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Abstract

We analyze a fully discrete finite element numerical scheme for
the Cahn-Hilliard-Stokes-Darcy system that models two-phase flows
in coupled free flow and porous media. To avoid a well-known diffi-
culty associated with the coupling between the Cahn-Hilliard equation
and the fluid motion, we make use of the operator-splitting in the
numerical scheme, so that these two solvers are decoupled, which in
turn would greatly improve the computational efficiency. The unique
solvability and the energy stability have been proved in [5]. In this
work, we carry out a detailed convergence analysis and error esti-
mate for the fully discrete finite element scheme, so that the optimal
rate convergence order is established in the energy norm, i.e.,, in the
0%°(0,T; HY) N ¢2(0,T; H?) norm for the phase variables, as well as in
the ¢>°(0,T; H*)N¢?(0,T; H?) norm for the velocity variable. Such an
energy norm error estimate leads to a cancellation of a nonlinear error
term associated with the convection part, which turns out to be a key
step to pass through the analysis. In addition, a discrete £2(0;T; H?)
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bound of the numerical solution for the phase variables plays an im-
portant role in the error estimate, which is accomplished via a discrete
version of Gagliardo-Nirenberg inequality in the finite element setting.

Keywords— phase field model; two-phase flow; error analysis; uncon-
ditional stability

1 Introduction

In many applications such as contaminant transport in karst aquifer,
oil recovery in karst oil reservoir, proton exchange membrane fuel cell tech-
nology, cardiovascular modeling, multiphase flows in conduit and in porous
media interact with each other, and therefore have to be considered to-
gether. Geometric configurations that consist of both conduit and porous
media are termed as karstic geometry. In this article we aim to analyze a
decoupled numerical algorithm for solving the Cahn-Hilliard-Stokes-Darcy
model (CHSD) for two-phase flows in Karst geometry—a domain configura-
tion with conduit interfacing porous media. We first recall the CHSD system
derived in [12]. Let Q. denote the conduit region and £2,,, denote the porous
media. The interface between the two parts (i.e., 9Q. N 9€Q,;,) is denoted
by ¢y, on which ng,, is the unit normal to ', pointing from Q. to Q.
Then we define I'. = 0Q:\I'¢p, and Ty, = 0Q,\Len, with ng, n, being the
unit outer normals to ' and T',. On the interface T',,, we denote by {7;}
(i = 1,...,d — 1) a local orthonormal basis for the tangent plane to I'cp,.
A two dimensional geometry is illustrated in Figure 1. In turn, the CHSD

Figure 1: Schematic illustration of karst geometry in 2D

system takes the following form

pooru. =V - T(ue, Pe) — 0cVite, in £, (1.1)
V-u. =0, in €,
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The chemical potentials p, pt,, turn out to be

1

ni =12 (6] — ) — eyl G € {e;ml, (1.7)

and the Cauchy stress tensor T is given by
T(ue, Pe) = 2v(pc)D(u.) — P, (1.8)

in which D(u.) = 2(Vu,+ Vul) and I is the d x d identity matrix. Here po
is the density of the fluid, M is the mobility satisfying 0 < My < M < M,
x is the porosity, v is the viscosity satisfying 0 < vy < v < v. In addition,
we assume that both the mobility M and the viscosity v are Lipschitz con-
tinuous. II is the permeability matrix of size d x d which is assumed to be
bounded, symmetric and uniformly positive definite. The parameter ~ in
(1.7) is a positive constant related to the surface tension.

The CHSD system is subject to the following boundary and interface
conditions:
Boundary conditions on I'. and T');:

_ o 9ee _ One _
u. =0, oo, om, 0, onl,, (1.9)
U, - n, =0, %—% =0, onl,,. (1.10)

on,, On,,
Interface conditions on I',,,:

Opm _ Ope
onep, B ancm7
Opim = M(e) Olte

Om = e, on I'ep, (1.11)

)
)
)
)

= M T 1.12
Mm ch (Som)ancm 8ncm’ on cmy (
Uy, - Dy, = Ug - Ny, ON Ly, (1.13
—2v(pc)em - D(ue)ne, + Pe = Py, on Ty, (1.14
v )
_V((pc)Ti : ]D)(uc)ncm = aBJSJMTi * Ug, 1= 17 o 7d - 17 OI(T;é
2/tr(II)

where apjsy is an empirical parameter in the Beavers-Joseph-Saffman-
Jones(BJSJ) condition and tr(II) is the trace of II.
Define the total energy of the system as follows:

1
£(t) ::/ p0|uc|2dm+/ "’0|um|2d:c+7/[€|w|2+F(@]dw, (1.16)
2 2x Q 2 €
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where F(¢) = (¢?—1)2. The CHSD system (1.1)-(1.15) obeys a dissipative
energy law [5]:

d
%E(t) =-D(t) <0, Vt>0, (1.17)

where the rate of energy dissipation D is given by

D) = /Q (o )T Pl + /Q 20(ipe) D (u,) [2dx

Tem v/ trace

The CHSD system (1.1)-(1.15) is systematically derived via Onsager’s
extremum principle in [12]. Well-posedness of a variant of the CHSD model
is studied in [13]. A decoupled unconditionally stable numerical algorithm
for solving the CHSD system is proposed in [5]. Here we focus on the er-
ror analysis of a similar decoupled numerical scheme (cf. Sec. 2) in which
the computation of Stokes equations and Darcy equations are nevertheless
coupled. The decoupling between the Cahn-Hilliard equation and fluid equa-
tions is accomplished by a special technique of operator splitting in which an
intermediate velocity for advection in the Cahn-Hilliard equation is defined
in terms of the capillarity from fluid equations. Application of this specific
fractional step method for solving phase field models is first reported in [17],
and later in [20]. To the best of our knowledge, error analysis of the decou-
pled scheme via the aforementioned operator splitting has not been reported
elsewhere for any phase field model coupled with fluid motion.

There have been some convergence analysis works for either the Cahn-
Hilliard-Navier-Stokes (Stokes) (CHNS, CHS) or the Cahn-Hilliard-Darcy
(Hele-Shaw) system (CHD, CHHS) in recent years. The convergence of
certain finite element numerical solutions to weak solutions of the CHNS
equations was proved in [9], and a similar analysis is perform for the CHHS
system in [10]. In [7] the authors have established optimal convergence
rates for a mixed finite element method for solving the CHS system, with
first order temporal accuracy. More recently, an optimal rate error estimate
is presented for a second-order accurate numerical scheme for solving the
CHNS equations in [8]. A similar error estimate was also reported in [2],
based on a finite element discretization of a linear, weakly coupled energy
stable scheme for the CHNS system. As for the CHHS system, in which
the kinematic diffusion term is replaced by a damping one, optimal error
analysis has been presented in [6, 16], in the framework of finite difference
and finite element spatial approximations, respectively.

