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During the last few decades, the ribosome has been regarded primarily as a major cell player
devoted to the catalysis of protein biosynthesis during translation [1-5]. It is therefore not
surprising that several processes related to translation exploit the ribosome as a central hub. For
instance, it is well-known that many events related to translational regulation are mediated by
interactions between the ribosome and initiation, elongation or termination factors [6-9]. In
addition, the ribosome is involved in mRNA-code recognition and proofreading [10-12] as well
as in the control of translation rates via interactions with mRNA codons bearing high- and low-
frequency [13-15] and associated with variable tRNA abundance within the translation machinery
[16-18]. Interestingly, the ribosome also assists de novo protein structure formation by minimizing
cotranslational aggregation, thus increasing the yield of native-protein production [19,20]. The
latter event, however, has not been shown to require -- or even involve -- direct interactions between
the ribosome and the nascent protein chain. A notable exception is that of nascent chains bearing
either N-terminal signal sequences or translational-arrest tags. These proteins are known to establish
short- or long-term contacts with various regions of the ribosome during translation [21-25]. In
summary, until recently very little knowledge has been available about direct contacts between the
ribosome and nascent polypeptides and proteins that do not carry signal or arrest sequences. Studies
based on fluorescence depolarization in the frequency domain [26] and NMR spectroscopy [27-30]
provided interesting data that are consistent with, but do not unequivocally establish, the presence
of these interactions.

A recent investigation by Guzman-Luna er 4/ [31] added new knowledge to the field by
showing that two bacterial ribosomal proteins, L23 and 129, interact with ribosome-bound
nascent protein chains (RNCs) encoding an intrinsically disordered protein (IDP) and several of
its mutants bearing variable net charge. This study is based on site-specific fluorescence labeling
of RNC:s at their N terminus, in combination with chemical crosslinking and Western blotting.
Intriguingly, short RNCs were found to interact only with the L23 ribosomal protein while longer
RNC:s also weakly interact with an additional ribosomal protein, L29. The interacting proteins are
located within a specific region of the large ribosomal subunit, which comprises the vestibule of the
exit tunnel as well as the immediately adjacent outer region of the ribosome.

Importantly, a large fraction of the detected interactions is mediated by Mg** ions, and the
extent of the contacts can be tuned up and down depending on the Mg* concentration in the
medium [31]. Interestingly, Mg?* ions have been long known to be ribosome-associated [32,33] and
to play a key role in preserving the structural integrity of the ribosome [32,33]. However, no Mg?**-
mediated processes involving nascent proteins were ever detected before the work by Guzman-Luna
et al. In summary, the study by Guzman-Luna ez a/. [31] highlights a new role for the ribosome,
which is found to interact with intrinsically disordered nascent chains in a Mg**-mediated fashion.
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On the other hand, some (ca 50%) of the interactions of nascent
proteins with the ribosome were found to be Mg*-independent.
Based on a quantitative electrostatic mapping of the ribosomal
surface, which contains a large nonpolar patch on the solvent-exposed
region of L23 within the exit region of the ribosomal tunnel [31], it
is possible that the Mg?*-independent interactions are dominated by
the hydrophobic effect [34]. Some classical electrostatic interactions
not involving Mg?* may also be present. However, these types of
interactions are surprisingly not dominant. Ongoing and future
studies will shed additional light on the remaining unanswered
questions regarding the detailed nature of these IDP-ribosomal-
protein interactions.

The study by Guzman-Luna and coworkers [31] nicely
complements the current knowledge on the effect of Mg ions on
non-ribosome-related functions. For instance, Mg** is known to play
a seminal role in bacterial thermodynamic balance [35-37] and in
proteostasis, including modulating the activity of the Hsc62 [38]
and Hsp70 [39] molecular chaperones and altering the specificity of
the Lon and ClpAP proteases [40].

A few major lingering questions are (a) whether the above
interactions are also present in the case of proteins with a foldable
sequence, as opposed to IDPs, (b) what the role of the Mg*-
dependent and Mg*-independent ribosome-RNC interactions is,
and (c) whether similar interactions are also present across eukaryotic
organisms. Ongoing research in the Cavagnero group (Guzman-
Luna ef al, manuscript in preparation) suggests that extensive
ribosome-RNC interactions are also present to in the case of foldable
protein sequences. However, their ion dependence is different and
much more complex.

On a different note, while analogous studies on eukaryotic
organisms are not available yet, it is notable that intracellular
Mg?* concentration is known to be important for human brain
cytopathies [41], and that the concentration of Mg jons has an
effect on the extent of post-translational protein aggregation, as
recently found in the case of TDP-43 [42]. Further, several known
proteinopathies are related to the misfolding and aggregation of
intrinsically disordered polypeptides and proteins [43,44]. It is also
worth noting that the prokaryotic and eukaryotic ribosomes share
a similar structure and overall highly negative electrostatic surface
potential [45]. Incidentally, the ribosome (or fragments thereof) has
been previously proposed to serve as a chaperone [46,47]. Therefore,
despite the undeniable differences between ribosomes in all classes of
organisms [6,48], it is tempting to hypothesize that Mg**-mediated
interactions between intrinsically disordered nascent proteins and
the ribosome may play a role in regulating protein quality in bacteria
and perhaps even in higher organisms. The known Mg** dependence
of translation efficiency is consistent with this hypothesis [37].

In conclusion, Mg mediates the interaction of intrinsically
disordered nascent proteins and the bacterial ribosome [31]. Future
studies will reveal whether Mg?*-mediated RNC-ribosome contacts
influence the quality of de-novo synthesized proteins in bacteria. In
the case of higher organisms, if confirmed to be present, ribosome-
RNC interactions may influence the course of diseases that critically
depend on the de novo generation of proteins devoid of aggregation.
While more studies clearly need to be carried out to unequivocally
identify additional trends, the present findings promise exciting
opportunities for future discovery.
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