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ABSTRACT: The surge of COVID-19 infections has been fueled by new
SARS-CoV-2 variants, namely Alpha, Beta, Gamma, Delta, and so forth. The
molecular mechanism underlying such surge is elusive due to the existence of
28 554 unique mutations, including 4 653 non-degenerate mutations on the
spike protein. Understanding the molecular mechanism of SARS-CoV-2
transmission and evolution is a prerequisite to foresee the trend of emerging
vaccine-breakthrough variants and the design of mutation-proof vaccines and
monoclonal antibodies. We integrate the genotyping of 1 489 884 SARS-CoV-
2 genomes, a library of 130 human antibodies, tens of thousands of mutational
data, topological data analysis, and deep learning to reveal SARS-CoV-2
evolution mechanism and forecast emerging vaccine-breakthrough variants. We show that prevailing variants can be quantitatively
explained by infectivity-strengthening and vaccine-escape (co-)mutations on the spike protein RBD due to natural selection and/or
vaccination-induced evolutionary pressure. We illustrate that infectivity strengthening mutations were the main mechanism for viral
evolution, while vaccine-escape mutations become a dominating viral evolutionary mechanism among highly vaccinated populations.
We demonstrate that Lambda is as infectious as Delta but is more vaccine-resistant. We analyze emerging vaccine-breakthrough
comutations in highly vaccinated countries, including the United Kingdom, the United States, Denmark, and so forth. Finally, we
identify sets of comutations that have a high likelihood of massive growth: [A411S, L452R, T478K], [L452R, T478K, N501Y],
[V401L, L452R, T478K], [K417N, L452R, T478K], [L452R, T478K, E484K, N501Y], and [P384L, K417N, E484K, N501Y]. We
predict they can escape existing vaccines. We foresee an urgent need to develop new virus combating strategies.
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The death toll of coronavirus disease 2019 (COVID-19)
caused by severe acute respiratory syndrome coronavirus 2

(SARS-CoV-2) has exceeded 4.4 million in August 2021.
Tremendous efforts in combating SARS-CoV-2 have led to
several authorized vaccines, which mainly target the viral spike
(S) proteins. However, the emergence of mutations on the S
gene has resulted in more infectious variants and vaccine
breakthrough infections. Emerging vaccine breakthrough SARS-
CoV-2 variants pose a grand challenge to the long-term control
and prevention of the COVID-19 pandemic. Therefore,
forecasting emerging breakthrough SARS-CoV-2 variants is of
paramount importance for the design of new mutation-proof
vaccines and monoclonal antibodies (mABs).
To predict emerging breakthrough SARS-CoV-2 variants, one

must understand the molecular mechanism of viral transmission
and evolution, which is one of the greatest challenges of our
time. SARS-CoV-2 entry of a host cell depends on the binding
between S protein and the host angiotensin-converting enzyme
2 (ACE2), primed by host transmembrane protease, serine 2
(TMPRSS2).1 Such a process inaugurates the host’s adaptive
immune response, and consequently antibodies are generated to
combat the invading virus either through direct neutralization or
non-neutralizing binding.2,3 S protein receptor-binding domain
(RBD) is a short immunogenic fragment that facilitates the S
protein binding with ACE2. Epidemiological and biochemical

studies have suggested that the binding free energy (BFE)
between the S RBD and the ACE2 is proportional to the
infectivity.1,4−7 Additionally, the strong binding between the
RBD and mAbs leads to effective direct neutralization.8−10

Therefore, RBD mutations have dominating impacts on viral
infectivity, mAb efficacy, and vaccine protection rates.
Mutations may occur for various reasons, including random
genetic drift, replication error, polymerase error, host immune
responses, gene editing, and recombinations.11−15 Being
beneficial from the genetic proofreading mechanism regulated
by NSP12 (a.k.a RNA-dependent RNA polymerase) and
NSP14,16,17 SARS-CoV-2 has a higher fidelity in its replication
process than the other RNA viruses such as influenza.
Nonetheless, near 700 non-degenerate mutations are observed
on RBD, contributing many key mutations in emerging variants,
that is, N501Y for Alpha, K417N, E484K, and N501Y for Beta,
K417T, E484K, and N501Y for Gamma, L452R and T478K for
Delta, L452Q and F490S for Lambda, and so forth.18 Given the
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importance of the RBD for SARS-CoV-2 infectivity, vaccine
efficacy, and mAb effectiveness, it is imperative to understand
the mechanism governing RBD mutations.
In June 2020, when there were only 89 nondegenerated

mutations on the RBD and the highest observed mutational
frequency was only around 50 globally, we were able to show
that natural selection underpins SARS-CoV-2 evolution based
on the genotyping of 24 715 SARS-CoV-2 sequences isolated
patients and a topology-based deep learning model for RBD-
ACE2 binding analysis.19 In the same work, we predicted that
RBD residues 452 and 501 “have high chances to mutate into
significantly more infectious COVID-19 strains”.19 Currently,
these residues are the keymutational sites of all prevailing SARS-
CoV-2 variants. We further foresaw a list of 1149 most likely