The CHSD system consist of the CHS and the CHD equations, coupled
together via a set of domain interface boundary conditions. Hence the advec-
tion in the Cahn-Hilliard flow is involved with both the Stokes and the Darcy
velocity fileds. While the Stokes velocity has a regularity of L?(0,T; H"),

d—1
+/QM(<P)|VM(<P)|2dx+/ aBJsJy y((p)(H);|uc-ﬂ|2d$1218))



the Darcy velocity is only of L>°(0,T; L?). With the L?(0,T; H') bound of
the velocity field, a uniform maximum norm estimate of the phase has been
derived, which significantly simplifies the error analysis for the CHNS sys-
tem [8] and the CHS equations [7]. On the other hand, for the CHD system,
only an LP(0,T; L*) bound (with a finite value of p) could be established
for the phase variable, as analyzed in [16]. The lack of uniform bound of
the phase variable has dramatically complicated the error analysis of the
nonlinear advection associated with the Cahn-Hilliard equation. A similar
difficulty is encountered here for the error analysis of the CHSD system. To
overcome this subtle difficulty, we perform an L?(0,T; H?) bound estimate
of the phase variable in the numerical solution, which is accomplished by
the usage of a discrete Gagliardo-Nirenberg inequality in the finite element
setting. This bound will play an important role to pass through the error
estimate. Such a technique has been applied in the analysis for the CHHS
system in the existing literature, as reported in [6, 16, 3]. Moreover, the
CHSD system contains a coupling between the CHS and CHD equations,
the corresponding estimates are expected to be even more challenging than
the ones for the CHHS model.

The rest of the article is organized as follows. In Section 2 we introduce
the weak formulation of the CHSD system and present the decoupled numer-
ical scheme. Some preliminary analysis including the stability estimates are
gathered in Section 3. The detailed error analysis of the numerical scheme
is carried out in Section 4. Finally, some concluding remarks are provided
in Section 5.

2 The numerical scheme

2.1 The weak formulation

For the CHSD problem we introduce the following spaces

H(div;Q;) = {weL*Q;) |V -weL*Q)}, j €{c,m},
H.o = {weH'(Q)|w=0onT.},
H.gw = {weH.|V-w=0}
H,o) = {weH(iv;Q,) |w -n, =0o0nT,},
H,aqv = {weH,o|V-w=0},
X = HY Q) NL3(Q).

Here L3(Qy,) is a subspace of L? whose elements are of mean zero. We also
use the notation LZ(2) which is defined similarly and will be used later.
We denote (-, ), (+,-)m the inner products on the spaces L?(€.), L*(Qn),
respectively (also for the corresponding vector spaces). The inner product



on L?() is simply denoted by (-,-). In turn, it is clear that

(4,0) = (tm, Vm)m + (e, ve)e,  NullZaiy = lumliza,,) + lucl 2,

where u,, := u|q,, and u. := ul|g,. We will suppress the dependence on the
domain in the L? norm if there is no ambiguity. And also, H' stands for
the dual space of H with the duality induced by the L? inner product. For
simplicity, we denote ||-|| := |||/ 72, and [|-||p == || ||r for 1 < p < o0, p # 2.
In addition, the notation |||, is introduced as the L? norm on the interface
I'.pn. For all the functions f, f represents the mean value of f on its domain.

The definition of the weak formulation of the 3-D CHSD system is given
below. The 2-D case could be similarly defined with slight changes in time
integrability of the functions.

Definition 1. Suppose that d = 3 and T > 0 is arbitrary. We consider
the initial data o9 € H'(Q),u.(0) € He div, W (0) € Hyaiv. The functions
(ue, P, up, P,y o, 1) with the following properties
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ue € L2(0,T; L2(9e)) N L3(0,T; Heyg), e € L5(0,T; (Hep)'), (2.19)
u,, € L0, T; L23(Q,,)) N L0, T; H,p o), f’gtm € L3(0,T; (Hp ) )2.20)
P.€ L3(0,T;L2(Q)), Pn € L3(0,T; Xy, (2.21)

@ € L>(0,T; HY(Q)) N L2(0,T; H3(Q)), ¢ € L?(0;T; (H(2))"),(2.22)
p € L0, T; HY(Q)), (2.23)

is called a finite energy weak solution of the CHSD system (1.1)—(1.15), if
the following conditions are satisfied:
(1) For any v,¢ € HY(Q),

(Bup,) + (M) V(). Vo) — (g, Vo) = 0, (229
1 L0004 €T, 90)] ~ (o)) =0, $0) =4~ 229

(2) For any v. € Heo and q. € L*(Q),

p0<8tu07 Vc>c + ac(“—c; Vc) + bC(VC7 Pc) + / Pm(vc : ncm)dS

cm

_bC(um QC) + (SOCVM(‘PC)u VC)C =0, (2'26)
where
1
=2(v u v o M w7 (V. T
e, o) = 2D D)) + 3 / sy 7 B e (v 7S

bc(vcaQC) = _(V'V07QC)0-



(3) For any vy, € Hyo and ¢ € HY(Qu),

@<8tum7 Vm>m + am(um7 Vm) + bm(v’rru Pm) - bm(“my Qm)
JV(mev/‘((pm)a Vm)m - / U; - NG ds = 0, (2'27)
where
am(umavm) = (V((Pm)nilumavm)m )
bin(Vins am) = (Vins Vm)m

(4) @li=o = wo(z), ucli=0 = uc(0), Um|i=0 = 1m(0).
(5) The finite energy solution satisfies the energy inequality

E(t) + / tD(T)dT < &(s), (2.28)

for allt € [s,T) and almost all s € [0,T) (including s = 0), where the total
energy &€ is given by (1.16).

2.2 The numerical scheme

Let 7 > 0 be the time step size, K = [T/7], and set t* = k7 for 0 <
k < K. Similarly, we denote u* as a numerical approximation to u(t¥) =
u(kT), with a notation u(t) := u(-,t) for simplicity. Let 7" and T, be
a quasi-uniform triangulation of the domain 2. and 2, with mesh size h.
Then 7" := T U T, forms a triangulation of the whole domain Q. 7
and (7,;%) coincide on the interface Ty,. Let Yj, denote the finite element
approximation of H'(), such as

Yh = {Uh S C(Q)‘Uh‘[( S PT(K),\V/K S ’ﬁl}

Additionally, we introduce Yy, := Y; N L3(Q). Let X", M" X M be the
finite element approximation of HQO,LQ(QC),Hm,g,Xm respectively, while
the approximation polynomials have adequate degrees. We assume that X?
and Mf are stable approximation spaces for Stokes velocity and pressure in
the sense that

(v *Vh, qh)c
sup ———————

> cllgnll, Van € ME. (2.29)
veext  |vallm

The validity of such an inf-sup condition for some standard finite element
spaces can be found in [15]. The classical P2-P0, Taylor-Hood finite element
spaces and the Mini finite element spaces are commonly adopted in practice



for X» and M, cf. [15], [11]. The spaces X" and M/ are assumed to be

cH
stable in the sense that

Vi, Var)m
sup Vi Van)m > cl|lanll, VYan € M. (2.30)

viexh  |[vall

In particular, we notice that the Taylor-Hood finite element spaces satisfy
the above condition.

