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This study develops mathematical tools and approaches to investigate spatio-temporal patterns of firearm acquisition
in the U.S. complemented by hypothesis testing and statistical analysis. First, state-level and nation-level instant back-
ground checks (BC) data are employed as proxy of firearm acquisition corresponding to 1999-2021. The relative-phase
time-series of BC in each U.S. state is recovered and utilized to calculate the time-series of the U.S. states’ synchroniza-
tion degree. We reveal that U.S. states present a high-level degree of synchronization, except in 2010-2011 and after
2018. Comparing these results with respect to a sitting U.S. President provides additional information: specifically, any
two Presidential terms are characterized by statistically different synchronization degrees, except of G.W. Bush’s first
term and B.H. Obama’s second term. Next, to detail variations of BC, short-time Fourier transform, dimensionality
reduction techniques, and diffusion maps are implemented within a time-frequency representation. Firearm acquisition
in the high frequency band exhibits a low-dimensional embedding, represented as a set of data points on the plane of
two embedding coordinates. These data points, associated with different time windows of the BC data, form separate
clusters signifying the state transitions in the original BC data. Through this analysis, we reveal that the frequency
content of the BC data has a time-dependent characteristic. By comparing the diffusion map at hand with respect to
a Presidential term, we find that at least one of the embedding coordinate presents statistically significant variations
between any two Presidential terms, except of B.H. Obama’s first term and D.J. Trump’s pre-COVID term. The results

point at a possible interplay between firearm acquisition in the U.S. and a Presidential term.

With a rate of firearm ownership of 1.21 firearms per
capita, the U.S. has the largest firearm prevalence among
all developed countries in the globe. There are more
guns than people. Are gun purchases independently made
throughout the country, or is there some form of coordi-
nation, collective behavior that drives firearm acquisition
in U.S. states? Addressing this question is the first objec-
tive of this manuscript. Next, we investigate how patterns
of firearm acquisition evolve over time. We bring forward
methodological advances in statistics and engineering to
answer the above two questions with data covering the last
twenty years. Overall, this effort reveals compelling evi-
dence that the U.S. states act in a highly coordinated man-
ner when it comes to acquiring firearms and that such
a coordination has time-dependent character. In view of
these, we perform statistical analysis to compare this time-
dependent coordination between the U.S. Presidents. Re-
sults suggest that there exists a possible interplay between
a sitting U.S. President and temporal patterning of the BC
data.

I. INTRODUCTION

According to a report from the U.S. Firearms Commerce,
private citizens in the U.S. own a total number of 393 million
firearms!. This figure corresponds to 1.21 firearms per capita,

leading to a well-known fact in the U.S.: we have more guns
than people. A decade ago, gun ownership in the U.S. was
0.9 per capita: thus, gun ownership has risen over the last ten
years even when adjusted against population growth. These
numbers suggest a unique stand of the U.S. in terms of firearm
prevalence, given that in other high-income countries, such
as Germany, France, Canada, Italy, Australia, and Finland,
ownership averages only around 0.27 per capita, even with
large number of civilian firearm holdings?.

The publicly available National Instant Criminal Back-
ground Checks (BC) data is a reliable resource that can help
characterize firearm prevalence in the U.S. However, neither
every background check results in a firearm acquisition, nor
does each background check necessarily result in only a single
firearm acquisiti0n3. Despite these limitations, BC data has
been extensively utilized by researchers as a proxy of firearm
acquisition*'!. The data exhibit a clearly increasing trend,
especially in the past decade, qualitatively supporting some
of the survey results cited above. BC data has been utilized
by Timsina ef al. %, for example, to study the relationship be-
tween firearm acquisition and youth gun carrying. Likewise,
Porfiri et al.>!'! examined the BC data to show how fear of
stricter gun regulations after a mass shooting causes an in-
crease in firearm purchases with nation- and state-level anal-
yses. More recently, Schleimer et al. ¢ and Lang and Lang’
studied excess firearm purchases during the COVID-19 pan-
demic. Many authors also utilized BC data as a proxy to in-
vestigate firearm related homicides, suicides, and accidental
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deaths®10.

BC data is available at the nation-level and state-level, each
set of data enabling different research questions. The nation-
level BC data is rich and informative, being available at a
daily resolution, but it is only an aggregate of the state-level
data. Studies based on monthly resolution state-level data
can provide knowledge about how each state contributes to
firearm acquisition in the U.S., and therefore help inform
state-level policy making and characterize state-to-state inter-
actions. Given that the U.S. states are diverse in many aspects
including socio-economic factors, political views, and firearm
laws, and that they may even react differently in different po-
litical climates, it is of strong interest to understand whether or
not U.S. states behave similarly or differently in their firearm
acquisition. Synchronization characteristics of U.S. states in
their BC data can provide valuable insights into these similar-
ities and differences.

Political climate can potentially influence the BC data. For
example, nation-level BC data has experienced a dramatic
increase immediately after B.H. Obama won the election in
2008. According to one source, this was possibly because
gun-purchasing communities feared of stricter firearm regula-
tions during President Obama’s term'?. Luca ef al.'® found
the party in power at the state-level to be influential on the
enactment of firearm-related laws upon occurrence of mass
shootings. In addition, Eshbaugh-Soha and Peake '* offered
evidence about particular characteristics of three Presidents
(R.W. Reagan, W.J. Clinton, and G.W. Bush) when setting
agendas on unemployment, inflation, and international eco-
nomics. Connecting these ideas together, a natural question
that arises is how firearm acquisition patterns across states
compare to Presidential terms. With BC data available since
1999, such an investigation can cover five terms of U.S. Presi-
dency, namely two terms each of G.W. Bush and B.H. Obama
and one term of D.J. Trump.

Here, we study synchronization patterns in BC data across
states. Synchronization is calculated based on the phase be-
tween the states, where phase is defined as the instantaneous
phase angle between two oscillators, both at the same fre-
quency. Specifically, phase time-series of each U.S. state are
extracted based on annual oscillations predominantly present
in the data. These time series are next used to calculate syn-
chronization time-series among the U.S. states based on the
Kuramoto order parameter'>. Moreover, analyzing the nation-
level BC data at relatively high frequencies offers oppor-
tunities in understanding firearm acquisition characteristics
among the U.S. states. Indeed, the fast varying content in the
detrended and seasonally adjusted BC data was recently lever-
aged in an information theory based approach’ to investigate
causality between time-series of BC, media output, and mass
shootings. Recognizing the rich information contained in the
fast-varying content of BC data, we investigate the energy at
relatively high frequencies in the spectrum of nation-level BC
data using short-time Fourier transform. However, the arising
power spectrum data is high dimensional and opaque to inter-
pretation, thereby requiring a dimensionality reduction tech-
nique with clustering analysis to detect variations.