RBD mutations among 3686 possible RBD mutations.19 Up to
date, every one of the observed 683 RBD mutations belongs to
the list. In April 2021, we demonstrated that all of the 100 most
observed RBD mutations of 651 existing RBD mutations from
506 768 viral genomes had enhanced the binding between RBD
and ACE2, resulting in more infectious variants.18 The odd for
these 100 most observed mutations to be there accidentally is
smaller than one chance in 1.2 nonillions (2100 ≈ 1.2× 1030).
(Note: The average BFE change of 1149 RBDmutations for the
RBD-ACE2 complex is −0.28 kcal/mol. Randomly, each RBD
mutation has a 50% chance to assume a BFE change above or
below −0.28 kcal/mol, which leads to 2100 = 1.276506 × 1030

possible states for 100 mutations.). There is no doubt that
natural selection via viral infectivity, rather than any other

Figure 1. Most significant RBD mutations. (a) The 3D structure of SARS-CoV-2 S protein RBD and ACE2 complex (PDB ID: 6M0J). The RBD
mutations in 10 variants are marked with color. (b) Illustration of the time evolution of 455 ACE2 binding-strengthening RBD mutations (blue) and
228 ACE2 binding-weakening RBD mutations (red). The x-axis represents the date and the y-axis represents the natural log of frequency. There has
been a surge in the number of infections since early 2021. (c) BFE changes of RBD complexes with ACE2 and 130 antibodies induced by 75 significant
RBD mutations. A positive BFE change (blue) means the mutation strengthens the binding, while a negative BFE change (red) means the mutation
weakens the binding. Most mutations, except for vaccine-resistant Y449H and Y449S, strengthen the RBD binding with ACE2. Y449S and K417N are
highly disruptive to antibodies.
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competing theories,11−15 is the dominating mechanism for
SARS-CoV-2 transmission and evolution. This mechanistic
discovery lays the foundation for forecasting future emerging
SASR-CoV-2 variants.
Understanding SARS-CoV-2 variant threats to current

vaccines and mAbs is another urgent issue facing the scientific
community.20 The World Health Organization (WHO)
identified variants of concern (VOCs) and variants of interest
(VOIs). The former describes variants that have an increment in
the transmissibility and virulence or adversely affect the
effectiveness of vaccines, therapeutics, and diagnostics with
clear clinical correlation evidence. The latter describes variants
that carry genetic changes, which are predicted or known to
reduce neutralization by antibodies generated against vacci-
nation, the efficacy of treatments, and affect transmissibility,
virulence, disease severity, immune escape, diagnostics, and so
forth, which cause significant community transmission and
suggest an emerging risk to the public. Currently, WHO listed
four VOCs, that is, variants B.1.1.7 (Alpha),21−23 B.1.351
(Beta),22,24 P.1 (Gamma),22 and B.1.617.2 (Delta)25), and four
VOIs, that is, variants B.1.525 (Eta),26 B.1.526 (Iota),26,27

B.1.617.1 (Kappa),28 C.37 (Lambda),29 and B.1.621 (Mu) (a
general introduction about the prevailing and emerging variants
is given in Section S1 of the Supporting Information). Our
hypothesis is that the severity of variants to infectivity, vaccine
efficacy, and mAbs effectiveness depends mainly on how the
associated RBD mutations impact the binding with ACE2 and
antibodies. On the basis of this hypothesis, we collected and
analyzed a library of antibodies and unveiled that most of the
RBD mutations would weaken the binding of S protein and
antibodies and disrupt the efficacy and reliability of antibody
therapies and vaccines.20 We predicted “the urgent need to
develop new mutation-resistant vaccines and antibodies and
prepare for seasonal vaccination” in early 2021.20 We further
identified vaccine-escape (i.e., vaccine-breakthrough) mutations
and fast-growing mutations.18 Our predictions of the threats
from VOCs and VOIs were in great agreement with
experimental data.30

The objective of this work is to forecast emerging SARS-CoV-
2 variants that pose an imminent threat to combating COVID-
19 and long-term public health. To this end, we carry out an
RBD-specific analysis of SARS-CoV-2 comutations involving a
wide variety of combinations of 683 unique single mutations on
the RBD. We take a unique approach that integrates viral
genotyping of 1 489 884 complete genome sequences isolated
from patients, algebraic topology algorithms that won the
worldwide competition in computer-aided drug discovery,31

deep learning models trained with tens of thousands of
mutational data points,20,30 and a library of 130 SARS-CoV-2
antibody structures. By analyzing the frequency, binding free
energy (BFE) changes, and antibody disruption counts of RBD
comutations, we reveal that nine RBD comutation sets, namely
[L452R, T478K], [L452Q, F490S], [E484K, N501Y], [F490S,
N501Y], [S494P, N501Y], [K417T, E484K, N501Y], [K417N,
L452R, T478K], [K417N, E484K, N501Y], and [P384L,
K417N, E484K, N501Y], may strongly disrupt existing vaccines
and mAbs with relatively high infectivity and transmissibility
among the populations. We predict that low-frequency
comutation sets [A411S, L452R, T478K], [L452R, T478K,
N501Y], [V401L, L452R, T478K], and [L452R, T478K,
E484K, N501Y] are on the path to become dangerous new
variants. The associated new mutations, P384L, V401L, and
A411S, call for the new design of boosting vaccines and mAbs.