We will focus on the error analysis of the following unconditionally energy
stable scheme that decouples the computation of the Cahn-Hilliard flow from
that of fluid equations, i.e., for a totally decoupled scheme; see the related de-

scriptions in [5]. FGiven 0 < k < K—1, find (gpzﬂ, ,uzﬂ, uf ) prrl gkl Pffhl)

c,h 77 ¢c,h 0 T m,ho
€Yy, x Yy, x X x MM x X x M" such that for all (v, ¢, Ve, G, Vi, Gm) €
Yy x Yy, x XPx MP x XP x M there holds

(Oeof ™, v) + (M(@f) Vi, Vo) — (@ ef, Vo) =0, (2.31a)
1
7 |- (F(eh™ oh) @) +6(V90'Z“,V¢)} — () =0, (2.31D)

po(étuiﬁl, Ve)e + alj(u]ggl, ve) 4 be(ve, Pclf;{l) + / Prlf;ll(vc Mg, )dS

cm

—be(uitt, qe) + (h Vil ve)e = 0, (2.31¢)
0
%(&u’fnﬁ, Vin)m + aF, (uf,fé, Vin) + b (Vin, Pf;rhl) + (gof,l7hvu7’§#, Vin)m
_/ ulg;l ‘NemGm ds — bm(u::—;ia Qm) =0, (2.31d)
where
k+1 k
k1 ky._ ¢ k+1\3 _  k Skl .— Ph T Ph 92.39
Flon™en) = (@) = s Gy = e, (2.32)
— ﬁfnﬂfufn
—k+1 uﬁ;rhl,a HAS Qm, % ’hiT SO wfn’hVuf:f; :203
Bho T ol e, L ) k k41 (2.33)
c,h cy PO% + 90c,hvl~‘c,h — 0’

alg(ulg:‘y};I’ VC) = 2(”(90];}1,)]])(11]2;1)7 D(VC))C

> ) s (2.34)
+ aBJS]—F—=(U.} - Ti)(Vc - Ti)dd, -
~ Jre. V) e

bc(VCa QC) = _(v * Ve, qC)07 (2'35)
ap, (Wbt vin) = (k)T b v (2.36)
bm(vma Qm) = (Vma VQm)m (2.37)

The initial values are taken as follows:

o) =P, ul, =Pl je{em} (2.38)

8



The unique solvability of the proposed scheme (2.31a)—(2.37) has been
proved via a convexity analysis, and the energy stability is ensured by a
careful estimate; the details could be found in [5]. In this article, we focus
on the optimal rate convergence analysis and error estimate.

3 Some preliminary estimates

Some projections are needed in the later analysis:
Ritz projection P : HY(Q) — Yy,

(V(Pcp —¥), Vv) =0, YweY,, (Pe—ep,1)=0, (3.39)

and for ¢ = ¢(t),Vt € [0, 7], where ¢ is of the weak solution to CHSD system
(1.1)~(1.15), we define the modified Ritz projection P?: H' () — Y,

(M(O)V(POu — ), Vo) =0, Yo ey, (Pu—p1)=0. (3.40)

Stokes—Darcy projection (Pgu,ng,P%u,P%p>: (Hc,(]; L3(Q%), Hy o, Xm) —

(X?,Mch, Xﬁn,Mﬁ’l), which, for all v, € X" ¢. € M! v,, € X ¢, € M",
satisfies the following equalities:

d—1
2((¢e)D(PLyuc), D(ve)) + ; /F _anis \/t(%) ((Peyue) - 7i) (ve - 7i) ds

S (PePY ve) 4 [ (PR Pa) (e men) dS + (V- (PEu).a.)

cm

C

S Y(6m)
= 2<V(¢C)D(UC)7D(VC)>C + ; /cm CMBJSJ\/W (ue - 71;) (Ve - 73)dS

— (P, V-ve). + / Py (Ve ney)dS 4+ (V-ue,q.), (3.41)

cm

(u(¢m)n—1 (P2 ), vm> n (V(P,?gijm) : vm)

m m

— (Pﬁjuum,qu>m —/ (P, uc) - D

+ (mea Vm)m — (uma qu)m - / U - nchmdS-

cm

= (V(gbm)H_lum,vm)

m

Especially, for 0 < k < K, we rewrite the notation of the projections above
as follows:

) (3.43)
k k k k
(Pha Pl PhuPhy) = (PEDPEDPE)PE)) . (3.44)

C?p’ C7p )



What follows is a standard result of Ritz projection [1]. There exists a
constant C' > 0 depending on My, M7, such that the Ritz projections P and
Pk satisfies

[P =l + 2l[V(Pe— )|, < ChI ||| yyarr,  (3.45)

IP*e — ol + hl|V(P*e — @)l < ChT* | o (346)
for all p € HITL(Q), ¢ >0, p € [2,00], and all 0 < k < K with Y}, consisting
of polynomials of order q or higher.

For the Stokes-Darcy projection, the following error estimates have been
established in [4, 18, 19]

[ e = PEye]| 1 g + [[am = Pr ]| < A9 (HUCHHQ‘H(QC) + H“mHHq+1(Qm)>(3-47)

Here we introduce the linear operator Ty, : }th — }O/h, which is defined via
the variational problem: given ¢ € Y}, find Tp(¢) € Y}, such that

(VTh(Q), VE) = (¢,€), VEEY, (3.48)
With this operator, we are able to define the following [|-[|_; ; norm:

Kl = 19ROl =/ (VTa(0). TTa(0)) = /(€. Ta(0). V¢ € Vi
(3.49)
We also define the discrete Laplacian, Ay: Y, — }th as follows: for any
vy €Yy, Apup € }ofh denotes the unique solution to the problem

(Apvp,§) = —(Vop, VE), V€ E Y. (3.50)

We recall the following discrete Gagliardo—Nirenberg inequality from [14,

16] which is needed for the uniform estimate of the order parameter gpi“.

Lemma 1. Suppose that 2 is a conver and polyhedral domain. Then, for
any pp € Ya,

3(4—d)

llenll o < CHAh@hHQ(ﬁd’d) lenllzs ™ +Cllenll e » Veon € Yh. d=2,83.51)

and consequently,

d 24-5

d
lon = @nllpoe < ClIVARpR|[ T [Veop [T + C[Veon]l,  d=2,33.52)

where Py, is the mean value of vy,.
The following technical lemma has been proved in [8].

Lemma 2. Suppose g € H'(Q) and v € ;. Then
(g, 0)l < ClIVglll[v]|-1n (3.53)

holds for some C' > 0 that is independent of h.

10



We also recall the inverse inequality
lenllwyn < CRY VPR | opl| e, Veon € Y, (3.54)

forall1<p<g<oo, 0<I<m<1.
The following trace theorem is necessary for the estimate of certain in-
terface boundary terms.

Lemma 3. Suppose v € HY(Q). Then

IVliza0) < Cllvila()- (3.55)

In particular for vy, € Hc, there holds

[unllps(ren) < ClID(up)| 2 (q.)- (3.56)

Now we derive some stability estimate of the scheme (2.31a)—(2.38). The
following estimates are direct consequence of the discrete energy law estab-
lished in [5].

Lemma 4. Let (go’fLH, M’ZH, ufﬁl, Pf;l, ufnfé, Prﬁﬁ}) € Y x Y x X x Ml x
X" x M be the unique solution of (2.31a)-(2.38) for 0 <k < K —1. Then
there exists a constant C' > 0 dependent on the initial data such that

[ [ [ [ [ A T A2 W i =X of

k
3.58
oz et e
K—

S PIVAE P+ rakal w1
k=0

[y

s — b+ [V = ]
hold for every 0 < k< K —-1,d=2,3.

For the error analysis, we also need the uniform bound of the order pa-
rameter and the chemical potential for which we derive the following stability
estimates, see also Lemma 2.13 from [7].

Lemma 5. Let (cpf;"'l, ,uffl, u];;l, Pf’,‘;l, uﬁ'ﬁ, ijlﬁll) € Yy, x Yy x X x MP x
X" x M be the unique solution of (2.31a)~(2.38) for 0 <k < K —1. Then
there exists some constant C' > 0 dependent on v and € such that

[Anef |1 < Cllup " + ¢, (3.60)

7 < [Vt |)* + ¢, (3.61)
K-1

o 3 Al + g ] < e+ ), (3.62)
k=0

11



T Z ngkHH <o+, (3.63)

) 8(6—d)
d
o3 vt + ok

<C(T+1), (3.64)

hold for every 0 <k <K —1,d=2,3.

