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Summary

Firearm injury is a major public health crisis in the U.S., where more than 200 people sustain a nonfatal
firearm injury and more than 100 people die from it every day. In order to formulate policy that minimizes
firearm-related harms, legislators must have access to spatially resolved firearm possession rates. Here,
we create a spatio-temporal econometric model that estimates monthly state-level firearm ownership from
two cogent proxies (background checks per capita and fraction of suicides committed with a firearm). From
calibration on yearly survey data that assess ownership, we find that both proxies have predictive value in
the estimation of firearm ownership, and that interactions between states cannot be neglected. We demon-
strate the use of the model in the study of relationships between media coverage, mass shootings, and
firearm ownership, uncovering causal associations that are masked by the use of the proxies individually.
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INTRODUCTION

Firearm violence poses a serious public health threat in the U.S. Every year, more than 67,000 people
in the U.S. are injured by firearms.1 The costs associated with their initial hospitalization alone amount to
$750 million per year,2 and long-term medical care and productivity loss are estimated to tally above $88
billion.3 Firearm-related death statistics are also exceptionally grim in the U.S. In 2018, the National Center
for Health Statistics has reported nearly 40,000 deaths due to firearm-related violence in the United States,
amounting to 109 deaths per day and surpassing the number of deaths due to motor vehicle accidents.2,4

Accessibility to firearms in the U.S. has been repeatedly correlated with firearm violence, whereby
states with greater firearm possession rates experience a higher risk of suicides, homicides, and assaults
with firearms.5,6,7,8 In spite of these findings, most Americans do not welcome laws that restrict firearm
purchases and ownership.9 In a 2013 survey by the Pew Research Center (PRC), 58% of firearm owners
and non-owners expressed concern that new firearm laws will make it more difficult for people to protect
their homes and families.10 In fact, many Americans hold the belief that ubiquitous firearms could confer
protection to their community.9 In a 2019 study conducted by PRC, 67% of firearm owners cited protection
as the main reason they own a firearm.11 According to another poll by NBC in 2018, 58% of American
adults thought that firearms increase safety by allowing law-abiding citizens to protect themselves.12

Thus, policy-makers are faced with an exceptional challenge: reducing harm caused by firearms while
maintaining citizens’ right to bear arms and protect themselves.13 To meticulously study how access to
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firearms is associated with different outcomes of harm, it is imperative that policy-makers gain access to
accurate, highly-resolved data on firearm possession. Unfortunately, such measurements are presently
unavailable as no comprehensive national firearm ownership registry or other reliable record of firearm
acquisition exists. Instead, the requirement to register firearms varies on a state-to-state basis.14

In the absence of national firearm registries and in light of the strong opposition to map firearms to
owners, anonymous survey instruments are the method of choice to measure firearm ownership. How-
ever, an accurate estimate of firearm ownership on a state level and its variation over time requires a
high response rate across geographical regions and demographic populations, at a high temporal reso-
lution. Three surveys that assess firearm ownership in American households are highly regarded among
researchers: Behavioral Risk Factor Surveillance System Surveys (BRFSS), PRC, and Gallup Poll Social
Series (GPSS).

The BRFSS is a system of health-related telephone surveys, conducted by the National Center for
Chronic Disease Prevention and Health Promotion (NCCDPHP) at the Centers for Disease Control and
Prevention (CDC).15 Established in 1984, the system methodically interviewed 400,000 adult across the 50
states to inquire about their health-related risk behaviors, chronic health conditions, and use of preventive
services. Data from BRFSS are only available up to 2014, and data on firearm ownership were only
collected in three out of the 20 years (2001, 2002, and 2004). Therefore, BRFSS data cannot be used to
reliably study temporal processes involving firearm ownership.

A second survey that measure firearm ownership is conducted by PRC. PRC began administering
surveys in the early 1990s, focusing primarily on U.S. policy and politics, with questions regarding firearm
ownership available through the American Trends Panel.16 PRC’s surveys are conducted online every
couple of months (called “waves”), where the same respondents may participate. Therefore, the data
collected by PRC could illustrate how public opinion and behavior changes over time. The PRC surveys
are designed to be nationally representative with more than 10,000 adults selected at random from across
the entire country in each survey. However, PRC’s data are not optimal for the study of firearm ownership
since questions probing about firearm ownership were administered sparsely and at irregular intervals, and
in 2013 PRC changed the wording for the question inquiring about firearm ownership, likely introducing a
bias in the years moving forward.17 Therefore, the data obtained from PRC may be context specific and
yield inconsistent results for longitudinal assessment of firearm ownership.

The third survey instrument, GPSS, was designed to monitor U.S. adults’ views on numerous social,
economic, and political topics.18 The GPSS have operated continuously since the 1930s and provide an
excellent source for generational studies. Survey topics are arranged thematically across 12 surveys, and
administered each one month a year. The crime surveys series, which assess firearm ownership among
other issues, was conducted consistently in October from 2000 until 2021. GPSS interviews a minimum of
1,000 U.S. adults in all 50 states, through both landline and cellphone numbers. The greatest limitation of
GPSS data is that it is not designed to be representative of populations in individual states: for some years,
responses from only one resident in a state is obtained. As such, inference of state-level firearm ownership
in less densely populated states is suboptimal using GPSS data.

Several alternative measures have been proposed to estimate firearm prevalence in the U.S. In partic-
ular, proxies derived from administrative data collected by government agencies are available at the state-
(and even county-) level over a long time period. One such measure is background checks, collected by
the Federal Bureau of Investigation’s National Instant Criminal Background Check System (NICS).19 NICS
was established in November 1998, following the legislation of the Brady Handgun Violence Prevention
Act which conditioned firearm purchases upon approval of federal background checks.20 Using NICS,
authorized firearm vendors submit a background check request to determine the eligibility of prospective
buyers to purchase firearms. Background checks data are available on NICS on a state-level on a monthly
resolution, specifying also the type of transactions performed, including sales, pre-pawns, rentals, and
redemptions. More recently, the FBI has released the daily number of background checks on a national
level, allowing for more granular analysis of firearm acquisition across states. Due to these features, back-
ground checks have been used extensively in previous research to approximate firearm acquisitions in U.S.
states.21 However, the number of background checks only serves as an approximation of the number of
firearms that are actually purchased every month.22,21 Background checks do not always realize into an
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acquisition and they do not capture illegal firearm sales.22 Conversely, private party sales and firearm show
sales may not yield a background check as only licensed federal dealers are required to do so.21

Another measure that is widely used among firearm policy researchers is the number of suicides com-
mitted with firearms. Data on suicides and their underlying causes can be readily obtained from the CDC’s
Wonder database.4 Wonder’s national mortality and population database is managed by the National Cen-
ter for Health Statistics based on death certificates for U.S. residents. It fuels multi-faceted public health
studies, accounting for many demographic aspects surrounding harmful factors. In various correlation anal-
yses, the fraction of suicides committed with firearms was heralded as the best proxy for firearm ownership
in the U.S..8,17,7,23 However, similarly to background checks, this measure is only an approximation of
firearm possession. The means by which suicides are committed is not always driven by accessibility to
firearms or lack thereof. For example, women tend to choose less violent methods such as drugs and
carbon monoxide poisoning, even when they have access to firearms.24 Further, self-inflicted harm could
involve some social trends,25,26 which will determine the relative proportion of suicides that are committed
with firearms.

