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Abstract— Many controllers for legged robotic systems lever-
age open- or closed-loop control at discrete hybrid events
to enhance stability. These controllers appear in several well
studied phenomena such as the Raibert stepping controller,
paddle juggling, and swing leg retraction. This work introduces
hybrid event shaping (HES): a generalized method for analyzing
and designing stable hybrid event controllers. HES utilizes the
saltation matrix, which gives a closed-form equation for the
effect that hybrid events have on stability. We also introduce
shape parameters, which are higher order terms that can be
tuned completely independently of the system dynamics to
promote stability. Optimization methods are used to produce
values of these parameters that optimize a stability measure.
Hybrid event shaping captures previously developed control
methods while also producing new optimally stable trajectories
without the need for continuous-domain feedback.

I. INTRODUCTION

In general, the walking and running gaits of legged robots
are naturally unstable and challenging to control. Hybrid
systems such as these are difficult to work with due to the
discontinuities in state and dynamics that occur at hybrid
events, such as toe touchdown. These discontinuities violate
assumptions of standard controllers designed for purely
continuous systems, and work is ongoing to adapt these
controllers for hybrid systems [1,2]. One strategy for hybrid
control is to cancel out the effects of hybrid events by work-
ing with an invariant subsystem [3-5]. We propose instead
that the effects of hybrid events are valuable due to rich
control properties that can be used to stabilize trajectories of
a hybrid system.

Several works have examined the utility of controlling
hybrid event conditions to improve system stability without
any closed-loop continuous-domain control [6-8]. For ex-
ample, [6] found that for the paddle juggler system, paddle
acceleration at impact uniquely determines the local stability
properties of a periodic trajectory, Fig. 1. Other works [5,9]
generated open-loop swing leg trajectories that produced
deadbeat hopping of a SLIP-like system. Each of these works
found that controlling a hybrid system only at the moment
of a hybrid event is sufficient to provide stabilization. So
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Fig. 1. The paddle juggler system [6] has no control authority while

the ball is in the air. The paddle acceleration at impact determines the
convergence/divergence of the system from initial points (cyan dots) to the
final states (magenta stars) after 5 cycles. This example underscores how
hybrid event shaping can stabilize a periodic hybrid system.

far, however, these results have only been produced for each
specific problem structure and a clear connection between
these works has yet to be established.

In this work, we propose the concept of hybrid event
shaping (HES), which describes how hybrid event parameters
can be chosen to affect the stability properties of a periodic
orbit. We also propose methods to produce values of these
hybrid event parameters to optimize a stability measure of a
trajectory. This approach is tested on both existing examples
from [6,7] and on a new bipedal robot controller.

II. PRELIMINARIES
A. Hybrid system

Hybrid systems are a class of dynamical systems which
exhibit both continuous and discrete dynamics [10,11]. Fol-
lowing the adaptation of [12] in [2], we define a C" hybrid
dynamical system for continuity class € N5 U {oo,w} as
atuple H:=(J,I,D,F,G,R) where:

1) J:={1,J,...,K} C Nis the set of discrete modes.

2) I' C J x J is the set of discrete transitions forming
a directed graph structure over 7.

3) D :=1;es Dy is the collection of domains where Dy
is a C'" manifold with corners [13].

4) F := Uj;c7Fy is a collection of time-varying vector
fields with control inputs F7 : R x Dy x Uy — T Dy
where Uy is the space of allowable control inputs.

5) G := U1, 5erG 1, (t) is a collection of guards where
G(1,0(t) € Dy x Uy for each (I,J) € I' is defined
as a sublevel set of a C" function, i.e. G(; j)(t) =
{(z,u) € D1 x Uz|g(1,5(t, v, u) < 0}.



6) R:RxG — DisaC" map called the reset map that
restricts as R(]“]) = R‘G(I,J)(t) : G(],J) (t) — Dy for
each (I,J) el

An execution of a hybrid system [12] begins at an initial
state 29 € Dy. With a particular input uy(¢,x), the system
follows the dynamics F; on Dj. If the system reaches the
guard surface Gy, ), the reset map R jy is applied and
the system continues in domain D ; with the corresponding
dynamics defined by F';. An execution of a hybrid system is
defined over a hybrid time domain which is a disjoint union
of intervals IT;c nr[t;, ;]. The flow é(t, 0, x0) describes how
the system evolves from some initial time ¢ and state x( for
some length of execution time ¢.