Proof. Setting ¢, = Ahcpk“ in (2.31b), by the uniform bound of Hcpk'H H

and HgohH in Lemma 4, we have

Hl

”A S016-}-1”2 — (Vgok+1 VAthIH_l)
1 1
= 3 (f(wfl“,soh) Ah@’“”) 7E(M',ffl,AhsOfl“)
1 1
< et |ane |+ 5 o] e
€ ve
1
1 (s R ) B B o [ B
1 2
< z (e, +H%H> | S0’““\1+ 1l R
< & k1 + Apphtt (3.65)
= a2 Hh, hP), . )
Therefore, we get
2 2 2 20
k+1 k+1
s =1 T R (3.0
which in turn proves (3.60). Likewise by taking ¢ = u#*! in (2.31b), one
derives
Y
HMkHH = ;(f(soffl,tph) pE) + e (Vsoh“ Vi)
i
e
EHL oy k1 Ve k1| k1
< 22 R ol e L T L |
< L (el 1) + Hﬂ’““H e G R e
V2 CHyPel
< k+1H HV k+1H Y 367
- QH *3 + 262 + 2 (3:67)
As a result, inequality (3.61) holds, i.e.
2 (A2
H“kHH <waﬁ1H +€—Z+C~y?8. (3.68)

12



Moreover, the inequality (3.62) follows from (3.60), (3.61) and (3.59). By
Lemma 1, one has

d 3(4—d)
HJHH < CHAMPQH 36—d) ‘@Zﬂ 72(667@ +CH¢2H‘ 6
L L
d
< CHAWﬁ“ 60 4 o, (3.69)

Thus, an application of Young’s inequality gives

4(6—d)

2<6d‘d>+o> T <C’HA g0k+1H +C>(3.70)

4(6—d)
k:+1H d
o

H@ < (CHAMOZH
Subsequently, a combination of (3.62), (3.66), and (3.70) yields (3.63).

For the inequality (3.64), we observe the following identity for any vy €
Y, Apvp, Afvp, € Vi:

2
(Vun, VAZv) = [[VALu|° = [ARvR] ", (3.71)
and that
2 3 2 . 3 2
H k—l—l _ H(%H) —902 +Hv<(“’hﬂ) —@E)
Hl
k+1 3 2 k 2 k+1
< o () w2 et w2 (o) 2wt
e1) |6 k|2 k41 k1 2
= 2|[(eh™)[ o + 2]k +2 3 (o )wh
2
k+1 k+1 k+1
< ()], +2 el + sk HW |
4(6—d)
6 — 2d
< (@), +2 el s lva | (sZaler )T +%5=r
_C(wh ] A e 6d i
4(6—d)
< C waHH Tt (3.72)

Then by taking ¢, = A%@ﬁ“ (2.31b), one obtains

2 1 1 3
[V = (Mﬁi“ At - 3 ((so'ii“) —%Ais@ﬁ“)

Y€
1
- () B4 -] s
7 €2 HL 1,h
1 3
] e
")/6 € 1l
2 1 3 2 1
< o [ | (o) k]| 5t
H

13



4(6—d)
G ] EA R OV RS

[e.9]

gl 62
which yields that

(6;d> C
s - A

o0

HVAW’fH H (3.74)

762

Also notice that (gpll?;, 1) = (cp?l, 1) =(C, V0 < k < K, by taking v, = 1 in
(2.31a). By Lemma 1, we derive

“¢k+l“w < H(karl (szH ‘(pk+1‘ <CHVA g0k+1 FicEr) ‘V k+1 o=y *l-CHVSOkHH+}<P72
< CHVAh 1 | T +C, (3.75
so that
8(6—d)
nggﬂumd <CHVA gokHH rC. (3.76)

Combining (3.74), (3.76), (3.59) and (3.63), one readily derives (3.64). This
completes the proof. O

4 The optimal rate error analysis

In this section we provide a convergence analysis and error estimate for
the numerical scheme (2.31a)—(2.38). Further regularity assumptions for the
weak solution are needed in the analysis.

Assumption 1. We assume that weak solutions to the CHSD system (2.24)-
(2.27) have the following additional regularities

p € L (0,T; W) () L* (0, T; H' () () H? (0, T5 L*(Q)) () L (0, T; H* (@)
pe L™ (0,T; HIT(Q)), (4.78
ue € L% (0,73 [H1 (9] ) (YW (0,73 [£2(20)])") () B2 (0,7 [L2( )]d) s

€ L% (0,75 [H1 Q)] ) (YW (0,75 [L2(20)] ) () 12 (0, T3 [L2(200)] )

4.78)
4.79)
4.80)
where q > 1 is the spatial approzimation order.

The following assumptions are also made, on the the parameters of the
problem

My <M(p) <My, |[M'|<C, vo<v(p)<w, [V|<C. (4.81)

14



For the weak solution (u., P., Uy, P, ¢, 1) to the CHSD system (2.24)—
(2.27), we set

PP (@,t) = plat) = Pl t),  pat) = plat) — PO p(a(4)82)
P t)| = P t) =y ) ~Pry(a,t),  je{e,m}, (4.83)

J

specially, for 0 < k < K, j € {¢,m},

L I L ( k_p k) k| k. ( k _ pk k94¥84

p o, Pj ® ® o, p o, P % 7 Qj;
ke _ wk _ _k k .k k _ pk._ pk __pk pk

pu o, = p] = llj — Pj,’uu]W /71 0, = /)j = P] ’]Dij] 7 (485)

and for 0 < k< K —1, j € {c,m},

R(p,k+1 Ru,k—l—l

_ R;p,kJrl — (5t73s0k+1 _ 3t(pk+1>

Q; j

2
k41 kH +’
Hl

_ pwk+l k+1. k+1

)

Q2

Rk‘+1 .

‘ ¥ ¥

The error functions are defined as follows, for j € {¢,m} and 0 < k < K:
K
= et = (¢ = ek )48D)
i
e (i
0, €; K= Q]&)

_Juk _ _k k
0~ e;" ==uj —uy,, (4.89)

k|  _ ¢k . _ k_ k ok
ot =0t = (77@ goh) e

J
w,k _ k. (pk kK
o 0~ oy = (73 W=y

)
j Q;
7 etk

J

u,k — al-l’k — 7)1; ut —u” Wk

o S —u;
Q; J Jug Jiho

k _ pk ._ pk k
oP == P — P, (4.90)

L U;M =Pl Pf = Py, Pt 0,
Note that the numerical solution gpﬁ satisfies mass-conservation by choosing
vp, = 1 in (2.31a), same as the weak solution ¢. Recall also that () = PP
Then by the definition of Ritz projection we see that (cpk, 1) = (Pcpk, 1) =
(gpﬁ, 1) = (Cp for all 0 < k < K. This enables one to apply Poincaré
inequality to p?* g?* e#F §,09%+1 for 0 < k < K. We shall also make use
of the fact that o9, 8,091 € Y),.
Given any ¢ € [0, T, the solution to the CHSD system satisfies

2 2 2
I L T i i L

_ k+1
atllj

2
u” ‘k4.86

(0P 0) + (M(" VP, To) — (w1, W) = (REEH, ), (4.91a)
(VP V) — (P 6) + L(£(M4), 9) = (0447, 9), (4.91b)

po(GPET AT ve)e + ac(PE Ul ve) + be(ve, PEFLPETL) + / PELIPI (Ve 0 )dS

cm

~be(Petug ™, qe) + (06 Vie ve)e = po(REMH ve)., (4.91c)

