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Mg2+ ions mediate the interaction of 
intrinsically disordered nascent chains with 
the ribosome: implications for protein folding 
and aggregation in the early stages of protein 
life
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During the last few decades, the ribosome has been regarded primarily as a major cell player 
devoted to the catalysis of protein biosynthesis during translation [1-5]. It is therefore not 
surprising that several processes related to translation exploit the ribosome as a central hub. For 
instance, it is well-known that many events related to translational regulation are mediated by 
interactions between the ribosome and initiation, elongation or termination factors [6-9]. In 
addition, the ribosome is involved in mRNA-code recognition and proofreading [10-12] as well 
as in the control of translation rates via interactions with mRNA codons bearing high- and low-
frequency [13-15] and associated with variable tRNA abundance within the translation machinery 
[16-18]. Interestingly, the ribosome also assists de novo protein structure formation by minimizing 
cotranslational aggregation, thus increasing the yield of native-protein production [19,20]. The 
latter event, however, has not been shown to require -- or even involve -- direct interactions between 
the ribosome and the nascent protein chain. A notable exception is that of nascent chains bearing 
either N-terminal signal sequences or translational-arrest tags. These proteins are known to establish 
short- or long-term contacts with various regions of the ribosome during translation [21-25]. In 
summary, until recently very little knowledge has been available about direct contacts between the 
ribosome and nascent polypeptides and proteins that do not carry signal or arrest sequences. Studies 
based on fluorescence depolarization in the frequency domain [26] and NMR spectroscopy [27-30] 
provided interesting data that are consistent with, but do not unequivocally establish, the presence 
of these interactions.

A recent investigation by Guzman-Luna et al. [31] added new knowledge to the field by 
showing that two bacterial ribosomal proteins, L23 and L29, interact with ribosome-bound 
nascent protein chains (RNCs) encoding an intrinsically disordered protein (IDP) and several of 
its mutants bearing variable net charge. This study is based on site-specific fluorescence labeling 
of RNCs at their N terminus, in combination with chemical crosslinking and Western blotting. 
Intriguingly, short RNCs were found to interact only with the L23 ribosomal protein while longer 
RNCs also weakly interact with an additional ribosomal protein, L29. The interacting proteins are 
located within a specific region of the large ribosomal subunit, which comprises the vestibule of the 
exit tunnel as well as the immediately adjacent outer region of the ribosome.

Importantly, a large fraction of the detected interactions is mediated by Mg2+ ions, and the 
extent of the contacts can be tuned up and down depending on the Mg2+ concentration in the 
medium [31]. Interestingly, Mg2+ ions have been long known to be ribosome-associated [32,33] and 
to play a key role in preserving the structural integrity of the ribosome [32,33]. However, no Mg2+-
mediated processes involving nascent proteins were ever detected before the work by Guzman-Luna 
et al. In summary, the study by Guzman-Luna et al. [31] highlights a new role for the ribosome, 
which is found to interact with intrinsically disordered nascent chains in a Mg2+-mediated fashion.
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On the other hand, some (ca 50%) of the interactions of nascent 
proteins with the ribosome were found to be Mg2+-independent. 
Based on a quantitative electrostatic mapping of the ribosomal 
surface, which contains a large nonpolar patch on the solvent-exposed 
region of L23 within the exit region of the ribosomal tunnel [31], it 
is possible that the Mg2+-independent interactions are dominated by 
the hydrophobic effect [34]. Some classical electrostatic interactions 
not involving Mg2+ may also be present. However, these types of 
interactions are surprisingly not dominant. Ongoing and future 
studies will shed additional light on the remaining unanswered 
questions regarding the detailed nature of these IDP-ribosomal-
protein interactions.

The study by Guzman-Luna and coworkers [31] nicely 
complements the current knowledge on the effect of Mg2+ ions on 
non-ribosome-related functions. For instance, Mg2+ is known to play 
a seminal role in bacterial thermodynamic balance [35-37] and in 
proteostasis, including modulating the activity of the Hsc62 [38] 
and Hsp70 [39] molecular chaperones and altering the specificity of 
the Lon and ClpAP proteases [40].

A few major lingering questions are (a) whether the above 
interactions are also present in the case of proteins with a foldable 
sequence, as opposed to IDPs, (b) what the role of the Mg2+-
dependent and Mg2+-independent ribosome-RNC interactions is, 
and (c) whether similar interactions are also present across eukaryotic 
organisms. Ongoing research in the Cavagnero group (Guzman-
Luna et al., manuscript in preparation) suggests that extensive 
ribosome-RNC interactions are also present to in the case of foldable 
protein sequences. However, their ion dependence is different and 
much more complex.

On a different note, while analogous studies on eukaryotic 
organisms are not available yet, it is notable that intracellular 
Mg2+ concentration is known to be important for human brain 
cytopathies [41], and that the concentration of Mg2+ ions has an 
effect on the extent of post-translational protein aggregation, as 
recently found in the case of TDP-43 [42]. Further, several known 
proteinopathies are related to the misfolding and aggregation of 
intrinsically disordered polypeptides and proteins [43,44]. It is also 
worth noting that the prokaryotic and eukaryotic ribosomes share 
a similar structure and overall highly negative electrostatic surface 
potential [45]. Incidentally, the ribosome (or fragments thereof ) has 
been previously proposed to serve as a chaperone [46,47]. Therefore, 
despite the undeniable differences between ribosomes in all classes of 
organisms [6,48], it is tempting to hypothesize that Mg2+-mediated 
interactions between intrinsically disordered nascent proteins and 
the ribosome may play a role in regulating protein quality in bacteria 
and perhaps even in higher organisms. The known Mg2+ dependence 
of translation efficiency is consistent with this hypothesis [37].

In conclusion, Mg2+ mediates the interaction of intrinsically 
disordered nascent proteins and the bacterial ribosome [31]. Future 
studies will reveal whether Mg2+-mediated RNC-ribosome contacts 
influence the quality of de-novo synthesized proteins in bacteria. In 
the case of higher organisms, if confirmed to be present, ribosome-
RNC interactions may influence the course of diseases that critically 
depend on the de novo generation of proteins devoid of aggregation. 
While more studies clearly need to be carried out to unequivocally 
identify additional trends, the present findings promise exciting 
opportunities for future discovery.
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