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Abstract

Recent advances have shown that implicit bias of gradient descent on over-
parameterized models enables the recovery of low-rank matrices from linear mea-
surements, even with no prior knowledge on the intrinsic rank. In contrast, for
robust low-rank matrix recovery from grossly corrupted measurements, over-
parameterization leads to overfitting without prior knowledge on both the intrin-
sic rank and sparsity of corruption. This paper shows that with a double over-
parameterization for both the low-rank matrix and sparse corruption, gradient de-
scent with discrepant learning rates provably recovers the underlying matrix even
without prior knowledge on neither rank of the matrix nor sparsity of the corrup-
tion. We further extend our approach for the robust recovery of natural images by
over-parameterizing images with deep convolutional networks. Experiments show
that our method handles different test images and varying corruption levels with
a single learning pipeline where the network width and termination conditions do
not need to be adjusted on a case-by-case basis. Underlying the success is again
the implicit bias with discrepant learning rates on different over-parameterized
parameters, which may bear on broader applications. Our code is available at
https://github.com/ChongYou/robust-image-recovery.

1 Introduction

Learning over-parameterized models, which have more parameters than the problem’s intrinsic di-
mension, is becoming a crucial topic in machine learning [1-11]. While classical learning theories
suggest that over-parameterized models tend to overfit [12], recent advances showed that an opti-
mization algorithm may produce an implicit bias that regularizes the solution with desired properties.
This type of results has led to new insights and better understandings on gradient descent for solving
several fundamental problems, including logistic regression on linearly separated data [1], compres-
sive sensing [2, 3], sparse phase retrieval [4], nonlinear least-squares [5], low-rank (deep) matrix
factorization [6-9, 13], and deep linear neural networks [10, 11], etc.

Inspired by these recent advances [1-11], in this work we present a new type of practical methods
for robust recovery of structured signals via model over-parameterization. In particular, we aim to
learn an unknown signal X, € R™*"™ from its grossly corrupted linear measurements

y = A(X*) + s, (D
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Figure 1: Learning curves for robust recovery of low-rank matrices (a) and natural images (b). (a) Clas-
sical matrix factorization (MF) method with ¢; penalty requires exact parameterization (left blue), otherwise
over-parameterization leads to overfitting without early termination (left black). (b) Previous deep image prior
(DIP) method with ¢; penalty requires tuning network width (with width = 64, right blue) or early termination
(with width = 192, right black). For both problems, our double over-parameterization (DOP) method achieves
superior performance and requires neither early termination nor precise parameterization (red curves).

where the linear operator A(-) : R"*™ — R™, and s, € R™ is a (sparse) corruption vector. Variants
of the problem appear ubiquitously in signal processing and machine learning [14—19].

Robust recovery of low-rank matrices. The recovery of a low-rank matrix X, has broad ap-
plications in face recognition (where self-shadowing, specularity, or saturation in brightness can
be modeled as outliers), video surveillance (where the foreground objects are usually modeled as
outliers) and beyond [14]. A classical method for low-rank matrix recovery is via nuclear norm
minimization', which is provably correct under certain incoherent conditions [14,20]. However,
minimizing nuclear norm involves expensive computations of singular value decomposition (SVD)
of n-by-n matrices [21], which prohibits its application to problem size of practical interest.

The computational challenge has been addressed by recent development of matrix factorization (MF)
methods [18,22]. Such methods are based on parameterizing the signal X € R"™*" via the factor-
ization X = UUT [23], and solving the associated nonconvex optimization problem

min _[JA(UUT) —y],. )
UERn*"

In above, the /1-norm penalty is adopted to account for sparse noise’ s,, and 7 denotes the rank
of X,. While theoretical guarantees for the correctness of (2) can be established [18,29-31] (see
Figure 1a, dotted blue curve), the result relies on the exact information of the rank of X,, which
is usually not available a priori in practice. On the other hand, if U € R™*" in (2) is replaced
with an over-parameterized factor U € R™*™_ for which r is no longer required, the method easily
overfits the corruptions and does not produce the desired solution X, unless we do some early
stopping [32,33] (see Figure 1a, dashed black curve).