Additional empirical measures were proposed in the past to better approximate firearm possession
rates, including the percentage of homicides committed with firearms,27,23,6 the fraction of firearm-armed
robberies,28,6 number of hunting licenses per capita,17,6 and fatal firearm accident rate,23,6 although sup-
port for the validity of these measures is mixed among researchers.5,29,30 Efforts were also invested into
the development of composite indicators that account for multiple proxy measurements simultaneously. For
example, Cook proposed a 2-item measure containing the number of suicides with firearms and homicides
with firearms31 and Kleck and Patterson proposed a 5-item factor.30 Most recently, Schell et al. combined
survey measures with some commonly used proxies to estimates state-level firearm ownership in an ac-
curate manner.17 In particular, the group used multi-level regression with post-stratification to derive an
integrative measure of firearm ownership from surveys. This approach would emphasize estimates for sub-
populations even when they are not equally represented.17 Then, the authors created a structural equation
model to incorporate proxy indicators of firearm ownership. The resulting model was compared against the
individual survey instruments, demonstrating strong correlations with each.

A key limitation in the formulation of proxies of firearm prevalence is associated with methodology:
the vast majority of aforementioned measures was grounded in simple correlational analyses only. As
rates for firearm-related violence appear to increase over time, correlations will yield faulty claims without
pre-processing and detrending of time series.32 Moreover, correlation-based schemes generally do not
account for interactions between states. Most studies aggregate the measure counts within states and
do not consider interference between states or spill over effects.33 There is mounting evidence that such
ecological study designs, where one assumes that spatial units are independent and do not affect outcomes
in other units, are not appropriate for studying state policies in the U.S. as such interactions exist.33,34,35,36

Therefore, a spatial approach that accounts for geographic interactions may be more suitable to quantify
firearm ownership.

Spatial econometrics offers a promising means to empirically support firearm policies. Historically, spa-
tial econometrics emerged in the 1970’s to model the dynamical growth and decline of European cities.37

Since then, its use has extended to study processes in labor economics, transportation, agriculture and
environmental science.37 Unlike time series, which varies along a single axis (time), spatial data lacks a
uniform organization and could vary in multiple directions.38 Therefore, spatial econometric models aim
to capture spatial interactions (also known as spatial autocorrelation) and structure (also known as spatial
heterogeneity) in cross-sectional data,37,38 through five guiding principles: i) there exists a spatial inter-
dependence between units, ii) spatial relations are asymmetric, iii) explanatory factors located in other
spaces can have direct and indirect influence, iv) ex post and ex ante interaction must be distinguished,
and v) topology needs to be explicitly accounted for.37

Here, we aim to develop a spatio-temporal model that predicts state-level firearm ownership on a
monthly resolution. We borrow methodologies from spatial econometrics to model interactions between
states while accounting for multiple firearm prevalence measures simultaneously. The model integrates
data from multiple proxies, such that it predicts firearm ownership from the number of background checks
per capita and the fraction of suicides committed with firearms, with calibration on GPSS’s survey data
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on firearm ownership. In this manner, the model capitalizes on the advantages of existing data sources
while mitigating the aforementioned limitations. We detail the calibration results to elucidate the role of
each proxy in predicting firearm ownership and to unravel spatial processes that might take place between
states. Finally, we demonstrate the value of the integrative model in the study of determinants and con-
sequences of firearm ownership. Specifically, we revisit the conclusions of our previous work on causal
interactions within a triad composed of firearm prevalence, mass shootings, and media output.22 We show
that by merging different proxies into a unified model we are able to detect causal processes that otherwise
remain hidden.

RESULTS

Spatio-temporal model

The main contribution of this study is a spatio-temporal model to predict firearm prevalence on a state-
level. The model was derived from the Spatial Durbin Model (SDM), which accounts for interactions be-
tween states.39 In its simplest form, an SDM for n observations (U.S. states in our case) is structured as
follows:

Y = ρWY + βX + θWX + αin + ǫ (1)

where Y is an n-dimensional vector containing the dependent variable (firearm prevalence that we aim to
predict), and X is an n-dimensional vector containing the independent variable (proxy used to measure
firearm prevalence, that is, background checks per capita or fraction of suicides with firearms). In equation
(1), W is an n × n spatial weight matrix that quantifies the interactions between the n units. ρ is a scalar
parameter that modulates the autoregressive process of the dependent variable, β is a scalar associated
with the independent variables, θ is a scalar that modulates the spatial interaction of the independent
variables, in is a vector of ones, α is a weighting scalar, and ǫ is an n-dimensional vector of n independent
noise terms with zero mean and variance σ2. Note that W adds a weighted sum of Y and X from all
spatial units as input to an observation of a certain spatial unit. In this manner, the dependent variable in
a state is not predicted merely through a linear combination of the same state’s independent variables. In
the absence of spatial processes, the SDM reduces to an ordinary linear model Y = βX + αin + ǫ, where
β is the slope and α is the intercept.

In order to model processes that exhibit spatial and temporal variations, Elhorst expanded on the clas-
sical SDM toward a first-order autoregressive distributed lag model with both spatial and temporal pro-
cesses,40 expressed as

Yt = ρWYt + τYt−1 + ηWYt−1 + βXt + θWXt + φXt−1 + ψWXt−1 + αin + ǫ. (2)

In this specification, Yt contains observations of the dependent variable in each spatial unit at different
points in time. In this vein, Yt−1 contains observations of the dependent variable in each spatial unit at
the serially preceding points in time. The scalars τ and φ modulate the memory effects of the dependent
and independent variables, respectively. Similarly, scalars η and ψ modulate the memory of the spatial
interaction for the dependent and independent variables, respectively.

