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AUTOMORPHIC COHOMOLOGY, MOTIVIC COHOMOLOGY,
AND THE ADJOINT L-FUNCTION

by Kartik PRASANNA & Akshay VENKATESH

Abstract. — We propose a relationship between the cohomology of arithmetic groups,
and the motivic cohomology of certain (Langlands-)attached motives. The motivic
cohomology group in question is that related, by Beilinson’s conjecture, to the adjoint
L-function at s = 1. We present evidence for the conjecture using the theory of periods
of automorphic forms, and using analytic torsion.

Résumé. (Cohomologie automorphe, cohomologie motivique et fonction L-adjointe) —
Nous proposons une relation entre la cohomologie des groupes arithmétiques et la co-
homologie motivique de certains motifs attachés. La cohomologie motivique en ques-
tion est liée à la fonction L adjointe en s = 1 par la conjecture de Beilinson. Nous
présentons des éléments de confirmation pour la conjecture en utilisant la théorie des
périodes des formes automorphes et la torsion analytique.
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CHAPTER 1

INTRODUCTION

A remarkable feature of the cohomology H∗(Γ,C) of arithmetic groups Γ is their
spectral degeneracy: Hecke operators can act in several different degrees with exactly
the same eigenvalues. For an elementary introduction to this phenomenon, see [74,
§3]. In some cases, such as Shimura varieties, it can be explained by the action of a
Lefschetz SL2 but in general it is more mysterious.

We shall propose here that this degeneracy arises from a hidden degree-shifting
action of a certain motivic cohomology group on H∗(Γ,Q). This is interesting both
as an extra structure of H∗(Γ,Q), and because it exhibits a way to access the mo-
tivic cohomology group. We do not know how to define the action directly, but we
give a formula for the action tensored with C, using the archimedean regulator. Our
conjecture, then, is that this action over C respects Q structures.

The conjecture has numerical consequences: it predicts what the “matrix of periods”
for a cohomological automorphic form should look like. We shall verify a small number
of these predictions. This is the main evidence for the conjecture at present; we should
note that we found the verifications somewhat miraculous, as they involve a large
amount of cancelation in “Hodge–linear algebra.” The most novel aspect of our proofs
is the use of analytic torsion to compute cohomological periods even when there are
no natural cycles to integrate over (§9), and it is this technique that gives rise to what
seems to us the most compelling evidence for the conjecture.

It takes a little while to formulate the conjecture: in §1.1 we will set up notation
for the cohomology of arithmetic groups; as usual it is more convenient to work with
adelic quotients. We formulate the conjecture itself in §1.2. §1.3 discusses the case of
tori—this is just a small reality check. In §1.4 we describe how to extract numerically
testable predictions from the conjecture, some of which we have verified.

1.1. Cohomological representations

Fix a reductive Q-group G, which we always suppose to have no central split torus.
Let S be the associated symmetric space; for us, this will be G/K0

∞, where K0
∞ is a

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2021



2 CHAPTER 1. INTRODUCTION

maximal compact connected subgroup of G := G(R); thus S need not be connected,
but G preserves an orientation on it.

Let Af denote the finite adeles of Q and let K ⊂ G(Af) be a level structure, i.e.,
an open compact subgroup; we suppose that K factorizes as K =

∏
vKv. We may

form the associated arithmetic manifold

Y (K) = G(Q)\S ×G(Af)/K.

If the level structure K is fixed (as in the rest of the introduction) we allow ourselves
to just write Y instead of Y (K).

The cohomology H∗(Y,Q) is naturally identified with the direct sum
⊕
H∗(Γi,Q)

of group cohomologies of various arithmetic subgroups Γi 6 G(Q), indexed by the
connected components of Y . However, it is much more convenient to work with Y ; for
example, the full Hecke algebra for G acts on the cohomology of Y but may permute
the contributions from various components.

As we recall in (1.1.2) below, the action of the Hecke algebra on H∗(Y,C) often
exhibits the same eigencharacter in several different cohomological degrees. Our con-
jecture will propose the existence of extra endomorphisms of H∗(Y,Q) that commute
with the Hecke algebra and explain this phenomenon.

First of all, we want to localize at a given character of the Hecke algebra.
For each v not dividing the level of K, i.e., at which Kv is hyperspecial, let
χv : H (G(Qv),Kv)→ Q be a character.

Consider the set of automorphic representations π = ⊗πv of G(A) (1) such that:

– πK 6= 0;

– π∞ has nonvanishing (g,K0
∞)-cohomology;

– for finite places v not dividing the level ofK (places for whichKv is hyperspecial)
the representation πv is spherical and corresponds to the character χv.

This is a finite set, which we shall assume to be nonempty, say

Π = {π1, . . . , πh}.
These automorphic representations are nearly equivalent; we moreover shall assume
that:

— each πi is cuspidal;

— each πi is tempered at ∞ and at one finite place v at which Kv is hyperspecial.

Here, the cuspidality assumption is to avoid complications of non-compactness.
The second assumption is simply an unconditional proxy for asserting that πi belong
to a tempered A-packet; temperedness is important for the way we formulate our
conjecture. (One expects that the condition at v implies the condition at ∞, cf. [16,
Conjecture 2A]).

1. Here and throughout the paper, we understand automorphic representations not as abstract
representations, but as being realized on subspaces of functions on G(A)/G(Q).