Robust recovery of natural images. Robust recovery of natural images X, is often considered as
a challenging task due to the lack of universal mathematical modeling for natural images. While
sparse and low-rank based methods have been demonstrated to be effective for years [34-39], the
state-of-the-art performance is obtained by learned priors with deep convolutional neural networks.
Such methods operate by end-to-end training of neural networks from pairs of corrupted/clean im-
ages [40—42], and often cannot effectively handle test cases with corruption type and noise level that
are different from those of the training data.

Recently, this challenge has been partially addressed by the so-called deep image prior (DIP) [43],
which has shown impressive results on many image reconstruction tasks. The method is based on
parameterizing an image X by a deep network X = ¢(8), which turns out to be a flexible prior for

"Nuclear norm (the tightest convex envelope to matrix rank) is defined as the sum of singular values.
2This is a commonly used approach for robust optimization problems, such as robust regression [24], robust
subspace learning [25-27], robust phase retrieval [17, 28], robust matrix recovery [16, 19], and many more.



modeling the underlying distributions of a variety of natural images. The network ¢(0) has a U-
shaped architecture and may be viewed as a multi-layer, nonlinear extension of the low-rank matrix
factorization UU T, Hence, it may not come as a surprise that DIP inherits the drawbacks of the MF
approaches for low-rank matrix recovery. Namely, it requires either a meticulous choice of network
width [44] (see Figure 1b, dotted blue curve) or early termination of the learning process [33] (see
Figure 1b, dashed black curve).

Overview of our methods and contributions. We introduce a double over-arameterization (DOP)
framework for robust recovery that effectively addresses the issues associated with MF and DIP. For
the low-rank matrix recovery problem, our method is based on over-parameterizing both the low-
rank matrix X, (with matrix factorization) and the sparse corruption s, (with Hadamard product).
This gives rise to a highly over-parameterized formulation that has infinitely many global solutions.
We further present a gradient descent algorithm with discrepant learning rates on different optimiza-
tion variables, and show that it introduces an implicit algorithmic bias that enables correct recovery
of (X4, s,) with provable guarantees. The benefit of such an approach w.r.. the state of the art is
summarized as follows (see also Table 1):

e More scalable. Our method is based on gradient descent only and does not require computing an
SVD per iteration as in convex approaches [14]. Hence it is significantly more scalable.

e Prior knowledge free. Our method requires no prior knowledge on neither the rank of X, nor
the sparsity of sy, and is free of parameter tuning. This is in contrast to existing nonconvex
approaches [16, 19,30,45] for which the true rank and/or sparsity are required a priori.

e Provably correct. Under similar conditions of the convex approach, our method converges to the
ground truth (X,, s, ) asymptotically.

Underlying the success of our method
is the notion of implicit bias of dis-
crepant legrniyg rates. The idea is that Method Convex  Nonconvex Ours

the alglorlt.hrmc low-rank and sparse ethods (Eq. (8)) (Eq. (2)) (Eq. (3))
regularizations need to be balanced for

Table 1: Comparison of different approaches to matrix recovery.

the purpose of identifying the underly- Provably correct? _ | v v v
ing rank and sparsity. With a lack of  Prior knowledge free? | v v
means of tuning a regularization pa- Scalable? | v %

rameter, we show in Section 2.3 that
the desired balance can be obtained by using different learning rates for different optimization pa-
rameters. Such a property may be of separate interest and bear on a broader range of problems.

Finally, we demonstrate the broad applicability of the DOP framework for the task of the robust
recovery of natural images. We only need to replace the over-parameterization UU T for low-rank
matrices by a U-shaped network ¢(0) for natural images (as adopted in DIP [43]) and solve the op-
timization problem by gradient descent with discrepant learning rates. This produces a powerful and
easy-to-use method with favorable properties when compared to the original DIP (see Figure 1b).
To be precise, our method handles different test images and varying corruption levels with a single
learning pipeline, in which network width and termination conditions do not need to be adjusted on
a case-by-case basis.