We considered an extension of Elhorst’s model in equation (2) to account for two independent, co-
evolving processes (background checks per capita and fraction of suicides committed with firearms) and
for the different time resolutions at which the dependent and independent variables are sampled (yearly
versus monthly),

Ym = ρWmYm+τYm−12+ηWmYm−12+φ
(1)X

(1)
m−1+φ

(2)X
(2)
m−1+ψ

(1)WmX
(1)
m−1+ψ

(2)WmX
(2)
m−1+γdn+αin+ǫ.

(3)
In this model, a superscript of (1) refers to background checks per capita and a superscript of (2) corre-
sponds to the fraction of suicides committed with firearms. The subscriptm represents a month in which the
measurement was made, so that m− 12 denotes an observation made in the same month in the previous
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year (12 months prior), andm−1 represents a measurement from the previous month. For example, should
Ym describe firearm prevalence measurements for every state in October 2004, then Ym−12 would repre-

sent the corresponding firearm prevalence in October of 2003 and X
(1)
m−1 background checks per capita in

September of 2004. For completeness, we assumed the weight matrix to be time dependent. Finally, we
introduced parameter γ and n-dimensional vector of dummy variables dn, containing a unique integer in all
its entries for each year; the term γdn would capture a linear time trend across years.

Our approach relied on survey responses as a direct measure of Ym. During calibration, low response
rates in less densely populated states would yield erroneous estimates of firearm ownership, and in return,
would undermine maximum likelihood estimation. For example, in 2000 only one GPSS respondent was
from Wyoming and they reported no firearms in their possession, leading to the inference of 0 firearm
ownership in that state that year. To mitigate miscalibration due to such inferences, we split the explicative
variables in Eq. (3) into two, based on the response rate (high or low),

Ym = ρWmYm + τYm−12 + ηWmYm−12 + φ(1,H)X
(1,H)
m−1 + φ(1,L)X

(1,L)
m−1 + φ(2,H)X

(2,H)
m−1 + φ(2,L)X

(2,L)
m−1

+ ψ(1)Wm−1X
(1)
m−1 + ψ(2)Wm−1X

(2)
m−1 + γdn + α(H)i(H)

n + α(L)i(L)
n + ǫ.

(4)

where vectors with a superscript H (high) include entries for states that had more than 10 respondents
across all years and zeros otherwise, and vectors with a superscript L (low) contain entries for states that
at least in one year had less than 10 respondents, and zeros otherwise. Due to this split, two separate
parameters would be estimated for φ1, φ2, and α during calibration, one for a high-response states and
another for low-response states.

Weight matrix of the model

Wm is an n× n matrix describing the spatial arrangement of the units in the sample; by definition, each
of its elements is positive and each of its row sums is 1. The spatial weight matrix is a key element in spatial
models and its construction is paramount to an SDM.41,38

We wished to account for the distance and population size of other states in our model. Thus, we formu-
lated a Wm matrix such that closer and more populated states exert greater influence,33 more specifically,
the general off-diagonal i, j entry of Wm is

(Wm)i,j =
(pm)j

(Km)i(D)i,j
(5)

where (pm)j is the population size in state j in month m, (D)i,j is the distance between the geographical
centroids of states i and j, and (Km)i =

∑n

j=1,j 6=i(pm)j/(D)i,j is a row-normalizing factor. The diagonal
entries are zero. Since census data on state population is only available on a yearly basis, Wm is constant
for each year. Alternative forms ofW were also examined for completeness, as presented in the Supporting
Information.

State-level data

State-level data were collected for our variables of interest: background checks (Figure 1a), background
checks per capita (Figure 1b), and fraction of suicides committed with firearms (Figure 1c). Data on firearm
ownership and background checks were missing for Alaska and Hawaii, respectively. Therefore, these
states were excluded from the analysis and only n = 48 states were considered.

Monthly data were collected between January 2000 and December 2019 on background check, back-
ground checks per capita, and fraction of suicides committed with firearms. Each of these data sets con-
tained a total of 11,520 entries; Figures S1-S3 in the Supporting Information present those time series
in each state. Firearm ownership data were only available on an yearly resolution from October 2000 to
December 2019, amounting to a total of 960 recordings.
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Model calibration and inference

Parameters ρ, τ , η, φ(1), φ(2), ψ(1), ψ(2), γ, α, and σ were estimated using maximum likelihood, follow-
ing.42 In maximum likelihood estimation, parameter values are determined by defining a likelihood function
for the sample’s probability distribution (GPSS reports for firearm ownership, in our case) and comput-
ing the maximum of the function’s natural logarithm. In our model, ρ, τ , and η’s estimated values were
0.1600, 0.0034, and -0.0489, respectively; the estimated values of τ and η were indistinguishable from
zero (t = 0.1064 and t = −0.1738, respectively) and ρ was different from zero (t = 4.2194). For background
checks per capita, coefficient φ(1,H) and φ(1,L) had means of 18.1607 and 36.5966, respectively, and were
significantly different than zero (t = 2.4782, and t = 8.0076, respectively). Similarly, coefficient ψ(1) was
estimated at -70.2875 and was considered non-negligible (t = −4.6749). For the fraction of suicides with
firearms, φ(2,H) and φ(2,L) assumed values of 0.5285 and 0.2742, respectively. Both coefficients were
significantly different from zero (t = 6.3866 and t = 4.7925, respectively). Parameter ψ2 was estimated at
1.6014 and was also different from zero (t = 4.0111). Finally, the intercepts αH and αL and linear time trend
coefficient γ were estimated to be -0.6226, -0.5081, and 0.0104, respectively; all three were significantly
different from zero (t = −10.1421, t = −10.6513, and t = 5.8702, respectively).

The calibrated parameters reflect a model whose spatial weight matrix encapsulates the strength of
interactions between states based on their population size and distance. The elements of this matrix
could include additional variables, such as states’ geographical area, gross domestic product, and shared
borders. In Table S1 of the Supporting Information, we present the calibrated parameters for alternative
models, where W contains these variables, as well as a null model without spatial interactions between
states (W = 0). Results indicate that states’ population size and distance minimize noise variance within
an autoregressive model.

