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This study develops mathematical tools and approaches to investigate spatio-temporal patterns of firearm acquisition

in the U.S. complemented by hypothesis testing and statistical analysis. First, state-level and nation-level instant back-

ground checks (BC) data are employed as proxy of firearm acquisition corresponding to 1999-2021. The relative-phase

time-series of BC in each U.S. state is recovered and utilized to calculate the time-series of the U.S. states’ synchroniza-

tion degree. We reveal that U.S. states present a high-level degree of synchronization, except in 2010-2011 and after

2018. Comparing these results with respect to a sitting U.S. President provides additional information: specifically, any

two Presidential terms are characterized by statistically different synchronization degrees, except of G.W. Bush’s first

term and B.H. Obama’s second term. Next, to detail variations of BC, short-time Fourier transform, dimensionality

reduction techniques, and diffusion maps are implemented within a time-frequency representation. Firearm acquisition

in the high frequency band exhibits a low-dimensional embedding, represented as a set of data points on the plane of

two embedding coordinates. These data points, associated with different time windows of the BC data, form separate

clusters signifying the state transitions in the original BC data. Through this analysis, we reveal that the frequency

content of the BC data has a time-dependent characteristic. By comparing the diffusion map at hand with respect to

a Presidential term, we find that at least one of the embedding coordinate presents statistically significant variations

between any two Presidential terms, except of B.H. Obama’s first term and D.J. Trump’s pre-COVID term. The results

point at a possible interplay between firearm acquisition in the U.S. and a Presidential term.

With a rate of firearm ownership of 1.21 firearms per

capita, the U.S. has the largest firearm prevalence among

all developed countries in the globe. There are more

guns than people. Are gun purchases independently made

throughout the country, or is there some form of coordi-

nation, collective behavior that drives firearm acquisition

in U.S. states? Addressing this question is the first objec-

tive of this manuscript. Next, we investigate how patterns

of firearm acquisition evolve over time. We bring forward

methodological advances in statistics and engineering to

answer the above two questions with data covering the last

twenty years. Overall, this effort reveals compelling evi-

dence that the U.S. states act in a highly coordinated man-

ner when it comes to acquiring firearms and that such

a coordination has time-dependent character. In view of

these, we perform statistical analysis to compare this time-

dependent coordination between the U.S. Presidents. Re-

sults suggest that there exists a possible interplay between

a sitting U.S. President and temporal patterning of the BC

data.

I. INTRODUCTION

According to a report from the U.S. Firearms Commerce,

private citizens in the U.S. own a total number of 393 million

firearms1. This figure corresponds to 1.21 firearms per capita,

leading to a well-known fact in the U.S.: we have more guns

than people. A decade ago, gun ownership in the U.S. was

0.9 per capita2: thus, gun ownership has risen over the last ten

years even when adjusted against population growth. These

numbers suggest a unique stand of the U.S. in terms of firearm

prevalence, given that in other high-income countries, such

as Germany, France, Canada, Italy, Australia, and Finland,

ownership averages only around 0.27 per capita, even with

large number of civilian firearm holdings2.

The publicly available National Instant Criminal Back-

ground Checks (BC) data is a reliable resource that can help

characterize firearm prevalence in the U.S. However, neither

every background check results in a firearm acquisition, nor

does each background check necessarily result in only a single

firearm acquisition3. Despite these limitations, BC data has

been extensively utilized by researchers as a proxy of firearm

acquisition4–11. The data exhibit a clearly increasing trend,

especially in the past decade, qualitatively supporting some

of the survey results cited above. BC data has been utilized

by Timsina et al. 4 , for example, to study the relationship be-

tween firearm acquisition and youth gun carrying. Likewise,

Porfiri et al.5,11 examined the BC data to show how fear of

stricter gun regulations after a mass shooting causes an in-

crease in firearm purchases with nation- and state-level anal-

yses. More recently, Schleimer et al. 6 and Lang and Lang 7

studied excess firearm purchases during the COVID-19 pan-

demic. Many authors also utilized BC data as a proxy to in-

vestigate firearm related homicides, suicides, and accidental
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deaths8–10.

BC data is available at the nation-level and state-level, each

set of data enabling different research questions. The nation-

level BC data is rich and informative, being available at a

daily resolution, but it is only an aggregate of the state-level

data. Studies based on monthly resolution state-level data

can provide knowledge about how each state contributes to

firearm acquisition in the U.S., and therefore help inform

state-level policy making and characterize state-to-state inter-

actions. Given that the U.S. states are diverse in many aspects

including socio-economic factors, political views, and firearm

laws, and that they may even react differently in different po-

litical climates, it is of strong interest to understand whether or

not U.S. states behave similarly or differently in their firearm

acquisition. Synchronization characteristics of U.S. states in

their BC data can provide valuable insights into these similar-

ities and differences.

Political climate can potentially influence the BC data. For

example, nation-level BC data has experienced a dramatic

increase immediately after B.H. Obama won the election in

2008. According to one source, this was possibly because

gun-purchasing communities feared of stricter firearm regula-

tions during President Obama’s term12. Luca et al.13 found

the party in power at the state-level to be influential on the

enactment of firearm-related laws upon occurrence of mass

shootings. In addition, Eshbaugh-Soha and Peake 14 offered

evidence about particular characteristics of three Presidents

(R.W. Reagan, W.J. Clinton, and G.W. Bush) when setting

agendas on unemployment, inflation, and international eco-

nomics. Connecting these ideas together, a natural question

that arises is how firearm acquisition patterns across states

compare to Presidential terms. With BC data available since

1999, such an investigation can cover five terms of U.S. Presi-

dency, namely two terms each of G.W. Bush and B.H. Obama

and one term of D.J. Trump.

Here, we study synchronization patterns in BC data across

states. Synchronization is calculated based on the phase be-

tween the states, where phase is defined as the instantaneous

phase angle between two oscillators, both at the same fre-

quency. Specifically, phase time-series of each U.S. state are

extracted based on annual oscillations predominantly present

in the data. These time series are next used to calculate syn-

chronization time-series among the U.S. states based on the

Kuramoto order parameter15. Moreover, analyzing the nation-

level BC data at relatively high frequencies offers oppor-

tunities in understanding firearm acquisition characteristics

among the U.S. states. Indeed, the fast varying content in the

detrended and seasonally adjusted BC data was recently lever-

aged in an information theory based approach5 to investigate

causality between time-series of BC, media output, and mass

shootings. Recognizing the rich information contained in the

fast-varying content of BC data, we investigate the energy at

relatively high frequencies in the spectrum of nation-level BC

data using short-time Fourier transform. However, the arising

power spectrum data is high dimensional and opaque to inter-

pretation, thereby requiring a dimensionality reduction tech-

nique with clustering analysis to detect variations.