ASTÉRISQUE 428



1.1. COHOMOLOGICAL REPRESENTATIONS 3

We will be interested in the part of cohomology which transforms according to the
character χ, which we will denote by a subscript Π:

H∗(Y,Q)Π = {h ∈ H∗(Y,Q) : Th = χv(T )h for all T ∈H (G(Qv),Kv)(1.1.1)

and all places v not dividing the level of K.}

We sometimes abridge Hi(Y,Q)Π to Hi
Π.

In particular, under our assumptions above, H∗(Y,C)Π can be computed from
the (g,K0

∞)-cohomology of the πi. The computation of the (g,K∞)-cohomology of
tempered representations (see [9, Theorem III.5.1] and also [8, 5.5] for the noncompact
case) implies that

(1.1.2) dimHj(Y,R)Π = k ·
(

δ

j − q

)
,

where we understand
(
δ
a

)
= 0 if a /∈ [0, δ],

(1.1.3) δ := rankG− rank K∞, q :=
dimY − δ

2
,

and k = dimHq(Y,R)Π. For example, if G = SL2m, then q = m2 and δ = m− 1.
In words, (1.1.2) asserts that the Hecke eigensystem indexed by Π occurs in every

degree j between q and q + δ, with multiplicity proportional to
(
δ
j−q
)
.

1.1.1. Galois representations and motives attached to Π. — In the situation just de-
scribed, Π should conjecturally [13] have attached to it a compatible system of Galois
representations ρ` : Gal(Q/Q)→ LG(Q`). Actually all that is important for us is the
composition with the adjoint or the co-adjoint representation of LG:

Ad ρ` : Gal(Q/Q)→ GL(ĝ⊗Q`), Ad∗ ρ` : Gal(Q/Q)→ GL(g̃⊗Q`),

where ĝ denotes the Lie algebra of the dual group Ĝ (considered as a split reductive
Q-group) and g̃ = Hom(ĝ,Q) is its linear dual. In fact, if G is not simply connected the
representation ρ` requires, for its definition, a modification of the notion of L-group
(see again [13]); however, no such modification should be required for Ad ρ` or Ad∗ ρ`;
see §4.2 and in particular footnote 1 for more discussion.

We will assume throughout, as is predicted by the Langlands program, that Ad ρ`
and Ad∗ ρ` are Galois representations underlying a Grothendieck motive; this weight
zero motive will be denoted by Ad Π or Ad∗Π respectively. Thus, for example, the
Galois representation on the étale realization of Ad Π is identified with Ad ρ`.

Before we proceed, a brief remark about “adjoint” versus “coadjoint.” The repre-
sentations Ad ρ` and Ad∗ ρ` = (Ad ρ`)

∗ are isomorphic if G is semisimple, because
of the Killing form. Consequently, the associated motives Ad Π and Ad∗Π should be
isomorphic. However, both to handle the reductive case and to be more canonical, we
will distinguish between the two.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2021



4 CHAPTER 1. INTRODUCTION

1.2. The conjecture

It is expected (cf. (3.2) of [41]) that the adjoint L-function

L(s,Π,Ad∗),

that is to say, the L-function attached to the motive Ad∗Π, is holomorphic at s = 1

under our assumptions (in particular, that G has no central split torus). According to
Beilinson’s conjecture, the value of this L-function is related to a regulator on a certain
motivic cohomology group attached to Ad∗Π. It is this motivic cohomology group that
will play the starring role in our conjecture. We defer to later sections more careful
expositions of points of detail; in particular, what we need of motivic cohomology and
Beilinson’s conjectures is summarized in §2, and discussion of “automorphic versus
motivic” L-functions, at least in the case we need it, is given in §6.4.4.

First, to the real reductive groupG = GR we shall attach in §3 a canonical C-vector
space aG, such that dim(aG) = δ; it can be described in either of the following ways:

– aG is the split component of a fundamental Cartan subalgebra inside Lie(G)C;

– the dual a∗G := HomC(aG,C) is the fixed points, on the Lie algebra Lie(T̂ ) of
the dual maximal torus, of w0σ, where w0 is a long Weyl element and σ is the
(pinned) action of complex conjugation on Ĝ.

We shall construct in §3 an action of the exterior algebra
∧∗
a∗G on the (g,K0

∞)-co-
homology of a tempered representation of G(R). This gives rise to a natural degree-
shifting action of

∧∗
a∗G on H∗(Y,C)Π, with the property that the associated map

(1.2.1) Hq(Y,C)Π ⊗
i∧
a∗G

∼−→ Hq+i(Y,C)Π

is an isomorphism. For a more careful discussion see §3.
Next, standard conjectures allow us to attach to a Grothendieck motive M over Q

a motivic cohomology group Hi
M (MZ,Q(j)) (the subscript Z means that these are

classes that “extend to an integral model”; the group Hi
M should however be inde-

pendent of integral model). Then Hi
M (MZ,Q(j)) is a Q-vector space, conjecturally

finite dimensional, and is equipped with a regulator map whose target is the Deligne
cohomology Hi

D
(MR,R(j)). We are interested in the case of M = Ad∗Π, and write

for brevity:

(1.2.2) L := H1
M ((Ad∗Π)Z,Q(1)).

In this case (§5.1) the target of the archimedean regulator (tensored with C) is canon-
ically identified with aG; we get therefore a map

(1.2.3) L⊗C −→ aG,
which is conjecturally an isomorphism.

Write L∗ = Hom(L,Q) for the Q-dual and L∗C = Hom(L,C). Dualizing (1.2.3),
the map

(1.2.4) a∗G −→ L∗C

ASTÉRISQUE 428



1.3. THE CASE OF TORI 5

is again conjecturally an isomorphism. We are ready to formulate our central

Conjecture 1.2.1. — Notation as above: H∗(Y,C)Π is the subspace of cohomology as-
sociated to the automorphic form Π, aG is the C-vector space associated to G, and
L is, as in (1.2.2), the motivic cohomology of the adjoint motive associated to Π.