The model was calibrated once for all 20 years. Given the calibrated model parameters, we inferred
state-level firearm prevalence on a monthly resolution for the 48 states under consideration. We specified
the values obtained from 2000 (the first year GPSS data were available) in each state as initial values for
firearm ownership in the months of January-December 1999. Marching forward every month from January
2000, we computed firearm ownership in an iterative manner by plugging in monthly values we collected
on background checks per capita and fraction of suicides with firearms into Eq. (4). To avoid drifting of the
model for an extended prediction, we predict October data Ym utilizing the survey data from the previous
October, Ym−12 (m = 22, 34, 46, ..., 238). For the prediction of Ym in the remaining months of the year, we
use the model’s output from the same month in the previous year, Ym−12. We set the noise to σ = 0, so
that the inference is effectively for the mean value of the firearm ownership.

Inferences were obtained on a national-level as well. For each monthly entry, national background
checks per capita was computed by aggregating the number of background checks across states, and
dividing the total by the population size in the 48 states in that year. Similarly, the national fraction of
suicides committed with firearms was calculated by summing the monthly number of suicides by firearms
across states, and dividing by the total number of suicides. By iteratively plugging those monthly values into
the model, we obtained firearm ownership on a national level. Alaska, District of Columbia, Hawaii, and the
five U.S. territories were excluded from national-level computations due to missing data. All variables were
considered in our inference of firearm ownership, including τ and η whose role was deemed negligible in
the calibration. However, to demonstrate that these variables do not influence our results, we performed an
additional analysis without them (see Table S5 in the Supporting Information).

The model’s output was evaluated relative to the GPSS estimates of firearm ownership (Figure 2). For
each state, the model output for the months of October were subtracted from the fraction of firearm owners
in the same month, and the difference was squared. Then, sum of squared errors (SSE) and the mean
of squared errors (MSE) were computed. On a national level, the SSE was 0.1436 and MSE was 0.0072,
suggesting that the model and survey responses are in agreement. The results for state-level computations
are reported in Table S2 in the Supporting Information.

Causal analysis using model predictions

To demonstrate the value of our model, we used its output in a causal analysis, exactly as was done by
Porfiri et al.22 In their study, Porfiri et al. showed the causal relationships within the fundamental triad of
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firearm prevalence, mass shootings, and media output on firearm control, using the information-theoretic
notion of transfer entropy. Transfer entropy is a model-free approach for the inference of causal relationships
between pairs of dynamical systems. First introduced in 2000 by Schreiber, transfer entropy quantifies the
extent to which uncertainty in the prediction of a future state of a system is reduced, given additional
knowledge about its present state and the present state of another system.43,44 It supports the inference
of causal links also in the presence of nonlinear interactions and multiple time-delays,45,46 and it has been
successfully implemented in a wide range of applications, including neuroscience,45 economics,47 animal
behavior,48 and human behavior.49

Following the procedures carried out by Porfiri et al.,22 we aimed to uncover causal relationships in the
triad of background checks, mass shootings, and media output, and substituted background checks with
our model’s estimate of firearm ownership. Toward a complete comparative analysis, we also examined
three triads capturing the relationships between mass shootings and media output on regulations, with one
of three variables: background checks (as in Porfiri et al.22), background checks per capita, and fraction
of suicides committed with firearms. Since our model produced a time series beginning in January 2000,
and the time series for mass shootings, media output, and background checks considered by Porfiri et al.
ended in December 2017, only the months between January 2000 and December 2017 were considered
in the analysis. Therefore, each time series contained a total of 216 observations.

State-level background checks and background checks per capita showed strong seasonality, and sui-
cides with firearms and our model’s output showed trends in most states (see Figures S1-S4 in the Support-
ing Information). An augmented Dickey–Fuller test was applied to ensure stationarity of the processed time
series (see Table S3 in the Supporting Information). Thus, as was previously done by Porfiri et al.,22 the
time series of the four firearm variables (background checks, background checks per capita, fraction of sui-
cides committed with firearms, and our model’s output) were seasonally-adjusted using the TRAMO/SEATS
algorithm50 and then linearly-detrended by subtraction of their linear fit.

Next, we computed transfer entropy for each pair of variables under consideration, by conditioning on the
other variable in the triad. Figure 3 displays the time series of processed background checks, background
checks per capita, fraction of suicides with firearms, as well as the time series for mass shootings and
media output on firearm control, which were used in this analysis. The mass shootings we considered
are listed in Table S4 of the Supporting Information. Transfer entropy was calculated at the state level
using each state’s respective time series for background checks, background checks per capita, suicides
with firearms, and firearm ownership. For nation-level analyses, the time series were aggregated across
the 48 states (excluding Alaska and Hawaii) for each month. Finally, we performed a permutation test for
each link under examination to assess whether transfer entropy values were different from chance.51,52 All
procedures related to transfer entropy and permutation tests were replicated from.22

Results for causal analyses on a national level are summarized in Table 2 and Figure 4. Similar to
the findings by Porfiri et al.,22 we identified a causal link between media output and background checks
(p = 0.0317), but not for the other variable pairs in the triad. When replacing background checks with the
measure of background checks per capita or fractions of suicides with firearms, this causal link became
non-significant (p = 0.1546 and p = 0.5566, respectively). When considering the triad with our model
output, influence from media output to firearm ownership was marginally significant (p = 0.0768), and two
other causal relationships emerged in the triad: the influence of firearm ownership on mass shootings
(p = 0.0136) and on media output (p = 0.0031).

State-level transfer entropy is visualized in Figure 5. Inspection of the significant conditional transfer
entropies on a state-level provided insights regarding the states where directional interactions were most
predominant (Figure 5). Specifically, conditional transfer entropy from firearm ownership to mass shootings
seemed to concentrate in states located in the West and Southwest regions, as well as in the Midwest
(Figure 5a). In contrast, conditional transfer entropy from firearm ownership to media output appeared to
be strongest in the Southeast and Midwest (Figure 5b). Conditional transfer entropy from media output to
firearm ownership was particularly eminent in the Southeast (Figure 5c).

In order to verify that causal links surfaced due to spatial interactions in our model, we generated
a nation-level time series for the null model without W , whose parameters are reported in Table S1 of
the Supporting Information. In the absence of spatial interactions, this time series linearly combines the
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background checks per capita and suicides with firearms of each state. We computed transfer entropy for
each pair of variables in a triad of the null model’s output, mass shootings, and media output (Table S6 in
the Supporting Information). The analysis yielded no causal links, confirming that spatial interactions are
crucial for detection of causal links.