■ RESULTS

Vaccine-Breakthrough S Protein RBD Mutations. To
understand the molecular mechanisms of vaccine-escape
mutations, we analyze single nucleotide polymorphisms
(SNPs) of 1 489 884 complete SARS-CoV-2 genome sequences,
resulting in 683 nondegenerate RBD mutations and their
associated frequencies. A full set of mutation information is
available on our interactive web page Mutation Tracker
(https://users.math.msu.edu/users/weig/SARS-CoV-2_
Mutation_Tracker.html, accessed August 5, 2021). The
infectivity of each mutation is mainly determined by the
mutation-induced BFE change to the binding complex of RBD
and ACE2. To estimate the impact of eachmutation on vaccines,
we collect a library of 130 antibody structures (Supporting
Information S2.1.2), including Food and Drug Administration
(FDA)-approved mAbs from Eli Lilly and Regeneron. For a
given RBDmutation, its number of antibody disruptions is given
by the number of antibodies whose mutation-induced antibody-
RBD BFE changes are smaller than −0.3 kcal/mol (a list of
names for antibodies that are disrupted by mutations can be
found in the Supporting Information S2.1.1). BFE changes
following mutations are predicted by our deep learning model,
TopNetTree.32 We have created an interactive web page,
Mutat ion Analyzer (https://weilab.math.msu.edu/
MutationAnalyzer/, accessed August 5, 2021), to list all RBD
mutations, their observed frequencies, their RBD-ACE2 BFE
changes following mutations, their number of antibody
disruptions, and various ranks. Figure 1 illustrates RBD
mutations associated with prevailing SARS-CoV-2 variants,
time evolution trajectories of all RBD mutations, and the BFE
changes of RBD-ACE2 and 130 RBD-antibodies induced by 75
significant mutations. A summary of our analysis is given in
Table 1.
First, the 10 most observed or fast-growing RBD mutations

are N501Y, L452R, T478K, E484K, K417T, S477N, N439K,
K417N, F490S, and S494P, as shown in Table 1. Inclusively,
these top mutations strengthen their BFEs and become more
infectious, following the natural selection mechanism.19 Figure
1b shows that the frequencies of the top three mutations
increased dramatically since 2021 due to Alpha, Beta, Gamma,
Delta, and other variants. Second, among the top 25 most
observed RBD mutations, T478K, L452Q, N440K, L452R,
N501Y, N501T, F490S, A475V, and P384L are the 8 most
infectious ones judged by their ability to strengthen the binding
with ACE2, as shown in Figure 1c. The BFE changes of S protein
and ACE2 for mutation T478K is nearly 1.00 kcal/mol, which
strongly enhances the binding of the RBD−ACE2 complex.33

Together with L452R (BFE change: 0.58 kcal/mol), T478K
makes Delta the most infectious variant in VOCs. Third, among
the top 25 most observed RBD mutations, Y449S, S494P,
K417N, F490S, L452R, E484K, K417T, E484Q, L452Q, and
N501Y are the 10most antibody disruptive ones, judged by their
interactions with 130 antibodies shown in Figure 1c. It can be
seen that mutations L452R, E484K, K417T, K417N, F490S, and
S494P disrupt more than 30% of antibody-RBD complexes,
while mutations E484K and K417T may disrupt nearly 30%
antibody-RBD complexes, indicating their disruptive ability to
the efficacy and reliability of antibody therapies and vaccines.
The most dangerous mutations are the ones that are both
infectivity-strengthening and antibody disruptive. Four RBD
mutations, N501Y, L452R, F490S, and L452Q, appear in both
lists and are key mutations in WHO’s VOC and VOI lists.
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Among them, F490S and L452Q are the key RBD mutations in
Lambda making Lambda a more dangerous emerging variant
than Delta. Note that high-frequency mutation S477N does not
significantly weaken any antibody and RBD binding and thus
does not appear in any prevailing variants.
Vaccine-Breakthrough S Protein RBD Comutations.

The recent surge in COVID-19 infections is due to the
occurrence of RBD comutations that combine two or more
infectivity-strengthening mutations. The most dangerous future
SARS-CoV-2 variants must be RBD comutations that combine
infectivity-strengthening mutation(s) with antibody disruptive
mutation(s). A list of 1 139 244 RBD comutations that are
decoded from 1 489 884 complete SARS-CoV-2 genome
sequences can be found in Section S2.1.3 of the Supporting
Information, and all of the non-degenerate RBD comutations
with their frequencies, antibody disruption counts, total BFE
changes, and the first detection dates and countries can be found
in Section S2.1.4 of the Supporting Information. Figure 2
illustrates the properties of S protein RBD 2, 3, and 4
comutations. The height of each bar shows the predicted total
BFE change of each set of comutations on RBD, the color
represents the natural log of frequency for each set of RBD