2 Main Results and Algorithms

2.1 A Double Over-Parameterization (DOP) Formulation

As precluded in (1), we first consider the problem of recovering a rank-r (r < n) positive semidefi-
nite matrix®> X, € R™*" from its corrupted linear measurements y = A(X,) +s,, where s, € R™
is a vector of sparse corruptions. Recent advances on algorithmic implicit bias for optimizing over-
parameterized models [2, 3,6-9] motivate us to consider a nonlinear least squares for robust matrix
recovery, with over-parameterization X = UU' ands =gog —hoh:

1
min f(U,gh) = [|[A(UUT) +(gog—hoh)—y[;, @
UcRnxr’ ,{g,h}gR"’L 4

3By a lifting trick such as [46,47], our method can be extended to handling arbitrary rectangular matrices.



where the dimensional parameter 7’ > r and “o” denotes the Hadamard (i.e., entrywise) product.
In practice, the choice of 7' depends on how much prior information we have for X,: r’ can be
either taken as an estimated upper bound for r, or taken as 7’ = n with no prior knowledge. In the
following, we provide more backgrounds for the choice of our formulation (3).

o [mplicit low-rank prior via matrix factorization. For the vanilla low rank matrix recovery problem
with no outlier (i.e., s, = 0), the low-rank matrix X, can be recovered via over-parameterization
X = UUT [6-9,48]. In particular, the work [6] showed that with small initialization and in-
finitesimal learning rate, gradient descent on

. 1
min

Jmin L o) -y @

converges to the minimum nuclear norm solution under certain commute conditions for A(-).

o [mplicit sparse prior via Hadamard multiplication. For the classical sparse recovery problem
[49, 50] which aims to recover a sparse s, € R™ from its linear measurement b = As,, recent
work [2, 3] showed that it can also be dealt with via over-parameterization s = gog — h o h.
In particular, the work [2] showed that with small initialization and infinitesimal learning rate,
gradient descent on

i A —hoh)-bl|? 5
i [A(gog—hoh)—b|; (5)

correctly recovers the sparse s, when A satisfies certain restricted isometric properties [51].

The benefit of DOP in (3), as we shall see, is that it allows specific algorithms to automatically
identify both the intrinsic rank of X, and the sparsity level of s, without any prior knowledge.

2.2 Algorithmic Regularizations via Gradient Descent

Obviously, over-parameterization leads to under-determined problems which can have infinite num-
ber of solutions, so that not all solutions of (3) correspond to the desired (X, s, ). For example, for
any given U, one can always construct a pair (g, h) for (3) such that (U, g, h) achieves the global
minimum value f = 0. Nonetheless, as we see in this work, the gradient descent iteration on (3),

Upy1 = Uy — 7-Vuf(Uk, 8k hiy) = Uy — 7- A" (rp) U,

k1 gkl _ .o | Vel (Ukge i)l k| _ | Teo8k (6)
hy g hy, Vi f(Uk, gk, h) hy, —rpohg|’

with properly chosen learning rates (7, « - 7) enforces implicit bias on the solution path, that it
automatically identifies the desired, regularized solution (X, s,). Here, in (6) we have A*(-) :
R™ — R™ " being the conjugate operator of A(-) and ry, = A(UkUz) +grogr —hpohy —y.

It should be noted that the scalar « > 0, which controls the ratio of the learning rates for U and
(g,h), plays a crucial role on the quality of the solution that the iterate in (6) converges to (see
Figure 2a). We will discuss this in more details in the next subsection (i.e., Section 2.3).