Then the action of
∧∗
a∗G on H∗(Y,C)Π described above is compatible with rational

forms, i.e., if an element of a∗G maps to L∗, then its action on cohomology preserves
H∗(Y,Q)Π ⊂ H∗(Y,C)Π.

In particular, the conjecture means that

There is a natural, graded action of
∧∗

L∗ on H(Y,Q)Π, with respect to
which the cohomology is freely generated in degree q.

As we mentioned earlier, this is interesting because it suggests a direct algebraic
relationship between motivic cohomology and the cohomology of arithmetic groups.
At present we cannot suggest any mechanism for this connection; it doesn’t seem to
be readily related to other heuristics in the Langlands program. The occurrence of
algebraic K-groups of rings of integers in the stable homology of GLn (see, e.g., [67,
p 25]) is likely a degenerate case of it. For the moment, we must settle for trying to
check certain numerical consequences.

Although it is not the concern of this paper, the conjecture has a p-adic counter-
part, which itself has a rich algebraic structure. As written, the conjecture postulates
an action of L∗ on H∗(Y,Q)Π; this action (assuming it exists) is pinned down be-
cause we explicitly construct the action of L∗C. But the conjecture also implies that
L∗Qp

= L∗ ⊗Qp acts on the cohomology with p-adic coefficients H∗(Y,Qp)Π. Conjec-
turally, the p-adic regulator gives an isomorphism

(1.2.5) L⊗Qp
'−→ H1

f (Q,Ad∗ ρp(1)),

where the subscript f denotes the “Bloch-Kato Selmer group,” [6]. This means that
there should be an action of H1

f (Q,Ad∗ ρp(1))∗ on H∗(Y,Qp)Π by degree 1 graded
endomorphisms. The papers [21] and [75] give two different ways of producing this
action. One advantage of the p-adic analogue of the conjecture is that it is more
amenable to computations, and numerical evidence for its validity will be given in [25].

Finally we were informed by Michael Harris that Alexander Goncharov has also
suggested, in private communication, the possibility of a connection between the mo-
tivic cohomology group LΠ and the cohomology of the arithmetic group.

1.3. The case of tori

We briefly explicate our constructions in the case of tori. In this case the conjecture
is easy, but this case is helpful for reassurance and to pinpoint where there need to
be duals in the above picture.

Let T be an anisotropic Q-torus. Let a∗T be the canonical C-vector space attached
to T, as in the discussion preceding (1.2.1). Then a∗T is canonically identified with the
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dual of
aT = Lie(S)⊗C,

where S is the maximal R-split subtorus of TR. This identification gives a natural
logarithm map

log : T(R)→ aT ,
characterized by the fact that it is trivial on the maximal compact subgroup K∞ and
coincides with the usual logarithm map on the connected component of S(R).

The associated symmetric space is

Y = T(Q)\T(R)×T(Af )/KK◦∞.

Then Y has the structure of a compact abelian Lie group: each component is the
quotient of T(R)◦/K◦∞ ' aT by the image of

∆ = {t ∈ T(Q) : t ∈ T(R)◦ ·K},
which is a discrete cocompact subgroup of T(R).

As in the general discussion above, there is a natural action of
∧∗
a∗T on the coho-

mology of Y . In this case the action of ν ∈
∧∗
a∗T is by taking cup product with Ω(ν).

Here,

Ω :

∗∧
a∗T −→ invariant differential forms on Y

comes from the identification of the tangent space of T(R)/K∞ at the identity
with aT . Note that, for ν ∈ a∗T , the cohomology class of Ω(ν) is rational (i.e., lies
in H1(Y,Q)) if and only if 〈log(δ), ν〉 ∈ Q for all δ ∈ ∆.

On the other hand, as in our prior discussion, to any cohomological representation Π

is associated a motive Ad∗Π of dimension equal to dim(T ). In fact, Ad∗Π is the
Artin motive whose Galois realization is the (finite image) Galois representation on
X∗(T)⊗Q. Then H1

M (Ad∗Π,Q(1)) = T(Q) ⊗ Q and the subspace of “integral”
classes is then identified with

(1.3.1) H1
M ((Ad∗Π)Z,Q(1)) = ∆⊗Q.

The regulator map H1
M (Ad∗ΠZ,Q(1))→ aT is just the logarithm map.

Then Conjecture 1.2.1 just says: if ν ∈ a∗T takes Q-values on log(∆), then cup
product with Ω(ν) preserves H∗(Y,Q). But this is obvious, because the assumption
means that Ω(ν) defines a class in H1(Y,Q).

1.4. Numerical predictions and evidence for the conjecture

We now turn to describing our evidence for the conjecture. To do so, we must
first extract numerical consequences from the conjecture; for this we put metrics on
everything. It turns out there are plenty of consequences that can be examined even
with minimal knowledge of motivic cohomology.
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1.4. NUMERICAL PREDICTIONS AND EVIDENCE FOR THE CONJECTURE 7

Throughout this section, we continue with the general setup of §1.1; in particular,
all the cohomological automorphic representations that we consider are tempered
cuspidal.