comutations, and the number at the top of each bar is the AI-
predicted number of antibody-RBD complexes that each set of
RBD comutations may disrupt based on a total of 130 RBD and
antibody complexes. Notably, for a specific set of comutations
the higher the number at the top of the bar is, the stronger ability
to break through vaccines will be. From Figure 2, RBD 2
comutation set [L452R, T478K] (Delta variant) has the highest
frequency (219 362) and the highest BFE change (1.575 kcal/
mol). Moreover, the Delta variant would disrupt 40 antibody-
RBD complexes, suggesting that Delta would not only enhance
the infectivity but also be a vaccine breakthrough variant.
Moreover, [L452Q, F490S] (Lambda) is another comutation
with high frequency, high BFE changes (1.421 kcal/mol), and
high antibody disruption count (59). In addition, Lambda is
considered to be more dangerous than Delta due to its higher
antibody disruption count. Further, [R346K, E484K, N501Y]
(Mu variant) has a BFE change of 0.768 kcal/mol and high
antibody disruption count (60). It is not as infectious as Delta
and Lambda, but has a similar ability as Lambda in escaping
vaccines. Note that among all VOCs and VOIs, Beta has the
highest ability to break through vaccines, but its infectivity is
relatively low (BFE change: 0.656 kcal/mol). Furthermore,
high-frequency 2 comutation sets [E484K, N501Y], [F490S,
N501Y], and [S494P, N501Y] are all considered to be the
emerging variants that have the potential to escape vaccines.
From Figure 2, 3 comutation sets [R345K, E484K, N501Y]
(Mu), [K417T, E484K, N501Y] (Gamma), and [K417N,
E484K, N501Y] (Beta) draw our attention. They are all the
prevailing 3 comutations with moderate BFE changes but very
high antibody disruption count (more than 60). With a BFE
change of 1.4 kcal/mol and antibody disruption count of 82,
comutation set [K417N, L452R, T478K] (Delta plus) appears
to be more dangerous than all of the current VOCs and VOIs.
For 4 comutations in Figure 2c, [P384L, K417N, E484K,
N501Y] (Beta plus) could penetrate all vaccines due to its
highest antibody disruption count of 101. We would like to
address that all of the comutation sets, except for [Y449S,
N501Y] in Figure 2, have positive BFE changes, following the
natural selection. We anticipate that although comutation sets
[V401L, L452R, T478K], [L452R, T478K, N501Y], [A411S,
L452R, T478K], and [L452R, T478K, E484K, N501Y] have
relatively low frequencies at this point, they may become
dangerous variants soon due to their large BFE changes and
antibody disruption counts.
It is important to understand the general trend of SARS-CoV-

2 evolution. To this end, we carry out the statistical analysis of
RBD comutations. Among 1 489 884 SARS-CoV-2 genome
isolates, a total of 1113 distinctive 2 comutations, 612 distinctive
3 comutations, and 217 distinctive 4 comutations are found.
Figure 3a−c illustrate the 2D histograms of 2, 3, and 4
comutations, respectively. The x-axis is the number of antibody
disruption counts, and the y-axis shows the total BFE change.
Figure 3a shows that there are 82 RBD 2 comutations that have
BFE changes in the range of [0.600, 0.799] kcal/mol and will
disruptive 40 to 49 antibodies. According to Figure 3b, there are
170 unique 3 comutations that have large BFE changes of S
protein and ACE2 in the range of [1.500, 1.999] kcal/mol. In
Figure 3c, it is seen that almost all of the 4 comutations on RBD
have the BFE changes greater than 0.5 kcal/mol and weaken the
binding of S protein with at least 60 antibodies. Figure 3d−f are
the histograms of total BFE changes, natural log of frequencies,
and antibody disruption counts for RBD 2, 3, and 4 comutations.
It can be found that most of the 2, 3, and 4 RBD comutations

Table 1. Top 25 Most Observed S Protein RBD Mutationsa

worldwide BFE change antibody disruption

mutation count rank change rank count ratio rank

N501Y 744354 1 0.5499 30 24 18.46 160
L452R 259345 2 0.5752 28 39 30.0 98
T478K 239619 3 0.9994 2 2 1.54 557
E484K 84167 4 0.0946 272 38 29.23 104
K417T 37748 5 0.0116 433 37 28.46 107
S477N 32673 6 0.0180 422 0 0.0 650
N439K 16154 7 0.1792 159 11 8.46 272
K417N 8399 8 0.1661 176 53 40.77 61
F490S 5617 9 0.4406 52 51 39.23 67
S494P 5119 10 0.0902 282 62 47.69 46
N440K 3379 11 0.6161 22 0 0.0 645
E484Q 3229 12 0.0057 442 30 23.08 130
L452Q 2858 13 0.9802 3 27 20.77 144
A520S 2727 14 0.1495 199 3 2.31 497
N501T 2054 15 0.4514 48 17 13.08 202
R357K 1973 16 0.1393 208 5 3.85 388
A522S 1959 17 0.1283 221 2 1.54 543
R346K 1686 18 0.1234 229 6 4.62 380
V367F 1395 19 0.1764 161 0 0.0 637
N440S 1361 20 0.1499 197 2 1.54 542
P384L 1155 21 0.2681 105 18 13.85 199
Y449S 1146 22 −0.8112 632 85 65.38 16
D427N 1106 23 −0.1133 558 1 0.77 589
R346S 1037 24 0.0374 386 20 15.38 182
A475V 891 25 0.3069 94 10 7.69 289

