluste.

Table 1| CLADE performance with various clustering hierarchies

Dataset Hierarchy Expected max fitness Expected mean fitness Global maximal fitness hit rate Notes

GB1 N=0 (random sampling) 0.774 0.305 18.6% -

GB1 N=1 0.871 0.406 40.2% =

GB1 N=1 0.848 0.357 36.4% Louvain clustering
GB1 N=2 0.890 0.421 50.8% -

GB1 N=3 0.893 0.423 50.8% -

GB1 N=3 0.909 0.431 55.6% Low throughput
PhoQ N=0 (random sampling) 0.387 0.077 7.2% -

PhoQ N=3 0.547 0.096 20.6% -

CLADE performance on the GB1 and PhoQ datasets is shown using different hierarchies, N, for clustering sampling. N= 0 indicates random sampling-based MLDE, following the procedure in ref. %

The sampling strategy for the selected clusters was random sampling. The case with the highest expected max fitness for each architecture is shown. Hyperparameters are extensively explored in
Supplementary Data 1. Unless explicitly indicated, the batch size is 96 to simulate medium-throughput systems and K-means clustering is used. Bold entries indicate the clustering architecture achieving
the highest expected max fitness in medium-throughput systems. All statistics were obtained from 500 independent repeats. The expected mean fitness was evaluated on the top 96 variants from the
supervised learning model. The expected max fitness and the global maximal fitness hit rate were evaluated on the union of the top 96 variants from the supervised learning model and the 384 variants in
training data. AA encoding was used for the GB1 dataset and Georgiev encoding for the PhoQ dataset (Methods).

simulated low-throughput systems can lead to better performance
for all metrics; the global maximal fitness rate, in particular, reaches
a value of 55.6% (Table 1).

We also tested CLADE on the PhoQ dataset. Unlike the fitness
of GB1, measuring a simple protein physical property, the fitness
of PhoQ measures an outcome from a complicated signaling cas-
cade (Datasets). A more comprehensive encoding method was used
that integrates over 500 amino-acid indices in the AAindex data-
base*—Georgiev encoding***. Deep CLADE again demonstrated

812

substantial improvement compared to the case using global ran-
dom-sampled training data, showing a 36% improvement on
expected max fitness and a 2.9-fold improvement (from 7.2% to
20.6%) on global maximal fitness hit rate (Table 1). Despite CLADE
showing a lower global maximal fitness hit rate and expected max
fitness for the PhoQ dataset than for the GB1 dataset, the relative
fitness improvement over wild-type protein measured by expected
max fitness is much higher for PhoQ (7.8- and 67-fold, respectively,
for GBI and PhoQ; Supplementary Fig. 3b).
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In applications, the robustness of CLADE performance to hyper-
parameters is more desirable because only one set of hyperparam-
eters can be picked and applied. Surprisingly, the robustness was
enhanced as the maximum hierarchy increased (Supplementary
Figs. 4-6 and Supplementary Data 1). With shallow hierarchy N=1,
the global maximal fitness hit rate is relatively low and varies in a
relatively large range from 30.6% to 41.2% for GBI1. For deep hier-
archy N=3, the global maximal fitness hit rate is relatively higher
and varies in a relatively small range from 41.6% to 50.8%, where a
2.2-fold improvement over random-sampling-based MLDE is guar-
anteed. CLADE performance on PhoQ is also relatively robust for
N=3, where global maximal fitness ranges from 14.0% to 20.6%,
at least 1.9-fold improvement over random-sampling-based MLDE
(Supplementary Data 1). Overall, deep CLADE ensures robust and
accurate performance in DE.

Assessing the performance of stage-wise predictions. The pro-
posed CLADE is a two-stage procedure in which supervised learn-
ing comes after the training data selection from clustering sampling.
The first-stage sampling mainly explores the sequence library to
select a diverse and informative training set. The second-stage ML
mainly exploits fitness through greedy search from its predictions.
Here we further dissect the roles and advantages of each stage.