This study is focused on explaining whether or not U.S.

states present a synchronized behavior in their firearm acqui-

sition and how firearm acquisition compares with respect to

the most recent five U.S. Presidential terms. To this end, lit-

erature on the main methods used in this paper is reviewed

in Section II and data is described in Section III. Research

methods and results pertaining to synchronization based on

state-level BC data are provided in Section IV A and Section

V A, with their robustness assessment included as Appendix.

Time and frequency domain analysis of nation-level BC data

based on short-time Fourier transform, dimensionality reduc-

tion, and clustering is presented in Section IV B and Sections

V B. The manuscript ends with a discussion in Section VI.

II. LITERATURE REVIEW

A. Phase synchronization and Kuramoto order parameter

Interest in studying synchronization possibly started with

the demonstration of how oscillations of two pendulums

closely-positioned on a foundation eventually reach a “com-

mon rhythm" due to weak mechanical coupling between

them via the foundation16. Study of synchronization is

much broader than only mechanical systems. For ex-

ample, synchronization appears frequently in economics17,

neuroscience18–20 and human social behavior21–23. Based on

the nature of data available, various mathematical tools, in-

cluding phase synchronization24, cross correlation18, event

synchronization25, and nonlinear interdependence26, are com-

monly utilized for investigating synchronization.

Given that the BC data for most U.S. states exhibit annual

oscillations, a natural choice for our study is to analyze such

oscillations in terms of their phase synchronization. Phase

synchronization can be studied with oscillatory systems in

a narrow frequency band27. This phenomenon is associated

with the phase-locking degree and can be understood as the

relative phase between these systems21,28. A well-established

approach to measure the coherence of phase among a group

of oscillatory units is to first recover their instantaneous phase

and then utilize this phase information to calculate the Ku-

ramoto order parameter15,22,29,30. The magnitude r of this or-

der parameter will then help quantify the instantaneous degree

of synchronization among the units in the group (see methods

and analysis in Section IV).

The quantity r, which we call synchronization degree,

varies between zero and one, where larger values indicate

larger relative degree of synchronization. This mathematical

tool has been utilized with promising results. For example,

in an experiment where a number of participants sat together

and rocked their chairs at the same time, the authors reveal dis-

tinctive synchronization degree for the movement of rocking

chairs utilizing r in statistical tests22. In another study31 based

on multiple simulations, r is used to determine the effects of

frequency mismatches on the synchronization of coupled os-

cillators.
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B. Hilbert transform for phase recovery

Before phase synchronization among oscillating units can

be studied, the phase of each of them needs to be calcu-

lated. This can be done by following two common techniques,

namely, Hilbert transforms32–34 or Wavelet transforms19,35.

These two transforms are intrinsically related27,36–38 and their

premise is the definition of an analytical signal from the given

time-series. This signal is a complex function whose ampli-

tude and phase provide an estimate of the instantaneous am-

plitude and phase of the time-series.

Hilbert transform has proven to be a powerful tool in phase

recovery in diverse research fields from neuroscience38,39, sig-

nal processing40, and acoustics41 to aeronautics34 and hu-

man behavior21. In terms of computational implementation, it

can be calculated via several algorithms such as Fast Fourier

Transform32 and discrete convolution42. Hilbert transform is

applicable to time-series with narrow frequency bands43, but

real-world data, such as the BC time-series at hand, are not

necessarily narrow band. For this reason, a common prac-

tice is to first pre-process the time-series via filtering27. Other

limitations in implementing Hilbert transform include the in-

fluence of product theorem of Hilbert transform44,45 and edge

effects44. In Section IV, we focus on Hilbert transforms and,

to address these limitations, we include an equivalent analysis

with Wavelet transforms in the Supplementary Information.

C. Diffusion maps for clustering

By applying mathematical and computational tools to an-

alyze raw data, we often generate high-dimensional data that

must be systematically interpreted to explain the underlying

characteristics of the original, raw data. However, this is a

challenging task due to the high-dimensional nature of the

generated data. Originating from the notion of random walks,

diffusion maps provide a useful and practical approach to ana-

lyze high-dimensional data in an effective manner via dimen-

sionality reduction and spectral clustering46. Diffusion maps

have been instrumental in helping explain high-dimensional

data arising in the study of animal behavior47,48, nonlinear

dynamical system49, network anomaly detection50, and docu-

ment classification51.

Technically speaking, diffusion mapping extracts the intrin-

sic geometry in a given data set by constructing a network

between the points in the data set and identifying pair-wise

transition probabilities between any pairs of such points. This

is achieved based on a so-called “diffusion distance,” which,

in some sense, combines all the paths of random walk transi-

tions between the points. As per the definition of “diffusion

distance"46,52, diffusion maps offer a robust means to reveal

the geometry underlying the data set even in the presence of

noise and perturbations. In this sense, they are more preferred

over other commonly utilized linear methods, such as prin-

ciple component analysis53, and nonlinear dimensionality re-

duction methods, such as ISOMAP51,54. Readers are referred

to Kolpas et al.47 and Aureli et al.48, where authors demon-

strate the efficacy of utilizing diffusion maps in studying col-

lective motion.

Considering that real-world data such as the BC time-series

at hand may be subject to noise and uncertainty, the choice

of diffusion maps is well justified. Performing the diffusion

map analysis of the BC time-series over large windows, on

the order of years, will also help reduce the effects of noise.

Research in collective group behavior provides further support

and parallelism for the current study. For example, diffusion

maps are utilized in48 to reveal typical coherent patterns of an-

imal groups and their transitions between these patterns. The

current effort has analogous elements to the cited study in that

we aim to reveal whether or not there exist certain patterns

of behavior among the U.S. states in their BC data, and how

these patterns, if they exist, compare with a Presidential term

in the Office.

III. DATA

National instant criminal background checks (BC) data

available publicly is utilized for analysis55. This data is avail-

able in two forms: (a) for each state at a monthly resolution

and (b) aggregate of all the states as national data at a daily

resolution. These data are plotted in the Appendix. The data

ranges from 1/1999 to 4/2021, from 268 months in total. The

state of Hawaii is not included in our study since BC data for

this state is not available. Although the state of Connecticut

has missing data from 1/2000 to 8/2001, this state is still in-

cluded by considering zero values in place of the missing data.

When necessary, the data is treated in time windows cor-

responding to a Presidential term. Since the last year of D.

J. Trump’s term might be impacted by COVID-19, only the

first three years of his Presidency are considered in our cal-

culations. Data corresponding to D. J. Trump’s fourth year

in the Office are separately treated. G.W. Bush’s first and

second terms are respectively labeled with Bush (1) (1/2001-

12/2004) and Bush (2) (1/2005-12/2008); B.H. Obama’s first

and second terms denoted by Obama (1) (1/2009-12/2012)

and Obama (2) (1/2013-12/2016), and the first three years

of D.J. Trump’s term as Trump (pre-COVID-19) (1/2017-

12/2019).