C

m,u o m m,u o m m,p T m

Po
;<5tzpk+1uk+1’ Vm)m + am(PkHukH, Vm)m + bm(Vm7 Pk+1pk+1) _ bm(pfn-f-ulufn-H’ Qm)

15



- / PRI nengm dS + (o5 Vi vin)m = %(R;;;k“,vm)m, (4.91d)
FCWL
for all v, ¢ € Y}, VjEX?, qjeM]’-L, je€{e,mland 0 <k <K —1.
Subtracting (2.31a)-(2.31d) from (4.91a)-(4.91d), we obtain

(6025, ) + (M(h) Vo5, T) = — (M(6"1) = M(h) VPH+ ik, To)
M —w gk, Vo) + (RP), (4.92a)
(Va1 99) = (0451, 6) = (0551, ) — L (F(65F) = F(eh T, ¢h)ap2b)

€
po(dioh kel ,Ve)e + / Ufr;kH(Vc ‘N, ) ds
ch
+ak (oM ve) 4 be(ve, 2P — be(0 M ge)

= po(BEF v — (b — by ik ve)
-2

(( (1) = v(ek ) D(PE 0t ), D(v.,) )

c
k+1

k

—V

+Z / BJSJ (e )t (H)((pc’h)(P(’jzlu’gﬂ-ri)(vc-ri)ds, (4.92¢)
T

Po k+1 k+1 k k+1
;(51«/0;’ 1 ovi)m — oM g ds + ar, (0 v m
cm

+bm(vm70$ﬁk+1) - bm( m k+17 Qm)

0
:%(Rx{k—f—l?‘/m)m_( k—i—lv’uk—&-l @m VM:#’ )m

~ (Wb = b DI PR i) (1.924)

forall 0 <k<K—1,0v, p €Yy, vjeX! ¢y e M! je{cm}.

Setting v = o**+1 in (4.92a), ¢ = §;0FT1in (4.92b), v. = o" M e =
oL iy (4.92¢), v, = okt g = oPk (4.92d), adding the resulting
equations, and noticing that for d = 2, 3,

My < M(p) < My, vo <v(p) <, Amax (IT) < tr(II) < dA,
el Al e

we derive the following error equation for the numerical scheme:
2 e 2 2 2
Mo [Vt [P 32 (9ot [ = [t oot - J“””“>H
27

2

PO ‘ uk+1H2 ‘ wk ‘2 ) whtl uk‘ ‘ whtl
+ — | ||o¢’ — oo + ||o.” + «
27( v : ; BJSJ\/— E o
2 2 9 y 2
o gy (b o) b
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_ ((M(Solﬁl) -~ M(‘Pi)) PR vo,,u,kJrl)

=2 ((V(e™) = vigk)) ) D(PE ), D(o2h+))
k+1

d—1 k

vy — Ve

_Z/ CBrs (pe ™) —vipe) (Pgﬁulzﬂ . Ti) (Uél,kJrl ] Ti) s
— JTem tr(IT)

k k —1pk+1. k k
— (w5 = vk ) T PERI L ottt
+@ (Rx{kﬂ’amkH) + 0o (sz,k-i-l’Gg,k-&-l) n (R¢,k+17au,k+1>
X m c
4 (pu,k+175t0_@,k+1> n <uk+1¢k+1 _ ﬁ2+1¢27 vau,k+1>

v
-2 (f((pkﬂ’@kﬂ) _ f(¢Z+17(p12)75t0¢,k+1> _ <¢k+lvﬂk+1 _ @IfLVMﬁH,Uu’kH)(‘l-%)

::ZIj

Jj=1

C

—_

where we have designated the eleven terms on the right-hand side of (4.94)
by I;,7 =1,2---11. Now we estimate the I;s in a series of lemmas.

Lemma 6 (Estimate of the first term I7). Suppose (p, p, Ue, U, Pe, Py is
a weak solution to (4.91a)—(4.91d) with the additional regularities described
in Assumption 1, d = 2,3. Set My as the lower bound of the mobility M(y).
Then the first term 11 of RHS of (4.94) satisfies

= (M) = Mi(gh) ) VAR, worktt) | < (Rk“ + [ wee

D + 20 ot [(4.95)

for a constant C' independent of T and h.

Proof. We split the term into two parts as follows
_ <<M(gpk+1) _ M(@ﬁ)) VﬁkﬂukH? VUu,kH) _ <<M(¢k+1) _ M((Pﬁ)) Vot va,u,kJrl)
- ((M(SDkH) — M(cpﬁ)) \YTans VJ”’(“IQ}S)

By the inverse inequality, there exists a constant 6; > 0 such that for all
0<k<K-—1, we have

’ ((M(“’kﬂ) - M(@g)) vkt VU“’k+1) ‘

< et M| [ v,
N
< Cp9s ngkJrl _ SOQHHl vo.u,k+1H
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e |
< G (et Tt lert Tl ) + 5 oo
< o (ma e ) + L versn (4.97)
and similarly,
(M) = M(eh) ) Vit warttt)|
< ofpteth —nuh | ot [[vot|
: of -] Jrot
< cfet -], v
< g (v ) e g e oy
Combining (4.97) and (4.98) and choosing 6; = 12 , one obtains (4.95). This
completes the proof. O

The estimates of Iy, I3,I; in (4.94) are summarized in the following

lemma.

Lemma 7 (Estimates of Iy, I3, 14 ). The assumptions are the same as in
Lemma 6. Then I, I3, 14 of RHS in (4.94) satisfy

(e

<0 (R4 [wert|) + 2 oot

‘ > / cnrsy "I (prtuget ) (o240t ) as

‘ (( (om

) = vlphn) ) DIPEL Al ), Do)

[

, (4.99)

k+1

2 2
<C(RF'+ HVe“O’kH ) + « ‘ whtl o .100
< < BJSJQ\/—Z _(4.100)
) = vk ) ) T PEEIE L o) |
2 2
<C <Rk“ + HWMH ) + 0 a;;;’““‘ , (4.101)

where C's are constants independent of 7 and h.

Proof. The inequality (4.99) is derived the same way as (4.95), that is

=2 (k™) = vlek)) DIPEL W), D(o2))

[
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< 2 ((veE) = v(@hn)) Do), D2 =) |+ |2 ((veh ™) = vighy) ) Bl ™), Do)
< 2|utelt) —wehn) |, [t || plerth|, + 2 vk = viekn)| [Pl [P
< Chpd/ﬁHsOkﬂ @ié’h ‘6’115“)1{2 D(Uéx,kﬂ)‘ ¢l§+1_¢l§’h )6HD(03,1¢+1)H
< ekt -k, [plore)|
C k+1 ©® u,k+1
< o (" +HV€’H + 62 Do )H . (c
With an application of Lemma 3, one has
K1y _ (o
Z/ QBT ‘pc ) (Soc,h) (Pf;rl ]§+1-Ti> (Uél’kJrl-Ti) ds
tr(1I) ’
< C k+1 k ‘ ’ ukJrlH ‘ k+1‘ ‘ wktl .
= Zz; ((pc ) (%,h) L4(ch) Pec L4(ch) u. L4(ch) Oc T4 om
d—1
k+1 _  k u,k+1 k+1 wk+1l .
= ZZ;C e Peh LA(T (H]D) )‘LQ +H]D) )‘LQ(QC)) 7 T cm
d—1
< O |l or+1 — o ‘ h‘ k+1H ‘ k+1H ‘ wht+l
= Zzl Pe ro,h HY(Q) u. H2(Q0) u. H2(Q0) Oc T4 om
d—1
< ookt — H uk—i—l ,
= ; P Ph " T om
o d—1 )
< o (Rk+1+HV69"’ H >+932‘037’“+1-n (4.103)
3 i=1
Likewise,
= (b = vtehw) I PR it |
< ety =wteh (ot o]+ ] ot
< et =l (1 o+ o] ) o
H1 A
< ol el o]
< ¢l <th uk+1H
c k+1 © u,k+1
< (R +HV€ : H + 0, ‘ H (4.104)
4

By choosing 0 = 2,03 = CVBJSJ%,@;

the lemma.