First, the second-stage ML is critical to the final performance,
regardless of the first-stage sampling methods. In CLADE, despite
the majority of sequences being selected in the first stage (for
example, fourfold in this work), the second-stage ML has a greater
contribution to the final optimal sequences than the first-stage
selection, and 35% and 41% higher expected max fitness can be
achieved for GB1 and PhoQ, respectively (Fig. 3a,c). Similarly, ML
followed by arbitrary sampling methods can substantially improve
the final outcome. Many popular single-stage MLDE approaches,
such as GP, can automatically calibrate the balance between explo-
ration and exploitation, and it usually tends to exploit fitness at
the late stage. Here we extend GP-based models to the two-stage
approach by combining them with ML (GP-ML), where GP is used
for the first few batches and ML is only applied at the last batch in
the simulated medium-throughput system. We note that the inclu-
sion of ML in GP leads to substantial improvement in discovered
fitness for all acquisition functions tested, including Thompson
sampling, e-greedy and UCB (Fig. 3b,d). For example, over 50%
improvement on expected max fitness was observed for Thompson
sampling for both the GBI and PhoQ datasets. Although UCB
sampling achieves the highest expected max fitness among other
sampling methods, improvement can still be observed with the
proposed two-stage approach. Such a striking improvement relies
on the more accurate predictions from ML models than GP models
(Supplementary Data 1 and 2).

Second, the first-stage clustering sampling selectively explores
informative clusters and ensures robust and accurate CLADE
outcomes. The clustering sampling selectively picks clusters and
restricts sampling within these clusters, and it can simply pair with a
GP for sampling in selected clusters. Alternately, the two-stage strat-
egy using GP sampling selects sequences in a global manner. We
compared the performance of our two-stage procedure using clus-
tering sampling (CLADE) with that using global sampling (GP-ML).
A clear improvement in max fitness can be observed by introducing
the clustering sampling, regardless of the acquisition functions used
in the comparison (Fig. 3b,d). In particular, substantial improve-
ment is achieved for Thompson sampling and the exploration sam-
pling in e-greedy (Fig. 3b,d). Although our two-stage approach with
global sampling has largely different performance with respect to the
acquisition function, the performance of CLADE is relatively robust
and consistent. CLADE with UCB acquisition leads to the best per-
formance and its global maximal fitness hit rate can reach 76% and
23% for GB1 and PhoQ, respectively (Supplementary Data 1).
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Fig. 3 | Two-stage procedure in CLADE. a,c, GB1 (a) and PhoQ (¢) max
fitness of CLADE selection in each stage, including the first-stage sampling
(gray) and the second-stage supervised model (purple). b,d, GB1 (b)

and PhoQ (d) max fitness from different MLDE methods: GP (pink), GP
combining with ML (GP-ML; green) and CLADE integrating GP-type
sampling (blue). Thompson, e-greedy and UCB acquisition functions were
used. Hyperparameters were extensively explored (Supplementary Data
1and 2). Each bar plot represents the expected max fitness and the error
bars show the 95% confidence interval. Simulations were run on medium-
throughput systems in which the first-stage sampling selects 384 variants
and the second-stage selection picks 96 top-predicted variants. In a and
¢, the sampling strategy for selected clusters was random sampling and
500 independent repeats were carried out. In b and d there were 200
independent repeats for each bar. AA and Georgiev encodings were used
for GB1and PhoQ, respectively.

Zero-shot predictor-based CLADE. Although clustering sampling
can accurately select informative sequences (high-fitness) at a late
stage, early-stage sampling cannot avoid exploring regions enriched
with low-informative (zero- or low-fitness) regions to accumulate
knowledge for the fitness landscape (Supplementary Figs. 7 and 8).
Focused-training MLDE (ftMLDE) provides an approach to target
informative sequences without the initial global search>*. The zero-
shot predictors employed by ftMLDE are capable of predicting pro-
tein fitness without the need for experimental screening. Predictions
from two sequence-based zero-shot predictors—EvMutation* and
multiple sequence alignment (MSA) transformer using a mask-filling
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Fig. 4 | Improved CLADE performance using zero-shot predictions. a-d, The max fitness achieved by ftMLDE (yellow) and CLADE using zero-