By a metric on a real vector space we mean a positive definite quadratic form; by
a metric on a complex vector space we mean a positive definite Hermitian form. If
V is a vector space with metric 〈−,−〉, there are induced metrics on

∧∗
V and on V ∗;

these arise by thinking of a metric as an isomorphism to the (conjugate) dual space,
and then by transport of structure. Explicitly, the induced metric on

∧m
V is given

by the formula:

(1.4.1) 〈v1 ∧ · · · ∧ vm, w1 ∧ · · · ∧ wm〉 = det (〈vi, wj〉) .
A perfect pairing V × V ′ → R of metrized real vector spaces will be said to

be a “metric duality” when there are dual bases for V, V ′ that are simultaneously
orthonormal (equivalently: V ′ → V ∗ is isometric, for the induced metric on V ∗).

If V is a metrized real vector space and VQ ⊂ V is a Q-structure, i.e., the Q-span
of an R-basis for V , then we can speak of the volume of VQ,

(1.4.2) volVQ ∈ R×/Q×,

which is, by definition, the covolume of Zv1 + . . .Zvn for any Q-basis {v1, . . . , vn}
for VQ, with respect to the volume form on VR defined by the metric. Explicitly

(1.4.3) (volVQ)2 = det(〈vi, vj〉).
We will later allow ourselves to use the same notation even when the form 〈−,−〉 is
not positive definite; thus volVQ could be a purely imaginary complex number. By
(1.4.1), the volume of VQ equals the norm of a generator of

∧n
VQ for the induced

metric on
∧n

V , that is to say

(1.4.4) volVQ = vol

n∧
VQ.

Fix an invariant bilinear Q-valued form on Lie(G), for which the Lie algebra of K∞
is negative definite and the induced form on the quotient is positive definite. This gives
rise to a G-invariant metric on the symmetric space, and thus to a Riemannian metric
on Y . Once this is fixed, Hj(Y,R)Π and Hj(Y,C)Π both get metrics by means of the
L2 norm on harmonic forms. (Scaling the metric g 7→ λg leaves the notion of harmonic
form unchanged; but it scales the metric on Hi by λd/2−i, where d = dim(Y ).)

The Poincaré duality pairing Hj(Y,R)×Hj∗(Y,R)→ R, where j + j∗ = dim(Y ),
induces a metric duality, in the sense just described. The same conclusions are true
for the induced pairing

(1.4.5) Hj
Π(Y,R)×Hj∗

Π̃
(Y,R)→ R

between the Π part and the Π̃-part, where Π̃ denotes the contragredient of Π; since
we are supposing that Π arose from a Q-valued character of the Hecke algebra, we
have in fact Π̃ ' Π.
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In §3.5, we explain how to introduce on a∗G a metric for which the action of
∧∗
a∗G is

“isometric,” i.e., for ω ∈ Hq(Y,C)Π and ν ∈
∧t
a∗G we have

(1.4.6) ‖ω · ν‖ = ‖ω‖ · ‖ν‖.
This metric on a∗G depends, of course, on the original choice of invariant form
on Lie(G). It also induces a metric, by duality, on aG.

Note that we also introduce an R-structure on a∗G—the “twisted real structure”,
see Definition 3.1.2—which is compatible with the real structure L ⊗ R ⊂ L ⊗ C,
and preserves the real structure Hq(Y,R) ⊂ Hq(Y,C)—see Lemma 5.1.1 and Propo-
sition 5.5.1. Therefore, we get also corresponding statements for real cohomology.

With these preliminaries, we now examine explicit period identities that follow
from our conjecture:

Prediction 1.4.1. — Suppose that dimHq(Y,C)Π = 1. Let ω be a harmonic q-form
on Y whose cohomology class generates Hq(Y,Q)Π. Then

(1.4.7) 〈ω, ω〉 ∼ (vol L),

where the volume of L is measured with respect to the metric induced by the inclusion
L ⊂ aG, or more precisely the inclusion of L into the twisted real structure on aG
discussed above; we have used the notation A ∼ B for A/B ∈ Q∗.

Note that (1.4.7) is equivalent to

(1.4.8)
〈ω, ω〉∣∣∣∫γ ω∣∣∣2 ∼ (vol L),

where ω is now an arbitrary nonzero harmonic q-form belonging to Hq(Y,C)Π and
γ is a generator for Hq(Y,Q)Π.

At first sight, (1.4.7) or the equivalent (1.4.8) look like they would require a com-
putation of the motivic cohomology group L to test. However, Beilinson’s conjecture
implies a formula for vol(L) in terms of the adjoint L-function and certain other
Hodge-theoretic invariants. Thus, although not formulated in a way that makes this
evident, (1.4.7) can be effectively tested without computation of motivic cohomology.

To assist the reader we say a few words about how Beilinson’s conjecture is used to
compute vol(L)—it is, in fact, used twice. First of all, Beilinson’s conjecture applied
to the adjoint L-function of Π expresses a special value of that L-function as the
product of

(a) a certain period depending only on the underlying Hodge structure, and

(b) a regulator, given by the volume of L above.

In the main text, this fact is expressed by (2.2.9), which will be applied with M the
motive underlying this adjoint L-function—the period from (a) is the “volS F

1” term
of (2.2.9), and the regulator from (b) is the “volS H

1
M ” of (2.2.9). Now, to remove term

(a) we use Beilinson’s conjecture a second time (in fact, in this case, the conjecture
reduces to Deligne’s conjecture about critical values). In the examples that we study,
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1.4. NUMERICAL PREDICTIONS AND EVIDENCE FOR THE CONJECTURE 9

there is a second L-function in the picture, and Deligne’s conjecture shows that its
value at a certain critical point coincides with (a) up to Q∗. This rather surprising
equality is expressed by (7.2.10) in the main text. Therefore, by taking the ratio of
these two applications of Beilinson’s conjecture, we obtain a formula for vol(L) purely
in terms of L-functions.