Convergence to low-rank & sparse solutions. Based on our discussion in Section 2.1, it is expected
that the gradient descent (6) converges to a solution (U, g, h) such that

X = UU" and s =gog — hoh (7

have the minimum nuclear norm and ¢; norm, respectively. More specifically, we expect the solution
(X, s) in (7) of the nonlinear least squares (3) also serves as a global solution to a convex problem

min IXI + A-lslly, st AX)+s =y, X=0, (®)
XeRnXn scRm

for which we state more rigorously in Section 3 under a particular setting. However, it should be
noted that obtaining the global solution of (8) does not necessarily mean that we find the desired
solution (X,,s,) — the penalty A > 0 in (8), which balances the low-rank and the sparse regu-
larizations, plays a crucial role on the quality of the solution to (8). For instance, when A(-) is the
identity operator, under proper conditions of (X, s, ), the work [14] showed that the global solution
of (8) is exactly the target solution (X, s,) only when A = 1//n.



2.3 Implicit Bias with Discrepant Learning Rates

As noted above, a remaining challenge is to control the implicit regularization of the gradient descent
(6) so that the algorithm converges to the solution to (8) with the desired value A = 1/4/n. Without
explicit regularization terms in our new objective (3), at first glance this might seem impossible.
Nonetheless, we show that this can simply be achieved by adapting the ratio of learning rates «
between U and (g, h) in our gradient step (6), which is one of our key contributions in this work
that could also bear broader interest. More specifically, this phenomenon can be captured by the
following observation.

Observation. With small enough learning rate T and initialization (U, g0, ho) close enough to the
origin, gradient descent (6) converges to a solution of (8) with A = 1/a.

In comparison to the classical optimization theory [52] where learning rates only affect algorithm
convergence rate but not the quality of the solution, our observation here is surprisingly different —
using discrepant learning rates on different over-parameterized variables actually affects the specific
solution that the algorithm converges to*. In the following, let us provide some intuitions of why this
happens and discuss its implications. We leave a more rigorous mathematical treatment to Section 3.

Intuitions. The relation A = 1/« implies that a large learning rate for one particular optimiza-
tion variable in (6) leads to a small penalty on its implicit regularization counterpart in (8). From
a high-level perspective, this happens because a larger learning rate allows the optimization vari-
able to move faster away from its initial point (which is close to the origin), resulting in a weaker
regularization effect (which penalizes the distance of the variable to the origin) on its solution path.

Implications. The implicit bias of discrepant learning rates provides a new and powerful way for
controlling the regularization effects in over-parametrized models. For robust matrix recovery in
particular, it reveals an equivalency between our method in (3) and the convex method in (8) with
one-to-one correspondence between learning rate ratio « and the regularization parameter A. By
picking o = y/n, we may directly quote results from [14] and conclude that our method correctly
recovers X, with information-theoretically optimal sampling complexity and sparsity levels (see
Figure 2). Note that this is achieved with no prior knowledge on the rank of X, and sparsity of s,.
Next, we show that such benefits have implications beyond robust low-rank matrix recovery.

2.4 Extension to Robust Recovery of Natural Images

Finally, we address the problem of robust recovery of a natural image® X, € RE*HXW from its
corrupted observation y = X, + s,, for which the structure of X, cannot be fully captured by a
low-rank model. Inspired by the work [43] on showing the effectiveness of an image prior from a
deep convolutional network X = ¢(0) of particular architectures, where @ € R° denotes network
parameters, we use the following formulation for image recovery:

. 1 )
e (P JO.8D) = 1100) + (gog—how) ~yl5. O

As we will empirically demonstrate in Section 4.2, gradient descent on (9)
Or+1 = O — 7-Veof(Ok gk hi),

getr| _ (8| _ .. |Vaf(Ok gk hy) (10)
hy 1 hy, Vuf(Ok, gk hy) |’

with a balanced learning rate ratio « also enforces implicit regularizations on the solution path to the
desired solution. It should be noted that this happens even that the over-parameterization X = ¢(6)
is a highly nonlinear network (in comparison with shallow linear network X = UUT [6] or deep
linear network [8]), which raises several intriguing theoretical questions to be further investigated.
For example, we empirically observe that the effect of « is analogous to that in low-rank matrix
recovery, meaning that the optimal « is independent of the image X, and corruption level of s,.
This provides an attractive feature of our method as it does not require any parameter tuning.