DISCUSSION

Grounded in spatial econometrics, we created a spatio-temporal model that estimates state-level firearm
ownership. The model specifies the interactions between states based on their geographical proximity and
relative population size. Calibration of the model parameters provided some insight regarding firearm own-
ership processes that take place in the U.S. With respect to the independent variables, both background
checks per capita and fraction of suicides with firearms had strong predictive value in the model. Back-
ground checks had a direct influence on the prediction of firearm ownership. This effect was extended to
spatial interactions between states, whereby the prediction of firearm ownership in a state was improved
by knowledge on the number of background checks per capita in other states. This finding suggests that
firearms cross state borders, an aspect that may be considered by legislators formulating new policies.

With respect to the fraction of suicides committed with firearms, it appears that this variable had both
direct and indirect effects through interactions between states. This finding is in line with past studies that
examined patterns of suicides in the U.S. and found a spatial autocorrelation.53,54 Nonetheless, spatial
autocorrelation of suicides may be confounded by other factors that influence firearm ownership such as
religion, income, or education.54,55,56 Such relationships warrant further investigation.

Inspection of our model also provides insight regarding autoregressive features of firearm ownership,
such that its measurement in one point in space or time is related to firearm ownership in another point
in space or time. There appears to be a contemporaneous spatial autoregression, whereby firearm own-
ership gradually changes over geographical locations. At the same time, temporal autoregression (that is,
memory) was not registered, whether within states or across states. This finding suggests that firearm own-
ership is independent of its own history. However, it is tenable that memory effects were overshadowed by
the time trend we have introduced into the model. The coefficient for the linear time trend (γ) was non-zero,
indicating that the interplay between variables is unique for every year. As such, the dummy variables we
have introduced for each year may have captured in part some of the memory effects in our model.

We used the model to infer firearm ownership in each state, every month between January 2000 and
December 2019. Then, we challenged our model’s output in an information-theoretic framework. Specifi-
cally, we revisited one of our recent studies where we used transfer entropy to uncover causal relationships
between firearm prevalence, mass shootings, and media output on firearm regulations.22 Transfer entropy
is a powerful and versatile tool for the inference of causal relationships between pairs of dynamical systems
from their time series,43,57 quantifying the extent to which the predicted firearm ownership causally inter-
acts with mass shootings and media output. Our group has previously implemented transfer entropy in the
context of public health and policy, related and unrelated to firearm control.22,35,58,34,36 In our previous ex-
amination of the mass shootings/media output/background checks triad, we found robust entropy transfers
from media output to background checks, suggesting that media coverage is causally associated with the
public’s response to forthcoming stringent firearm control, thereby driving firearm acquisition in part.22,58 In
order to conduct a complete comparison of our model against theirs, we examined four triads.

First, we tested the interactions between mass shootings, media output, and background checks. Even
though we used a shorter time series in the analysis (beginning in January 2000 instead of January 1999),
we were able to replicate the inference of a causal link from media output to background checks. Next, we
performed the exact same analysis, substituting the background checks time series with that of background
checks per capita and fraction of suicides with firearms. In both analyses, no causal relationships were
identified. A few concerns arise from this finding that may warrant further research. For once, the absence
of significant interactions in the triad when the widely-accepted measure of suicides is used brings to
question its validity. Thus far, research using this metric was limited to correlational analyses. It is tenable
that the link between suicides with firearms and firearm ownership is mediated or moderated by another
factor. In this case, suicides with firearms would likely provide some insight into firearm ownership but must
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not be used as the sole predictor of firearm ownership. Second, the loss of significance when standardizing
background checks data with respect to state population brings to question whether such standardization
is needed in causal analyses and otherwise. If firearm owners indeed tend to accumulate firearms in their
households (as suggested earlier), then standardization of firearm measures with respect to the entire
state’s population would not be representative of its population. It is possible that more spatially granular
analysis needs to be performed to answer this question.

In our final analysis, we investigated the triad with our model’s prediction of firearm ownership. The
analysis yielded results similar to Porfiri et al’s findings,22 with a marginal loss of significance for transfer
entropy from media output to firearm ownership. This interaction was particularly evident in the Northwest
and Southeast region, where states are more permissive with respect to firearm laws.59,60 It is tenable that
media coverage of looming regulations particularly affects residents of permissive states, where there is
more room for firearm control and new restrictive policies are more likely to materialize.

By including our model’s prediction, however, two causal relationships have emerged in this analysis.
Transfer entropy from firearm ownership to mass shootings supports the long-standing notion that perpe-
trators can commit their acts (especially spontaneous ones driven by emotion) because they have access
to firearms.61,7 In fact, in 71% of mass shootings, the firearms used were legally obtained and readily
available to the perpetrators.62 This causal relationship appears to concentrate in the West and Southwest,
which is not unexpected considering that 37.5% of mass shootings took place in these parts of the country
(see Table S4 in the Supporting Information). In addition, our analysis uncovered a causal link from firearm
ownership to media output. Particularly in the Southeast and some Midwest states, there appears to be
an association between firearm prevalence and public discourse on firearm regulations. It is possible that
the way we measured media output as the integrated number of articles published in the New York Time
and Washington Post introduced some bias. These journals likely report on firearm legislation in regions
proximate to where they are circulated, and are not representative of the entire nation. In future steps, we
could consider extending media output to outlets that are more geographically and ideologically diverse, to
improve its representation across the country.58

Although our work brings forward evidence in favor of using our model in firearm research, it comes with
a number of limitations. First, we used GPSS survey responses as measurements of firearm ownership
in the calibration. While GPSS probes for responses across the nation, the response rate is sometimes
insufficient for estimating firearm ownership in less-populated states.6 While we believe that the large
number of data points considered in the maximum likelihood estimation mitigates this problem and point
out that the spatial interaction components of the model extenuates such inaccurate values, one could use
other means for calibration. For example, one might follow the path laid by Schell et al.17 and use multi-
level regression with post-stratification to establish a robust time series of firearm ownership for calibration.
Alternatively, one might employ machine learning to improve the formulation of a spatial weight time series,
however, this approach remains under-explored.63,64

Second, we acknowledge that the model could benefit from inclusion of additional firearm ownership
measures. For example, including the number of hunting licenses could improve the estimates of firearm
ownership in states where outdoor recreational activities are practiced more commonly. However, the
introduction of additional variables into the model could undermined the power of maximum likelihood
estimation due to the finite number of data points. In case one is interested in specific aspects of firearm
ownership for policy-making purposes, one could substitute the independent variables of our model with
alternative proxies. However, we advise keeping the number of variables in the model to a minimum.