This study is focused on explaining whether or not U.S.

states present a synchronized behavior in their firearm acqui-
sition and how firearm acquisition compares with respect to
the most recent five U.S. Presidential terms. To this end, lit-
erature on the main methods used in this paper is reviewed
in Section II and data is described in Section III. Research
methods and results pertaining to synchronization based on
state-level BC data are provided in Section IV A and Section
V A, with their robustness assessment included as Appendix.
Time and frequency domain analysis of nation-level BC data
based on short-time Fourier transform, dimensionality reduc-
tion, and clustering is presented in Section IV B and Sections
V B. The manuscript ends with a discussion in Section VI.

Il. LITERATURE REVIEW
A. Phase synchronization and Kuramoto order parameter

Interest in studying synchronization possibly started with
the demonstration of how oscillations of two pendulums
closely-positioned on a foundation eventually reach a “com-
mon rthythm" due to weak mechanical coupling between
them via the foundation'®. Study of synchronization is
much broader than only mechanical systems. For ex-
ample, synchronization appears frequently in economics'”,
neuroscience'2° and human social behavior?!~23. Based on
the nature of data available, various mathematical tools, in-
cluding phase synchronization®*, cross correlation!8, event
synchronization?’, and nonlinear interdependence?®, are com-

monly utilized for investigating synchronization.

Given that the BC data for most U.S. states exhibit annual
oscillations, a natural choice for our study is to analyze such
oscillations in terms of their phase synchronization. Phase
synchronization can be studied with oscillatory systems in
a narrow frequency band?’. This phenomenon is associated
with the phase-locking degree and can be understood as the
relative phase between these systems>!-?®. A well-established
approach to measure the coherence of phase among a group
of oscillatory units is to first recover their instantaneous phase
and then utilize this phase information to calculate the Ku-
ramoto order parameter'>>22%3% The magnitude r of this or-
der parameter will then help quantify the instantaneous degree
of synchronization among the units in the group (see methods
and analysis in Section IV).

The quantity r, which we call synchronization degree,
varies between zero and one, where larger values indicate
larger relative degree of synchronization. This mathematical
tool has been utilized with promising results. For example,
in an experiment where a number of participants sat together
and rocked their chairs at the same time, the authors reveal dis-
tinctive synchronization degree for the movement of rocking
chairs utilizing r in statistical tests>?. In another study>! based
on multiple simulations, r is used to determine the effects of
frequency mismatches on the synchronization of coupled os-
cillators.
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B. Hilbert transform for phase recovery

Before phase synchronization among oscillating units can
be studied, the phase of each of them needs to be calcu-
lated. This can be done by following two common techniques,
namely, Hilbert transforms3>=3* or Wavelet transforms!®-3.
These two transforms are intrinsically related?’-*%-3% and their
premise is the definition of an analytical signal from the given
time-series. This signal is a complex function whose ampli-
tude and phase provide an estimate of the instantaneous am-
plitude and phase of the time-series.

Hilbert transform has proven to be a powerful tool in phase
recovery in diverse research fields from neuroscience®-" sig-
nal processing*’, and acoustics*' to aeronautics®* and hu-
man behavior?!. In terms of computational implementation, it
can be calculated via several algorithms such as Fast Fourier
Transform?? and discrete convolution*?. Hilbert transform is
applicable to time-series with narrow frequency bands*?, but
real-world data, such as the BC time-series at hand, are not
necessarily narrow band. For this reason, a common prac-
tice is to first pre-process the time-series via filtering?’. Other
limitations in implementing Hilbert transform include the in-
fluence of product theorem of Hilbert transform*** and edge
effects**. In Section IV, we focus on Hilbert transforms and,
to address these limitations, we include an equivalent analysis
with Wavelet transforms in the Supplementary Information.

C. Diffusion maps for clustering

By applying mathematical and computational tools to an-
alyze raw data, we often generate high-dimensional data that
must be systematically interpreted to explain the underlying
characteristics of the original, raw data. However, this is a
challenging task due to the high-dimensional nature of the
generated data. Originating from the notion of random walks,
diffusion maps provide a useful and practical approach to ana-
lyze high-dimensional data in an effective manner via dimen-
sionality reduction and spectral clustering®®. Diffusion maps
have been instrumental in helping explain high-dimensional
data arising in the study of animal behavior*’*%, nonlinear
dynamical system*’, network anomaly detection®”, and docu-
ment classification®!.

Technically speaking, diffusion mapping extracts the intrin-
sic geometry in a given data set by constructing a network
between the points in the data set and identifying pair-wise
transition probabilities between any pairs of such points. This
is achieved based on a so-called “diffusion distance,” which,
in some sense, combines all the paths of random walk transi-
tions between the points. As per the definition of “diffusion
distance"*%32, diffusion maps offer a robust means to reveal
the geometry underlying the data set even in the presence of
noise and perturbations. In this sense, they are more preferred
over other commonly utilized linear methods, such as prin-
ciple component analysis>>, and nonlinear dimensionality re-
duction methods, such as ISOMAP1*. Readers are referred
to Kolpas et al?” and Aureli er al.*3, where authors demon-
strate the efficacy of utilizing diffusion maps in studying col-

lective motion.

Considering that real-world data such as the BC time-series
at hand may be subject to noise and uncertainty, the choice
of diffusion maps is well justified. Performing the diffusion
map analysis of the BC time-series over large windows, on
the order of years, will also help reduce the effects of noise.
Research in collective group behavior provides further support
and parallelism for the current study. For example, diffusion
maps are utilized in*® to reveal typical coherent patterns of an-
imal groups and their transitions between these patterns. The
current effort has analogous elements to the cited study in that
we aim to reveal whether or not there exist certain patterns
of behavior among the U.S. states in their BC data, and how
these patterns, if they exist, compare with a Presidential term
in the Office.

I1l. DATA

National instant criminal background checks (BC) data
available publicly is utilized for analysis®>>. This data is avail-
able in two forms: (a) for each state at a monthly resolution
and (b) aggregate of all the states as national data at a daily
resolution. These data are plotted in the Appendix. The data
ranges from 1/1999 to 4/2021, from 268 months in total. The
state of Hawaii is not included in our study since BC data for
this state is not available. Although the state of Connecticut
has missing data from 1/2000 to 8/2001, this state is still in-
cluded by considering zero values in place of the missing data.