*Our result also differs from [53—55] which analyze the effect of initial large learning rates.
SHere, H, W are height and width of the image, respectively. C' denotes the number of channels of the
image, where C' = 1 for a greyscale image and C' = 3 for a color image with RGB channels.



3 Convergence Analysis of Gradient Flow Dynamics

We provide a dynamical analysis certifying our observation in Section 2.3. Similar to [6, 8], we
consider a special case where the measurement matrices {A;}]" | associated with A commute®, and
investigate the trajectories of the discrete gradient iterate of Uy, gy, and hy, in (6) with infinitesimal
learning rate 7 (i.e., 7 — 0). In other words, we study their continuous dynamics counterparts
U(7), gt(7y), and hy(7), which are parameterized by ¢ € [0, +00) and initialized at t = 0 with

Uo(v) = 7L, go(y) = 71, ho(y) = 71, (11)

where v > 0. Thus, analogous to (6), the behaviors of the continuous gradient flows can be captured
via the following differential equations

Uy(v) = lm (Upir(7) = Us(0)) /7 = =A™ (r:(7)) Ue(), (12)

& _ i (18] Z [ /- = _ o | () ee()

[hm] = lim, ([htifm} [ <w>D / [—rm) o hml 9
withry(y) = A(U(1)U{ (7)) +8:(7) 0 ge(7) —he(y) o he(y) — y. Let Xy () = U (7)U{ (),
then we can derive the gradient flow for X, (-y) via chain rule

(

X:i(7) = UMU/ () + U0 (1) = —A (re(1)Xe(7) = Xe(7) A" (x: (7). (14)

For any « > 0, suppose the limits of X;(7y), g:(7), and h¢(~y) as ¢ — 400 exist and denote by
Xoo(7) = lim Xe(7), 8oo(y) = lm gi(7), hee(y) := lm hy(y). (15

t

Then when the initialization is infinitesimally small with v — 0, we show that the following holds.

Theorem 1. Assume that the measurement matrices {A;}!" | are symmetric and commutable with
AA; = AjA,; forV 1 <i# j <m, and the gradient flows of Uy(7y), g:(7), and hy(v) satisfy
(12) and (13) and are initialized by (11). Let X, (7), 800 (Y), and hoo(7y) be the limit points as
defined in (15). Suppose that our initialization is infinitesimally small such that

X = lim X (v), & := lim g (), h := lim h ()

v—0 v—0 v—0

~ ~

exist and (X, g, h) is a global optimal solution to (3) with
AX)+S =y and § = gog—hoh.

Then we have g o h =0, and (i,g) is also a global optimal solution to (8), with A = o™ L.

A proof of Theorem 1 is given in Appendix B. Our proof follows a similar procedure as that in [6]
and is based on constructing a dual certificate for the convex problem in (8) with the algorithm
dynamic of gradient descent. The major difference from [6] is on handling the additional sparse
term s, and characterizing the discrepant learning rates in the verification of the dual certificate.

Our result shows that among the infinite many global solutions to (3), gradient descent biases to-
wards the one with the minimum nuclear norm (for X) and ¢; norm (for s) with relative weight
controlled by a. In the following, we discuss the rationality of the assumptions for Theorem 1.

e Since gradient descent almost surely converges to a local minimum [56] and any local minimum
is likely to be a global minimum in low-rank matrix optimization with over-parameterization (i.e.,

U € R™*™) [57], the assumption that ()A(, g, fl) is a global optimal solution is generally satisfied.

e The commutative assumption on A is commonly adopted in the analysis of over-parameterized
low-rank matrix recovery. While it may rule out many practical cases (e.g., when A is identity), it
is empirically observed to be non-essential [6,8]. A recent work [7] provides a more sophisticated
analysis of the discrete dynamic under the restricted isometric assumption where the commutative
assumption is not needed. We believe such analysis can be extended to our DOP setting as well,
and leave it as future work.