= 1%, we complete the proof of
O
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The next lemma contains the estimates of I, =5,6,7,8.

Lemma 8 (Estimates of I, Ig, I7, Is). The assumptions are the same as in
Lemma 6. One has the following estimates on the terms I, Ig, I7, Is of RHS
in (4.94):

Po (R;qlik+170;1rzk+1) < ¢|rurn 2 @“Jzik+1‘ 2’ (4.105)

X m 4

’po (RE’HI,U?’]CH)C < C|Rruktt 2+%HD(03J€+1) 2’ (4.106)
(Rt omht)| < c||Rett 2+%HVUW+1 " (.107)
A T e e

Proof. In fact, (4.105) is a direct result of the Cauchy-Schwarz inequality.
Thanks to the Poincaré inequality and Korn’s inequality [1], for any 6 > 0,
we have

wk+1 _uk+1
o (1)

IN

ooz

2t < cljoomzt oozt

c

2 2
< T|reEe ]+ 060" e > 004100
6

We notice that (R‘P’kﬂ, 1) = 0 holds for all 0 < k£ < K — 1 by choosing
the test function v = 1 in (2.24) and using the mass conservation of Ritz

projection. Let o#*+1 be the mean value of o#**1 on Q, it follows that

‘(Rgo,k-i-l,o_u,k’-i-l)‘ _ ’(ch,k-i-l’ O_u,k+1 o U“’k+1)‘ < HR<,0,1€+1HHU;LJ€+1 o O—HJH_IH

IN

e ] F T A e

For the eighth term of the RHS of (4.94), we apply Lemma 2 and recall
§;09%*tl ¢ y;, for all 0 < k < K — 1. Thus for any fg > 0, one gets

C 2 2
(Gt LTS/ Mo | RTatll WV~ \Cous IR Lisnnn WO
—1,h — O3 —1\h
The proof is complete upon setting 0 = %, 07 = %. O

The following lemma gives an estimate of the ninth term Iy on the RHS
of (4.94).

Lemma 9 (Estimate of Iy). The assumptions are the same as in Lemma 6.
Then for any 0 < k < K — 1, the following inequality holds for a constant
C that is independent of T and h:

k+1 _k+1 _ <k+1 k 1
(u e =,y Vot )
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<

1
Po

2 2 M 2
e B ERa o L R
k) pO )

(1 + o)
‘2> ] . (4.112)

+RA 4 wa,kHZ + Hsoﬁin (R’““ e
o

Proof. We first split the term on €, as follows:

k+1 k+1 k+1 k

Uy, $Pm mhgomh
k+1, _k+1 k k+1 k+1 k+1 k+1
= um+ Qom_‘— <umh - 7@771 hvlu’m+h> meh - um+ @m—i_ mhsamh + (@m h) V,LL +

TY
= uy! (%’ifl oF, + e ) + On ( -y, + 65{’“) - %(w'ﬁ%h)Q (Vpﬁi“l + Vol — v
2
= Im — % (@fﬂ,,h) VO',,'u;ikJrl, (4

where

.
I 2 ulbt! <<an+1 @ﬁl+6f{k)+¢]fn,h (uqlfnJrl ub +euk> p%((gok )2 <Vp“k“+VukH>l.114)

In light of ||¢F|| ;1 < C and [|e?*|| g1 < C||Ve?*||, one has

= o (o) ot (s o) | 25 (ot

< H k+1H Hgok+1 oF 4 epk H4+H<th Huffj_l_um_’_em “+CT“S@mh)‘ vaﬂ,k+1+vl
o
: CHW %*6?%”“” k] (st = s+ e ) + e bl ([0
H o i 6
oo

(

By Young’s inequality, we obtain

2 2 2 2
lnl? < oree |9 () et = b, e et ol (s - o]
)

e 2wt (0! = ol ef) gk (ub =l et) = (o) (Vo vt i)

‘)4118

< or +vaﬂv’f+1H )+CR’“+1+CHV6“H +C ek H (Rk+1+‘exf

Similarly, with the following definition

one gets

u,k

IL|12 < C72( —i—HVpMk:HH )+ch+l+CHw, H +CH‘PhH <Rk+1+‘
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Consequently, the following inequality is valid:

2 2 2
IT|1% + [Tm]f? < C72(1 + va#”“HHG) Y CRM 4 O Hve%’fH e szH <Rk“ + Heu”f

‘294.119)

Thus for constant fg > 0, there holds

(uk+1¢k+1 —k+1 k Vau,kJrl)

E+1 _k+1 k+1 K k+1 k+1 _k+1 k+1 k k+1
= (u + (pc+ C; QPC 7VO-ICJ‘7 * )C + ( m+ @m—’— m+h(pm 7VO_IJ‘7 + )T)’L
_ I — Tk w1 k1 I TX [k pok+1 pok+1
— c po SOC h VUC 5 VOC + m po (pm,h Vo-m 5 VO‘m
&

_ (Ic,wﬁ”““)c + (Im,VUﬁikH)m - pTO ]

m

2 T 2
1 X || & k41
SDC vo’g H - % H(pm,hvaﬁn H

T 2 T 2 1 2

< T |ekavorr et = Xk, nost T o (el 4 1 2l?) + 6 || Vot |

po "™ Po ’ 469
2 2 2 2
I s I el BT e R T e 8
po ™" Po ’ to 6
k+1 k 2 k 2 k+1 k 2
+ R +HV6“” H +Hg0hH (R + +‘e“’ ) : (4.120)
o
This proves the lemma by choosing 09 = % O

The term Iy is estimated in the following lemma.

Lemma 10 (Estimate of the term I1g). The assumptions are the same as
in Lemma 6.. Then the tenth term of RHS in (4.94) satisfies

y
‘; (f(sok“, O — Flef T o), 5t0“”k+1) ‘

< eloHcsm%’““HQ L & (Rk“ <1+H<pk+1H >HVe“"’HIHQ—i—HVe“&(’ﬁ“lQ?))

- 610
for a constant C independent of 7 and h.