The datasets generated and/or analyzed in the current study

are available on reasonable request.

IV. METHODS AND ANALYSIS

Two main directions are pursued: (1) using state-level

monthly BC data, we calculate phase time-series of each

U.S. state to estimate synchronization degree among the states

(Section IV A); and (2) using nation-level daily BC data, we

investigate how the energy in the BC data distributes over time

and frequency, and implement diffusion maps and clustering

techniques to explain how this power shifts over time in rela-

tion to a Presidential term (Section IV B). In the following,

we provide the mathematical procedure to pursue (1)-(2).
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A. Analysis of state-level monthly background check data

By observing BC time-series, a cyclic pattern is clear for

most U.S. states where BC reaches peaks in winters and val-

leys in summers. That is, BC data exhibits a seasonality ef-

fect in annual oscillations with a frequency of 1/12 ≈ 0.0833

[1/months]; by factoring in some level of margin, we con-

sider annual oscillations to be in the range of [0.06,0.11]
[1/months]. With data sampled every month, the frequency

spectrum of BC data is in the range of [0,0.5] 1/months.

Hence, the frequency range of annual oscillations is about

10% of the whole spectrum. Next, BC time-series are de-

trended to ensure stationarity for power spectral density esti-

mation. On average, the power of annual oscillations is found

to be 35% of the total power for all U.S. states considered.

Since annual oscillations are the most prevalent for their rel-

atively large power (35%) in a relatively small frequency band

(10%), we focus on them for the study of synchronization. To

this end, we view BC data of each U.S. state as an oscillator

unit. Our approach is sketched in Fig. 1 and is made of three

main steps (1)-(3):

(1) pre-process raw BC data by reflection and filtering (see

Section IV A 1);

(2a) construct an analytical signal by implementing Hilbert

transform on the pre-processed BC data of each U.S. state (see

Section IV A 2);

(2b) compute phase time-series of each U.S. state (see Sec-

tion IV A 2);

(3a) calculate the synchronization degree r time-series

based on the definition of Kuramoto order parameter (see Sec-

tion IV A 2); and

(3b) shuffle the phase samples from (2a) in multiple trials

to generate surrogate data and repeat step (3a) on this data to

obtain a distribution for r (see Section IV A 3).

At step (1), data is pre-processed by reflection and pre-

filtering. Reflection is required to minimize artifacts in phase

calculations in step (2)44. Pre-filtering to a desired narrow

band27,36 is necessary since Hilbert transform is applicable to

only narrow-band signals27. At step (2), discrete-time Hilbert

transform on the pre-processed BC data yields an analytical

signal for each U.S. state (step (2a)), from which one can cal-

culate the instantaneous phase time-series (step (2b)). Phase

values are aggregated to compute the r time-series magni-

tude of the Kuramoto order parameter (step (3a)). The 95th

percentile of r distributions from step (3b) based on surro-

gate data can then be compared against r from step (3a), in

each Presidential term, to exclude that synchronization of U.S.

states is due to chance.

Once steps (1)-(3) are completed, we state the hypothesis

that the synchronization degree r depends on the Presidential

term. One-way ANOVA F-test56 is conducted with all r val-

ues in their respective Presidential terms. The null hypothesis

is that the population means of r in the five terms are all equal.

A small p-value (p < 0.05) indicates that the null hypothesis

can be rejected and hence different Presidential terms have

impact on the value of r. If the null hypothesis is rejected,

then a post-hoc test is conducted with Tukey’s approach be-

tween pairs of terms, to reveal which two terms are different

from each other (p < 0.05).

1. Pre-processing and pre-filtering of data

In the implementation of Hilbert transform, one must mit-

igate errors due to edge effects caused by the finite length of

time-series to be analyzed. This issue can be addressed by

following a procedure called reflection, or symmetric exten-

sion44,57. Let the original time-series of BC be denoted as y[n]
with n = 1, ...,Nt , and Nt being the total number of months in-

cluded in the analysis. We process the time-series as follows:

ŷ[n] =











y[Nt −n+1] if 1 ≤ n ≤ Nt ,

y[n−Nt ] if Nt +1 ≤ n ≤ 2Nt ,

y[3Nt −n+1] if 2Nt +1 ≤ n ≤ 3Nt .

(1)

The output of this procedure, ŷ[n], is a time-series where the

original BC time-series y[n] is placed in between its mirrored

duplicates. In what follows, ŷ[n] is utilized for further analy-

sis.

Since Hilbert transform is effective on narrow band time-

series, the data ŷ[n] should further be pre-processed via a

bandpass filter27,36. Practically speaking, it is difficult to

interpret the meaning of the phase if ŷ[n] contains frequen-

cies that span annual or even slower long-term oscillations,

as well as faster seasonal oscillations. To address this issue,

one should focus on a particular frequency band. Given that

annual oscillations are dominant in the BC data (see Section

IV A), a bandpass filter is designed to extract these oscilla-

tions. Specifically, we implement a fixed-order finite impulse

filter (FIR filter), chosen for its excellent linear phase response

with respect to frequency. The filter band-pass corresponds to

the frequency range [0.06,0.11] [1/months]. By filtering ŷ[n],
we obtain ŷ f [n], which is then used in Hilbert transform as

explained in the following subsection.

2. Instantaneous phase and synchronization degree

Hilbert transform can help reveal the instantaneous phase

of a given signal S [n]. In principle, this transformation can

be seen as a way to create an analytical signal z[n] with com-

plex entries, whose real part is S [n] and imaginary part is a

signal that is 90 degrees phase shifted with respect to S [n].
The phase of these complex entries determines the instanta-

neous phase of S [n]. The key characteristics of z[n] in the

frequency domain are that it has twice the magnitude at posi-

tive frequencies compared to the original signal, and its entire

negative frequency spectrum is filtered out.

A signal z[n] with the above-listed spectrum characteristics

can be obtained by applying a Fourier transform followed by

an inverse Fourier transform32, without having to manipulate

the signal in time domain. For this, we introduce Y [m] as the
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FIG. 1. The main procedure adopted to compute the synchronization degree among U.S. states and its assessment based on statistical analysis.

Ns-point Fast Fourier transform of ŷ f [n] with length Ns and

construct the frequency domain signal Z[m],

Z[m] =



















Y [0] if m = 0,

2Y [m] if 1 ≤ m ≤ Ns
2
−1,

Y [Ns
2
] if m = Ns

2
,

0 if Ns
2
+1 ≤ m ≤ Ns −1,

(2)

where Ns is even. The magnitude is set to zero for negative

frequencies and doubled for positive frequencies. By apply-

ing next an Ns-point inverse discrete-time Fourier transform

to Z[m], we ultimately recover the analytical signal z[n] =
zR[n] + i zI [n], where i is the imaginary number. The phase

of z[n] is obtained by

φ [n] = arctan

(

zI [n]

zR[n]

)

, (3)

which is the instantaneous phase of ŷ f [n].
Working with the BC data set, we have a total of N phase

time-series, φ j[n], j = 1, . . . ,N, and N is the number of states.