When necessary, the data is treated in time windows cor-
responding to a Presidential term. Since the last year of D.
J. Trump’s term might be impacted by COVID-19, only the
first three years of his Presidency are considered in our cal-
culations. Data corresponding to D. J. Trump’s fourth year
in the Office are separately treated. G.W. Bush’s first and
second terms are respectively labeled with Bush (1) (1/2001-
12/2004) and Bush (2) (1/2005-12/2008); B.H. Obama’s first
and second terms denoted by Obama (1) (1/2009-12/2012)
and Obama (2) (1/2013-12/2016), and the first three years
of D.J. Trump’s term as Trump (pre-COVID-19) (1/2017-
12/2019).

The datasets generated and/or analyzed in the current study
are available on reasonable request.

IV. METHODS AND ANALYSIS

Two main directions are pursued: (1) using state-level
monthly BC data, we calculate phase time-series of each
U.S. state to estimate synchronization degree among the states
(Section IV A); and (2) using nation-level daily BC data, we
investigate how the energy in the BC data distributes over time
and frequency, and implement diffusion maps and clustering
techniques to explain how this power shifts over time in rela-
tion to a Presidential term (Section IV B). In the following,
we provide the mathematical procedure to pursue (1)-(2).
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A. Analysis of state-level monthly background check data

By observing BC time-series, a cyclic pattern is clear for
most U.S. states where BC reaches peaks in winters and val-
leys in summers. That is, BC data exhibits a seasonality ef-
fect in annual oscillations with a frequency of 1/12 ~ 0.0833
[1/months]; by factoring in some level of margin, we con-
sider annual oscillations to be in the range of [0.06,0.11]
[1/months]. With data sampled every month, the frequency
spectrum of BC data is in the range of [0,0.5] 1/months.
Hence, the frequency range of annual oscillations is about
10% of the whole spectrum. Next, BC time-series are de-
trended to ensure stationarity for power spectral density esti-
mation. On average, the power of annual oscillations is found
to be 35% of the total power for all U.S. states considered.

Since annual oscillations are the most prevalent for their rel-
atively large power (35%) in a relatively small frequency band
(10%), we focus on them for the study of synchronization. To
this end, we view BC data of each U.S. state as an oscillator
unit. Our approach is sketched in Fig. 1 and is made of three
main steps (1)-(3):

(1) pre-process raw BC data by reflection and filtering (see
Section IVA 1),

(2a) construct an analytical signal by implementing Hilbert
transform on the pre-processed BC data of each U.S. state (see
Section IV A 2);

(2b) compute phase time-series of each U.S. state (see Sec-
tion IVA?2);

(3a) calculate the synchronization degree r time-series
based on the definition of Kuramoto order parameter (see Sec-
tion IV A 2); and

(3b) shuffle the phase samples from (2a) in multiple trials
to generate surrogate data and repeat step (3a) on this data to
obtain a distribution for r (see Section IV A 3).

At step (1), data is pre-processed by reflection and pre-
filtering. Reflection is required to minimize artifacts in phase
calculations in step 2)*. Pre-filtering to a desired narrow
band?”-3° is necessary since Hilbert transform is applicable to
only narrow-band signals?’. At step (2), discrete-time Hilbert
transform on the pre-processed BC data yields an analytical
signal for each U.S. state (step (2a)), from which one can cal-
culate the instantaneous phase time-series (step (2b)). Phase
values are aggregated to compute the r time-series magni-
tude of the Kuramoto order parameter (step (3a)). The 95"
percentile of r distributions from step (3b) based on surro-
gate data can then be compared against r from step (3a), in
each Presidential term, to exclude that synchronization of U.S.
states is due to chance.

Once steps (1)-(3) are completed, we state the hypothesis
that the synchronization degree r depends on the Presidential
term. One-way ANOVA F-test>® is conducted with all r val-
ues in their respective Presidential terms. The null hypothesis
is that the population means of r in the five terms are all equal.
A small p-value (p < 0.05) indicates that the null hypothesis
can be rejected and hence different Presidential terms have

impact on the value of r. If the null hypothesis is rejected,
then a post-hoc test is conducted with Tukey’s approach be-
tween pairs of terms, to reveal which two terms are different
from each other (p < 0.05).

1. Pre-processing and pre-filtering of data

In the implementation of Hilbert transform, one must mit-
igate errors due to edge effects caused by the finite length of
time-series to be analyzed. This issue can be addressed by
following a procedure called reflection, or symmetric exten-
sion**7 . Let the original time-series of BC be denoted as y[#]
withn =1,...,NV;, and N; being the total number of months in-
cluded in the analysis. We process the time-series as follows:

YNt —=n+1] ifl1<n<N,
Fln] = yln—Nj if Ny +1<n<2N, ()
VBN, —n+1] if2N,+1<n<3N,.

The output of this procedure, $[n], is a time-series where the
original BC time-series y[n] is placed in between its mirrored
duplicates. In what follows, $[n] is utilized for further analy-
sis.

Since Hilbert transform is effective on narrow band time-
series, the data $[n] should further be pre-processed via a
bandpass filter>”3°. Practically speaking, it is difficult to
interpret the meaning of the phase if y[n] contains frequen-
cies that span annual or even slower long-term oscillations,
as well as faster seasonal oscillations. To address this issue,
one should focus on a particular frequency band. Given that
annual oscillations are dominant in the BC data (see Section
IV A), a bandpass filter is designed to extract these oscilla-
tions. Specifically, we implement a fixed-order finite impulse
filter (FIR filter), chosen for its excellent linear phase response
with respect to frequency. The filter band-pass corresponds to
the frequency range [0.06,0.11] [1/months]. By filtering $n],
we obtain y¢[n], which is then used in Hilbert transform as
explained in the following subsection.

2. Instantaneous phase and synchronization degree

Hilbert transform can help reveal the instantaneous phase
of a given signal .#[n]. In principle, this transformation can
be seen as a way to create an analytical signal z[n] with com-
plex entries, whose real part is . [n] and imaginary part is a
signal that is 90 degrees phase shifted with respect to .#[n].
The phase of these complex entries determines the instanta-
neous phase of .#[n]. The key characteristics of z[n] in the
frequency domain are that it has twice the magnitude at posi-
tive frequencies compared to the original signal, and its entire
negative frequency spectrum is filtered out.

A signal z[n] with the above-listed spectrum characteristics
can be obtained by applying a Fourier transform followed by
an inverse Fourier transform>2, without having to manipulate
the signal in time domain. For this, we introduce Y [m] as the
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FIG. 1. The main procedure adopted to compute the synchronization degree among U.S. states and its assessment based on statistical analysis.