Hybrid systems may exhibit complex behaviors including
sliding [14], branching [15], and Zeno phenomena where
infinite transitions occur in finite time [16]. Following prior
literature [17-19], we assume these behaviors do not oc-
cur, such that guard surfaces are isolated and intersected
transversely [11,12] and no Zeno executions occur. These
assumptions are not generally detrimental to the validity of
this theory to applications like legged locomotion.

B. Saltation matrix

Hybrid systems can be divided into continuous domains
and discrete hybrid events. For each of these components,
the linearized variational equations [20] describe how per-
turbations of state at the beginning of the phase evolve to
the end of the phase. In continuous domains, variational
equations can be derived and discretized into a mapping
Aty — tj,tj,x(tj)) equivalent to the linearized discrete
dynamics matrix in zx41 ~ Ajzp + Bru [20]. The vari-
ational equations of hybrid events are characterized by the
saltation matrix Z(;, yy(f;, 2(t;), u(t;)), which describes the
transition between modes [ and J that occurs at time ¢; with

x(t;) € G(1,5) and some input u(t;). The saltation matrix
appr0x1mates the first-order change in perturbations in state
before the hybrid event at dx(%;) to perturbations afterward
dx(t;,,) [18] such that:

0x(tyyq) = 0 (i, 2(t:),

where h.o.t. represents higher order terms. Following the

formulation from [18,21], the saltation matrix is,

(FJ — DzR . F] — DtR)Dmg
Dvg + DegFr

u(t;))dz(t;) + hot. (1)

E=D,R+ 2)

where

u(ts)), R = R (b, x(t), ulti),

= E,0(ti, x(t:),u
9= g0 (ti, x(ti),u(ts)), Fr:= Fr(t;, z(t;),u(t;)),
ti), u(t;))

Fy:=Fj(t; 1, R (ti, z(t:),

C. Periodic Stability Analysis

[I]

A dynamical system has a periodic trajectory (orbit) with
period T if for some initial condition xzy, there exists a
solution ¢(t,tg,xg) where ¢(t,to,x0) = ¢(t + kT, to, o)
for all ¢ and k& [19]. Perturbations dxo around xy can be

mapped to perturbations dx7 after period 1" by a linearized
mapping known as the monodromy matrix, ® [22]:

09(T + to, to, zo)
8330

such that to the first order, dx7 ~ ®dxg.

Following a formulation similar to [23], the monodromy
matrix can be computed by sequentially composing the
linearized variational equations in each continuous domain
(A) and the saltation matrices (Z) at each hybrid event. For
a hybrid periodic orbit with N domains, the monodromy
matrix can be formulated as:

P =

3)

q) - E(N,I)AN e 5(273)1423(1’2)141 (4)

The monodromy matrix determines local asymptotic or-
bital stability (which we refer to simply as stability). For
nonautonomous systems, stability is determined by the max-
imum magnitude of the eigenvalues, max(|\|) [19]. We refer
to this as the stability measure, 1), where a trajectory is stable
when 1) < 1. Autonomous systems always have an eigen-
value that is equal to 1 since for non-time varying dynamics,
perturbations along the flow of the orbit will by definition
map back to themselves after period 71" [19]. Assuming non-
convergence in this direction is allowable, 1) for autonomous
systems is based on the remaining eigenvalues.

III. METHODS
A. Hybrid event shaping

Hybrid events can greatly affect the stability of an orbit
due to the unbounded discontinuous changes that are made
to perturbations. The saltation matrix allows for an explicit
understanding of how to perform “hybrid event shaping”
(HES), i.e. choosing hybrid event parameters (such as timing,
state, input, and higher order “shape parameters”) to improve
the stability of a periodic trajectory. The key insight is that
hybrid event shaping introduces a generalizable method to
stabilize hybrid systems that is independent of continuous-
domain control, but that can work in concert with it.