shot predictions (blue) for the GB1 dataset and EvMutation (a) and MSA transformation (b) and the PhoQ dataset and EvMutation (¢) and MSA
transformation (d). Each bar corresponds to a different sampling threshold (in %), with the percentile relating to the size of the sequence library (that

is, 160,000 here). The sampling threshold determines the number of top sequences from zero-shot predictions used for training set sampling. Each bar
plot represents the expected max fitness from 200 independent repeats, and the error bars show the 95% confidence interval. The solid line shows the
expected max fitness from the random-sampling-based MLDE. The dashed red line shows the expected max fitness from the best-performing CLADE
without zero-shot predictions (Table 1). Data for two datasets (GB1and PhoQ) and two zero-shot predictions (EvMutation and MSA transformation) are
presented. Simulations were run on the medium-throughput systems. AA and Georgiev encodings were used for GB1 and PhoQ, respectively.

protocol?—showed high correlations with fitness in GB1, with
Spearman rank correlation coefficients (p) of 0.21 and 0.24, respec-
tively”. Further validations on the PhoQ dataset showed even higher
correlations, with p of 0.35 and 0.41 for EvMutation and MSA
transformer, respectively (zero-shot calculations are described in
the Methods). The zero-shot predictions rank the sampling priority
for all variants in the sequence library. By picking up a sampling
threshold, ftMLDE randomly selects training data within the subset
consisting of top-ranked variants given by the zero-shot predictor.
Instead of random sampling over the top-predicted variants in
ftMLDE, CLADE can also integrate with zero-shot predictors by
performing clustering sampling. We similarly employed random
sampling as the in-cluster sampling method in CLADE to com-
pare with ftMLDE using global random sampling. Two zero-shot

predictors (EvMutation and MSA transformer) and nine sampling
thresholds ranging from 1% to 40% of the size of the sequence library
(that is, 160,000) were explored on both the GB1 and PhoQ datas-
ets. For CLADE, we picked maximal hierarchy N=3 and an identi-
cal increment of clusters for all hierarchies (that is, K,=K,=K;).
For the lower sampling threshold, the lower value of K; was picked.
Two reasonable K; values were picked for each sampling thresh-
old, and the case with largest expected max fitness was picked to
compare with ftMLDE (Fig. 4 and Supplementary Data 3). For the
GBI dataset, both ftMLDE and CLADE show an improvement in
max fitness over the random-sampling-based MLDE under all sam-
pling thresholds (Fig. 4a,b). The best-performing ftMLDE achieves
0.943 expected max fitness and 74.5% global maximal fitness hit
rate at 10% sampling threshold by using MSA transformer zero-shot
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predictions, showing further improvement over the best-perform-
ing CLADE without zero-shot predictions. Furthermore, CLADE
using zero-shot predictions achieves more accurate and robust per-
formance, improving over ftMLDE for all sampling thresholds and
outperforming CLADE without zero-shot predictions (Fig. 4a,b).
With sampling thresholds of 4% and 10%, the best-performing
CLADE achieves 0.979 and 0.984 on expected max fitness and 91%
and 90.5% on global maximal fitness hit rate for EvMutation and
MSA transformer zero-shot predictors, respectively. For the PhoQ
dataset, both ftMLDE and CLADE show improvement over the ran-
dom-sampling-based MLDE, except for a few cases with low sam-
pling threshold using MSA transformer zero-shot predictions (Fig.
4c¢,d). Interestingly, CLADE can outperform ftMLDE even without
using zero-shot predictions under most sampling thresholds, and
the best-performing ftMLDE only shows negligible improvement
with an expected max fitness of 0.555 and global maximal fitness
hit rate of 22.5% at 6% sampling threshold using EvMutation zero-
shot predictions. Although CLADE may have lower expected max
fitness under low sampling thresholds for both zero-shot predic-
tors, it has substantially improved max fitness using sufficiently
large sampling thresholds. With sampling threshold of 30% and
40%, the best-performing CLADE achieves expected max fitnesses
0f 0.612 and 0.637 and global maximal fitness hit rates of 34% and
33.5% for EvMutation and MSA transformer zero-shot predictors,
respectively.