Proof (that Conjecture 1.2.1 implies Prediction 1.4.1). — Let ν generate
∧δ

L∗ (the
top exterior power). The conjecture implies that ω′ = ω · ν gives a nonzero element
of Hq∗(Y,Q)Π, where q + q∗ = dim(Y ). Since (1.4.5) is a metric duality we get

(1.4.9) ‖ω‖L2 · ‖ω′‖L2 ∈ Q∗.

By (1.4.6), we have

(1.4.10) ‖ω′‖L2 = ‖ω‖L2 · ‖ν‖.
Combining (1.4.9) and (1.4.10) yields

(1.4.11) 〈ω, ω〉 · ‖ν‖ ∈ Q∗.

Now ‖ν‖ is precisely the volume (see (1.4.4)) of L∗ with respect to the given metric
on a∗G; said differently, ‖ν‖−1 is the volume of L for the dual metric on aG.

The first piece of evidence for the conjecture, informally stated, is a verification of
Prediction 1.4.1, in the following sense (see Theorem 7.2.1 for precise statement):

Evidence for Prediction 1.4.1. — Assume Beilinson’s conjecture, as formulated in §2.
Assume also the Ichino-Ikeda conjecture on period integrals and the “working hypothe-
ses” on local period integrals, all formulated in §6.10. (2)

Let (G,H) be as in the “cohomological GGP cases” of §6.3: either we have
(PGLn+1 × PGLn ⊃ GLn) over Q (3), or (PGLn+1 × PGLn ⊃ GLn) over a quadratic
imaginary field, or (SOn+1 × SOn ⊃ SOn) over a quadratic imaginary field.

Then, for ω a cohomological form on G, and γ the homology class of the cycle
defined by H we have

(1.4.12)

∣∣∣∫γ ω∣∣∣2
〈ω, ω〉

∈
√

Q(volL)−1.

In other words, (1.4.8) is always compatible with the period conjectures of Ichino-Ikeda,
up to possibly a factor in

√
Q.

Remark 1. — The left-hand side of (1.4.12) is nonzero if and only if both:

2. Note that many cases of the Ichino-Ikeda conjecture are already known: we include in our for-
mulation the GLn×GLn+1 cases, which were established by Jacquet, Piatetski-Shapiro and Shalika.
Also, the working hypotheses on local period integrals are primarily used to handle archimedean
integrals. In view of recent work there is reason to hope that they should be soon removed.

3. In this case, we prove not (1.4.12) but a slight modification thereof, since the hypothesis
dimHq(Y,C)Π = 1 is not literally satisfied.
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— the central value of the Rankin-Selberg L-function for Π is nonvanishing, where
Π is the automorphic representation underlying ω;

— (in the SO cases only): there is abstractly a nonzero H(A)-invariant functional
on Π (this condition can be rephrased in terms of ε-factors, by [81]).

Without getting into details let us say why we found the proof of (1.4.12) striking.
The conjecture and Prediction 1.4.1 are phrased in terms of the motivic cohomology
group L; this group is closely related to the adjoint L-function L(s,Π,Ad) at the
edge point s = 0 or s = 1. By contrast, the Ichino-Ikeda conjecture involves various
Rankin-Selberg type L-functions, and it is, at first, difficult to see what they have to
do with L.

We are saved by the feature that was discussed after (1.4.8). Namely, Beilinson’s
conjecture for the central values of these Rankin-Selberg type L-functions (which in
this case is due to Deligne) involves many of the same “period invariants” as Beilin-
son’s conjecture for the adjoint L-functions at s = 1, leading to various surprising
cancelations—it is the ratio of these two L-functions that recovers vol(L). (4) A fur-
ther miracle is that all the factors of π (the reader can glance at the Table in §7 to
get a sense of how many of them there are) all cancel with one another. Finally, there
are various square classes that occur at several places in the argument, giving rise to
the
√

Q factor. To the extent that we tried to check it, these square classes indeed
cancel, as we would expect; however, we found that this added so much complexity
to the calculations that we decided to omit it entirely.

It may be worth pointing out that in the Ichino-Ikeda conjecture, it is usually
the central L-value that is of most interest, and the adjoint L-value (at s = 1) that
appears may be viewed a “correction factor”. In the analysis above however, the tables
are turned and it is the adjoint L-value at 1 that is of central importance while the
central L-value provides the correction terms in the period identity.

We would also like to acknowledge that there is a substantial body of work on the
cohomological period in degree q, for example [58, 39, 54, 53, 22]. The focus of those
works is the relationship between this period and Deligne’s conjecture, and many of
these papers go much further than we do in verifying what we have simply called
“working hypotheses,” and in evading the issues arising from possibly vanishing cen-
tral value. Our work adds nothing in this direction, but our focus is fundamentally
different: it sheds light not on the interaction betwen this period and Deligne’s conjec-
ture, but rather its interaction with the motivic cohomology group mentioned above.
(Closer in spirit to this paper is the work [72], where the relationship between periods
in different degrees and the adjoint L-function plays an important role.)

Remark 2. — The fact that we obtain no information when the Rankin-Selberg
L-function vanishes at the critical point may seem disturbing at first. However, we do
not regard it as onerous: if one assumes standard expectations about the frequency of

4. See §8 of [73] for an attempt at understanding this striking coincidence.
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non-vanishing L-values, it should be possible to deduce (1.4.8) for all such Π—again,
up to

√
Q×, and assuming Beilinson’s conjectures.