N;-point Fast Fourier transform of y¢[n] with length N, and
construct the frequency domain signal Z[m],

Y[0] ifm=0,
2m) if1<m<M_1q,
Z[m] = L]. o )
Y[Z] ifm=7,
0 % +1<m<N -1,

where Ny is even. The magnitude is set to zero for negative
frequencies and doubled for positive frequencies. By apply-
ing next an Ns-point inverse discrete-time Fourier transform
to Z[m|, we ultimately recover the analytical signal z[n] =
zr[n] + i z7[n], where i is the imaginary number. The phase
of z[n] is obtained by

¢[n] = arctan (ZI ] > ; 3)

zr[n]

which is the instantaneous phase of y¢[n].

Working with the BC data set, we have a total of N phase
time-series, ¢;[n], j=1,...,N, and N is the number of states.
Then, the complex-form Kuramoto order parameter!? is given
by

1

Nj ¢ il = pn)ef VI 4)

™=

k[n] =
1

where the instantaneous magnitude r[n] = |k[n]| measures the
coherence of phases, which we refer to as synchronization de-

gree among the U.S. states. The parameter r takes values be-
tween 0 and 1, where r = 1 means units are perfectly synchro-
nized with all their phases identical while r = 0 means no co-
herence among them with their phases uniformly distributed
in their respective ranges (in the limit N — o0). The magni-
tude r of the Kuramoto order parameter is originally defined
for large number of oscillators, N — 01323 However, r has
also been utilized in experimental work with finite number of
oscillators??.

Finally, the last step is to remove the data that was inserted
into the analysis to avoid edge effects (see Section IV A 1)*
and adjust the time delay introduced by the FIR filter*3. With
this, the segment of 7[n| of interest is given by r[n],n = N; +
5+1,...,2N; + 5, where o is the order of the FIR filter and the
data at no = N; + 5 + 1 corresponds to January, 1999.

3. Permutation test for the synchronization degree

As a rule of thumb, the magnitude of the Kuramoto order
parameter satisfying r > 0.8 is indicative of strong synchro-
nization among coupled dynamical systems with large cou-
pling strengths’®>°. On the other hand, one should assess
whether or not such r values can occur just by chance due
to the specific structure of the data.

To generate chance values, one should create surrogate
data through permutation of phase values of each U.S.
state. Actual r values calculated in Section IV A2 should
then be contrasted against surrogate data to evaluate how
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FIG. 2. Distribution of r based on surrogate data obtained via shuf-
fling of phase time series, where legend labels and colors indicate
which Presidential term they correspond to. The 95 percentiles
of the distributions are respectively 0.254, 0.252, 0.251, 0.247, and
0.270 for Bush (1), Bush (2), Obama (1), Obama (2), and Trump
(pre-COVID-19).

likely/unlikely these r values are to happen due to chance.
Given a time window of a U.S. President, this window
contains 7 number of phase values of 49 states. We can
think that this data forms a 49 by T-dimensional matrix,
® = {¢;[n]}, where ¢;[n] is the phase of state j at time n,
withn=1,...,T and j = 1,...,49. Surrogate data is generated
by following these steps:

(a) shuffle by randomly selecting one entry from each row
of @ to obtain 49 phase values, each from a different state,
and collect these values in a vector J with 49 entries of phase
values;

(b) use the phase entries in J to compute one r value;
and

(c) repeat (a) and (b) in multiple trials to generate the
distribution of r.

The above procedure is repeated separately for each time
window of Presidency, yielding a distribution of r based on
surrogate data (see Fig. 2). Next, we calculate the 95" per-
centile of each distribution, and state that values of r obtained
in Section IV A 2 that are above this percentile in a particular
time window are not to be attributed to chance.

B. Analysis of nation-level daily background check data

BC data carries rich information in the high frequency
spectrum? and hence understanding how the power in this data
distributes and potentially shifts over time with the Presidency
is of strong interest. This question can be studied with BC data
available at a daily resolution at the nation-level, where con-
sidered frequencies span seasonal and higher-frequency oscil-
lations with periods in the range of [20, 110] days (or, equiva-
lently, frequencies in the range of [0.27,1.5] 1/month). First,
the national BC data must be pre-filtered by removing the fre-
quency components at relatively lower frequencies. This pre-

filtering is performed based on fixed-order finite impulse re-
sponse filter, following a procedure similar to the one in Sec-
tion IVA 1.

Next, the short-time Fourier transform (STFT) of the fil-
tered data is obtained. Specifically, a time segment with a
fixed size of 730 days (i.e., two years) is moved over the data
by 30 day increments, that is, adjacent time segments have an
overlap of 700 days (see details in Section IV B 1). In each
time segment, the Power Spectral Density (PSD) is calculated
based on the Fourier transform. This calculation leads to a 3D
visualization of the power with respect to frequency and time.

Due to the high-dimensional nature of the STFT data, a di-
mensionality reduction/clustering procedure is adopted. To
this end, we utilize an approach based on diffusion mapping,
where the intrinsic geometry in a given data set can be con-
structed as a network between the points in the data set and
by identifying pair-wise transition probabilities between any
pairs of such points. By combining all the paths of random
walk transitions between the points, one can define what is
known as the “diffusion distance,” and express the geometry
of the data in the diffusion space. This representation can be
further reduced to a lower dimension by observing that only a
few of the dimensions are sufficient to explain the main fea-
tures of this geometry. Low dimensional embedding of the
original data provides a practical means to view the structure
of the data.

The procedure starting with national BC data and ending
with the low dimensional embedding space is sketched in Fig.
3 and can be summarized in the following steps:

(1) nation-level daily BC data is filtered to the target fre-
quency band;

(2) the filtered series is divided into multiple equal-length
overlapping time segments (see Section IV B 1 for details);

(3) short-time Fourier transform is implemented separately
on all time segments and the Fourier coefficients correspond-
ing to each frequency are obtained. For a time segment 7, these
coefficients are squared to obtain the power at each frequency
and collected in a vector V(i). Next, each entry of V(i) is
normalized by the sum of its entries (see Section IVB 1 for
details); and

(4) dimensionality reduction for V (i) is performed by diffu-
sion maps to find a low dimensional embedding and analyze
the low dimensional character of the data set. More specifi-
cally, at this step, a similarity matrix is constructed based on
the Euclidean distance between pairs of these vectors, V(i)
and V(). This similarity matrix is normalized to obtain the
transition probability M(i, j) from point i to point j, where M
is the Markov matrix. The eigenvalues and eigenvectors of
matrix M inform whether or not a low dimensional represen-
tation of the information in V is possible. If there is a spectral
separation among the eigenvalues of M, then such a low di-
mensional representation is feasible where an embedding co-
ordinate Q(i) is obtained corresponding to V(i) (see Section
IV B 2 for details).