aHere, BFE change refers to the BFE change for the S protein and
human ACE2 complex induced by a single-site S protein RBD
mutation. A positive mutation-induced BFE change strengthens the
binding between S protein and ACE2, which results in more
infectious variants. Counts of antibody disruption represent the
number of antibody and S protein complexes disrupted by a specific
RBD mutation. Here, an antibody and S protein complex is to be
disrupted if its binding affinity is reduced by more than 0.3 kcal/
mol.18 In addition, we calculate the antibody disruption ratio (%),
which is the ratio of the number of disrupted antibody and S protein
complexes over 130 known complexes. Ranks are computed from 683
observed RBD mutations.
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have positive total BFE changes, and the larger number of RBD
comutations is, the higher number of antibody disruption count
will be. In summary, comutations with a larger number of
antibody disruptive counts and high BFE changes will grow
faster. We anticipate that when most of the population is
vaccinated, vaccine-resistant mutations will become a more
viable mechanism for viral evolution.
Emerging Breakthrough Variants in COVID-19 Devas-

tated Countries. Our analysis of RBD mutations reveals the
recent global surge of infections due to RBD comutations.
However, due to the difference in the rate of vaccination,
COVID-19 control and prevention measures, medical infra-
structure, population structures, and so forth, each country may
have a different pattern of RBD comutations and follow a
different trajectory of SARS-CoV-2 transmission and evolution.
Therefore, we analyze the RBD 2, 3, and 4 comutations in 20
countries that have the high frequency of SARS-CoV-2 genome
isolates, including the United Kingdom (UK), the United States
(US), Denmark (DK), Brazil (BR), Germany (DE), Nether-
lands (NL), Sweden (SE), Italy (IT), Canada (CA), France
(FR), India (IN), and Belgium (BE), as well as Ireland (IE),
Spain (ES), Chile (CL), Portugal (PT), Mexico (MX),
Singapore (SG), Turkey (TR), and Finland (FL). Figure 4
shows the time evolution of 2, 3, and 4 comutations on the S

protein RBD of SARS-CoV-2 from January 01, 2021, to July 31,
2021, in 12 COVID-19 devastated countries. The plots of the
other eight countries can be found in the Supporting
Information S3. The top five high-frequency comutations in
each country are marked by red, blue, green, yellow, and pink
lines. The cyan line is for the RBD comutation set [L452Q,
F490S] on the Lambda variant, which is more penetrative to
vaccines than the Delta. Light gray lines mark the other
comutations. The RBD comutation set [L452R, T478K]
(Delta) with 1.575 kcal/mol BFE change was first found in IN
in early January 2021, and the number of this variant increases
rapidly around the world in a short period. Later on, in early
March 2021, the UK, US, DK, DE, NL, SE, IT, FR, BE reported
the appearance of [L452R, T478K] in early March 2021, and
eventually [L452R, T478K] became a dominant comutation,
which is consistent to the finding that Delta variant remains
largely susceptible to infection. The comutation set [K417T,
E484K, N501Y] (Gamma) with BFE change of 0.656 kcal/mol
was first found in Brazil in early January 2021 and then it became
the most dominant comutation in Brazil and Canada, and the
second dominant comutation in the US, NL, SE, IT, FR, IN, and
BE. Notably, comutaion set [G446V, L452R, T478K] in the UK
with BFE change of 1.733 kcal/mol and 46 antibody disruption
counts appears to be a dangerous set of comutations that may

Figure 2. Properties of RBD comutations. (a) Illustration of RBD 2 comutations with a frequency greater than 90. (b) Illustration of RBD 3
comutations with a frequency greater than 30. (c) Illustration of RBD 4 comutations with a frequency greater than 20. Here, the x-axis lists RBD
comutations and the y-axis represents the predicted total BFE change between S RBD and ACE2 of each set of RBD comutations. The number on the
top of each bar is the AI-predicted number of antibody and RBD complexes that may be significantly disrupted by the set of RBD comutations, and the
color of each bar represents the natural log of frequency for each set of RBD comutations. (Please check the interactive HTML files in the Supporting
Information S2.2.4 for a better view of these plots.)
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affect the infectivity and vaccine/antibodies efficacy shortly.
Moreover, comutation set [N501Y, A520S] has quickly
increased IN and BE since April 16, 2021. Considering the
BFE change and antibody disruptive count of comutation set
[N501Y, A520S] is 0.699 and 27, we suggest monitoring this
variant in IN and BE. Furthermore, the comutation set [K417N,
T470N, E484K, N501T] that was first found in BR on April 06,
2020 has a BFE change of 0.625 kcal/mol and antibody
disruption count 84 is an emerging vaccine breakthrough
comutation in Brazil. In addition, comutation set [L452Q,
F490S] (cyan lines) on Lambda variant was recently drawing
much attention due to its potential ability to resist vaccines and
enhance the infectivity, which is consistent with our predictions
that comutation set [L452Q, F490S] has a relatively significant
BFE change of S protein and ACE2 (1.421 kcal/mol) and would
reduce the RBD binding with 59 antibodies. Lambda has already
spread out in every country in Figure 4.