Consider, for example, the case of PGLn over an imaginary quadratic field. For
any cohomological automorphic representation π2 on PGL2, the equality (1.4.8) can
be verified using known facts about nonvanishing of L-functions. (Note that in this
case the evaluation of the left-hand side in terms of L-functions was already carried
out by Waldspurger [81].) Now for a given form π3 on PGL3 one expects that there
should be a cohomological form π′2 on PGL2 for which L( 1

2 , π3×π′2) 6= 0; in this case,
our Result (1.4.12) above permits us to deduce the validity of (1.4.8) for π3×π′2, and
thus for π3 (and then also for π3 × π2 for any π2). We may then proceed inductively
in this way to PGLn for arbitrary n.

Admittedly, such non-vanishing results seem to be beyond current techniques of
proof; nonetheless this reasoning suggests that the result above should be regarded
as evidence in a substantial number of cases.

As for the “working hypotheses” on archimedean period integrals, these do not seem
entirely out of reach; a key breakthrough on nonvanishing has now been made by Sun
[68]. We have formulated the hypotheses fairly precisely and we hope that the results
of this paper will give further impetus to studying and proving them.

Next, suppose that dimHq(Y,C)Π = d > 1. Choose a basis ω1, . . . , ωd of harmonic
forms whose classes give a Q-basis for Hq(Y,Q)Π. Then similar reasoning to the above
gives

(1.4.13) det (〈ωi, ωj〉) ∼ (volL)d.

More precisely, if G,G′ are inner forms of one another, we may equip the associ-
ated manifolds Y and Y ′ with compatible metrics—i.e., arising from invariant bi-
linear forms on Lie(G) and Lie(G′) which induce the same form on Lie(G) ⊗ Q =

Lie(G′) ⊗ Q. Assume that there exist automorphic representations Π and Π′ as in
§1.1 corresponding to (for almost all v) matching characters χv, χ′v of the local Hecke
algebras. We assume that all the representations in Π and Π′ are tempered cuspidal,
as before.

Prediction 1.4.2. — Suppose, as discussed above, that G,G′ are inner forms of one
another, and Π,Π′ are nearly-equivalent automorphic representations, contributing to
the cohomology of both Y and Y ′. Equip Y, Y ′ with compatible metrics, as explained
above. Then

det (〈ωi, ωj〉)d
′
∼ det

(
〈ω′i, ω′j〉

)d
,

where d = dimHq(Y,Q)Π, d′ is similarly defined, and the ω, ω′ are as above a basis
for harmonic forms which give Q-rational bases for cohomology.

Again, this prediction is pleasant because it does not mention motivic cohomology.
The general phenomenon that period matrices for different inner forms are related
has been observed for Shimura varieties where it is closely tied to the Tate conjecture
[65], [50], [23], [52]. However, the prediction above suggests that such relationships

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2021



12 CHAPTER 1. INTRODUCTION

exist also outside the Hermitian case. This feature is (to us) rather unexpected (see,
however, [14] for an example of this in a simple setting). Rather than focus on this,
we move on to a more interesting consequence.

The above examples mentioned only periods in the lowest cohomological degree (q)
to which tempered representations contribute. The conjecture, however, gives control
on the cohomology groups H∗(Y,Q)Π in intermediate dimensions q < j < q∗. In
principle, it allows us to compute the entire “period matrix” of cohomology, i.e., the
matrix of pairings 〈γi, ωj〉 between a Q-basis γi for homology and an orthogonal
basis ωj of harmonic forms, given a complete knowledge of L. It is difficult, however,
to test this directly, for two reasons:

— it is almost impossible to numerically compute with motivic cohomology, and

— it is hard to exhibit explicit cycles in those dimensions (at least, it is hard to
exhibit cycles that are geometrically or group-theoretically natural).

Here is a case where we can finesse both of these issues. Suppose that E ⊃ F is a
field extension. Start with an F -algebraic group G; let GF be the restriction of scalars
of G from F to Q, and let GE be the restriction of scalars of G×F E to Q. We write
δF , qF , δE , qE for the quantities defined in (1.1.3) but for GF and GE respectively. A
(near-equivalence class of) cohomological automorphic representation(s) ΠF for GF

conjecturally determines a base change lift ΠE on GE . Let LΠF and LΠE be the
motivic cohomology groups attached to ΠF ,ΠE respectively. We will assume that the
archimedean regulator is an isomorphism on these groups; in particular dimLΠE = δE
and dimLΠF = δF . Now there is a natural map (dualizing a norm map) L∗ΠF ↪→ L∗ΠE
and the induced map

(1.4.14)
δF∧
L∗Π,F ⊂

δF∧
L∗Π,E

has image a Q-line inside
∧δF L∗Π,E .

To get a sense of what this implies, suppose that we can fix a level structure
for GE such that the associated manifold YE satisfies dimHqE (YE ,C)ΠE = 1. Then
the Q-line above should, according to the conjecture, give rise to a “distinguished”
Q-line Qη ⊂ HqE+δF (YE ,Q)—namely, we act on the Q-line HqE (YE ,Q)ΠE using
the image of (1.4.14). The conjecture also allows us to predict various periods of
the cohomology class η in terms of L-functions. In some special cases when E/F is
quadratic (e.g., when G = GLn) this is related to the theory of base change; but
when [E : F ] > 2 this seems to be a new and “exotic” type of base change identity
(indeed, in the classical theory, only quadratic base changes have a nice “period”
interpretation). We can generalize this in various evident ways, e.g., if E/F is Galois
we can isolate various subspaces of LΠ,E indexed by representations of Gal(E/F ),
and make a corresponding story for each one.