Then, the complex-form Kuramoto order parameter15 is given

by

k[n] =
1

N

N

∑
j=1

ei φ j [n] = r[n]ei ψ[n], (4)

where the instantaneous magnitude r[n] = |k[n]| measures the

coherence of phases, which we refer to as synchronization de-

gree among the U.S. states. The parameter r takes values be-

tween 0 and 1, where r = 1 means units are perfectly synchro-

nized with all their phases identical while r = 0 means no co-

herence among them with their phases uniformly distributed

in their respective ranges (in the limit N → ∞). The magni-

tude r of the Kuramoto order parameter is originally defined

for large number of oscillators, N → ∞15,23. However, r has

also been utilized in experimental work with finite number of

oscillators22.

Finally, the last step is to remove the data that was inserted

into the analysis to avoid edge effects (see Section IV A 1)44

and adjust the time delay introduced by the FIR filter33. With

this, the segment of r[n] of interest is given by r[n],n = Nt +
o
2
+1, ...,2Nt +

o
2
, where o is the order of the FIR filter and the

data at n0 = Nt +
o
2
+1 corresponds to January, 1999.

3. Permutation test for the synchronization degree

As a rule of thumb, the magnitude of the Kuramoto order

parameter satisfying r > 0.8 is indicative of strong synchro-

nization among coupled dynamical systems with large cou-

pling strengths58,59. On the other hand, one should assess

whether or not such r values can occur just by chance due

to the specific structure of the data.

To generate chance values, one should create surrogate

data through permutation of phase values of each U.S.

state. Actual r values calculated in Section IV A 2 should

then be contrasted against surrogate data to evaluate how
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FIG. 2. Distribution of r based on surrogate data obtained via shuf-

fling of phase time series, where legend labels and colors indicate

which Presidential term they correspond to. The 95th percentiles

of the distributions are respectively 0.254, 0.252, 0.251, 0.247, and

0.270 for Bush (1), Bush (2), Obama (1), Obama (2), and Trump

(pre-COVID-19).

likely/unlikely these r values are to happen due to chance.

Given a time window of a U.S. President, this window

contains T number of phase values of 49 states. We can

think that this data forms a 49 by T -dimensional matrix,

Φ = {φ j[n]}, where φ j[n] is the phase of state j at time n,

with n = 1, ...,T and j = 1, ...,49. Surrogate data is generated

by following these steps:

(a) shuffle by randomly selecting one entry from each row

of Φ to obtain 49 phase values, each from a different state,

and collect these values in a vector J with 49 entries of phase

values;

(b) use the phase entries in J to compute one r value;

and

(c) repeat (a) and (b) in multiple trials to generate the

distribution of r.

The above procedure is repeated separately for each time

window of Presidency, yielding a distribution of r based on

surrogate data (see Fig. 2). Next, we calculate the 95th per-

centile of each distribution, and state that values of r obtained

in Section IV A 2 that are above this percentile in a particular

time window are not to be attributed to chance.

B. Analysis of nation-level daily background check data

BC data carries rich information in the high frequency

spectrum5 and hence understanding how the power in this data

distributes and potentially shifts over time with the Presidency

is of strong interest. This question can be studied with BC data

available at a daily resolution at the nation-level, where con-

sidered frequencies span seasonal and higher-frequency oscil-

lations with periods in the range of [20,110] days (or, equiva-

lently, frequencies in the range of [0.27,1.5] 1/month). First,

the national BC data must be pre-filtered by removing the fre-

quency components at relatively lower frequencies. This pre-

filtering is performed based on fixed-order finite impulse re-

sponse filter, following a procedure similar to the one in Sec-

tion IV A 1.

Next, the short-time Fourier transform (STFT) of the fil-

tered data is obtained. Specifically, a time segment with a

fixed size of 730 days (i.e., two years) is moved over the data

by 30 day increments, that is, adjacent time segments have an

overlap of 700 days (see details in Section IV B 1). In each

time segment, the Power Spectral Density (PSD) is calculated

based on the Fourier transform. This calculation leads to a 3D

visualization of the power with respect to frequency and time.

Due to the high-dimensional nature of the STFT data, a di-

mensionality reduction/clustering procedure is adopted. To

this end, we utilize an approach based on diffusion mapping,

where the intrinsic geometry in a given data set can be con-

structed as a network between the points in the data set and

by identifying pair-wise transition probabilities between any

pairs of such points. By combining all the paths of random

walk transitions between the points, one can define what is

known as the “diffusion distance,” and express the geometry

of the data in the diffusion space. This representation can be

further reduced to a lower dimension by observing that only a

few of the dimensions are sufficient to explain the main fea-

tures of this geometry. Low dimensional embedding of the

original data provides a practical means to view the structure

of the data.

The procedure starting with national BC data and ending

with the low dimensional embedding space is sketched in Fig.

3 and can be summarized in the following steps:

(1) nation-level daily BC data is filtered to the target fre-

quency band;

(2) the filtered series is divided into multiple equal-length

overlapping time segments (see Section IV B 1 for details);

(3) short-time Fourier transform is implemented separately

on all time segments and the Fourier coefficients correspond-

ing to each frequency are obtained. For a time segment i, these

coefficients are squared to obtain the power at each frequency

and collected in a vector V (i). Next, each entry of V (i) is

normalized by the sum of its entries (see Section IV B 1 for

details); and

(4) dimensionality reduction for V (i) is performed by diffu-

sion maps to find a low dimensional embedding and analyze

the low dimensional character of the data set. More specifi-

cally, at this step, a similarity matrix is constructed based on

the Euclidean distance between pairs of these vectors, V (i)
and V ( j). This similarity matrix is normalized to obtain the

transition probability M(i, j) from point i to point j, where M

is the Markov matrix. The eigenvalues and eigenvectors of

matrix M inform whether or not a low dimensional represen-

tation of the information in V is possible. If there is a spectral

separation among the eigenvalues of M, then such a low di-

mensional representation is feasible where an embedding co-

ordinate Q(i) is obtained corresponding to V (i) (see Section

IV B 2 for details).