Proof. First we need to estimate HV (f(cpkH, PFH) — f(ph T cpﬁ)) H Re-
call that f(a,b) = a® — b. Hence

Hv (f(gokJrl’ ¢k+1) k:+17 ) H
Hwﬁﬂﬁ—wﬁﬂ\hﬂvkﬂ—%w
H3(<P’““)2V<p’““ — 3(pth)? Vs@’““” - HV( R ok g P s0h> H

< (- ) T i (- ) [ 5 - )+ e

IN
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< sl e et ol e e (5 - )+ o]

< 0 (e el ) e st [ wers « 7 oot =) [+ e
o

< o (et e (o e ) foers e 12

which in turn yields

HV <f(¢k+17(pk+l) k+1 ) H

clv (- )H+C(+W¢“H)7wwwﬁf+dwwﬂf

IN

IN

e (i JarL) [re el s

Thus by Lemma 2, we derive the following estimate for any 619 > 0:

.,
‘; (f(«pk“, O — Flef T o), 5ta‘P”“+1) ‘

< C HV (f(SDkJrl, SDkH) - f(SDkH’ @2)) H Héta%kHH—l h

2
<l [ 19 (e - i )|

< waaem (1 (v o) [ o e

This completes the proof. ]
Finally we estimate the last term I in the following lemma.

Lemma 11 (Estimate of the I11). The assumptions are the same as in
Lemma 6. Then for the last term Iy of RHS in (4.94), the following in-
equality holds for a constant C' independent of T and h:

‘_ (¢k+1vuk+1 kkaJrl’ Uu,k—f—l) ‘

2 2 2
< C (R’“*l + HVe%’“H ) + 1—20 HWMHH + (1 +CH@£H ) ‘a“(?ﬁi#f))
Proof. We make use of the following decomposition
H(karlka+1 @hvﬂkHH _ H(SOkJrl PV 4 BT (L — H

_ H (spk-i-l _ ka 1 etp,k) Vuk-i—l i (pl}cbve,u,k-i-lH

IN

i+t =t et omt |+ ek e
4 4 00
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IN

kE+1 _ Kk o,k k pk+1

C ([ = e, e ) + k] o]

C (e = e+ o) + ] [t
Then for any 617 > 0 there holds

‘((pk—&-lv,uk—l-l _ @gvﬂz+1’au,k+l)‘ < H(pk—&-lv'uk;+1 _ @ZVMZHHHO_u,kﬂH

IN

< 0 (e =t o) + bl foes ] e
= (Hso H1+ e . + ||¥h - e o

S ( Fanits PR S POL i Bl Mo 151 Canll

< (e = o) + o onfwens [ g ekl o

H1 1 011 00
2
< C(R’““Jr”v@% H >+011HV6“7H1H +< +9 H«th >’a“»k+1H . (4.127)
11

The proof is complete by choosing 611 = % O

The next lemma gives an estimate of Hdta%kﬂ H71 b

Lemma 12. The assumptions are the same as in Lemma 6. There exists a
constant C > 0 independent of T and h such that

25M?
4

2 2
Héta‘p’kHH < Cr2+07? HVp“’k+1 H6 + <

2 2
< + O (T + 1)) |vorsst|” o+ o rest|

‘ 2

o (v l) mer e e e 12

Proof. Recall that [|C[|*, ;, = [[VTA(O)]* = (VTa(C), VTA(C)) = (¢, Ta(C))
for all ¢ € V. Noticing that §,0%*+1 € Y}, setting v = T, (6;07* 1) in
(4.92a), using (4.95), (4.113) and (4.119), we derive

H(StO"P,kJrlHQ_Lh — <5t0s0,k+17-|-h (5t0<p,k+1)>
- «kaﬂ) B MW}Z)) VP VT, (5150%“1)) + (RS"”“H,Th (&U“”Hl))

- (M(g@ﬁ)VJ“’kH, VT, (5t0‘p’k+1)) + (ungokH — ﬁﬁ“gp’fl, VT, (5250“"””1))

2 1 2
R Gt L2 RS | B s T L]
i R | Tl B i A | iUl
< or g o||vert|” +5HVTh (02| +C“R‘P’k+1H [V (074 |

2 _ 1
e I Lt R PR R T

AL
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2 5M? 4 2
e \Ca R o A e L R ACha
2 2
§ I. _7(801@ )QVO_,u,k—l-l +§ Im—ﬂ(@k )QVO_u,k+1
4 00 c,h c 4 2 m,h m
2 5M2 2 2 4 2
< orovert| T HW”““H +C!\R“°”f*1\\ 5l
5 2 X 2
*HI I +3 po(%h) Vot HI I+ 5 || == (ehn) Vol
< CR’““+CHWH2+ e HW”MH +CHR§"”““H +5 Joe,
5 572 2 5r2y? 4 2
o (11l 1 l) + 57 o 0o+ 255 [t oot
2 2 2
< OR+o|vert| +(5T1+C ] Mo R Ll IR L W
2 2 2
Ww*HW"”““)!6+C<1+H%H )R’““WHW"“H +CH%H ]
2 4
< ot (24 ok Vot | 4 o[ restt| 4 2|s,00k
4 "o 5 ~Lh
2 2
+C <1+H¢2H )R’“+1+0Hv6%’fH +072HW%’“+1HG+CH¢’,§H e (4.1
o0 o0

Since 7'”@’2“4 <7+ THcthM < C(T + 1) from Lemma 5, the proof

is complete once we move = Héta%k“H ,, to the left-hand side of the in-
equality. O

With all these estimates of the RHS terms in place, the error equation
(4.94) leads to the following result.

Lemma 13. Suppose (@, i, Uc, U, Pey Pp,) is a weak solution to (4.91a)—
(4.91d) satisfying additional regularities prescribed in Assumption 1. Then,
for any T,h > 0, there exists a constant C > 0, independent of h and T,
such that for any 0 < k < K —1,
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Proof. Substituting the estimates in Lemmas 6 - 12 into the right-hand side
of the error equation (4.94), choosing
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(4.132)

with Cy the positive constant defined in inequality (4.128), we get
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The proof is complete since [|[e®*||? = [|p®F+0WF|[2 < 2 (|[p"F(|2 + [|[o»*[|?),
and ||V pt k|| < OV prh s O

Regarding R*+! in Eq. (4.131), the following estimate could be derived.
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Lemma 14. Suppose (¢, i, Ue, W, Pe, Py) is a weak solution to (4.91a)—
(4.91d) satisfying additional reqularities in Assumption 1. Then for all 0 <
| < K —1 there holds
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Proof. First, by Minkowski’s inequality and Holder’s inequality one obtains
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Likewise, for j € {¢, m}, one has
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Applying Minkowski’s inequality and Holder’s inequality again gives, for
Jj €{e,m},
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Therefore, for d = 2, 3, by using Cauchy-Schwarz inequality and Lemma 5,

one gets
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This completes the proof. O

Now we are ready to prove the main convergence theorem.

Theorem 1. Suppose (¢, pi, Ue, U, P, Pryy) is a weak solution to (4.91a)—
(4.91d) with the additional regularities described in Assumption 1. Recall
the definition of error functions os in Eqs. (4.87)—(4.90) and the p?, p*, p#
in Eqs. (4.82)—(4.85). Then, provided that 0 < 7 < 11 for some sufficiently
small T > 0,
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holds for some constant C(T') > 0 independent of T and h.
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Proof. Applying T Zic:o to (4.130), and observing that ¢#* = 0 and o5 k=
0 for k=0, j € {¢,m}, it follows that
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Moving all the terms indexed (I + 1) to the left hand side, one has
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By Lemma 5 we have, forall 0 <[ < K — 1,

. 4(6—d) 8(6—d) l 8(6—d) %
T3 #‘HH T < H(leH d ) ( ZHJHH & > < OV/T H{A.146)

o0

Hence we can choose a sufficiently small 71 such that for all 0 < 7 < 7 and
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applying discrete Gronwall’s inequality. This completes the proof.
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Lemma 14, we arrive at the error estimate (4.143) by setting { = K — 1 and
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Corollary 1. Suppose (p, ft, Uc, U, Pey Pr,) is a weak solution to (4.91a)—
(4.91d) satisfying the regularities Assumption 1. Then there exists 1 > 0
such that for all T < 1 the following optimal convergence rates hold
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where g > 1 is the spatial approximation order.