Let us turn this discussion into a more precise prediction in one case:

Prediction 1.4.3. — Notation as above; suppose that E/F is Galois, with Galois group
GalE/F , and split at all infinite primes. Choose a level structure for GF and a
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GalE/F -invariant level structure for GE, giving arithmetic manifolds YF and YE re-
spectively. Fix compatible metrics on YF and YE. Suppose again that

dimHqF (YF ,Q)ΠF = dimHqE (YE ,Q)ΠE = 1.

Then there exist harmonic representatives ωF , ωE , ω′E for nonzero classes in

(1.4.15) HqF (YF ,Q)ΠF , H
qE (YE ,Q)ΠE , H

qE+δF (YE ,Q)
GalE/F
ΠE

.

such that

(1.4.16)
‖ω′E‖‖ωF ‖2

‖ωE‖
∈
√

[E : F ] ·Q∗.

In the case δF = 1, the third space of (1.4.15) is also one-dimensional and ωF , ω′E
and ω′E are all determined up to Q∗; we can achieve a similar situation in general by
a slightly more careful discussion of ω′E .

As in (1.4.8), we can translate this to a statement of periods and L2 norms. The
nice thing about (1.4.16) is that, like the second prediction, it doesn’t involve any
motivic cohomology.

Proof. — Let νF be a generator for
∧δF L∗Π,F . As in (1.4.11) we have

〈ωF , ωF 〉 · ‖νF ‖aF ∈ Q∗.

Let νE be the image of νF under (1.4.14) and set ω′E = ωE · νE . Also ‖νE‖aE =√
[E : F ]× ‖νF ‖aF . Taking norms and using (1.4.6) we get the result.

The second piece of evidence for the conjecture is a verification of Prediction 1.4.3,
in the following setting (see §9.5 and also Theorem 9.1.1 for a more general statement):

Evidence for Prediction 1.4.3. — (1.4.16) is valid up to
√

Q× when G is an inner
form of PGL2, F is a quadratic imaginary field, E ⊃ F is a cyclic cubic extension,
and (for level structures precisely specified) ΠF is the only non-trivial representation
contributing to H∗(YF ) and ΠE is the only non-trivial representation contributing
to H∗(YE).

Note that we do this without knowing how to produce any cycles on the nine-
manifold YE in dimension qE + δF = 4! Rather we proceed indirectly, using analytic
torsion.

In fact, in the text, we prove a stronger result (Theorem 9.1.1), which relies for its
phrasing on Beilinson’s conjectures.

1.5. Some problems and questions

Here are a few problems that are suggested by the conjecture:

(i) General local systems: it would be interesting to generalize our discussion beyond
the case of the trivial local system. While the general picture should adapt
to that setting, the verifications described in §1.4 use the specific numerology
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of Hodge numbers associated to the trivial local system—it is by no means
apparent the same miraculous cancelations should occur in general.

(ii) Non-tempered representations: our entire discussion in this paper concerns only
tempered representations, but it seems very likely that the phenomenon contin-
ues in the non-tempered case. For example, that part of the cohomology of Y
associated with the trivial automorphic representation shows interesting con-
nections with algebraic K-theory. It seems important to formulate precisely the
conjecture in the general case.

(iii) Coherent cohomology: a Hecke eigensystem can appear in multiple cohomolog-
ical degrees. For example, this already happens for the modular curve, in the
case of weight one. It would be good to develop a version of the theory of this
paper that applies to that context.

(iv) We have formulated here a conjecture concerning rational cohomology; but,
of course, it would be most desirable to understand the integral story. It is
plausible that this can be done by integrating the current discussion with that
of the derived deformation ring, developed in [21].

1.6. Notation

We gather here some notation that will be consistently used throughout the paper.
As in §1.4, we will often refer to the “volume” of a vector space: if VQ is a rational

vector space, equipped with a real-valued symmetric bilinear form 〈−,−〉 on VR, we
define volQ V ∈ C×/Q× by the rule

(volVQ)2 = det(〈vi, vj〉),
for a Q-basis v1, . . . , vn. If the form 〈−,−〉 is indefinite, the volume could be imaginary.

G will denote a reductive group over Q; for all the global conjectures we will
assume that G has no central split torus. Ĝ denotes the dual group to G, a complex
reductive Lie group. It is equipped with a pinning, in particular a “Borus” T̂ ⊂ B̂. We
put LG = Ĝ o Gal(Q/Q), as usual. Now Ĝ and LG can be descended to algebraic
groups over Z, using the Chevalley form of Ĝ; we will, by a slight abuse of notation,
refer to the R-points of the resulting groups by Ĝ(R) and LG(R). We will also write
ĜR and LGR for the corresponding algebraic groups over SpecR.

Note that, at certain points in the paper it will be useful to refer to the “c-group”
a modification of the L-group that (in effect) does not require one to choose square
roots in normalizing the Langlands correspondence. The definition of this group is
recalled in §A.2.

We denote by G = G(R) the real points of G and by K∞ a maximal compact
subgroup of G. Set gQ = Lie(G) to be the Q-Lie algebra, and set

gR = Lie(G) = gQ ⊗R, kR := Lie(K∞),

g = gR ⊗C, k = kR ⊗C.
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We denote by GR the base-change of G from Q to R, and similarly define GC.
We set

(1.6.1) [G] = G(Q)\G(A)

to be the associated adelic quotient. We will usually use the letter K to denote an
open compact subgroup of G(Af). For such a K, we have an attached “arithmetic
manifold,”

(1.6.2) Y (K) = [G]/K◦∞ ·K,
which coincides with the definition given in the introduction.