It is possible that the data points in the embedding coordi-

nates associated with a Presidential term would form a coher-
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FIG. 3. The main procedure followed to perform the clustering analysis and its assessment based on statistical analysis.

ent cluster and separate from the clusters of data points corre-

sponding to other terms. In each coordinate separately, a one-

way ANOVA F-test is conducted with data grouped by their

respective Presidential terms. The null hypothesis is that the

population means of data in an embedding coordinate in five

Presidential terms are all equal. A small p-value (p < 0.05)

indicates that the null hypothesis can be rejected and hence

different Presidential terms have impact on the samples in

that coordinate. If the null hypothesis is rejected, then a post-

hoc test is conducted with Tukey’s approach between pairs of

terms, to reveal which two terms are different from each other

(p < 0.05). We remark here that the above dimensionality

reduction and clustering analyses are conducted on the STFT

data, not on BC time series. The reason for this choice is that

relevant information lies in the frequency domain.

1. Windowing and short-time Fourier transform

Denote with p f [n] the pre-filtered data of the original time-

series of daily national BC data p[n],n = 1, ...,L, where L is

the total length in days. We use the FIR filter introduced in

Section IV A 1, but since the focus is on higher frequencies,

the pass band here is associated with oscillations of periods

[20,110] days. Next, filtered national BC data is divided into

time segments and Fourier transform in each segment is ex-

pressed by short-time Fourier transform (STFT),

ST FT [p f [n]](m,ω) = P[m,ω] =
+∞

∑
n=−∞

p f [n]w[n−m]e− jωn,

(5)

where ST FT [·] denotes the short-time Fourier transform, ω is

the frequency, and w[n] is the windowing function. A typ-

ical windowing function smooths the values of pre-filtered

time-series to avoid spectral leakage in short-time Fourier

transforms60. However, BC data potentially carries seasonal

characteristics and hence the length of the time segment

should be sufficiently large to capture such effects. In this

study, the segment size is selected with a length of two years

(Nw = 730 days).

BC data presents characteristically different frequency

properties in winters versus summers. Therefore, when an

edge-smoothing windowing function (such as Blackman Har-

ris or Hamming window), is implemented on this data, the

edges of the time segment corresponding to winters and sum-

mers will be smoothed as the time segment slides. Since win-

ters and summers have different frequency properties, this im-

plementation can lead to undesired loss of information. There

are possibly two ways to fix this issue: one is to change the

length of the time segment and the other is to use a different

windowing technique. If the time segment is enlarged, it will

register loss of time resolution, which is not preferred since

we need sufficient time resolution to be able to resolve Presi-

dential terms. If the length of the time segment is decreased,

we will experience a loss of frequency resolution. Since BC
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data presents seasonal effects, the time segment should not be

selected smaller than one year.

A more convenient way to fix the above issue is to use a

windowing technique that does not have an edge-smoothing

feature. For this purpose, we utilize a rectangular window.

However, this window is prone to spectral leakage, meaning

that some portion of the power in the fundamental frequency

of BC data will leak to the rest of the frequency spectrum.

We calculate the leakage factor as 9.3%, indicating that only

9.3% of the total spectral power is spread over the side lobes

of the spectrum. We suggest that this is a reasonable trade-

off since it is more important to avoid artifacts due to edge-

smoothing that can mask the seasonality effects in the data.

Moreover, since the BC data here is pre-filtered before being

convoluted with a rectangular window, we find that the power

in the frequency spectrum of interest still dominates the power

in the remainder of the spectrum. As a result, some level of

spectral leakage does not significantly affect the analysis.

With the above understanding, the rectangular window is

defined next,

w[n] = w0

(

n−
Nw

2

)

, (6)

w0(x) =











1 if x ∈ [−Nw
2

, Nw
2
],

0 if otherwise,

(7)

where Nw is the length of each time segment. Here, the

adjacent time segments are apart from each other by 30

days. That is, for all selection of m ∈ [m1,m2, ...,mT ],
mi+1 − mi = 30, m1 = 365.5, T = 248. Further, in a time

segment i of the data, the power distribution of frequency

components is collected in a high-dimensional vector V (i)
and each entry of V (i) is normalized as follows: V (i) =

1

∑ω P2(mi,ω)
[ P2[mi,ω0],P

2[mi,ω1], ...,P
2[mi,ωNyquist ] ].

2. Spectral clustering with diffusion maps

For the obtained set of vectors V (i) ∈ R
Nb , i = 1, ...,T ,

where Nb = 366 is the number of discrete Fourier transform

bins, we introduce the dimensionality reduction method, dif-

fusion maps, to find the low-dimensional embedding of the

data. This method is executed as explained next46,52,61. We

define a similarity matrix W ∈ R
T×T ,

W (i, j) = exp(−d(V (i),V ( j))/σ), (8)

where d(V (i),V ( j)) is the Euclidean distance between the

vectors V (i) and V ( j), with σ = 0.2dmax where dmax is

the maximum Euclidean distance between two different vec-

tors in the dataset V (i). Clearly, W (i, j) = W ( j, i), that

is, W is symmetric. By normalizing W by the diago-

nal matrix D, we obtain the Markov matrix M = D−1W ,

where D(i, i) = ∑ j W (i, j). Then, after transforming M into

Ms = D1/2MD−1/2, we can write Ms = D1/2D−1WD−1/2 =

FIG. 4. Synchronization degree r over time, where the tick marks on

the time axis mark the start of the years in January. These values are

obtained based on the methods described in Section IV A 2. Horizon-

tal lines correspond to 95th percentiles of the surrogate distributions

in Fig. 2.

D−1/2WD−1/2 and therefore it is easy to see that Ms is a sym-

metric matrix. Due to symmetry, this matrix has real eigen-

values and it can be decomposed as Ms = SΛS⊤, where Λ is

a block-diagonal matrix containing the eigenvalues λk of Ms,

S is a matrix with orthogonal eigenvectors γi of Ms, and ⊤

denotes matrix transposition.

Moreover, we can write M = D−1/2SΛS⊤D1/2 =
(D−1/2S)Λ(D1/2S⊤)−1. Thus, Ms has the same eigen-

values as M. Furthermore, the eigenvectors of M and Ms are

related as φi = D−1/2γi. Noting that the largest eigenvalue

of M is one by definition, the remaining eigenvalues are to

be used to determine how to proceed with dimensionality re-

duction. Specifically, one sorts the eigenvalues in descending

order as λ2, . . . ,λT and inspects the relative distance, i.e., the

spectral gap between them. This will inform which of the

larger eigenvalues are to be selected over smaller ones for

dimensionality reduction, and the eigenvectors corresponding

to the selected eigenvalues will define the low-dimensional

embedding coordinates46–48. For V (i), the coordinates of the

corresponding points in the low dimensional space will be

denoted by Q(i) = (φ2(i),φ3(i), ...,φk(i)), considering k − 1

eigenvectors are kept in the low-dimensional representation.