In general, the open-loop continuous variational equations
of a hybrid system are functions of initial and final time,
initial state, and system dynamics. However, it is challenging
to alter any of these parameters because changes will propa-
gate through the rest of the trajectory and periodicity may be
violated, though we present a trajectory optimization method
below to handle this. The saltation matrix is a function of
nominal event time, state and dynamics, but additionally may
be a function of higher order shape parameters h that do
not influence the dynamics of the system. These parameters
arise from the derivatives of the guards (D,g and D;g) and
reset maps (D, R and D, R) but are not present in the guard,
reset map, or vector field definitions themselves. Therefore,
shape parameters have absolutely no effect on the nominal
trajectory and can be chosen completely freely.

One example of a shape parameter is the angular velocity
of a massless leg of a spring-loaded inverted pendulum. Since
a massless leg does not induce any torque in the air or forces
at touchdown, only the position of the leg at touchdown



affects the trajectory of the body. However, leg velocity
appears in the saltation matrix and has a significant effect
on orbital stability [7].

For more complex models of robots, there may not be any
physical shape parameters that can be tuned. For example,
legged robots with non-massless legs can not vary leg
velocity at impact without also changing its trajectory. These
cases can be handled by running a trajectory optimization at
the same time as applying HES, as we show in Sec. III-E,
or by adding additional virtual hybrid events.

B. Virtual hybrid events

Certain control systems naturally have discontinuities in
control inputs, such as bang-bang control, sliding mode
control, or systems with actuators that have discretized (i.e.
on-off) inputs. These discontinuities in control can cause an
instantaneous change in the dynamics of the system, resulting
in a virtual (as opposed to physical) hybrid event. Virtual
hybrid events act no differently than physical hybrid events
and induce saltation matrices with shape parameters to be
tuned for stability. Even for systems where discontinuous
control inputs are not necessary, the addition of virtual
saltation matrices and shape parameters allows for a greater
authority to improve stability.

C. Stability measure derivative

Our goal is to determine the optimal choice of hybrid event
parameters that minimizes the stability measure of a trajec-
tory. Since directly computing eigenvalues in closed-form
is not generally feasible, one solution is to use numerical
methods to perform optimization [24]. However, this strategy
becomes untenable for high dimensional problems. Instead,
by using the saltation matrix formulation (2), derivatives of
the stability measure can be directly computed, allowing for
the use of more efficient optimization methods and making
the problem much more tractable.

Assuming that the monodromy matrix ® depends con-
tinuously on each shape parameter h,, the eigenvalues of
® are always continuous with respect to h, [25]. For a
diagonalizable ®, the derivative of the eigenvalues with
respect to h,, can be computed in closed form [26]. Assume
that matrix ®(h,,) has simple (non-repeating) eigenvalues,
A1,...,An, and let 3, and k; denote the left and right

eigenvectors associated with \;. Then the derivative g}i‘i is:
d\; , dP .

=kli—7. 5

dhy by ®)

For matrices with eigenvalues that repeat, the derivatives of
the repeated eigenvalues can be calculated similarly with a
matrix of associated eigenvectors [26].

% can be found using the derivative product rule, which
simplifies if each shape parameter only appears in one
saltation matrix. We make this assumption here to improve
computational efficiency, but it is not required generically.

i X d=
Without loss of generality, take # # 0, so that:

do

d=
T =S An . Ae—2 Ay ©6)

dh,

Substituting (6) into (5) allows us to compute the deriva-
tive of the stability measure with respect to each of the
shape parameters. Eq. (5) is not valid for non-diagonalizable
monodromy matrices. However, the guaranteed continuity of
the stability measure allows for finite-difference methods to
be used in any non-diagonalizable cases.