It is possible that the data points in the embedding coordi-
nates associated with a Presidential term would form a coher-
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FIG. 3. The main procedure followed to perform the clustering analysis and its assessment based on statistical analysis.

ent cluster and separate from the clusters of data points corre-
sponding to other terms. In each coordinate separately, a one-
way ANOVA F-test is conducted with data grouped by their
respective Presidential terms. The null hypothesis is that the
population means of data in an embedding coordinate in five
Presidential terms are all equal. A small p-value (p < 0.05)
indicates that the null hypothesis can be rejected and hence
different Presidential terms have impact on the samples in
that coordinate. If the null hypothesis is rejected, then a post-
hoc test is conducted with Tukey’s approach between pairs of
terms, to reveal which two terms are different from each other
(p < 0.05). We remark here that the above dimensionality
reduction and clustering analyses are conducted on the STFT
data, not on BC time series. The reason for this choice is that
relevant information lies in the frequency domain.

1. Windowing and short-time Fourier transform

Denote with p[n] the pre-filtered data of the original time-
series of daily national BC data p[n|,n = 1,...,L, where L is
the total length in days. We use the FIR filter introduced in
Section IV A 1, but since the focus is on higher frequencies,
the pass band here is associated with oscillations of periods
[20, 110] days. Next, filtered national BC data is divided into
time segments and Fourier transform in each segment is ex-

pressed by short-time Fourier transform (STFT),

fied .
Z prlnlwin —mle 7",

n=—oo

4)
where STFT|-] denotes the short-time Fourier transform, @ is
the frequency, and win| is the windowing function. A typ-
ical windowing function smooths the values of pre-filtered
time-series to avoid spectral leakage in short-time Fourier
transforms®®. However, BC data potentially carries seasonal
characteristics and hence the length of the time segment
should be sufficiently large to capture such effects. In this
study, the segment size is selected with a length of two years
(N, = 730 days).

BC data presents characteristically different frequency
properties in winters versus summers. Therefore, when an
edge-smoothing windowing function (such as Blackman Har-
ris or Hamming window), is implemented on this data, the
edges of the time segment corresponding to winters and sum-
mers will be smoothed as the time segment slides. Since win-
ters and summers have different frequency properties, this im-
plementation can lead to undesired loss of information. There
are possibly two ways to fix this issue: one is to change the
length of the time segment and the other is to use a different
windowing technique. If the time segment is enlarged, it will
register loss of time resolution, which is not preferred since
we need sufficient time resolution to be able to resolve Presi-
dential terms. If the length of the time segment is decreased,
we will experience a loss of frequency resolution. Since BC

STFTps[n]](m,®) = Plm, 0] =
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data presents seasonal effects, the time segment should not be
selected smaller than one year.

A more convenient way to fix the above issue is to use a
windowing technique that does not have an edge-smoothing
feature. For this purpose, we utilize a rectangular window.
However, this window is prone to spectral leakage, meaning
that some portion of the power in the fundamental frequency
of BC data will leak to the rest of the frequency spectrum.
We calculate the leakage factor as 9.3%, indicating that only
9.3% of the total spectral power is spread over the side lobes
of the spectrum. We suggest that this is a reasonable trade-
off since it is more important to avoid artifacts due to edge-
smoothing that can mask the seasonality effects in the data.
Moreover, since the BC data here is pre-filtered before being
convoluted with a rectangular window, we find that the power
in the frequency spectrum of interest still dominates the power
in the remainder of the spectrum. As a result, some level of
spectral leakage does not significantly affect the analysis.

With the above understanding, the rectangular window is
defined next,

win] =wq (n— ]\;W> , (6)

1 ifxe[=5e, B,

wo(x) = @)
0 if otherwise,

where N,, is the length of each time segment. Here, the
adjacent time segments are apart from each other by 30
days. That is, for all selection of m € [my,my,...,m7],
miy1 —m; = 30, my = 365.5, T = 248. Further, in a time
segment i of the data, the power distribution of frequency
components is collected in a high-dimensional vector V (i)
and each entry of V(i) is normalized as follows: V(i) =

m[})z[miawo}ypz[mhwl]a---va[miwayquist] .

2. Spectral clustering with diffusion maps

For the obtained set of vectors V(i) € RV i =1,..,T,
where N, = 366 is the number of discrete Fourier transform
bins, we introduce the dimensionality reduction method, dif-
fusion maps, to find the low-dimensional embedding of the
data. This method is executed as explained next**3%6! We
define a similarity matrix W € RT*T

W(i,j) = exp(=d(V(i),V(j))/ o), ®)

where d(V(i),V(j)) is the Euclidean distance between the
vectors V(i) and V(j), with ¢ = 0.2d,x Where dyqy is
the maximum Euclidean distance between two different vec-
tors in the dataset V(i). Clearly, W(i,j) = W(j,i), that
is, W is symmetric. =By normalizing W by the diago-
nal matrix D, we obtain the Markov matrix M = D~'w,
where D(i,i) = ¥ ;W(i, j). Then, after transforming M into
M; = D'?MD™'/2, we can write My = D'/2D~'WD~1/2 =

1-
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FIG. 4. Synchronization degree r over time, where the tick marks on
the time axis mark the start of the years in January. These values are
obtained based on the methods described in Section IV A 2. Horizon-
tal lines correspond to 95™ percentiles of the surrogate distributions
in Fig. 2.

D~ '2WD~1/2 and therefore it is easy to see that Mj is a sym-
metric matrix. Due to symmetry, this matrix has real eigen-
values and it can be decomposed as M; = SAST, where A is
a block-diagonal matrix containing the eigenvalues A; of Mj,
S is a matrix with orthogonal eigenvectors ¥; of M;, and '
denotes matrix transposition.

Moreover, we can write M = D 12SASTD1/?2 =
(D~'28)A(D'/2ST)~!.  Thus, M, has the same eigen-
values as M. Furthermore, the eigenvectors of M and M are
related as ¢; = DY/ 2y.. Noting that the largest eigenvalue
of M is one by definition, the remaining eigenvalues are to
be used to determine how to proceed with dimensionality re-
duction. Specifically, one sorts the eigenvalues in descending
order as A;,...,Ar and inspects the relative distance, i.e., the
spectral gap between them. This will inform which of the
larger eigenvalues are to be selected over smaller ones for
dimensionality reduction, and the eigenvectors corresponding
to the selected eigenvalues will define the low-dimensional
embedding coordinates**~*8. For V (i), the coordinates of the
corresponding points in the low dimensional space will be
denoted by Q(i) = (¢(i), ¢3(i),..., ¢ (i), considering k — 1
eigenvectors are kept in the low-dimensional representation.