■ DISCUSSION

Although our predictions achieve high correlation results with
experimental data, some existing limitations may hinder us from
speeding up the calculation or improving the performance. First,
the number of complete SARS-CoV-2 sequences increases
rapidly. Usually, it takes a few days to decode SNPs from
hundreds of thousands of complete SARS-CoV-2 sequences.
Second, we assume that the RBD mutations in our model are
independent. Therefore, our predicted BFE changes for multiple
RBD mutations are additive. This assumption is a good
approximation for a few isolated RBD mutations. Most of the
VOCs and VOIs involve no more than three isolated RBD

comutations. However, Omicron variant has 15 RBD
comutations, for which the validity of our method was examined
elsewhere.34 Typically, a 3D mutant structure of the binding
complex is the key component to further improve the prediction
accuracy for spatially correlated multiple comutations.

■ METHODS

In this section, the work flow of deep learning-based BFE change
predictions of protein−protein interactions induced by
mutations for the present SARS-CoV-2 variant analysis and
prediction will be first introduced, which includes four steps as
shown in Figure 5: (1) Data preprocessing; (2) training data
preparation; (3) feature generations of protein−protein
interaction complexes; (4) prediction of protein−protein
interactions by deep neural networks (see Section S5 in
Supporting Information). Next, the validation of our machine
learning-based model will be demonstrated, suggesting con-
sistent and reliable results compared to the experimental deep
mutations data.

Data Preprocessing and SNP Genotyping. The first step
is to preprocess the original SARS-CoV-2 sequences data. In this
step, a total of 1 489 884 complete SARS-CoV-2 genome
sequences with high coverage and exact collection date are
downloaded from the GISAID database36 (https://www.gisaid.
org/) as of August 05, 2021. Complete SARS-CoV-2 genome
sequences are available from the GISAID database.36 Next, the
1 489 884 complete SARS-CoV-2 genome sequences were
rearranged according to the reference genome downloaded
from the GenBank (NC_045512.2),37 and multiple sequence
alignment (MSA) is applied by using Cluster Omega with

Figure 3. (a) Two-dimensional histograms of antibody disruption count and total BFE changes for 2 comutations (unit: kcal/mol). (b) Two-
dimensional histograms of antibody disruption count and total BFE changes (unit: kcal/mol) for RBD 3 comutations. (c) Two-dimensional
histograms of antibody disruption count and total BFE changes (unit: kcal/mol) for RBD 4 comutations. (d) The histograms of total BFE changes
(unit: kcal/mol) for RBD comutations. (e) The histograms of the natural log of frequency for RBD comutations. (f) The histograms of antibody
disruption count for RBD comutations. In panels a−c, the color bar represents the number of comutations that fall into the restriction of x-axis and y-
axis. The reader is referred to the web version of these plots in the Supporting Information S2.2.2 and S2.2.3.
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default parameters. Then, single nucleotide polymorphism
(SNP) genotyping is applied to measure the genetic variations
between different isolates of SARS-CoV-2 by analyzing the
rearranged sequences,38,39 which is of paramount importance for

tracking the genotype changes during the pandemic. The SNP
genotyping captures all of the differences between patients’
sequences and the reference genome, which decodes a total of
28 478 unique single mutations from 1 489 884 complete SARS-

Figure 4. Illustration of the time evolution of 2, 3, and 4 comutations on the S protein RBD of SARS-CoV-2 from January 01, 2021, to July 31, 2021, in
12 COVID-19 devastated countries: the United Kingdom (UK), the United States (US), Denmark (DK), Brazil (BR), Germany (DE), Netherlands
(NL), Sweden (SE), Italy (IT), Canada (CA), France (FR), India (IN), and Belgium (BE). The y-axis represents the natural log frequency of each
RBD comutation. The top five high-frequency comutations in each country are marked by red, blue, green, yellow, and pink lines. The cyan line is for
the RBD comutation [L452Q, F490S] on the Lambda variant, and the other comutations are marked by light gray lines. Notably, there are two blues
lines in the panel of FR due to the same frequency of [K417N, E484K, N501Y] and [E484K, N501Y]. (Please check the interactive HTML files in the
Supporting Information S2.2.1 for a better view of these plots.)

Figure 5. (a) Illustration of genome sequence data preprocessing and BFE change predictions. (b) Comparison of experimental CT-P59 IC50 fold
change (reduction)35 and predicted BFE changes induced by mutations L452R and T478K. (c) Comparison of predicted BFE changes and relative
luciferase units25 for pseudovirus infection changes of ACE2 and S protein complex induced by mutations L452R and N501Y.
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CoV-2 genome sequences. Among them, 4653 non-degenerate
mutations on S protein and 683 non-degenerate mutations on
the S protein RBD (S protein residues from 329 to 530) are
detected. In this work, the comutation analysis is more crucial
than the unique single mutation analysis. Therefore, for each
SARS-CoV-2 isolate, we extract the all of the mutations on S
protein RBD, which is called an RBD comutation for a specific
isolates. By doing this, a total of 1 139 244 RBD comutations are
captured. Notably, the SARS-CoV-2 unique single mutations in
the world is available at Mutation Tracker (https://users.math.
msu.edu/users/weig/SARS-CoV-2_Mutation_Tracker.html,
accessed August 5, 2021). The analysis of RBD mutations is
available at Mutation Analyzer (https://weilab.math.msu.edu/
MutationAnalyzer/, accessed August 5, 2021).
Methods for BFE Change Predictions. In this section, the

process of themachine learning-based BFE change predictions is
introduced. Once the data preprocessing and SNP genotyping is
carried out, we will first proceed with the training data
preparation process, which plays a key role in reliability and
accuracy. A library of 130 antibodies and RBD complexes as well
as an ACE2-RBD complex are obtained from Protein Data Bank
(PDB). RBD mutation-induced BFE changes of these
complexes are evaluated by the following machine learning
model. Notably, the BFE changes ΔΔGBind = ΔGBind