Discussion

The clustering sampling in CLADE builds a hierarchical clustering
with a tree structure. Similar searching approaches that use a hier-
archical tree, such as hierarchical optimistic optimization (HOO)",
deterministic optimistic optimization (DOO) and simultaneous
optimistic optimization (SOO)*, were previously proposed to opti-
mize a smooth black-box function defined on continuum space.
The partition with infinitely deep hierarchy ensures its fast conver-
gence to the global maximum. However, the hierarchy of cluster-
ing cannot be too deep in CLADE because of the discrete sequence
library and limited number of experimental batches. Indeed, down-
stream supervised learning is necessary to assist the clustering
sampling to find optimal variants. Batched acquisitions can also
be used to improve the sampling efficiency’”**. MLDE algorithms
can be evaluated by using a (nearly) complete combinatorial library
obtained from a screening of limited mutational sites. However,
MLDE methods can also be applied to a library obtained from a
large number of mutational sites (for example, a chimeras recom-
bination library****). For the latter, insufficient data are typically
available to define the complete landscape and the global maximal
fitness hit rate cannot be evaluated.

CLADE can be implemented with any sequence-encoding
method. Physicochemical descriptors have been widely applied in
many ML tasks for predicting protein physical functions'>'**. In
this Article, two physicochemical sequence-encoding methods were
tested. Interestingly, application of CLADE on GB1 using AA encod-
ing achieves better performance than using Georgiev encoding,
whereas PhoQ shows the opposite behavior. AA encoding repre-
sents a small subset of AAindex, whereas Georgiev gives a compre-
hensive low-dimensional representation of AAindex. For the GB1
dataset, the AA encoding may be sufficient to learn the relatively
simple physical fitness for binding affinity, and Georgiev encoding
may contain redundant information that leads to its underperfor-
mance. For the PhoQ dataset, the fitness is an outcome from a com-
plicated signaling cascade. Four physicochemical descriptors from
AA encoding may not be sufficient to learn the fitness, so Georgiev
encoding outperforms AA encoding. Recently, the development
of self-supervised pretraining methods has provided data-driven
approaches for sequence-encoding methods'”*’. However, the deep
pretrained encodings usually perform worse than physicochemical
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encoding” (Supplementary Section 4 and Supplementary Table 1).
The consideration of homologs of the target protein in the pre-
trained model, for example, using MSA transformer®, can capture
the local mutational effects of variants and build up more informa-
tive encoding for MLDE?. Protein three-dimensional structural
abstraction from topological and geometric tools would be another
interesting featurization approach for CLADE'>'".

Unlike active learning, the utilization of zero-shot predictors in
the ftMLDE approach can largely reduce the experimental burden,
requiring only two rounds of screening. The similar combination
of CLADE and zero-shot predictors provides improvement over
ftMLDE, but additional experimental iterations are required. With
the rapid decrease in the cost of gene synthesis and the develop-
ment of high-throughput site-directed mutagenesis®’, the increased
cost in CLADE would be sufficiently compensated by the substan-
tially improved performance in terms of increased expected max
fitness and global maximal fitness hit rate. CLADE can also give
instant feedback to experiments because of its computational effi-
ciency, with the first-stage sampling taking just a few minutes and
the second-stage supervised learning a few hours to run. In prac-
tice, the top predicted variants can be screened sequentially until
the optimal variants are found. Although the larger number may
lead to continually improved max fitness, the improvement is not
substantial when this number is too large (Supplementary Fig. 9).
The sequence-based zero-shot predictors have shown great gener-
alization to various fitness landscapes'>**"!, as has also been shown
in this work. On the other hand, the structure-based zero-shot pre-
dictor applied on ftMLDE achieved a state-of-the-art 99.7% global
maximal fitness hit rate on the GB1 dataset’. However, this powerful
zero-shot predictor may be limited to well-defined fitness associ-
ated with a predictable protein function, which is not the case for
the PhoQ dataset.