V. RESULTS

A. The synchronization degree varies with the Presidential
term

The time-trace of the synchronization degree r of the U.S.
states is shown in Fig. 4. We caution the reader that syn-
chronization is associated with the relative phase between the
U.S. states, but seasonality characteristics of the BC data does
not automatically imply synchronization. During G.W. Bush’s
terms, the r value is always at relatively high levels with a
mean of r = 0.939. One year after B.H. Obama takes the Of-
fice, however, the value of r starts dropping until 2011 when
it reaches its lowest value of r = 0.826 in that term. Then,
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FIG. 5. Violin plots of r in Fig. 4 corresponding to the five terms
of Presidency. One-way ANOVA F-test indicates that r values are
affected by Presidential terms (F(4, 223) =22.93, p < 0.001). Post-
hoc comparisons reveal which pairs of terms are statistically different
(p < 0.05; non-matching letters).

it began growing back to values to around the same levels of
G.W. Bush’s terms. Throughout B.H. Obama’s second term,
the value of r holds steady at relatively high levels. Upon the
arrival of D.J. Trump to the White House, the value of r holds
steady initially, but within a year, it dropped to » = 0.635 in
the pre-COVID-19 time period. The drop continues until D.J.
Trump’s last year in the Office during the COVID-19 pan-
demic. In permutation tests, all these values are different from
chance values marked with horizontal dashed lines in Fig. 4.
See also Supplemental Information where an alternative anal-
ysis provides support for the robustness of results in Fig. 4.

One-way ANOVA F-test is performed next to study how
synchronization of U.S. states compares with Presidential
terms. We find that r is affected by Presidential terms
(F(4, 223) =22.93, p < 0.001; see also the violin plots in
Fig. 5). Furthermore, post-hoc comparisons identify that
synchronization in the following pairs of Presidential terms
is statistically different (p < 0.05): Bush (1)-Bush (2), Bush
(1)-Obama (1), Bush (1)-Trump (pre-COVID-19), Bush (2)-
Obama (2), Bush (2)-Trump (pre-COVID-19), Obama (1)-
Obama (2), Obama (1)-Trump (pre-COVID-19) and Obama
(2)-Trump (pre-COVID-19). That is, synchronization among
the U.S. states in annual oscillations in their BC data is statis-
tically different between any two terms of Presidency except
when comparing Bush (2) with Obama (1), and Bush (1) with
Obama (2).

B. Nation-level background checks data embed on a
low-dimensional manifold that varies with the Presidential
term

We present in Fig. 6 the eigenvalues of the diffusion map
in descending order. A spectrum gap is obvious in this figure
between the second eigenvalue A, = 0.75 and the remaining
smaller eigenvalues, and a smaller gap between the 3rd eigen-
value A3 = 0.45 and the remaining smaller eigenvalues. This
result suggests that we can view the high-dimensional STFT

1%
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FIG. 6. The first 10 largest eigenvalues of the diffusion maps, where
by default the largest eigenvalue A; = 1 and the next two largest
eigenvalues Ay, A3 indicate a clear spectral separation from the re-
maining smaller eigenvalues.

data in a two-dimensional embedding space with respect to
the second and third eigenvectors, ¢, and ¢3, of the diffusion
map. In Fig. 7, the embedding space is depicted where each
data point in this space is representative of a time segment
in which PSD was calculated. These points collectively de-
scribe a low-dimensional representation of the original high-
dimensional STFT data. Recalling that the STFT data is made
of multiple time segments, the STFT data points in the i time
segment correspond to a single data point on the 2D embed-

ding plane earmarked by Q(i) = (¢2(i), 93 (¢)).

Analogous to the study of animal groups*’, the diffusion
map here provides a representation of collective behavior of
firearm acquisition in two independent coordinates ¢, (i) and
¢3(i) associated with A, and A3, see Coifman and Lafon *°,
where each coordinate provides critical information about the
data. Specifically, in the first coordinate ¢, (i) we find that
data is distinguished in two separate clusters; one corresponds
to G.W. Bush’s both terms (¢ (i) < 0.5) and the other covers
B.H. Obama’s two terms combined with that of D.J. Trump’s
(¢2(i) > 0.5). Furthermore, we observe that the data associ-
ated with Bush’s second term is much more spread along this
coordinate, suggesting that the evolution of firearm acquisi-
tion during this term exhibits different characteristics with re-
spect to G.W. Bush’s first term. With regard to coordinate in
¢3(i), we gather additional information for the point cloud at
$ (i) > 0.5. More specifically, ¢3(i) indicates that this point
cloud is characterized by three separate clusters, where one
is related to only B.H. Obama’s second term (¢3(i) < —1),
the other with B.H. Obama’s first term combined with D.J.
Trump’s (2 > ¢3(i) > —1), and the third one with black mark-
ers associated with the transition from G.W. Bush’s second
term to B.H. Obama’s first term (¢3(7) > 2). With the help of
diffusion maps, the diffusion coordinates help reveal relevant
information as to the similarities and differences in the data
associated with Presidents’ terms (color coded).

Since each data point in Fig. 7 corresponds to a time seg-
ment i in which PSD is performed, we can color these data
points depending on which U.S. Presidential term they belong
to. In Fig. 7, a clustering feature is obvious based on color
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FIG. 7. Dimensionality reduction embedding results. The location of
each point represents embedding coordinate of V (i), corresponding
to the /M time segment of original data. Time segments associated
with data prior to Bush (1), two consecutive Presidential terms, or
the COVID-19 pandemic period are not classified (black markers).

coding of the markers. Clearly, Bush (2) separates out from
the markers associated with Obama (1)-(2) and Trump (pre-
COVID-19). Markers corresponding to Obama (2) are also
separate from the data associated with Obama (1) and Trump
(pre-COVID-19).

Lastly, following the methods presented in Section IV B,
data is statistically analyzed along each embedding coordi-
nate ¢, and ¢3 separately. One-way ANOVA in each embed-
ding coordinate points at variations with the Presidential term
(F(4, 108) =596.24, p < 0.001, for ¢,; F (4, 108) =278.57,
p < 0.001, for ¢3). Post-hoc tests reveal that any two Pres-
idential terms are statistically different (p < 0.05) in at least
one of the embedding coordinates, except between Obama (1)
and Trump (pre-COVID-19), see also Fig. 8.

VI. DISCUSSION

With its unique legal landscape forged by historical ele-
ments, the U.S. is a country where private citizens satisfy-
ing certain conditions are eligible to purchase firearms. Since
data as to how many firearm sales transactions are made in the
U.S. is not publicly available, researchers have turned toward
tracking background checks data, available from the Federal
Bureau of Investigation (FBI), as a proxy of firearm acquisi-
tion in the U.S'?. This data only captures the number of back-
ground checks performed: a background check may not nec-
essarily indicate a firearm purchase and a single background
check can lead to multiple firearm purchases®. Despite these
limitations, BC data is still considered to be a reliable resource
with which researchers can perform various analyses associ-
ated with firearm prevalence in the U.S*!1.