WT − ΔGBind
MT ,

where ΔGBind
WT is the BFE of the wild type (WT) of an S RBD-

ACE2 or RBD-antibody complex, and ΔGBind
MT is the BFE of the

mutant type (MT) of an S RBD-ACE2 or RBD-antibody
complex. According to the emergency and the rapid change of
RNA virus, it is rare to have massive experimental BFE change
data of SARS-CoV-2, while on the other hand next-generation
sequencing data is relatively easy to collect. In the training
process, the data set of BFE changes induced bymutations of the
SKEMPI 2.0 data set40 is used as the basic training set, while
next-generation sequencing data sets are added as assistant
training sets. The SKEMPI 2.0 contains 7085 single- and
multipoint mutations and 4169 elements of that in 319 different
protein complexes used for the machine learning model training.
The mutational scanning data consists of experimental data of
the binding of ACE2 and RBD induced mutations on ACE241

and RBD,42,43 and the binding of CTC-445.2 and RBD with
mutations on both protein.43

Next, the feature generations of protein−protein interaction
complexes are performed. The element-specific algebraic
topological analysis on complex structures is implemented to
generate topological bar codes.30,44−46 In addition, biochemistry
and biophysics features such as Coulomb interactions, surface
areas, electrostatics, and so forth are combined with topological
features.20 The detailed information about the topology-based
models will be demonstrated in Section 4.3. Lastly, deep neural
networks for SARS-CoV-2 are constructed for the BFE change
prediction of protein−protein interactions.30 The detailed
descriptions of data set and machine learning model are found
in the literature19,30,47 and are available at TopNetmAb
(https://github.com/WeilabMSU/TopNetmAb, accessed Au-
gust 5, 2021).48

Moreover, it is noteworthy to mention that the total BFE
changes are proportional to the transmissibility/infectivity of a
given variant. Although the total BFE changes reported in this
work are small (no more than 2 kcal/mol), they do affect the
transmissibility a lot. Generally, by comparing infection levels in
untreated cultures that are antibody treated, antiviral activity can
be measured by a value called IC50 (the half-maximal inhibitory
concentration).49 The IC50 varied depending on the form of

infection and cell lines used, indicating it can reveal the
transmissibility. Notably, IC50 is approximately equal to
dissociation constant (KD).

50 In addition, binding free energy
ΔG is equal to RT ln(KD). Here, R is the gas constant with a
value of 1.987 cal K−1 mol−1, and T is the temperature of the
reaction in Kelvin.51 Therefore, if ΔGBind

MT is k times greater than
ΔGBind

WT , then IC50 of mutant type is ek times greater than IC50 of
wild type. In other words, the mutant variant is ek times more
transmissible than the original variant.

Feature Generation for Machine Learning Model.
Among all features generated for machine learning prediction,
the application of topology theory takes the model to a whole
new level. Those summarized as other inputs are called auxiliary
features and are described in Section S4 of the Supporting
Information. In this section, a brief introduction about the
theory of topology will be discussed. Algebraic topology44,45 has
achieved tremendous success in many fields including
biochemical and biophysical properties.46 Special treatment
should be implemented for biology applications to describe
element types and amino acids in polypeptides mathematically,
which have element-specific and site-specific persistent homol-
ogy.19,32 To construct the algebraic topological features on
protein−protein interaction model, a series of element subsets
for complex structures should be defined, which considers atoms
from the mutation sites, atoms in the neighborhood of the
mutation site within a certain distance, atoms from antibody
binding site, atoms from antigen binding site, and atoms in the
system that belong to type of {C, N, O}, (E)ele . Under the
element/site-specific construction, simplicial complexes is
constructed on point clouds formed by atoms. For example, a
set of independent k + 1 points is from one element/site-specific
set U = {u0, u1, ..., uk}. The k-simplex σ is a convex hull of k + 1
independent points U, which is a convex combination of
independent points. For example, a 0-simplex is a point and a 1-
simplex is an edge. Thus, a m-face of the k-simplex with m + 1
vertices forms a convex hull in a lower dimension m < k and is a
subset of the k + 1 vertices of a k-simplex, so that a sum of all its
(k − 1) faces is the boundary of a k−simplex σ as

u u u( 1) , ..., , ...,k
i

k
i

i k
1

0∑σ∂ = − ⟨ ̂ ⟩
= (1)

where ⟨u0, ..., ûi, ..., uk⟩ consists of all vertices of σ excluding ui.
The collection of finitely many simplices is a simplicial complex.
In the model, the Vietoris-Rips (VR) complex (if and only if

u r u r( , ) ( , ) Øi ij j
∩ ≠

′
  for j, j′ ∈ [0,k]) is for dimension 0

topology, and alpha complex (if and only if u r( , ) Øu iij j
∩ ≠σ∈  )

is for point cloud of dimensions 1 and 2 topology.46

The k-chain ck of a simplicial complex K is a formal sum of the
k-simplices in K, which is ck =∑αiσi, where αi is coefficients and
is chosen to be 2 . Thus, the boundary operator on a k-chain ck
is

ck k i k i∑ α σ∂ = ∂ (2)

such that ∂k: Ck → Ck−1 and follows from that boundaries are
boundaryless ∂k−1 ∂k = Ø. A chain complex is