Methods

Datasets. In this work, a popular benchmark GBI library was used to test CLADE.
A PhoQ library that was used in an early MLDE study** was also considered. For
both datasets, their fitness values were normalized into the range [0, 1] when
applied to CLADE.

The GBI dataset’ is an empirical fitness landscape for protein G domain B1
(GB1; PDB 2GI9) binding to an antibody. Fitness was defined as the enrichment
of folded protein bound to the antibody IgG-Fc. This dataset contains 149,361
experimentally labeled variants out of 20*= 160,000 at four amino-acid sites (V39,
D40, G41 and V54). The fitness of the remaining 10,639 unlabeled variants is
imputed, but their values are not considered in this study. By normalizing the
fitness to its global maximum, 92% of variants have fitness lower than 0.01 and
99.3% variants have fitness lower than 0.3 (Supplementary Fig. 3a).

For the PhoQ dataset™, a high-throughput assay for the signaling of a two-
component regulatory system—PhoQ-PhoP sensor kinase and a response
regulator—was developed with a yellow fluorescent protein (YFP) reporter expressed
from a PhoP-dependent promoter. Extracellular magnesium concentration
stimulates the phosphatase or kinase activity of PhoQ, which can be reported by YFP
levels. The combinatorial library was constructed at four sites (A284, V285, S288 and
T289) located at the protein—protein interface between the sensor domain and kinase
domain of PhoQ. Two libraries were constructed by using different extracellular
magnesium treatments. In each library, the variants with comparable YEP levels to
wild type were selected by fluorescence-activated cell sorting (FACS) and used for
enrichment ratio calculations. Comparable YFP levels were strictly defined by two
thresholds. The PhoQ dataset was previously studied using an MLDE model*. In
this work, we took the enrichment ratios from the library with high extracellular
magnesium treatment as fitness. The fitness value correlates to the probability that
a variant has fluorescence in the given range, with this range defined as the wild-
type-like activity in the original PhoQ work** (Supplementary Fig. 10). The fitness
landscape has nearly complete coverage, with 140,517 quality read variants out
of 20*=160,000. Like GB1, the PhoQ dataset was found to be overwhelmed with
low- or zero-fitness variants, with 92% of variants having fitness lower than 0.01 and
99.96% of variants having fitness lower than 0.3, and the high-fitness variants are
rarer than in the GBI dataset (Supplementary Fig. 3a).

For the MLDE algorithms alone, both GB1 and PhoQ datasets, using
enrichment ratios as fitness, provide suitable labels to learn and optimize. In
applications, the optimization of fitness usually intends to improve a meaningful
protein property. The fitness in GB1 directly correlates to a specific protein activity,
that is, the binding affinity between GB1 and its antibody 1gG-Fc, serving as an
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excellent benchmark. However, fitness in the PhoQ dataset may only weakly
correlate to protein activities, such as PhoQ-PhoP interaction strength and YFP
fluorescence level. As such, the results from MLDE for the PhoQ dataset cannot be
directly interpreted as a meaningful protein property.

Sequence encoding. In this work, two types of physicochemical sequence
encoding method—AA and Georgiev—were used to test CLADE. The encoding
matrix of the combinatorial library was standardized via StandardScalar() in
scikit-learn® before further usage. The same encoding matrix was used for both
unsupervised clustering and supervised learning models (Supplementary Section
1). First, the AA encoding consists of four physicochemical descriptors: molecular
mass, hydropathy, surface area and volume (Supplementary Table 2). Molecular
mass, hydropathy and surface area were obtained from the AAindex database*’ and
volume from experimental work™. This encoding was previously used in protein
stability change predictions™. Instead of picking a subset of the AAindex database,
the Georgiev encoding*** comprehensively integrated over 500 amino-acid indices
in the AAindex database and gave a low-dimensional representation of these
indices with 19 dimensions.