There are various reasons that studying firearm prevalence
in the U.S. is of value to the research community. For ex-
ample, it is of strong interest to understand why affinity to
firearms is much stronger in the U.S. than it is in other com-
parable benchmark countries?. This question relates to how
humans choose to acquire firearms or not, and how poten-

tially their socio-economical status, country’s history and le-
gal landscape, educational level, income level, and political
views contribute to such choices®?. Moreover, humans react
only to certain events, and they react differently toward differ-
ent events. How such reactions contribute to their choices can
guide us to better understand human behavior and elucidate
how such decisions contribute to governance, legal landscape,
political debate, and ultimately influence firearm acquisition
in the U.S.

In this manuscript, we studied spatio-temporal patterns of
BC data in the U.S. and compared the results with Presiden-
tial terms. This was done by taking a rigorous mathemat-
ical/computational approach on the available BC data. Al-
though the U.S. states have their unique characters, some are
similar to some others in many ways, such as geographically,
politically, and socio-economically. We investigated whether
or not there exists coordination among the states in terms of
their BC data. With annual oscillations predominantly present
in the data, the focus was to understand how such oscilla-
tions compare in terms of their relative phases with respect to
each other. To study these phase relationships, we calculated a
metric called synchronization degree, with strong roots in the
study of synchronization in diverse fields of nonlinear dynam-
ical systems!>. We determined that the U.S. states are highly
synchronized in their BC data, except for about two years dur-
ing the first term of B.H. Obama and during almost all the
pre-COVID term of D.J. Trump. Alternative approaches were
also provided to show evidence that the results have a strong
degree of robustness. Statistical tests indicate that synchro-
nization levels among the U.S. states vary with Presidential
terms, except when comparing the second term of G.W. Bush
with the first term of B.H. Obama and the first term of G.W.
Bush with the second term of B.H. Obama.

Although we have not looked into the root causes of syn-
chronization, it is reasonable to assume that nation-level com-
mon drivers contribute to orchestrated behaviors of firearm-
purchasing communities. In view of Rogers ®> and Melgar **,
for example, it is tenable that firearm sales follow seasonality
cycles with peaks during the holiday season. The presence of
such peaks in the BC data> aligning with the holiday season
further support seasonality effects (see Appendix for state-
level BC data). On the other hand, root causes of synchro-
nization cannot be attributed to only common drivers. More
specifically, published work indicates key coupling among
some U.S. states, for example, in terms of business cycles®,
house prices(’(’, as well as firearm acquisition“. Hence, it is
plausible that synchronization among the U.S. states in terms
of BC data is a combination of the effects of common drivers
as well as state-to-state couplings.

It is critical to note that seasonality in the data does not im-
ply synchronization. Synchronization is associated with the
phase difference between time series of the same frequency;
in this vein, temporary loss of synchronization is indicative
of increased variability in the phase of oscillations. Such a
disarray in the BC data is detected around 2010-2011 after
one and half years into the first term of B.H. Obama, and
in a much more pronounced manner during the pre-COVID
term of D.J. Trump. While synchronization sheds light on the
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FIG. 8. Violin plots of data in the embedding coordinates ¢, (left panel) and ¢3 (right panel) corresponding to the five terms of Presidency. One-
way ANOVA F-test indicates that these data are affected by Presidential terms (F (4, 108) = 596.24, p < 0.001 for ¢»; F(4, 108) = 278.57,
p < 0.001 for ¢3). Post-hoc comparisons reveal which pairs of terms are statistically different in the embedding coordinates (p < 0.05;

non-matching letters).

degree of organization/disorganization among the U.S. states
in their BC data, such an analysis has further implications;
in particular, in our pursuit to thoroughly understand varia-
tions in firearm acquisition in the U.S. For example, it would
be possible to investigate the relationship of synchronization,
or lack thereof, to various attributes and/or extrinsic effects.
In the current study, we have compared synchronization with
Presidents’ terms, and opportunities in this direction include
the study of which U.S. states might be potentially influencing
each other (network characterization, network identification),
which states might be behaving more independently in their
firearm acquisition (leaders versus followers), and how legal
landscape influences the behavior of those states (stricter vs.
permissive laws).

BC data contains rich information, especially at relatively
high frequencies. This was leveraged, for example, in a recent
study where information carried by high frequency noise has
been statistically studied to explain the causal links between
background checks, media output, and mass shootings’. Mo-
tivated by this observation, we examined nation-level BC data
at relatively high frequencies with the goal of understanding
how the energy in the frequency spectrum possibly shifts over
time and how such an energy-shift compares with a Pres-
idential term. Short-time Fourier transform was combined
with diffusion mapping and clustering techniques to com-
pactly represent the dominant geometric features of the BC
data, on two-dimensional diffusion coordinates. This repre-
sentation in essence demonstrates how the energy in the BC
data diffuses over time. Specifically, in diffusion coordinates
we observe data clusters from one term to another term of a
President. Statistical tests indicate that such clusters are dif-
ferent between any pairs of Presidential terms in at least one
of the diffusion coordinates, except between the first term of
B.H. Obama and the pre-COVID term of D.J. Trump.

The nation-level analysis indicates the differences and sim-
ilarities of firearm sales in the U.S. vis-a-vis a sitting Presi-
dent’s term. One possible explanation for this is a President’s
ability to directly interact with masses and to potentially steer

the trajectory of gun laws either toward stricter or permissive
regulations. One piece of evidence to these arguments is in
line with Depetris-Chauvin 12 where it is argued that the elec-
tion of B.H. Obama created a perception that stricter firearm
laws will be implemented.

We identify two main limitations of our research. First,
since the actual figures of firearm purchases are not publicly
available, we have relied on BC data as proxy of firearm ac-
quisition in the U.S., following the practices of previous pub-
lications. Second, as mentioned in the study of nation-level
BC data, we chose to accept some level of error in our analy-
sis due to spectral leakage in the implementation of short-time
Fourier transform operations. By assessing that leakage was
less than 10%, we decided that this was an acceptable level of
error as it helped to avoid the influence of seasonal differences
in firearm purchases on clustering.