V. RESULTS

A. The synchronization degree varies with the Presidential
term

The time-trace of the synchronization degree r of the U.S.

states is shown in Fig. 4. We caution the reader that syn-

chronization is associated with the relative phase between the

U.S. states, but seasonality characteristics of the BC data does

not automatically imply synchronization. During G.W. Bush’s

terms, the r value is always at relatively high levels with a

mean of r = 0.939. One year after B.H. Obama takes the Of-

fice, however, the value of r starts dropping until 2011 when

it reaches its lowest value of r = 0.826 in that term. Then,
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FIG. 5. Violin plots of r in Fig. 4 corresponding to the five terms

of Presidency. One-way ANOVA F-test indicates that r values are

affected by Presidential terms (F(4, 223) = 22.93, p < 0.001). Post-

hoc comparisons reveal which pairs of terms are statistically different

(p < 0.05; non-matching letters).

it began growing back to values to around the same levels of

G.W. Bush’s terms. Throughout B.H. Obama’s second term,

the value of r holds steady at relatively high levels. Upon the

arrival of D.J. Trump to the White House, the value of r holds

steady initially, but within a year, it dropped to r = 0.635 in

the pre-COVID-19 time period. The drop continues until D.J.

Trump’s last year in the Office during the COVID-19 pan-

demic. In permutation tests, all these values are different from

chance values marked with horizontal dashed lines in Fig. 4.

See also Supplemental Information where an alternative anal-

ysis provides support for the robustness of results in Fig. 4.

One-way ANOVA F-test is performed next to study how

synchronization of U.S. states compares with Presidential

terms. We find that r is affected by Presidential terms

(F(4, 223) = 22.93, p < 0.001; see also the violin plots in

Fig. 5). Furthermore, post-hoc comparisons identify that

synchronization in the following pairs of Presidential terms

is statistically different (p < 0.05): Bush (1)-Bush (2), Bush

(1)-Obama (1), Bush (1)-Trump (pre-COVID-19), Bush (2)-

Obama (2), Bush (2)-Trump (pre-COVID-19), Obama (1)-

Obama (2), Obama (1)-Trump (pre-COVID-19) and Obama

(2)-Trump (pre-COVID-19). That is, synchronization among

the U.S. states in annual oscillations in their BC data is statis-

tically different between any two terms of Presidency except

when comparing Bush (2) with Obama (1), and Bush (1) with

Obama (2).

B. Nation-level background checks data embed on a
low-dimensional manifold that varies with the Presidential
term

We present in Fig. 6 the eigenvalues of the diffusion map

in descending order. A spectrum gap is obvious in this figure

between the second eigenvalue λ2 = 0.75 and the remaining

smaller eigenvalues, and a smaller gap between the 3rd eigen-

value λ3 = 0.45 and the remaining smaller eigenvalues. This

result suggests that we can view the high-dimensional STFT

FIG. 6. The first 10 largest eigenvalues of the diffusion maps, where

by default the largest eigenvalue λ1 = 1 and the next two largest

eigenvalues λ2, λ3 indicate a clear spectral separation from the re-

maining smaller eigenvalues.

data in a two-dimensional embedding space with respect to

the second and third eigenvectors, φ2 and φ3, of the diffusion

map. In Fig. 7, the embedding space is depicted where each

data point in this space is representative of a time segment

in which PSD was calculated. These points collectively de-

scribe a low-dimensional representation of the original high-

dimensional STFT data. Recalling that the STFT data is made

of multiple time segments, the STFT data points in the ith time

segment correspond to a single data point on the 2D embed-

ding plane earmarked by Q(i) = (φ2(i),φ3(i)).

Analogous to the study of animal groups47, the diffusion

map here provides a representation of collective behavior of

firearm acquisition in two independent coordinates φ2(i) and

φ3(i) associated with λ2 and λ3, see Coifman and Lafon 46 ,

where each coordinate provides critical information about the

data. Specifically, in the first coordinate φ2(i) we find that

data is distinguished in two separate clusters; one corresponds

to G.W. Bush’s both terms (φ2(i) < 0.5) and the other covers

B.H. Obama’s two terms combined with that of D.J. Trump’s

(φ2(i) > 0.5). Furthermore, we observe that the data associ-

ated with Bush’s second term is much more spread along this

coordinate, suggesting that the evolution of firearm acquisi-

tion during this term exhibits different characteristics with re-

spect to G.W. Bush’s first term. With regard to coordinate in

φ3(i), we gather additional information for the point cloud at

φ2(i) > 0.5. More specifically, φ3(i) indicates that this point

cloud is characterized by three separate clusters, where one

is related to only B.H. Obama’s second term (φ3(i) < −1),

the other with B.H. Obama’s first term combined with D.J.

Trump’s (2 > φ3(i)>−1), and the third one with black mark-

ers associated with the transition from G.W. Bush’s second

term to B.H. Obama’s first term (φ3(i)> 2). With the help of

diffusion maps, the diffusion coordinates help reveal relevant

information as to the similarities and differences in the data

associated with Presidents’ terms (color coded).

Since each data point in Fig. 7 corresponds to a time seg-

ment i in which PSD is performed, we can color these data

points depending on which U.S. Presidential term they belong

to. In Fig. 7, a clustering feature is obvious based on color
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FIG. 7. Dimensionality reduction embedding results. The location of

each point represents embedding coordinate of V (i), corresponding

to the ith time segment of original data. Time segments associated

with data prior to Bush (1), two consecutive Presidential terms, or

the COVID-19 pandemic period are not classified (black markers).

coding of the markers. Clearly, Bush (2) separates out from

the markers associated with Obama (1)-(2) and Trump (pre-

COVID-19). Markers corresponding to Obama (2) are also

separate from the data associated with Obama (1) and Trump

(pre-COVID-19).

Lastly, following the methods presented in Section IV B,

data is statistically analyzed along each embedding coordi-

nate φ2 and φ3 separately. One-way ANOVA in each embed-

ding coordinate points at variations with the Presidential term

(F(4, 108) = 596.24, p < 0.001, for φ2; F(4, 108) = 278.57,

p < 0.001, for φ3). Post-hoc tests reveal that any two Pres-

idential terms are statistically different (p < 0.05) in at least

one of the embedding coordinates, except between Obama (1)

and Trump (pre-COVID-19), see also Fig. 8.

VI. DISCUSSION

With its unique legal landscape forged by historical ele-

ments, the U.S. is a country where private citizens satisfy-

ing certain conditions are eligible to purchase firearms. Since

data as to how many firearm sales transactions are made in the

U.S. is not publicly available, researchers have turned toward

tracking background checks data, available from the Federal

Bureau of Investigation (FBI), as a proxy of firearm acquisi-

tion in the U.S10. This data only captures the number of back-

ground checks performed: a background check may not nec-

essarily indicate a firearm purchase and a single background

check can lead to multiple firearm purchases3. Despite these

limitations, BC data is still considered to be a reliable resource

with which researchers can perform various analyses associ-

ated with firearm prevalence in the U.S4–11.