SAny A : R™*™ — R™ can be written as A(Z) = [(A1,Z), ..., (A, Z)] for some {A; € R"*"} 1,
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Figure 2: Numerical results for robust PCA (with n = 50). (a) Relative reconstruction error for the output
()A(, §) of our method with varying step size ratio . Here, we set r = 5 and p = 30%. (b, c) Probability
of successful recovery over 10 trials with varying r (y-axis) and p (x-axis). Here, we fixed o = /n. White
indicates always successful recovery, while black means total failure.

4 Experiments

In this section, we provide experimental evidence for the implicit bias of the learning rate discussed
in Section 2.3. Through experiments for low-rank matrix recovery, Section 4.1 shows that the learn-
ing rate ratio « affects the solution that gradient descent converges to, and that an optimal « does
not depend on the rank of matrix and sparsity of corruption. Furthermore, Section 4.2 shows the
effectiveness of implicit bias of learning rate in alleviating overfitting for robust image recovery, and
demonstrates that our method produces better recovery quality when compared to DIP for varying
test images and corruption levels, all with a single model and set of learning parameters.

4.1 Robust Recovery of Low-rank Matrices

We conduct experiments for a particular case of low-rank matrix recovery problem, namely the
robust PCA problem, in which the operator A is the identity operator. More specifically, the goal is
to recovery a low-rank matrix X, and a sparse matrix S, from the mixture Y = X, + S,, possibly
without prior knowledge on the rank r of X, and the percentage of nonzero entries p of S,.. For any
given r, we generate X, € R™*" by setting X, = U*U*T, where U, is an n X r matrix with i.i.d.
entries drawn from standard Gaussian distribution. For any given p, we generate S, € R™*" by
sampling uniformly at random 72 - p locations from the matrix and setting those entries by sampling
i.i.d. from a zero-mean Gaussian distribution with standard deviation 10. We use n = 50.

We apply our DOP method in (3) for the robust PCA problem, Specifically, we initialize U and g
by drawing i.i.d. entries from zero mean Gaussian distribution with standard deviation 10~4, and
initialize h to be the same as g. The learning rate for U as well as for {g, h} are set to 7 and « - 7,
respectively, where 7 = 10~* for all experiments.

Effect of learning rate ratio o. We set r = 5 and p = 30%, perform 2 x 10* gradient descent steps

and compute reconstruction errors for the output of our algorlthm (X S) relative to the ground truth
(X, S,). Figure 2a illustrates the performance with varying values of «. We observe that « affects
the solution that the algorithm converges to, which verifies that the learning rate ratio has an implicit
regularization effect. Moreover, the best performance is given by @ = +/n, which is in accordance
with our theoretical result in Theorem 1.

Effect of rank r and outlier ratio p and phase transition. We now fix « = /n and study the
ability of our method for recovering matrices of varying rank r with varying percentage of corruption
p. For each pair (r, p) we apply our method and declare the recovery to be successful if the relative

HX H
in 10 Monte Carlo trials. It shows that a single value of the parameter « leads to correct recovery for
a wide range of r and p. Figure 2b shows the fraction of successful recovery for the convex method
in (8) (with the Accelerated Proximal Gradient [58] solver’).

reconstruction error “————= is less than 0.1. Figure 2c displays the fraction of successful recovery

7http ://people.eecs.berkeley.edu/~yima/matrix-rank/sample_code.html
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PSNR = 18.56

PSNR = 16.57 PSNR = 31.87 PSNR = 32.47
Input Groundtruth DIP DIP-/, DOP (Ours)

Figure 3: Robust image recovery for salt-and-pepper corruption. PSNR of the results is displayed below
the images. For our method, all cases use the same network width, learning rate, and termination condition. For
DIP and DIP-¢;, case-dependent early stopping is used which is essential for their good performance. Despite
that, DOP (our method) achieves the highest PSNRs and best visual quality.