Gaussian process. The GP regression model* was used to infer the value of an
unknown function f(x) at a novel point x, given a set of observations X with labels
Y. The posterior distribution of f{x) given by GP can be predicted with mean
4(x) and standard deviation o(x). The GP regression was implemented by scikit-
learn package®. The default radial basis function (RBF) kernel and other default
parameters were used.

The next round of sequence selection was prioritized by the values of
acquisition functions a(x), where the sequence with the largest acquisition in the
unlabeled set X, will be screened first:

Xy = argmax, .y a(x). 2)
Specifically, in this work, we selected a batch of unlabeled sequences with top
values in acquisition functions for the next batch of screening.

The designs of the acquisition function depend on the posterior mean and
variance. The simple greedy acquisition is defined by the posterior mean, which
can maximize and exploit the expected fitness at each round:

ag(x) = u(x). (3)

On the other hand, with the acquisition identical to the posterior variance we
can explore the uncertain regions to increase the knowledge and accuracy of the
regression model. To balance the exploration-exploitation dilemma for these two
extreme cases, e-greedy acquisition takes the combination of them?:

u(x), with probability 1 — e,

ae(x) = (4)
o(x), with probability e.

where € is a hyperparameter to mediate this trade-off. In this work, we took € as
a constant and explored its values, while an alternate design would let € decreases
sequentially to enhance exploitation.

Another popular UCB acquisition can both exploit samples with large
mean and explore samples with large variance, which has substantial theoretical
background™”. This takes the form

avcsu(x) + v/ Po(x). (5)

The trade-off parameter § decides the size of the confidence interval to be
considered. For example, the acquisition function considers a 95% confidence
interval when f=4.

Thompson sampling exploits the label through random sampling according
to the posterior mean and variance. The acquisition function is sampled from a
normal distribution:

ar(x) ~ N (u(x), 0(?). )

Zero-shot predictions. The calculations of zero-shot predictions were followed
by the ftMLDE package”. In this work, we tested two zero-shot predictors using
EVmutation* and MSA transformer using a mask-filling protocol®.

Before calculations of these zero-shot predictors, the EVcouplings webapp*
generates MSAs and trains an EVmutation model for the target protein. The
sequence of the target protein is the only input required. The alignments were
searched against the UniRef100 dataset. Except bitscore, all other parameters were
used as their default values (search iterations =5, position filter =70%, sequence
fragment filter = 50%, removing similar sequences =90%, downweighting similar
sequences =80%). The entire 56-residue sequence of GB1 (PDB 2GI9) was used for
alignments:

MQYKLILNGKTLKGETTTEAVDAATAEKVFKQYANDNGVDGEWTYDD
ATKTFTVTE

816

Bitscore was taken as 0.4 according to ref. %, resulting in 56 redundancy-
reduced sequences. The sequence of PhoQ (UniProtKB P23837) has 486 residues:

MKKLLRLFFPLSLRVRFLLATAAVVLVLSLAYGMVALIGYSVSEDKTTFRLL
RGESNLFY TLAKWENNKLHVELPENIDKQSPTMTLIYDENGQLLWAQRDVP
WLMKMIQPDWLKSNGFH EIEADVNDTSLLLSGDHSIQQQLQEVREDDDDA
EMTHSVAVNVYPATSRMPKLTIVVVDT IPVELKSSYMVWSWFIYVLSANLLL
VIPLLW VAAWWSLRPIEALAKEVRELEEHNRELLN PATTRELTSLVRNLNR
LLKSERERYDKYRTTLTDLTHSLKTPLAVLQSTLRSLRSEKMSYV SDAEPV
MLEQISRISQQIGYYLHRASMRGGTLLSRELHPVAPLLDNLTSALNKVYQR
KGV NISLDISPEISFVGEQNDFVEVMGNVLDNACKYCLEFVEISARQTDEH
LYIVVEDDGPGI PLSKREVIFDRGQRVDTLRPGQGVGLAVAREITEQYEGKI
VAGESMLGGARMEVIFGRQH SAPKDE

The four mutational sites (A284, V285, S288 and T289) are located at the
interface between the sensor domain and kinase domain. In EVcouplings, we
took 189 residues in the protein-protein interface (positions 188~376; bold
fragment) to search for a more relevant homolog that covers the mutational
sites. The authors of EVcouplings suggest generating >10L redundancy-
reduced sequences*>*°. By tuning bitscore, we took it to be 0.5, resulting in 2,998
redundancy-reduced sequences.