There are various reasons that studying firearm prevalence

in the U.S. is of value to the research community. For ex-

ample, it is of strong interest to understand why affinity to

firearms is much stronger in the U.S. than it is in other com-

parable benchmark countries2. This question relates to how

humans choose to acquire firearms or not, and how poten-

tially their socio-economical status, country’s history and le-

gal landscape, educational level, income level, and political

views contribute to such choices62. Moreover, humans react

only to certain events, and they react differently toward differ-

ent events. How such reactions contribute to their choices can

guide us to better understand human behavior and elucidate

how such decisions contribute to governance, legal landscape,

political debate, and ultimately influence firearm acquisition

in the U.S.

In this manuscript, we studied spatio-temporal patterns of

BC data in the U.S. and compared the results with Presiden-

tial terms. This was done by taking a rigorous mathemat-

ical/computational approach on the available BC data. Al-

though the U.S. states have their unique characters, some are

similar to some others in many ways, such as geographically,

politically, and socio-economically. We investigated whether

or not there exists coordination among the states in terms of

their BC data. With annual oscillations predominantly present

in the data, the focus was to understand how such oscilla-

tions compare in terms of their relative phases with respect to

each other. To study these phase relationships, we calculated a

metric called synchronization degree, with strong roots in the

study of synchronization in diverse fields of nonlinear dynam-

ical systems15. We determined that the U.S. states are highly

synchronized in their BC data, except for about two years dur-

ing the first term of B.H. Obama and during almost all the

pre-COVID term of D.J. Trump. Alternative approaches were

also provided to show evidence that the results have a strong

degree of robustness. Statistical tests indicate that synchro-

nization levels among the U.S. states vary with Presidential

terms, except when comparing the second term of G.W. Bush

with the first term of B.H. Obama and the first term of G.W.

Bush with the second term of B.H. Obama.

Although we have not looked into the root causes of syn-

chronization, it is reasonable to assume that nation-level com-

mon drivers contribute to orchestrated behaviors of firearm-

purchasing communities. In view of Rogers 63 and Melgar 64 ,

for example, it is tenable that firearm sales follow seasonality

cycles with peaks during the holiday season. The presence of

such peaks in the BC data55 aligning with the holiday season

further support seasonality effects (see Appendix for state-

level BC data). On the other hand, root causes of synchro-

nization cannot be attributed to only common drivers. More

specifically, published work indicates key coupling among

some U.S. states, for example, in terms of business cycles65,

house prices66, as well as firearm acquisition11. Hence, it is

plausible that synchronization among the U.S. states in terms

of BC data is a combination of the effects of common drivers

as well as state-to-state couplings.

It is critical to note that seasonality in the data does not im-

ply synchronization. Synchronization is associated with the

phase difference between time series of the same frequency;

in this vein, temporary loss of synchronization is indicative

of increased variability in the phase of oscillations. Such a

disarray in the BC data is detected around 2010-2011 after

one and half years into the first term of B.H. Obama, and

in a much more pronounced manner during the pre-COVID

term of D.J. Trump. While synchronization sheds light on the
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FIG. 8. Violin plots of data in the embedding coordinates φ2 (left panel) and φ3 (right panel) corresponding to the five terms of Presidency. One-

way ANOVA F-test indicates that these data are affected by Presidential terms (F(4, 108) = 596.24, p < 0.001 for φ2; F(4, 108) = 278.57,

p < 0.001 for φ3). Post-hoc comparisons reveal which pairs of terms are statistically different in the embedding coordinates (p < 0.05;

non-matching letters).

degree of organization/disorganization among the U.S. states

in their BC data, such an analysis has further implications;

in particular, in our pursuit to thoroughly understand varia-

tions in firearm acquisition in the U.S. For example, it would

be possible to investigate the relationship of synchronization,

or lack thereof, to various attributes and/or extrinsic effects.

In the current study, we have compared synchronization with

Presidents’ terms, and opportunities in this direction include

the study of which U.S. states might be potentially influencing

each other (network characterization, network identification),

which states might be behaving more independently in their

firearm acquisition (leaders versus followers), and how legal

landscape influences the behavior of those states (stricter vs.

permissive laws).

BC data contains rich information, especially at relatively

high frequencies. This was leveraged, for example, in a recent

study where information carried by high frequency noise has

been statistically studied to explain the causal links between

background checks, media output, and mass shootings5. Mo-

tivated by this observation, we examined nation-level BC data

at relatively high frequencies with the goal of understanding

how the energy in the frequency spectrum possibly shifts over

time and how such an energy-shift compares with a Pres-

idential term. Short-time Fourier transform was combined

with diffusion mapping and clustering techniques to com-

pactly represent the dominant geometric features of the BC

data, on two-dimensional diffusion coordinates. This repre-

sentation in essence demonstrates how the energy in the BC

data diffuses over time. Specifically, in diffusion coordinates

we observe data clusters from one term to another term of a

President. Statistical tests indicate that such clusters are dif-

ferent between any pairs of Presidential terms in at least one

of the diffusion coordinates, except between the first term of

B.H. Obama and the pre-COVID term of D.J. Trump.

The nation-level analysis indicates the differences and sim-

ilarities of firearm sales in the U.S. vis-à-vis a sitting Presi-

dent’s term. One possible explanation for this is a President’s

ability to directly interact with masses and to potentially steer

the trajectory of gun laws either toward stricter or permissive

regulations. One piece of evidence to these arguments is in

line with Depetris-Chauvin 12 , where it is argued that the elec-

tion of B.H. Obama created a perception that stricter firearm

laws will be implemented.

We identify two main limitations of our research. First,

since the actual figures of firearm purchases are not publicly

available, we have relied on BC data as proxy of firearm ac-

quisition in the U.S., following the practices of previous pub-

lications. Second, as mentioned in the study of nation-level

BC data, we chose to accept some level of error in our analy-

sis due to spectral leakage in the implementation of short-time

Fourier transform operations. By assessing that leakage was

less than 10%, we decided that this was an acceptable level of

error as it helped to avoid the influence of seasonal differences

in firearm purchases on clustering.

Although this study focuses on firearm prevalence, it can

potentially translate to elucidate the relationship between

firearm acquisition and gun-related harms. To better un-

derstand the complex mechanisms that lead to a harm, re-

searchers in public health, criminology, policy making, and

engineering have been studying the nature of shootings67–69,

impacts of firearm-related harm on healthcare70, psycho-

logical drivers of violence71,72, effectiveness of law and

regulations on firearm73, moderating role of media on

violence74, and root causes of firearm acquisition5,75. In

criminology, specifically, studies include the investigation of

how gun carrying and drug dealing are related76,77, spatio-

temporal spreading characteristics of gun violence78, analy-

sis on spatial clustering effects of gun violence within urban

environments79, and how certain urban physical features of

properties could attract gun crimes80.