The derivative computation from (6) can be adapted for
changes in x and ¢ as well. Without loss of generality,

consider again =y ). For hybrid event time ¢ »), the deriva-
)
dt(1,2)

the derivatives

tive can be computed in closed-form. Additionally,

dA;  gng _dAs
dt(l,g) dt(1,2)
computed through standard methods [27]. The product rule

expansion of dt”(li) consists of additional terms compared

to (6) but otherwise can be computed similarly. dzif)z)
hybrid event state z(; o) can be computed this same way.

are non-zero and can be

for

D. Shape parameter stability optimization

Optimization techniques [28] are able to select optimal
hybrid event parameters that minimize the stability measure.
Two optimization methods are presented here: the first opti-
mizing the shape parameters without affecting the dynamics
of the nominal orbit, and the second optimizing both the
hybrid events and periodic orbit simultaneously.

Shape parameters are powerful because they do not appear
in the dynamics of the system and have no effect on the
nominal trajectory. This means that for a given periodic
trajectory, the shape parameters can be chosen freely. We use
an optimization framework to choose these shape parameters
with the goal of optimizing the stability measure ¢ (®(h))
of a trajectory,

minimize ) (®(h)) @)
hi:n

The ability to compute derivatives of the stability measure
allows for this optimization to be more computationally
efficient. The examples below show how this optimization
method is able to reproduce swing leg retraction in a one-
legged hopper system by determining optimal inputs of shape
parameters to minimize the stability measure.

E. Trajectory optimization with hybrid event shaping

Some systems do not have shape parameter terms in their
saltation matrices or do not have enough to sufficiently
improve stability. In these cases, we can change the trajectory
of the system itself so that the timing, state, and input pa-
rameters of the continuous variational matrices and saltation
matrices improve stability properties. However, it must be
ensured that the dynamics, periodicity, and other constraints
of the system are obeyed.

Trajectory optimization methods are a class of algorithms
that aim to minimize a cost function while satisfying a
set of constraints [29]. For dynamical systems, these costs
are generally functions of state and inputs, with constraints
imposed on system dynamics and any other physical limits
[30]. For specific problems, other aspects of the system may
be added into the cost or constraint functions such as design
parameters or minimizing time [31,32]. Here we propose



including the stability measure in the cost function to search
for optimally stable trajectories. Eq. (8) gives the simplest
form of this trajectory optimization problem, with periodicity
and dynamics constraints being enforced, where dynamics
constraints obey continuous dynamics in each domain and
reset mappings at each hybrid event [33]. Additional costs
and constraints may be included such as reference tracking
costs, input costs, and any physical constraints. We solve
this problem using a direct collocation optimization with a
multi-phase method to handle hybrid events [29,30,34].

minimize Y(P(x,t,h))
T1:NULN-1,t1:N—1,h1:m
subject to TN = T ®)

Tig1 = O(tiy1 — ti i, ;)
IV. EXAMPLES AND RESULTS

Here we demonstrate how HES can improve the stability
of periodic trajectories for a variety of hybrid systems with-
out any use of continuous-domain feedback control. While
continuous-domain feedback could be implemented into any
of these systems and should be in practice, these examples
emphasize the stabilization capabilities of HES alone.

The first two examples describe how previously discovered
results, paddle juggling [6] and swing leg retraction [7], fit
into an HES framework. The final example demonstrates how
HES can be used even without any shape parameters and how
virtual hybrid events can help stabilize a complicated biped
walking system.

A. Paddle juggler

The paddle juggler system [6], bouncing a ball with a
paddle, is known to be stabilized by impacting the ball with
a paddle acceleration in a range of negative values, (10),
Fig. 1. The system state consists of the ball’s vertical position
and velocity such that z = [z, ]7. This periodic hybrid
system can be defined with two hybrid domains (descent
and ascent) connected by two guards (impact and apex). The
domain D; represents the ball’s aerial descent phase where
zp < 0 and D, represents the ball’s aerial ascent phase
where 5 > 0. The guard set g(1,2) == zp —zp < 0
is defined when the ball impacts the paddle, where the
paddle follows a twice differentiable trajectory = p(t). The
reset map Ry o) is defined by a partially elastic impact
law, R o)([zB,25]") = [zB,(1 + @)ip — aip]”, with
a coefficient of restitution a. The continuous dynamics in
both domains follow unactuated ballistic motion: F; = Fy =
[#5,—g]T, where g is the acceleration due to gravity.

