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Abstract: We propose an end-to-end optimized adversarial deep compressed imaging modality. 
This method exploits the adversarial duality of the sensing basis and sparse representation basis in 
compressed sensing framework and shows solid super-resolution results. 

1. Introduction
The growing demand of high-speed imaging in various areas such as biomedicine, remote sensing and consumer
electronics has called for new development of imaging modality and reconstruction algorithms. Imaging through
compressed sensing (CS) [1-3] has drawn substantial attention due to the rapid progress on computational algorithms
and deep learning techniques. We recently developed a new imaging modality termed deep compressed imaging via
optimized pattern scanning (DeCIOPS) [4], where we projected and scanned an optimized illumination pattern on the
object and collected the sampling signal using a single-pixel detector. We then reconstructed the object using a CS-
inspired neural network. Using an end-to-end optimization framework, we jointly optimized the illumination pattern
and the reconstruction network. Thanks to the fast scanning speed and the end-to-end optimization, this new imaging
approach significantly increases the imaging speed than the typical switching-mask based single-pixel camera, while
retaining a high reconstruction quality. In this paper, we propose a new reconstruction algorithm based on generative
adversarial network, which further enhances the reconstruction quality of DeCIOPS. Our new algorithm optimizes the
pair of the sensing basis (related to the illumination pattern) and sparse representation basis (related to image
reconstruction) by exploiting the adversarial duality between them. Guided by the compressed sensing theorem, we
introduce the general Jensen-Shannon Divergence (JSD) into the loss function to maximize the incoherence of the
pair. This strategy enhances the reconstruction quality. We term this as adversarial deep compressed imaging (ADCI).
Like DeCIOPS, ADCI enables an end-to-end optimization of the illumination pattern and reconstruction algorithm.
ADCI shows reliable super-resolution results and outperforms other state-of-the-art single-image super-resolution
(SISR) methods such as DCSRN [5], SRGAN [6] and ISTA-Net+ [7].

Fig. 1. (a) Schematic of the end-to-end optimization of the illumination pattern and the adversarial framework. (b) Architecture of the 𝑘𝑡ℎ phase in 
ISTA-Net+, where 𝒓(𝑘) = 𝒙(𝑘−1) − 𝜌Φ𝑇(Φ𝒙(𝑘−1) − 𝒃), ℱ(𝑘) = 𝒟(𝑘) ∘ ℋ(𝑘) and ℱ̃(𝑘) = ℋ̃(𝑘) ∘ 𝒢(𝑘). Ψ represents all the trainable parameters in 
the generator. 
2. Principle of the image formation and object reconstruction
We simultaneously update the illumination pattern and a CS-inspired deep neural network under the framework of an
adversarial end-to-end model (Fig. 1a). The pattern scanning encodes the high-resolution object 𝒙  into a low-
resolution measurement 𝒃  by a subsampled 2D-convolution transfer matrix Φ . Then, an N-phase ISTA-Net+
generates a reconstruction 𝒙∗ from the measurement. Each phase (Fig. 1b) contains an architecture-symmetric pair of
a forward transform ℋ(𝑘), a backward transform ℋ̃(𝑘), linear operators (𝒟(𝑘), 𝒢(𝑘)), and a soft shrinkage threshold
motivated by the conventional ISTA (Iterative Shrinkage-Thresholding Algorithm). The loss function of the generator
𝐿𝐺 (Eq. 1) calculates the mean-square-error (MSE) between the reconstruction results and the ground truth with a
constraint of ℋ̃ ∘ ℋ = 𝐼 weighted by 𝛾. The loss function of the discriminator also depends on the MSE but with a
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JSD constraint (Eq. 2). In the JSD measure, 𝜋 and 1 − 𝜋 are the weights of the two normalized signal distributions. 
The two signals 𝑏′ and 𝛼 are the representation of sensing basis Φ and the sparse representation respectively. We 
trained the model with 500 samples from ImageNet [8] and test the model with 79 samples from two widely used 
benchmark datasets: Set11 and BSD68 [7] on GPU RTX2080Ti 11GB. 