Finally, we would like to emphasize that our proposed model is specific to the U.S. and that its gener-
alizability to other countries remains to be investigated. The unique federal structure of the U.S. is ideal
for studying states’ behaviors within the framework of spatial econometrics: states act as individual spatial
units yet share language, history, politics, and culture. In other settings, one could apply our methodology
on cities or counties within a country, however, too many dissimilarities may exist between international
units. Furthermore, the relationships between firearm ubiquity and firearm violence may be unique to the
U.S. The U.S. experiences 19.5, 5.8, and 5.2 times more homicides, suicides, and unintentional deaths
with firearms than other high income countries.65 In Switzerland, where firearm prevalence is among the
highest in Europe (partly due to mandatory military conscription), firearm ownership translates to signif-
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icantly lower rates of harm and most of it is self-inflicted rather than aimed toward others.66 Such stark
contrasts suggest that gun culture along with other socioeconomic factors play a role in the realization of
firearm violence in the U.S.

Overall, we offer a avenue to generate knowledge on the American firearm ecosystem. Considering
that the U.S. Constitution prohibits the creation of a national registry of firearms, the scarcity of data on
firearm prevalence remains an unsolved problem that hinders the formulation of effective firearm policy.
Further, the absence of highly resolved data also prevents quantitative research on the effects of firearm
prevalence on firearm violence that goes beyond simple correlational analyses. Hence, we provide a
multivariate econometric model to estimate state-level firearm ownership on a monthly resolution, from
data of two proxies collected by government agencies (background checks and suicides committed with
a firearm). Unlike previous efforts to estimate firearm prevalence, our model accounts for interactions
between states, and incorporates spatially and temporally autoregressive processes. Calibration of our
model parameters indicated that both proxies have predictive value in the estimation of prevalence and
that interactions between states cannot be neglected. Finally, we demonstrated the utility of the model in
uncovering causal relationships in information-theoretic analyses. For the first time, we unveil a causal link
between mass shootings and firearm prevalence, such that the model can help identify potential drivers of
mass violence. Similar analyses inform policymakers about potential determinants and consequences of
firearm ownership in every state, promoting the design of effective legislation.

EXPERIMENTAL PROCEDURES

Resource Availability

Lead Contact

Maurizio Porfiri, Ph.D., mporfiri@nyu.edu.

Materials Availability

This study did not generate any materials.

Data and Code Availability

All data and codes needed to evaluate the conclusions in the paper are available on Github (DOI: 10.5281/zen-
odo.6582618).

Data collection

State-level data were collected for three variables for the years 2000-2019: fraction of firearm own-
ers, background checks per capita, and fraction of suicides that were committed with a firearm. Data on
background checks, mass shootings, and media output on firearm control on a monthly resolution were
obtained from the Github repository compiled by Porfiri et al.22 Data on firearm ownership and background
checks were missing for Alaska and Hawaii, respectively. Along with District of Columbia and the five U.S.
territories, these states were excluded from the analysis.

Firearm ownership

Respondent-level data on firearm ownership were collected from the Gallup Poll Social Series: Crime
surveys.18 These data were collected by Gallup staff every October by phone, where subjects were asked
two questions: “Do you have a gun in your home?” and “Do you have a gun anywhere else on your
property such as in your garage, barn, shed, or in your car or truck?”. Subjects had four possible answers:
“Yes”, “No”, “I do not know”, or refuse to respond. In total, 18,274 responses were recorded for each of the
questions in the time period of 2000-2019. For the purpose of quantifying firearm ownership, we considered
subjects who responded positively to at least one of those two questions as firearm owners. We took the
number of firearm owners and divided it by the number of all subjects in the same state and year to yield
the fraction of firearm owners. Firearm ownership data were not available for Alaska. Therefore, a total of
931 measurements were collected for firearm ownership.
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Background checks per capita

Data on background checks were collected on a monthly resolution from the Federal Bureau of Investi-
gation’s National Instant Criminal Background Check System (NICS).19 NICS was established in November
1998, following the legislation of the Brady Handgun Violence Prevention Act, mandating authorized firearm
vendors to submit a background check request to determine whether a prospective buyer is eligible to pur-
chase a firearm. As such, number of background checks reports in the system includes also non-purchase
counts. To better approximate the number of acquired firearms, we included only counts of permits for
“Handgun”, “Long Gun”, “Other” firearms that are not handguns nor long guns (such as rifles or shotguns),
and “Multiple” types of firearms. Background checks administered for permit re-checks, pawns, redemp-
tions, and rentals were excluded as they are not associated with newly acquired firearms. The number of
background checks was standardized with respect to the state’s population size by dividing each entry by
the number of its inhabitants in the same year, obtained from the U.S. Census Bureau.67,68 Background
checks data were not available for the state of Hawaii, such that a total of 11,172 measurements were
collected for background checks per capita.

Fraction of suicides with firearms

Data on suicides and their underlying causes were collected from the CDC’s Wonder database.4 Won-
der’s national mortality and population database is managed by the National Center for Health Statistics
based on death certificates for U.S. residents. The database allows to filter for death rates based on place
of residence (state and county, when available), age group, race, gender, and cause of death, distinguishing
between 113 selected causes of death for adults. We collected the total number of suicides by specifying
“intentional self-harm” as the cause of death, and grouped the results by state, year, and month. Then,
we collected the number of suicides committed by “hand-gun discharge”, “rifle, shotgun, and larger firearm
discharge”, or “other and unspecified firearm discharge”, grouped by state, year, and month. The number
of suicides committed with a firearm was divided by the total number of suicides to obtain the fraction of
suicides with firearms. Overall, 11,400 measurements were collected for this variable.

Maximum likelihood estimation of the model

The econometric model was calibrated using maximum likelihood estimation, following.42 In the esti-
mation, we were limited by the resolution of firearm ownership, which is only available for the months of
October. Therefore, we redefined the vectors of equation (4) as
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where j = 1, 2 represents background checks per capita and fraction of suicides committed with firearms,
R = H,L reflects states with high or low response rates, T = 20 is the number of years for which data is
considered, and the subscript L denotes a time lag of one year. Then, the model to be estimated remains
as

Y = WY + δZ+ ǫ (6)

where

11



Z =
[

YL WYL X
(1,H)

X
(1,L)

X
(2,H)

X
(2,L)

WX
(1)

WX
(2)

d(T−1)n i
(H)
(T−1)n i

(L)
(T−1)n

]

, (7)

W =











W22 0 · · · 0
0 W34 · · · 0
...