The zero-shot predictions from EVmutation were calculated for the
combinatorial libraries using the model downloaded from the EVcouplings
webapp. When applying MSA transformer, MSAs may need to be subsampled to
make the model memory efficient. We used the hhfilter function in the HHsuite
package’’ to subsample the alignments by maximizing the diversity, as suggested
by the original MSA transformer publication®’. For the MSAs of GBI there were
only 56 sequences, and subsampling was omitted. For the MSAs of PhoQ, the
--diff parameter in hhfilter was taken as 100, which generates 128 sequences. The
zero-shot predictions using MSA transformer were calculated by the mask-filling
protocols using naive probability”.

Unsupervised clustering and clustering sampling. In this work, two unsupervised
clustering algorithms, K-means* and Louvain®, were tested on CLADE. K-means
clustering was computed using the scikit-learn package with default kmeans++
initialization®. Louvain clustering was computed on a shared nearest-neighbor
graph implemented by the Seurat package® (Supplementary Section 6).

In clustering sampling, a cluster is selected according to the cluster-wise
sampling probabilities. The cluster-wise sampling probabilities depend on the
average fitness of selected variants in each cluster. The cluster with higher average
fitness has a higher probability to be selected. In the kth cluster at the ith hierarchy,
the sampling probability is given by

1 X

#cl) Z() Y
P(i) _ jinCy (7)
k > ﬁ >

! ! jinc,(’)

where Cl(i) C Iis the index set of the Ith cluster at the ith hierarchy and I is the
index set of the combinatorial library that gives each variant a unique index. Here,
; is the fitness of the jth variant. Once the cluster is selected, in-cluster sampling is
used to select a variant within this cluster. In one approach, the random sampling
uniformly picks a variant. Another approach is GP-based model sampling. The GP
model is trained on all labeled sequences. The difference for the in-cluster sampling
with conventional GP is that we only pick variants within the selected cluster to
maximize the acquisition function instead of searching globally.

In deep hierarchical clustering, only K-means is applied because it is easy to
control the number of clusters with a single hyperparameter K. For maximum
hierarchy N, the increment of clusters at the ith (i < N) hierarchy is given by K.

The total number of clusters at the maximum hierarchy is the sum of these
numbers % K;- At a new hierarchy, clusters with higher average fitness are divided
i=1
into more subclusters, and clusters with low average fitness are divided into fewer
subclusters or not divided. The kth parent cluster at the (i — 1)th hierarchy will be
divided into L]E’) subclusters at the ith hierarchy, and Lli') is given by
POK] + 1, ifk % ko

@) _
L= K-> [P].(”K,-] +1, ifk = ko ®
j#ko

1 >~ yjistheindex of the cluster having the largest

h —
where ky = arg max; 0

jing'
average fitness from selected variants over all clusters. [x] represents the largest
integer not greater than x.

Here we summarize the workflow of clustering sampling together with the
required hyperparameters. The structure of clusters needs to be determined before
the sampling process, with N+ 1 hyperparameters, including maximum hierarchy
N and the increment of clusters at each hierarchy K. The batch size, NUM, ., is
taken to be the number of variants being screened in parallel in the experiment.
The batch size decides the frequency for updating the sampling probability
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and clusters at the new hierarchy, and a lower batch size usually leads to more
accurate CLADE prediction but higher cost in experiments. During sampling,