𝐿𝐺 = 𝐿𝑒𝑟𝑟𝑜𝑟 + 𝛾𝐿𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 = ‖𝒙∗ − 𝒙‖2
2 + 𝛾 (∑ ‖ℋ̃

(𝑘)
(ℋ

(𝑘)
(𝒙)) − 𝒙‖

2

2
𝑁

𝑘=1

)                               (1) 

𝐿𝐷 = − log2(𝐽𝑆𝐷𝜋) + 𝜆𝐿𝑒𝑟𝑟𝑜𝑟 , with  𝐽𝑆𝐷𝜋 = 𝜋 ∑ 𝑏𝑖
′ log2 (

𝑏𝑖
′

𝜋𝑏𝑖
′+(1−𝜋)𝛼𝑖

) + (1 − 𝜋) ∑ 𝛼𝑖 log2 (
𝛼𝑖

𝜋𝑏𝑖
′+(1−𝜋)𝛼𝑖

)𝑖𝑖                (2) 

3. Simulation results 
We compare our proposed ADCI with two conventional non-learnable algorithms and five state-of-the-art single-
image super-resolution deep learning methods. All methods were trained in the end-to-end framework to jointly 
optimize the illumination pattern and the corresponding reconstruction algorithm (excluding the two non-learnable 
algorithms). For a fair comparison, each method was trained independently with the same number of epochs. ADCI 
is able to reconstruct more details of the image with sharper edges (Fig. 2), with a higher PSNR/SSIM for different 
subsampling ratio (Table 1). This illustrates the effectiveness of the adversarial induced compressed imaging modality.  

 

 
Fig. 2. Simulation results of a 
representative sample butterfly by an 
end-to-end trained model with 
reconstruction algorithms of B-spline, 
TVAL3, U-Net, SRCNN, DCSRN, 
SRGAN, ISTA-Net+, and ADCI at a 
subsampling rate of 6.25%. GT, ground 
truth. 

Table.1. Average PSNR (dB)/SSIM of the reconstruction results among different end-to-end trained super-resolution algorithms and ADCI 
 B-spline TVAL3 U-Net SRCNN DCSRN SRGAN ISTA-Net+ ADCI 

25% Subsampled 21.26/0.54 23.42/0.65 24.30/0.73 25.68/0.81 24.89/0.75 26.91/0.83 26.57/0.83 27.19/0.84 
11.11% Subsampled 20.84/0.50 21.92/0.56 22.66/0.63 22.92/0.65 23.37/0.67 23.87/0.69 23.80/0.71 24.67/0.73 
6.25% Subsampled 19.82/0.48 21.33/0.53 22.23/0.58 22.41/0.61 22.70/0.62 23.11/0.64 22.74/0.64 23.40/0.66 

4% Subsampled 19.64/0.43 20.54/0.51 21.03/0.52 21.07/0.51 21.49/0.54 22.12/0.57 22.04/0.59 22.47/0.60 
Trainable parameters None None 371477 345565 288017 362040 337010 337010 

We explore the principle of the adversarial model. In compressed sensing theory, a greater incoherence between 
sensing basis and sparse representation basis means a more efficient data acquisition [1]. Incoherence describes how 
unlike the pair of signals are, so we use JSD as a constraint of loss in the discriminator. By a careful design of the loss 
function (Eq. 2), we converge to a higher value of JSD and thus a larger incoherence. In Table 2, ~58.3% greater JSDs 
are generated by ADCI compared with a pure ISTA-Net+, explaining why ADCI outperforms ISTA-Net+ (Table 1). 

Table.2. Comparison of JSD between end-to-end trained model of the pure ISTA-Net+ and ADCI  
 ISTA-Net+ ADCI  

25% Subsampled 0.0460 0.0630 
11.11% Subsampled 0.0502 0.0793 
6.25% Subsampled 0.0427 0.0753 

4% Subsampled 0.0461 0.0755 
In summary, we propose an end-to-end optimized adversarial deep compressed imaging model which can achieve a 
highly efficient data acquisition and object restoration. ADCI outperforms other algorithms in SISR task and holds 
great promise in high-speed imaging. 
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