Using these definitions, the saltation matrix (2) between
domains 1 and 2 is constructed:

=2 = (te)@rtg) _, ?
rp—ITRB

Observe that Zp appears in the saltation matrix even
though it does not appear anywhere in the definition of the
guards, reset maps, or vector fields of the system, making it

(*B,YB,YB)

liq
touchdown (zs,&s,ys,9s)  liftoff
@)
Q (k,b)

Fig. 2. SLIP-like system with actuator and damper in parallel.

a shape parameter that can be chosen independently of the
periodic orbit.

The guard set g(2,1) := @p < 0 is defined when the ball
reaches the apex of its ballistic motion. Its reset map Rz 1)
is identity and there is no change in dynamics. Thus, 2 1)
is identity and has no effect on the variations of the system.

The continuous variational matrices of the system can be
written exactly in closed form: A, (T) = Ay(T) = [é Tl/ 2]
where T is the total time spent in the air and also the period
of the system. The periodicity of the system means the ball
spends an equal time, 7'/2, ascending as descending.

The monodromy matrix, ® is constructed by composing
together the continuous variational matrices and saltation
matrices such that ® = =5 1) 4251 2) A1

For a given periodic bouncing trajectory, the monodromy
matrix ® is almost fully defined except for the shape param-
eter, £p in Z(1,2). Given the 2-dimensional state space of
this problem, the eigenvalues for any given Zp value can be
solved for explicitly. We can then solve exactly for where
Y(Zp) < 1, giving a stable region of:

1+a?
—2g——5 <ip <0
9 1+a)? P

This is confirmed in [6], where the simple dynamics of
the system allowed the return map to be computed explicitly
without the saltation matrix. However, that computation is
generally not possible for more complex dynamics.

B. 2D hopper

The spring-loaded inverted pendulum (SLIP) is a popular
model for dynamic legged locomotion [35-37]. This simple
hopper model is effective at capturing dynamic properties of
animal and robot locomotion [38] and has been used as a
test bed for hybrid controllers [39].

1) 2D hopper hybrid model: Consider a point mass body
with a massless leg consisting of a spring, damper, and linear
actuator all in parallel, Fig. 2. This system has two domains
(flight and stance) connected by two guards (touchdown and
liftoff). The actuator is activated while in the air to preload
the spring, but immediately releases at touchdown and pro-
vides no forces during stance. For a periodic trajectory to
occur, the actuator must preload the same amount of energy
that is dissipated by the damper during stance. The only
control authority that exists is of the leg angle in the air,
which only affects the dynamics of the body at touchdown.

During flight (D;), the state of the hopper is represented
by the horizontal velocity, vertical position, and vertical

(10)



TABLE I
STABILITY MEASURES OF 2D HOPPER TRAJECTORIES WITHOUT AND
WITH OPTIMIZED SHAPE PARAMETERS.

Shape parameters K 6 Stability Measure
Zero 0 0 13.756
Optimal (zero seed) 0.129  -0.015 0.948
Optimal (alternate seed) 0.129  -0.589 0.948

velocity of the body: = = [#5,y5,95]T. Horizontal position
is not included because it is not periodic. During stance, the
body position x4 and y, is defined with the toe at the origin.
Horizontal position is added back into the state of the hopper
such that # = [z, s, ys, Us] . In flight, the dynamics of the
body follow ballistic motion, while in stance there are also
forces applied by the spring and damper.

The touchdown guard is defined by the preload length
of the leg /14 and angle of the leg 6;4 such that g(; 2y :=
yp —Ltq cos(0:q). The liftoff guard is crossed when the force
exerted by the spring-damper, Fq, becomes zero: g(2,1) =
Fy4. There is no change in physical state of the system at
the hybrid events and the reset maps only characterize the
change in coordinates between domains.

Given a set of model parameters, a trajectory from an
initial condition depends only on ¢y and 6.4. ¢;4 is held
fixed, but ;4 is modulated from its nominal position 0,4 at
time #;4 in two ways. A proportional feedback term with gain
K is added to stabilize the forward velocity of the system
around a nominal & and angular velocity 6 of the massless
leg is also free to be chosen. K and 6 are shape parameters
that can be used to stabilize this system.