... · · ·
...

0 0 · · · W12(T−1)+10










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δ =
[

τ η φ(1,H) φ(1,L) φ(2,H) φ(2,L) ψ(1) ψ(2) γ α(H) α(L)
]′

, (9)

d(T−1)n is a (T − 1)n-dimensional vector of dummy variables containing a unique integer for each year,
i(T−1)n is a (T − 1)n-dimensional vector of ones, and ǫ is an independent Gaussian noise of zero mean
and covariance matrix σ2I(T−1)n, with I(T−1)n being the identify matrix of size (T − 1)n. The log-likelihood
function takes the form

lnL = −
(T − 1)n

2
lnγσ2 + ln|I(T−1)n − ρW| −

(Y − ρWY − Zδ)′(Y − ρWY − Zδ)

2σ2
(10)

where ρ ∈ (min(ω)−1,max(ω)−1), and ω is an (T − 1)n-dimensional vector of the eigenvalues of W. In the
estimations, the log determinant was approximated using a Monte Carlo scheme.69 Through this iterative
approach, a unit normal vector was randomly selected to estimate the trace of W , such that the average of
many estimated traces statistically approximated the true trace.42,69 A Student’s t-test was applied for each
parameter estimate, indicating whether the parameter value was significantly different from zero.

Data preprocessing

In preparation for transfer entropy analysis, data were preprocessed in three successive steps: time
series were seasonally adjusted, detrended, and transcribed to symbols.

Seasonal adjustment and detrending

Time series for each variable exhibited seasonality and lacked stationarity in many states (see Table
S3 in the Supporting Information). Using them in their raw form in the information-theoretic framework
would give rise to incorrect inference of interactions. To address this issue, we first seasonally adjusted
the data using the TRAMO/SEATS method50 on EViews (version 11, IHS Markit, London, United King-
dom). Assuming an AutoRegressive Integrated Moving Average (ARIMA) model, TRAMO decomposes
time series into long-term trend, a trend cycle, a seasonal component, and an irregular component. SEATS
uses the ARIMA-based methodology to estimate unobserved components and reconstruct time series that
are adjusted for trends and seasonal effects. For each state, the time series of each variable between
January 2000 and December 2017 was taken at a time, decomposed, and seasonally adjusted. Then, it
was detrended on MATLAB (MATLAB and Statistics Toolbox Release 2020a, The MathWorks, Inc., Natick,
Massachusetts, United States) by subtracting the linear fit of the time series, obtained with the “fitlm” func-
tion. Following this procedure, the augmented Dickey–Fuller test was used to ensure the stationarity of the
processed time series.

Time series symbolization

To better capture the effect of variable changes during interactions, we pursued a symbolic approach.57,70

For each variable, we created a new time series consisting of symbols that reflect changes between two
successive measurements.57,70 Specifically, for variables BC, BCC, SF, FO, and MO, a value of 1 was as-
signed to time step t if the measurement at time step t+ 1 was greater than the one obtained at time step
t. Otherwise, value of 0 was assigned. For MS, a value of 1 was assigned if one or more mass shooting
occurred in time step t, and a value of 0 was assigned if no mass shooting had occurred in that time step.
Therefore, the symbolized time series at a given time step t indicated whether there was an increase or a
decrease in the respective variables between t and t+1, and whether a mass shooting took place at t. This
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scheme was applied consistently with the codes by Porfiri et al.,22 as described in the associated Github
readme file.

Conditional transfer entropy for causal analysis

Next, we computed transfer entropy for each pair of variables under consideration. The construct of
transfer entropy is based on Shannon’s notion of information as a measure of uncertainty.71 For a discrete
random variable X, Shannon’s entropy takes the following form:

H(X) = −
∑

x∈X

p(x) log p(x), (11)

where p(x) is the probability that the random variable X takes value x and Ω is the sample space of all
possible outcomes of X. By specifying the logarithm with base 2, H(X) is naturally given in bits. From
a mathematical point of view, H(X) can be viewed as the expectation of − log p(X). Therefore, we can
define the joint and conditional entropies of two random variables X and Y as

H(X,Y ) = −
∑

x∈X,y∈Υ

p(x, y) log p(x, y) (12)

and

H(X|Y ) = −
∑

x∈X,y∈Υ

p(x, y) log p(x|y), (13)

where y is a realization of Y . The joint entropy can be interpreted as the overall uncertainty of both X and
Y , whereas the conditional entropy can be understood as the amount of uncertainty of variable X, knowing
the realization of Y .

Given equation (12) and equation (13), it is possible to test the independence of X and Y through their
mutual information,

I(X;Y ) = H(X)−H(X|Y ), (14)

where the quantity I(X;Y ) will be equal to zero if X and Y are independent. Mutual information can
be further extended to account for the presence of a third variable Z by computing conditional mutual
information as

I(X;Y |Z) = H(X|Z)−H(X|Y, Z). (15)

In a causal framework, we work with stationary stochastic processes. Transfer entropy from a process
Y (source) to a process X (target) is computed as the reduction in uncertainty of predicting the future of X
from its present, given knowledge about the present of Y :

TEY→X = I(Xt+1;Yt|Xt) = H(Xt+1|Xt)−H(Xt+1|Xt, Yt). (16)

TEY→X is a non-negative quantity; if Y is independent from X and does not encode useful information to
predict it, H(Xt+1|Xt, Yt) will equal H(Xt+1|Xt) and transfer entropy will be zero.

Transfer entropy computes the dyadic influence between two processes. However, when dealing with
multiple variables, simultaneous influences may lead to the inference of spurious interactions between non-
interacting variables.44 For instance, in this paper we deal with three variables: firearm prevalence, mass
shootings, and media output. Should mass shootings influence both firearm prevalence and media output,
we may detect concurrent changes in firearm prevalence and media output and infer that they are coupled,
when in reality they may not be. Therefore, it is crucial that equation (16) is adapted to account for a third
variable. In this manner, conditional transfer entropy from Y to X, conditioned upon variable Z, can be
computed as
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TEY→X|Z = I(Xt+1;Yt|Xt, Zt) = H(Xt+1|Xt, Zt)−H(Xt+1|Xt, Yt, Zt). (17)

Conditional transfer entropy was computed for all possible pairs within a triad by estimating the proba-
bility mass functions from the frequencies of symbols and evaluating the corresponding conditional joint
entropies.