Although this study focuses on firearm prevalence, it can
potentially translate to elucidate the relationship between
firearm acquisition and gun-related harms. To better un-
derstand the complex mechanisms that lead to a harm, re-
searchers in public health, criminology, policy making, and
engineering have been studying the nature of shootings®’-%%,
impacts of firearm-related harm on healthcare’®, psycho-
logical drivers of violence’"72, effectiveness of law and
regulations on firearm’®, moderating role of media on
violence’”®, and root causes of firearm acquisition™”>. In
criminology, specifically, studies include the investigation of
how gun carrying and drug dealing are related’®’’, spatio-
temporal spreading characteristics of gun violence’®, analy-
sis on spatial clustering effects of gun violence within urban
environments’®, and how certain urban physical features of

properties could attract gun crimes®.

We suggest several research directions in future work. Al-
though we have not performed a causality analysis, future
studies should look into whether or not there exists any causal
link from a President’s political agenda to firearm prevalence,
and vice versa. Moreover, the analysis of the BC data can
be expanded into frequency bands other than those studied
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in this effort. While we have not studied in what ways each
Presidential term could have influenced U.S. states’ synchro-
nization in their BC data nor have we looked into similari-
ties/differences between a Democratic and Republican Pres-
ident, future work can analyze the Presidents’ agendas, pub-
lic statements, and support for stricter/permissive gun laws,
to unveil the root causes of loss of synchronization. Referring
to possible similarities/differences in firearm-purchasing com-
munities, another direction of research could focus on char-
acterizing those communities in their firearm acquisition as
various relevant national and local events unfold.

In conclusion, we put forth a mathematical/computational
approach to study BC data at the nation- and state-level, and
revealed the synchronization characteristics of U.S. states and
how energy contained in the BC data shifts over time. These
results are backed by statistical tests and robustness analysis,
all supporting the existence of time-dependent coordination
among the U.S. states. The results further point out that
this time dependence compares with Presidential terms, that
is, there exists a possible interplay between a President’s term
and the complex dynamics associated with firearm acquisition
in the U.S.
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Appendix: Robustness analysis

The phase calculated based on the principles of Hilbert
transform can be influenced by how rapidly the amplitudes of
the time signal are changing*** and hence this issue should
be addressed. Moreover, an alternative approach would help
provide a degree of robustness on the reliability of the results.
To this end, Wavelet transform can be leveraged to estimate
the degree of synchronization r.

1. Influence of variant amplitudes

To investigate whether or not amplitude changes cause sub-
stantial variations in phase calculations, one can calculate r by
normalizing the amplitudes of the BC data after pre-filtering
and reflection procedures and before applying the Hilbert
transform. That is, one should normalize first all the oscil-
lation amplitudes in the filtered signal y[n], such that am-
plitudes do not change over time. This is an adjustment that
only scales the amplitudes and hence should not influence the
phase calculations. The amplitude-tuned signal then reads,

M;,
Fi[n] = Fyif

~

Yrlnl,

forn € [ni,n,qu], (A.1)

where 7; is the i™ zero point of §¢[n], F; is the maximum ab-
solute value of y¢[n] in the range of [n;,n;+1], and My, is the
maximum absolute value of $;[n]. The signal ¥,[n], which
is adjusted for uniform amplitude, is utilized to compute the
phase based on Hilbert transform. This phase is then used to
calculate the synchronization degree r (blue in Fig. 9). In this
figure, we compare r with that in Fig. 4 (red). Given that the
two curves of r are almost identical to each other, we conclude
that r calculation is only negligibly affected when amplitudes
are normalized, providing support for the consistency of re-
sults.

2. Synchronization degree based on Wavelet transform

An alternative Morse wavelet transform can be imple-
mented on the frequency domain representation of time-series
data, to obtain ¢w, (), the corresponding phase series. The
procedure is as follows. Based on Lilly and Olhede %, for a
square-integrable signal x(¢), the wavelet transform is defined

W, (1) :./qu/* (u:t>x(u)du

—o S
_ L /+°° Ly (s0)x (@) do
T2 ) e s s ’

(A2)

where s is the normalization constant, y(¢) is the selected
wavelet function in time domain, ¥(®) is the Fourier trans-
forms of y(¢), X (w) is the Fourier transform of x(¢), and (-)*
denotes the complex conjugate of (+).

In this manuscript, we implement the wavelet in the fre-
quency domain @ and the type of wavelet function selected is
the Morse wavelet given by

Ypy(0) = 2U(0) ( (A3)

where U(w) is the unit-step function, P? is the time-
bandwidth product, and 7y represents the symmetry of this
wavelet. With this setting, complex number W;(¢) can be cal-
culated as

Wi(1) = Aw (1)@ ®) (A4)
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FIG. 9. Magnitude of Kuramoto order parameter r as a function of
time obtained either based on the signal y¢[n] (blue) or $[n] (red).
Here the blue curve is obtained based on amplitude adjustment and
the red curve is carried from Fig. 4 for comparison.
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FIG. 10. Variability of the synchronization degree over time for a
selection of central frequencies used to design Morse wavelet trans-
form.

from which the phase @y, (#) can be extracted.

Specifically, utilizing discrete version of wavelet transform
in Matlab on state-level BC time-series, phase time-series for
each U.S. state are obtained. These phase time-series are then
utilized to compute r[n]. Since we utilize the reflected BC
data in this procedure, the parts of r[n] associated with the
reflected data are neglected. Here, wavelet parameters are se-
lected as ¥ = 3 for maximum degree of symmetry of shape of
the Morse wavelet®® and P? = 30, which are appropriate val-
ues to balance the two needs for narrow frequency pass-band
width and short decay time. Next, the central frequency of the
wavelet is adjusted with different selections of the normaliza-
tion parameter s.

Since our focus is on BC data associated with annual os-
cillations, the central frequency is selected for an oscillation
period in the range of [10.6,13.7] months, which is slightly
narrower than that used in the FIR filter in Section IV A 1.
To study the variability in the results, we sample this range
into 18 linearly spaced data points, each describing a Morse
wavelet with a different central frequency. For each of the
wavelets, phase calculations are performed and a synchroniza-
tion degree r|n| is obtained. The family of 18 different curves
are obtained as depicted in Fig. 10.

Fig. 10 provides support for the degree of robustness of re-
sults in Fig. 4. It also reveals that at two critical time points,
the results have more sensitivity, or, equivalently there is more
variation in the family of curves in Fig. 10. These time points
arise around the valley in the winter of 2010 and after the
spring of 2018. Nevertheless, the trend lines still clearly indi-
cate the presence of the valley around 2010 in Obama (1) and
a substantial drop in r in Trump (pre-COVID-19).

Appendix: State-level background checks

The plots of background check series by state (state of
Hawaii is excluded) are provided here for direct observation
and capture of the synchronization in Figs. 11, 12 and 13.
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FIG. 12. Time series of background checks by state, from Louisiana to North Carolina.
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FIG. 13. Time series of background checks by state, from North Dakota to Wyoming.
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