Oy = Opq + K (i — &) + 0(t — t1q) (11)

2) 2D hopper HES results: For a chosen initial apex
height of 2.5 with a forward velocity of 2, £;4 and 0,4 were
solved for to produce a nominal orbit, though the following
results generalize for any choice of feasible values.

With fixed shape parameters [K,6] = [0,0], the system
is highly unstable. K and 0 can be optimized following
(7) to improve the stability of this orbit. Doing so results
in optimal shape parameters [K,6] = [0.129,—0.015] that
stabilize the trajectory, Table I. Setting 0 = —0.015 rad/s is a
slow retraction rate, but there exists an interval of values e
(—0.5892, —0.015) that give equivalently minimal stability
measures for a fixed K value.

The results were confirmed in simulation by initializing
20 perturbed points in a 0.1 radius ball around the nominal
initial condition. Each of these trials was simulated for 100
steps and the error (2-norm of the difference in perturbed
state « and nominal state x) at apex was recorded at each
step, Fig. 3. The zero shape parameter trajectories are not
shown in the figure as every trial diverged within just 5 steps.

3) 2D Hopper Discussion: The feedback term of (11) is
based on the Raibert stepping controller [40], which was
utilized to great success for stabilizing early running robots.

1.5

Error (||z — Z||)

Fig. 3. Error of perturbed initial states for the 2D hopper asymptotically
decrease to zero. Transparent lines represent each of the 20 trials, while
the bold line represents average error at each step. Convergence is neither
monotonic nor very fast, but this is expected with asymptotic stability.

Other works have found that this simple controller is effective
on more complex models [41].

Another stabilizing property of legged locomotion that has
been studied is swing-leg retraction [7,24,42]. It was noted
in [7] that a 2D SLIP was able to run stably if it impacted
the ground within a range negative angular leg velocities 6.

The results of a negative 6 and positive K agree with
qualitative expectations from [7] and [40]. While a formal
equivalency is yet to be proven, this is significant because the
HES shape parameter optimization has no a priori knowledge
that would bias its results to match these works. HES synthe-
sizes two independently generated controllers and produces
shape parameter values that stabilize an orbit. This evidence
supports the potential for HES to explore other stabilizing
shape parameters that are not as well studied.

C. Walking biped trajectory optimization

For a legged system with non-massless legs, the leg
velocity shape parameter disappears as it is no longer in-
dependent of the trajectory. Without shape parameters, an
HES trajectory optimization can choose timing, state, and
input parameters along with injecting virtual hybrid events
to discover stable orbits.

1) Walking biped hybrid model: In this example, we
consider a fully-actuated compass walker [43] with knees,
Fig. 4. This biped model consists of two legs connected by an
actuated hip joint. Each leg is separated into two sections, the
upper leg (thigh) and lower leg (shank), which are connected
by an actuated knee joint that has a hard stop when the thigh
and shank are aligned. The ankles are also actuated.

We restrict the gaits to be left-right symmetric and ex-
clusively consist of single stance phases. The stance leg is
locked such that its shank and thigh are aligned with each
other until liftoff. There are 3 points of actuation at the hip,
swing knee, and stance ankle. The state space is defined by
three angles relative to vertical: stance leg, swing thigh, and
swing shank, denoted (61,02, 03).

This system has two domains. D; is the unlocked knee
domain where the swing leg thigh and shank can swing freely
while we enforce that 85 < 5. D5 is the locked knee domain
where the thigh and shank are constrained to be aligned with
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Fig. 4. Biped walker system with kneestrike and toestrike hybrid events.

TABLE I
STABILITY RESULTS FOR THE WALKING BIPED OPTIMIZATION.

Trajectory Stability Measure  Energy Cost
ME 7.8123 0.985
HES w/o VHE 0.4715 1.337
HES w/ VHE 0.3266 3.450

each other (A, = 03). In this domain, there are only two
actuators because the swing knee can no longer exert torque.
The dynamics of this model are described in [43].