C K C K C K C K( ) ( ) ( ) ( ) 0i i 1 1 0
i i i1 1 2 1 0··· ⎯→⎯ → ⎯→⎯ ··· → → →

∂ ∂
−

∂ ∂ ∂ ∂+ −

(3)

as a sequence of complexes by boundary maps. Therefore, the
Betti numbers are given as the ranks of kth homology group Hk
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as βk = rank (Hk), whereHk = Zk/Bk, k-cycle group Zk and the k-
boundary group Bk. The Betti numbers are the key for
topological features, where β0 gives the number of connected
components, such as number of atoms, β1 is the number of
cycles in the complex structure, and β2 illustrates the number of
cavities. This presents abstract properties of the 3D structure.
Finally, only one simplicial complex could not give the whole

picture of the protein−protein interaction structure. A filtration
of a topology space is needed to extract more properties. A
filtration is a nested sequence such that

K K K KØ m0 1= ⊆ ⊆ ··· ⊆ = (4)

Each element of the sequence could generate the Betti numbers
{β0, β1, β2} and, consequentially, a series of Betti numbers in
three dimensions is constructed and applied to be the
topological fingerprints in Figure 5a.

■ VALIDATIONS

The validation of our machine learning predictions for
mutation-induced BFE changes compared to experimental
data has been demonstrated in recently published papers.20,30

First, we showed high correlations of experimental deep
mutational enrichment data and predictions for the binding
complex of SARS-CoV-2 S protein RBD and protein CTC-
445.220 and the binding complex of SARS-CoV-2 RBD and
ACE2.30 In comparison with experimental data on the impacts
of emerging variants on antibodies in clinical trials, our
predictions achieve a Pearson correlation at 0.80.30 Considering
the BFE changes induced by RBDmutations for ACE2 and RBD
complex, predictions on mutations L452R and N501Y have a
highly similar trend with experimental data.30 Meanwhile, as we
presented in ref 18 high-frequency mutations are all having
positive BFE changes. Moreover, for multimutation tests our
BFE change predictions have the same pattern with
experimental data of the impact of SARS-CoV-2 variants on
major antibody therapeutic candidates, where the BFE changes
are accumulative for comutations.30

Recent studies on potency of mAbCT-P59 in vitro and in vivo
against Delta variants35 show that the neutralization of CT-P59
is reduced by L452R (13.22 ng/mL) and is retained against
T478K (0.213 ng/mL). In our predictions,30 L452R induces a
negative BFE change (−2.39 kcal/mol), and T478K produces a
positive BFE change (0.36 kcal/mol). In Figure 5b, the fold
changes for experimental and predicted values are presented.
Additionally, in Figure 5c a comparison of the experimental
pseudovirus infection changes and predicted BFE change of
ACE2 and S protein complex induced by mutations L452R and
N501Y, where the experimental data is obtained in a reference to
D614G and reported in relative luciferase units.25 It indicates
that the binding of RBD and ACE2 dominates the infectivity of
SARS-CoV-2. More details can be found in Section S6 of
Supporting Information.
The SARS-CoV-2 SNP data in the world is available at

Mutation Tracker (https://users.math.msu.edu/users/weig/
SARS-CoV-2_Mutation_Tracker.html, accessed August 5,
2021). The most observed SARS-CoV-2 RBD mutations are
available at Mutation Analyzer (https://weilab.math.msu.edu/
MutationAnalyzer/, accessed August 5, 2021). The Top-
NetTree model is available at TopNetmAb (https://github.
com/WeilabMSU/TopNetmAb, accessed August 5, 2021).48

■ ASSOCIATED CONTENT

*sı Supporting Information
The Supporting Information is available free of charge at
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The supplementary zip file contains two folders: one
folder with 4 csv/xlsx files and the other folder with 29
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folder; (S2.1.1) antibodies_disruptmutation.csv shows
the name of antibodies disrupted by mutations; (S2.1.2)
antibodies.csv lists the PDB IDs for all of the 130 SARS-
CoV-2 antibodies; (S2.1.3) RBD_comutation_resi-
due_08052021.csv lists all of the SNPs of RBD
comutations up to August 05, 2021; (S2.1.4) Track_Co-
mutation_08052021.xlsx preserves all of the non-
degenerate RBD comutations with their frequencies,
antibody disruption counts, total BFE changes, and the
first detection dates and countries; (S2.2 HTML folder)
total of 29HTML files containing (S2.2.1) 20HTML files
for the for the time evolution of 2, 3, and 4 comutations on
the S protein RBD of SARS-CoV-2 from January 01, 2021
to July 31, 2021, in 12 COVID-19 devastated countries;
(S2.2.2) Three 2D histograms are given for antibody
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validations of our machine learning predictions with
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