Computations assumed a first-order Markov process with a unitary time step (note subscripts t and
t+1). Such a formulation would suggest that changes in one time series would lead to changes in another
time series within a single month. To confirm that the time series are Markovian and that a single month
is a sufficiently small time step, we performed additional statistical tests (see section S5 and S6 in the
Supporting Information). One month’s time scale seems reasonable considering the variables under in-
spection. Individuals will seek to purchase firearms in the month after the occurrence of a mass shooting or
the breaking news of upcoming firearm regulations. Similarly, media output on firearm control will increase
in the month following mass shooting events. Finally, since firearm prevalence has been repeatedly corre-
lated with mass shootings in the U.S., we would anticipate a causal link from the former to the latter within
a month’s time frame. In contrast, causal links from background checks to media output on regulation are
not intuitively presumed, and the influence of media output on mass shootings are not expected as the lat-
ter are sporadic, individually-motivated events. Nonetheless, one might consider the possibility of delayed
interactions between the variables by incorporating time lags into the time series of Y and Z. In Figures S5
and S6 of the Supporting Information, we present a delay analysis of the links that were found causal, with
lags varying from zero to eleven months. The results confirm that a unitary time step sufficiently captures
the causal dynamics.

The significance of any interaction was determined by comparison against a surrogate distribution.44,51

For each pair of variables, a local permutation scheme was carried out to preserve the conditioning of joint
distributions upon a third variable.51 Specifically, in the computation of each combination of TEY→X|Z in
equation (17), the subset of two dimensional realization (Xt, Zt) was taken. Then, the times series of Yt
in the same subset was randomly shuffled. This procedure was repeated for all possible realizations of
(Xt, Zt), that is, (0,0), (0,1), (1,0), and (1,1), so that the entire time series of Yt was randomly shuffled.
Then, transfer entropy was computed with the shuffled time series. We performed this procedure 50,000
times, and obtained 50,000 values of transfer entropy, from which we constructed a surrogate distribution.
The surrogate distribution would represent transfer entropy from one time series to another by chance,
from pairs of time series that were not causally associated in reality. To ensure that the computed value of
transfer entropy from the observed time series is greater than chance, we checked whether it was in the
right tail of the surrogate distribution. If it had exceeded its 95th percentile, transfer entropy was considered
to be non-zero.
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LIST OF FIGURES

Figure 1. Time series for firearm ownership proxies on a national level. Time series between January
2000 and December 2019 for national-level background checks (a), background checks per capita (b), and
fraction of suicides committed with firearms (c).

Figure 2. Predicted fraction of firearm owners in the U.S. The plot illustrates the model’s output between
January 2000 and December 2019 for the entire country. It is overlaid with GPSS surveys’ annual results,
represented by red circles.

Figure 3. Processed time series for computation of transfer entropy. Nationally aggregated time series
between January 2000 and December 2017 for background checks (a), background checks per capita (b),
fraction of suicides committed with firearms (c), fraction of firearm owners (d) were seasonally adjusted and
detrended. The time series for mass shootings (e) was discretized, and the time series for media output on
firearm regulations (f), presented on a logarithmic scale, remained unmodified in the analysis.

Figure 4. Directional interactions in four triads, quantified using transfer entropy. Causal analysis
results for (a) interactions between background checks (BC), media output on mass shootings (MO), and
mass shootings (MS); (b) interactions between background checks per capita (BCC), MO, and MS; (c)
interactions between the fraction of suicides committed with firearms (SF), MO, and MS; (d) interactions
between our model’s firearm ownership (FO), MO, and MS. Dashed arrows reflect non-significant transfer
entropy (0.1 < p), thin, solid arrow indicate a trend (0.05 < p < 0.1), and bold, solid arrows represent
significant transfer entropy (p < 0.05).

Figure 5. Causal analysis on a state level. State-level conditional transfer entropy (a) from firearm
ownership (FO) to mass shootings (MS), conditioned on media output (MO); (b) from FO to MO, conditioned
on MS; and (c) from MO to FO, conditioned on MS.
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Parameter Units Estimate t-statistic

ρ [1] 0.1630 1.9342 ◦
τ [1] 0.0034 0.1048
η [1] -0.0493 -0.2546

φ(1,H) [\background checks] 18.1596 2.4757 ∗
φ(1,L) [\background checks] 36.5954 7.9781 ∗
φ(2,H) [1] 0.5285 6.3517 ∗
φ(2,L) [1] 0.2741 4.7466 ∗
ψ(1) [\background checks] -70.2457 -4.3252 ∗
ψ(2) [1] 1.5989 4.6192 ∗
αH [1] -0.6225 -8.5281 ∗
αL [1] -0.5080 -8.2259 ∗
γ [1] 0.0104 7.6297 ∗
σ [1] 0.0310 -

Table 1: Estimates for the model parameters. The t-statistic and p-value associated with each estimate indicate whether the parameter
value is significantly different than zero. ◦ indicates a trend with 0.05 < p < 0.1, and ∗ indicates a significance with p < 0.05

.
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Background Mass Media
checks shootings output

Background 0.0159 0.0057
checks (0.3481) (0.8206)

Mass 0.0048 0.0074
shootings (0.8531) (0.7260)

Media 0.0375 ∗ 0.0133
output (0.0317) (0.4428)

Background Mass Media
checks per capita shootings output

Background 0.0146 0.0082
checks per capita (0.3930) (0.6748)

Mass 0.0037 0.0072
shootings (0.9149) (0.7297)

Media 0.0240 0.0156
output (0.1546) (0.3673)

Fraction of Mass Media
Suicides with firearms shootings output

Fraction of 0.0208 0.0130
Suicides with firearms (0.2196) (0.4544)

Mass 0.0129 0.0149
shootings (0.4581) (0.3846)

Media 0.0106 0.0160
output (0.5566) (0.3459)

Firearm Mass Media
ownership shootings output

Firearm 0.0464 ∗ 0.0578 ∗
ownership (0.0136) (0.0031)

Mass 0.0098 0.0137
shootings (0.5995) (0.4691)

Media 0.0301 ◦ 0.0230
output (0.0768) (0.1818)

Table 2: Conditional transfer entropy between the different variables on a national level. Rows are sources and columns are targets.
The numbers in parentheses denote the p-value obtained from a permutation test. ◦ indicates a trend with 0.05 < p < 0.1, and ∗ a
significance with p < 0.05

.
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