4.2 Robust Recovery of Natural Images

Following [43], we evaluate the performance of our method for robust image recovery using four
images, namely “F16”, “Peppers”, “Baboon” and “Kodim03” (see the second column of Figure 3),
from a standard dataset®. Corruption for the images is synthesized by adding salt-and-pepper noise,
where ratio p of randomly chosen pixels are replaced with either 1 or 0 (each with 50% probability).

The network ¢(@) for our method in (9) is the same as the denoising network in [43], which has
a U-shaped architecture with skip connections. Each layer of the network contains a convolutional
layer, a nonlinear LeakyReLU layer and a batch normalization layer. We also follow [43] on the
initialization of network parameters 8, which is the Kaiming initialization. Meanwhile, we initialize
g and h by drawing i.i.d. entries from zero-mean Gaussian distribution with a standard deviation of
10~°. The learning rate 7 is set to 1.0. The learning rate ratio o = 500 is tuned on a specific image
(i.e., “F16”) under a specific corruption level (i.e., p = 50%) for achieving the highest PSNR, and
is subsequently fixed for all experiments. Finally, our method is untrained (i.e., it does not require
any training data), so for fair comparisons we do not compare with trained image denoising methods
such as [40-42].

No need to tune model width or terminate early. We compare our method with a variant of DIP
that we call DIP-/;, which is based on solving ming ¢(¢(6) — y) with £(-) being |-||;. As shown
in Figure 1b, DIP-/; requires either choosing appropriate network width or early termination to

8http ://www.cs.tut.fi/~foi/GCF-BM3D/index.html#ref_results
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Figure 4: Learning curves for robust image recovery with different test images (a) and varying corrup-
tion levels (b). DIP-¢; requires case-dependent early stopping while DOP (our method) does not.

avoid overfitting. Note that neither of these can be carried out in practice without the true (clean)
image. On the other hand, our method does not require tuning network width or early termination.
Its performance continues to improve as training proceeds until stabilises.

Handling different images and varying corruption levels. The benefit mentioned above enables
our method to handle different images and varying corruption levels without the need to tune network
width, termination condition and any other learning parameters. In our experiments, we fix the
number of channels in each convolutional layer to be 128, run 150,000 gradient descent iterations
and display the output image. The results are shown in Figure 3 (for four different test images) and
Figure 5 (for four corruption levels, see Appendix C). For DIP and DIP-{;, we report the result with
the highest PSNR in the learning process (i.e., we perform the best early termination for evaluation
purposes — note that this cannot be carried out in practice). Despite that, our method obtains better
recovery quality in terms of PSNR for all cases. We display the learning curves for these experiments
in Figure 4a and Figure 4b, which show that our method does not overfit for all cases while DIP-¢;
requires a case-dependent early termination.

5 Conclusion

In this work, we have shown both theoretically and empirically that the benefits of implicit bias of
gradient descent can be extended to over-parameterization of two low-dimensional structures. The
key to the success is the choice of discrepant learning rates that can properly regulate the optimiza-
tion path so that it converges to the desired optimal solution. Such a framework frees us from the
need of prior knowledge in the structures or from the lack of scalability of previous approaches.
This has led to state of the art recovery results for both low-rank matrices and natural images. We
hope this work may encourage people to investigate in the future if the same framework and idea
generalize to a mixture of multiple and broader families of structures.

Broader Impact

Robust learning of structured signals from high-dimensional data has a wide range of applications,
including imaging processing, computer vision, recommender systems, generative models and many
more. In this work, we presented a new type of practical methods and provided improved under-
standings of solving these problems via over-parameterized models. In particular, our method ex-
ploits the implicit bias introduced by the learning algorithm, with the underlying driving force being
the intrinsic structure of the data itself rather than human handcrafting. Such a design methodology
helps to eliminate human bias in the design process, hence provides the basis for developing truly
fair machine learning systems.
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