We suggest several research directions in future work. Al-

though we have not performed a causality analysis, future

studies should look into whether or not there exists any causal

link from a President’s political agenda to firearm prevalence,

and vice versa. Moreover, the analysis of the BC data can

be expanded into frequency bands other than those studied
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in this effort. While we have not studied in what ways each

Presidential term could have influenced U.S. states’ synchro-

nization in their BC data nor have we looked into similari-

ties/differences between a Democratic and Republican Pres-

ident, future work can analyze the Presidents’ agendas, pub-

lic statements, and support for stricter/permissive gun laws,

to unveil the root causes of loss of synchronization. Referring

to possible similarities/differences in firearm-purchasing com-

munities, another direction of research could focus on char-

acterizing those communities in their firearm acquisition as

various relevant national and local events unfold.

In conclusion, we put forth a mathematical/computational

approach to study BC data at the nation- and state-level, and

revealed the synchronization characteristics of U.S. states and

how energy contained in the BC data shifts over time. These

results are backed by statistical tests and robustness analysis,

all supporting the existence of time-dependent coordination

among the U.S. states. The results further point out that

this time dependence compares with Presidential terms, that

is, there exists a possible interplay between a President’s term

and the complex dynamics associated with firearm acquisition

in the U.S.
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Appendix: Robustness analysis

The phase calculated based on the principles of Hilbert

transform can be influenced by how rapidly the amplitudes of

the time signal are changing44,45 and hence this issue should

be addressed. Moreover, an alternative approach would help

provide a degree of robustness on the reliability of the results.

To this end, Wavelet transform can be leveraged to estimate

the degree of synchronization r.

1. Influence of variant amplitudes

To investigate whether or not amplitude changes cause sub-

stantial variations in phase calculations, one can calculate r by

normalizing the amplitudes of the BC data after pre-filtering

and reflection procedures and before applying the Hilbert

transform. That is, one should normalize first all the oscil-

lation amplitudes in the filtered signal ŷ f [n], such that am-

plitudes do not change over time. This is an adjustment that

only scales the amplitudes and hence should not influence the

phase calculations. The amplitude-tuned signal then reads,

ŷt [n] =
Mŷ f

Fi

ŷ f [n], for n ∈ [ni,ni+1], (A.1)

where ni is the ith zero point of ŷ f [n], Fi is the maximum ab-

solute value of ŷ f [n] in the range of [ni,ni+1], and Mŷ f
is the

maximum absolute value of ŷ f [n]. The signal ŷt [n], which

is adjusted for uniform amplitude, is utilized to compute the

phase based on Hilbert transform. This phase is then used to

calculate the synchronization degree r (blue in Fig. 9). In this

figure, we compare r with that in Fig. 4 (red). Given that the

two curves of r are almost identical to each other, we conclude

that r calculation is only negligibly affected when amplitudes

are normalized, providing support for the consistency of re-

sults.

2. Synchronization degree based on Wavelet transform

An alternative Morse wavelet transform can be imple-

mented on the frequency domain representation of time-series

data, to obtain φWs(t), the corresponding phase series. The

procedure is as follows. Based on Lilly and Olhede 35 , for a

square-integrable signal x(t), the wavelet transform is defined

as

Ws(t) =
∫ +∞

−∞

1

s
ψ∗

(

u− t

s

)

x(u)du

=
1

2π

∫ +∞

−∞

1

s
Ψ∗(sω)X(ω)dω, (A.2)

where s is the normalization constant, ψ(t) is the selected

wavelet function in time domain, Ψ(ω) is the Fourier trans-

forms of ψ(t), X(ω) is the Fourier transform of x(t), and (·)∗

denotes the complex conjugate of (·).
In this manuscript, we implement the wavelet in the fre-

quency domain ω and the type of wavelet function selected is

the Morse wavelet given by

ΨP,γ(ω) = 2U(ω)

(

eγ2

P2

)

P2

γ2

ω
P2

γ e−ωγ
, (A.3)

where U(ω) is the unit-step function, P2 is the time-

bandwidth product, and γ represents the symmetry of this

wavelet. With this setting, complex number Ws(t) can be cal-

culated as

Ws(t) = AW (t)eiφWs (t), (A.4)
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FIG. 9. Magnitude of Kuramoto order parameter r as a function of

time obtained either based on the signal ŷ f [n] (blue) or ŷt [n] (red).

Here the blue curve is obtained based on amplitude adjustment and

the red curve is carried from Fig. 4 for comparison.

FIG. 10. Variability of the synchronization degree over time for a

selection of central frequencies used to design Morse wavelet trans-

form.

from which the phase φWs(t) can be extracted.

Specifically, utilizing discrete version of wavelet transform

in Matlab on state-level BC time-series, phase time-series for

each U.S. state are obtained. These phase time-series are then

utilized to compute r[n]. Since we utilize the reflected BC

data in this procedure, the parts of r[n] associated with the

reflected data are neglected. Here, wavelet parameters are se-

lected as γ = 3 for maximum degree of symmetry of shape of

the Morse wavelet35 and P2 = 30, which are appropriate val-

ues to balance the two needs for narrow frequency pass-band

width and short decay time. Next, the central frequency of the

wavelet is adjusted with different selections of the normaliza-

tion parameter s.

Since our focus is on BC data associated with annual os-

cillations, the central frequency is selected for an oscillation

period in the range of [10.6,13.7] months, which is slightly

narrower than that used in the FIR filter in Section IV A 1.

To study the variability in the results, we sample this range

into 18 linearly spaced data points, each describing a Morse

wavelet with a different central frequency. For each of the

wavelets, phase calculations are performed and a synchroniza-

tion degree r[n] is obtained. The family of 18 different curves

are obtained as depicted in Fig. 10.

Fig. 10 provides support for the degree of robustness of re-

sults in Fig. 4. It also reveals that at two critical time points,

the results have more sensitivity, or, equivalently there is more

variation in the family of curves in Fig. 10. These time points

arise around the valley in the winter of 2010 and after the

spring of 2018. Nevertheless, the trend lines still clearly indi-

cate the presence of the valley around 2010 in Obama (1) and

a substantial drop in r in Trump (pre-COVID-19).

Appendix: State-level background checks

The plots of background check series by state (state of

Hawaii is excluded) are provided here for direct observation

and capture of the synchronization in Figs. 11, 12 and 13.
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FIG. 11. Time series of background checks by state, from Alabama to Kentucky.

FIG. 12. Time series of background checks by state, from Louisiana to North Carolina.
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FIG. 13. Time series of background checks by state, from North Dakota to Wyoming.
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