For numerical evidence of the convergence results, we refer to [5].
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Remark 1. In the the discrete energy dissipation analysis established in
Chen et al. (2017), for the numerical scheme, a cancellation of a nonlinear
error term associated with the convection part has played a very important
role. Meanwhile, in the optimal rate error estimate presented in this section,
such a cancellation technique is not needed in the convergence proof, due to
the subtle fact that, a growth constant for the velocity error term, namely
(1+ CllFl2%) appearing in (4.49), would not lead to a theoretical difficulty
in the derivation of discrete Gronwall inequality. This fact is associated
with Nativer-Stokes nature for the fluid velocity, in which the higher order
kinematic diffusion and the temporal derivative of the velocity variable have
greatly facilitated the analysis at both the analytic and numerical levels. In
comparison, for the Cahn-Hillird-Hele-Shaw system, in which the fluid ve-
locity is statically determined by the phase field variables, such a cancellation
technique is necessary to pass through the optimal rate convergence analysis,
because of lack of reqularity for the velocity field; see the related works Chen
et al. (2016); Diegel et al. (2017); Liu et al. (2017), etc.

5 Concluding remarks

In this article we provide an optimal rate convergence analysis and error
estimate of a fully discrete finite element numerical scheme for the Cahn-
Hilliard-Stokes-Darcy system that models two-phase flows. An operator
splitting is applied in the numerical scheme, so that a coupling between the
Cahn-Hilliard and the fluid solvers is avoided. The unique solvability and the
energy stability have already been proved in the existing literature. The op-
timal rate error estimate is established in the energy norm, ¢£>°(0,T; H') N
¢2(0,T; H?) norm for the phase variables, and ¢>°(0,T; H') N ¢*(0,T; H?)
norm for the velocity variable. A discrete £2(0;T; H?) bound of the numer-
ical solution for the phase variables also plays an important role, which is
accomplished via a discrete version of Gagliardo-Nirenberg inequality in the
finite element space.

Acknowledgements

W. Chen is supported by the National Key R&D Program of China
(2019YFA0709502) and the National Science Foundation of China (12071090).
D. Han acknowledges support from NSF-DMS-1912715. C. Wang is sup-
ported by NSF DMS-2012669. C.Wang also thanks the Key Laboratory
of Mathematics for Nonlinear Sciences, Fudan University for support dur-
ing his visit. X. Wang thanks support from NSFC11871159, Guangdong
Provincial Key Laboratory of Computational Science and Material Design
via 2019B030301001.

32



References

[1]

Susanne C. Brenner and L. Ridgway Scott. The mathematical theory
of finite element methods, volume 15 of Texts in Applied Mathematics.
Springer, New York, third edition, 2008.

Yongyong Cai and Jie Shen. Error estimates for a fully discretized
scheme to a Cahn-Hilliard phase-field model for two-phase incompress-
ible flows. Math. Comp., 87(313):2057-2090, 2018.

Wenbin Chen, Wenqgiang Feng, Yuan Liu, Cheng Wang, and Steven M.
Wise. A second order energy stable scheme for the Cahn-Hilliard-Hele-
Shaw equations. Discrete Contin. Dyn. Syst. Ser. B, 24(1):149-182,
2019.

Wenbin Chen, Max Gunzburger, Dong Sun, and Xiaoming Wang. Effi-
cient and long-time accurate second-order methods for the Stokes-Darcy
system. SIAM J. Numer. Anal., 51(5):2563-2584, 2013.

Wenbin Chen, Daozhi Han, and Xiaoming Wang. Uniquely solvable
and energy stable decoupled numerical schemes for the Cahn-Hilliard-
Stokes-Darcy system for two-phase flows in karstic geometry. Numer.
Math., 137(1):229-255, 2017.

Wenbin Chen, Yuan Liu, Cheng Wang, and Steven M. Wise. Conver-
gence analysis of a fully discrete finite difference scheme for the Cahn-
Hilliard-Hele-Shaw equation. Math. Comp., 85(301):2231-2257, 2016.

Amanda E. Diegel, Xiaobing H. Feng, and Steven M. Wise. Analysis of a
mixed finite element method for a Cahn-Hilliard-Darcy-Stokes system.
SIAM J. Numer. Anal., 53(1):127-152, 2015.

Amanda E. Diegel, Cheng Wang, Xiaoming Wang, and Steven M. Wise.
Convergence analysis and error estimates for a second order accurate
finite element method for the Cahn-Hilliard-Navier-Stokes system. Nu-
mer. Math., 137(3):495-534, 2017.

Xiaobing Feng. Fully discrete finite element approximations of the
Navier-Stokes-Cahn-Hilliard diffuse interface model for two-phase fluid
flows. SIAM J. Numer. Anal., 44(3):1049-1072 (electronic), 2006.

Xiaobing Feng and Steven Wise. Analysis of a Darcy-Cahn-Hilliard
diffuse interface model for the Hele-Shaw flow and its fully discrete
finite element approximation. STAM J. Numer. Anal., 50(3):1320-1343,
2012.

33



[11]

Vivette Girault and Pierre-Arnaud Raviart. Finite element methods for
Navier-Stokes equations, volume 5 of Springer Series in Computational
Mathematics. Springer-Verlag, Berlin, 1986. Theory and algorithms.

Daozhi Han, Dong Sun, and Xiaoming Wang. Two-phase flows in
karstic geometry. Mathematical Methods in the Applied Sciences,
37(18):3048-3063, 2014.

Daozhi Han, Xiaoming Wang, and Hao Wu. Existence and unique-
ness of global weak solutions to a Cahn-Hilliard—Stokes—Darcy system
for two phase incompressible flows in karstic geometry. J. Differential
Equations, 257(10):3887-3933, 2014.

John G. Heywood and Rolf Rannacher. Finite element approximation
of the nonstationary Navier-Stokes problem. I. Regularity of solutions
and second-order error estimates for spatial discretization. SIAM J.
Numer. Anal., 19(2):275-311, 1982.

William J Layton, Friedhelm Schieweck, and Ivan Yotov. Coupling fluid
flow with porous media flow. SIAM Journal on Numerical Analysis,
40(6):2195-2218, 2002.

Yuan Liu, Wenbin Chen, Cheng Wang, and Steven M. Wise. Error
analysis of a mixed finite element method for a Cahn-Hilliard-Hele-
Shaw system. Numer. Math., 135(3):679-709, 2017.

Sebastian Minjeaud. An unconditionally stable uncoupled scheme for a
triphasic Cahn-Hilliard/Navier-Stokes model. Numer. Methods Partial
Differential Equations, 29(2):584-618, 2013.

Mo Mu and Xiaohong Zhu. Decoupled schemes for a non-stationary
mixed Stokes-Darcy model. Math. Comp., 79(270):707-731, 2010.

Béatrice Riviere and Ivan Yotov. Locally conservative coupling of
Stokes and Darcy flows. SIAM J. Numer. Anal., 42(5):1959-1977, 2005.

Jie Shen and Xiaofeng Yang. Decoupled, energy stable schemes for
phase-field models of two-phase incompressible flows. STAM J. Numer.
Anal., 53(1):279-296, 2015.

34