The kneestrike guard set, between the unlocked and locked
knee domains, is g(1,2) := 62 — 63 and the touchdown or
toestrike guard set is g(2,1) := 01 + 2. The reset maps at
kneestrike and toestrike are also computed in [43].

We add discrete changes in the inputs that induce virtual
hybrid events to analyze their utility in stabilizing walking
trajectories. Specifically, we choose to include 5 virtual
hybrid events in D; and 2 more virtual hybrid events in
D5, where the values of inputs between virtual hybrid events
are decision variables for the optimization. The virtual guard
functions are chosen such that g, := 02 — 03 + p; for the
first 5 virtual hybrid events and g, := 61 + 02 + p; for the
last 2 virtual hybrid events for some offset p; that is also
chosen by the optimization.

A direct collocation method was used with the cost con-
sisting of the stability measure and a regularization on the
input. Dynamics and periodicity constraints were included
along with a ground penetration constraint. The initial con-
ditions of the system, given as the state after touchdown,
were allowed to vary within a bounded range.

2) Walking biped HES results: In this experiment, three
trajectories were compared to examine how HES can gener-
ate stable trajectories and the effect that virtual hybrid events
have in further improving stability. A trajectory without HES
was produced as a control, with its objective to minimize
energy expended by using just an input regularization term
in the cost. This minimum energy (ME) trajectory is compa-
rable to how conventional robot locomotion trajectories are
generated. Two HES trajectories were generated, one with
virtual hybrid events (HES w/ VHE) and one without (HES
w/o VHE).

The ME trajectory is highly unstable, while the both HES
trajectories are stable with the trade off of a higher input cost.
Specifically, HES w/ VHE has the lowest stability measure
and highest energy cost, whereas HES w/o VHE was in
between for both stability and cost, Table II.

0.06
1 — ME Trajectory
0.05 I HES Trajectory w/o VHE|
. 1 —HES Trajectory w/ VHE

Step #

Fig. 5. Error of perturbed Minimum Energy (ME), Hybrid Event Shaping
without virtual hybrid events (HES w/o VHE) and HES w/ VHE trajectories
over several steps. Bold lines show average error at each step and shaded
regions indicate 41 standard deviation. ME trajectories becomes highly
divergent within 4 steps, while both HES trajectories appear convergent after
10 steps. The initial increase in error of the HES trajectories is allowable
and is not considered by the stability measure.

The stability properties of the generated trajectories were
confirmed through simulation. 50 trials of each trajectory
were initialized with perturbations in position and velocity
between (—0.01,0.01). Over a sequence of 10 steps, the state
error at each step was tracked for each trial. Fig. 5 shows that
after 10 steps, the HES trajectories have nearly converged
back to the nominal trajectory whereas the ME trajectories
diverge quickly. The HES w/ VHE trajectory converges to
a smaller error after 10 steps compared to the HES w/o
VHE trajectory, which supports the findings of the stability
measure.

V. CONCLUSION

While the idea of hybrid event control is not novel, hybrid
event shaping provides a generalized method to analyze the
stability of hybrid orbits and select hybrid event parameters
to optimize stability. HES unifies results of previous simple
hybrid event controllers while also being compatible with
trajectory optimization techniques to produce stable trajecto-
ries for complex systems. HES computes the derivative of the
stability measure, improving computational efficiency com-
pared to previous stability optimization methods. Compared
to previous work, HES does not rely on human observation
and tuning to design stabilizing hybrid event parameters.

In this work, there was no use of continuous-domain
feedback that is commonly utilized in hybrid systems control.
We believe that hybrid event shaping is one aspect that can
be used in conjunction with continuous-domain feedback
to improve the success rate of robots performing dynamic
behaviors in real-world settings. This is not be prohibitively
complex because saltation matrices are not affected by feed-
back control laws in the continuous domains. In the future,
we aim to synthesize HES methods with continuous-domain
feedback control to produce even more stable closed-loop
trajectories. We also found that virtual hybrid events may
have utility in stabilizing hybrid orbits, but design factors
such as how many virtual hybrid events to insert and when
to insert them merit further investigation.
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