the first-round selection chooses NUM,, variants, which are equally picked over
clusters to have a rough coverage of all clusters. After the first-round selection, the
cluster-wise sampling probability is updated for every batch according to equation
(7), and a new hierarchy is generated after every set of NUM,;;qy, Variants is
screened until reaching the maximum hierarchy N. The sampling method to pick
variants from the selected clusters can be either random sampling or GP-based
sampling. The sampling process generates NUM,,,;, labeled variants to train the
downstream supervised learning model. The top M variants predicted by CLADE
are experimentally screened. These numbers—NUM,, NUM,erucny NUMyy;, and
M—are all required to be multiples of batch size NUM,,,,. Two batch sizes, 96 and
1, were used in this work. Batch size 96 was followed according to the small 96-well
plate commonly seen in many experimental systems™* and is referred to as a
medium-throughput system in this work. Batch size 1 was used to simulate systems
with extremely low throughput in which variants need to be screened one by one.
The hyperparameters for medium- and low-throughput systems are provided in
Supplementary Table 3. In application, NUM,;, can be picked according to the
experimental protocol and T can be picked according to the screening capacity.
The other three numbers can be selected according to our experiment and scaled
to suitable values.

For clustering sampling using zero-shot predictions, we only sample within a
subspace of the combinatorial library given by the top-ranking variants from the
zero-shot predictions. The other steps are identical to the case without using zero-
shot predictions.

Ensemble supervised learning. The MLDE package’ was used for the supervised
learning model in this work. An ensemble of 17 regression models optimized by
Bayesian hyperparameter optimizations was used. Fivefold cross-validation was
performed on training data and used to evaluate the performance of each model
measured by mean square errors. Bayesian hyperparameter optimizations were
performed to find the best-performing hyperparameters for each model. After
hyperparameter optimizations, the top three models were picked and averaged to
predict the fitness of unlabeled variants. Details are provided in Supplementary
Section 2 and Supplementary Tables 4 and 5.

Evaluating metrics. Various metrics were used to evaluate the training data
diversity and CLADE outcome. Mean fitness and max fitness were calculated
in three sets: training data, the top M predicted variants and their union. In
selecting the top M predicted variants, only variants that could be constructed
by the recombination of variants in the training data were considered. This
enhances the confidence of predictions by reducing extrapolations, especially
when a less diverse training set is used. ‘Global maximal fitness hit rate’
calculates the frequency with which the global maximal variant is successfully
picked in multiple independent repeats. ‘Normalized discounted cumulative gain
(NDCG)’ is a measure of ranking quality to evaluate the predictive performance
of CLADE on all unlabeled data. Its value is between 0 and 1. When this is close
to 1, it indicates that variants ranked by the predicted fitness are similar to that
ranked by the ground-truth fitness. Mean square error and Pearson correlation
are used to evaluate the performance of the supervised learning for both cross-
validation and testing. ‘Modified functional attribute diversity’ (MFAD) is a
quantity used to measure data diversity™. In this Article we use it to measure
the fitness and sequence diversity for training data. If T is the training data size,
MFAD is given by
o
22 dy
i=1j=1

MFAD = ———, 9
T ©)

where d;; represents the dissimilarity between the ith and jth samples. For fitness
diversity, the dissimilarity is calculated by the difference of fitness between two
samples:

fi
di;lnCSS — ‘yl _ y] | . (10)
For sequence diversity, the dissimilarity is calculated by the Euclidean distance
between two samples of the physicochemical encoding:
dz,_e‘luence — |‘Xi _ Xj{ ‘2 (11)

where x; is the physicochemical encoding feature vector of the ith variant and ||| is
the Euclidean distance.

Data availability

The GB1 dataset” is available at https://www.ncbi.nlm.nih.gov/bioproject/
PRJNA278685/ with accession code PRINA278685. The PhoQ dataset has
been reported in the literature™. The processed version of it used in this work is
owned by the Michael T. Laub laboratory and is available at https://github.com/
WeilabMSU/CLADE. Source data are provided with this paper.

Code availability
All source codes and models are publicly available at https://github.com/
WeilabMSU/CLADE®.
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