There are two numerical invariants attached to G and Y (K) which will occur
often. Firstly, the difference δ = rank(G) − rank(K∞) between the ranks of G and
its maximal compact subgroup. Secondly, the minimal cohomological dimension q in
which a tempered G-representation has nonvanishing (g,K0

∞)-cohomology; these are
related via 2q + δ = dimY (K).

The notation ĝ denotes the complex Lie algebra that is the Lie algebra of Ĝ and
if R is any ring we denote by ĝR the Lie algebra of Ĝ as an R-group. Also, as above,
g̃ denotes the linear dual of ĝ, i.e.,

g̃ = HomC(ĝ,C)

and we similarly define g̃Q to be the Q-dual of ĝQ.
We use the word “cohomological” in a slightly more narrow way than usual. A rep-

resentation of G(R) is cohomological, for us, if it has nontrivial (g,K0
∞)-cohomology.

In other words, we do not allow for the possibility of twisting by a finite dimen-
sional representation; any cohomological representation, in this sense, has the same
infinitesimal character as the trivial representation.

Π will usually denote a near-equivalence class of cohomological automorphic rep-
resentations on G, or a variant with a stronger equivalence relation; π will usually be
an automorphic representation belonging to this class.

For any automorphic L-function L(s) and any special value s0, we denote
by L∗(s0) the leading term of the Taylor expansion of L(s) at s = s0, i.e.,
L∗(s0) = lims→s0(s− s0)−rL(s), where r is the order of vanishing of the mero-
morphic function L(s) at s = s0. Occasionally, when typographically convenient, we
will write this instead as L(s0)∗.

We often use the notation A ∼ B to mean that A = αB for some α ∈ Q×. We
will often also encounter situations where (A/B)2 ∈ Q×, in which case we write
A ∼√

Q×
B.

For fields E′ ⊃ E, an E-structure on an E′-vector space V ′ is, by definition, an
E-vector subspace V ⊂ V ′ such that V ⊗E E′

∼→ V ′. If V is a complex vector space
we denote by V the conjugate vector space with the same underlying space and
conjugated scaling. So there is a tautological antilinear map V 7→ V that we denote
by v 7→ v̄.
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16 CHAPTER 1. INTRODUCTION

If Q is a nondegenerate quadratic form on a finite-dimensional vector space V , and
Q∗ a form on the dual space V ∗, we say that Q and Q∗ are in duality if Q induces Q∗

via the isomorphism V
∼→ V ∗ associated to Q; this is a symmetric relation. The Gram

matrices of Q and Q∗ with reference to dual bases are inverse; Q and Q∗ are called
“inverse” quadratic forms by Bourbaki [11, Chapter 9].

The terminology Q-motive will be used to denote a motive with coefficients in Q.
This will be mostly relevant in §8.
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CHAPTER 2

MOTIVIC COHOMOLOGY AND BEILINSON’S CONJECTURE

The first part (§2.1) of this section is a recollection of Beilinson’s conjecture and
the theory of motives. The second part (§2.2) is less standard: we use a polarization
to put a metric on Deligne cohomology. The most important result is Lemma 2.2.2,
which allows us to compute volumes of certain motivic cohomology groups in terms
of values of L-functions.

2.1. Beilinson’s conjecture for motives

In this section we recall Beilinson’s conjecture for motives. For simplicity, we restrict
to the case of motives defined over Q and coefficients in Q, which is the main case
we require. The summary below follows for the most part [33] §4, which the reader is
referred to for more details. (Our notation however is somewhat different.)

2.1.1. Cycles and correspondences. — For k a field, let Vark denote the category
of smooth projective varieties over k. For any variety Y ∈ Vark, let CHj(Y )Q de-
note the Q-vector space given by the group of algebraic cycles of codimension j

on Y modulo rational equivalence, tensored with Q. If we replace rational equiv-
alence by homological or numerical equivalence, the corresponding Q-vector spaces
will be denoted CHj

hom(Y )Q and CHj
num(Y )Q respectively. If Z1 ∈ CHj(Y )Q and

Z2 ∈ CHk(Y )Q, there is a well defined intersection product Z1 · Z2 ∈ CHj+k(Y )Q.
This makes CH∗(Y )Q :=

⊕dim(Y )
j=0 CHj(Y )Q into a graded commutative Q-algebra

with multiplication given by the intersection product.
If X,Y ∈ Vark, a correspondence on X×Y is an element of CH∗(X×Y )Q. Corre-

spondences may be composed as follows: if X,Y, Z ∈ Vark, and Z1 ∈ CH∗(X × Y )Q,
Z2 ∈ CH∗(Y × Z)Q, then

Z2 ◦ Z1 := p13,∗ (p∗12(Z1) · p∗23(Z2)) ,

where p12 : X × Y × Z → X × Y , p23 : X × Y × Z → Y × Z and p13 : X × Y × Z → X × Z
denote the natural projections. Note that if Z1 ∈ CHj(X × Y )Q and Z2 ∈ CHk(Y × Z)Q,
then Z2 ◦ Z1 ∈ CHj+k−dim(Y )(X × Z)Q.
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18 CHAPTER 2. MOTIVIC COHOMOLOGY AND BEILINSON’S CONJECTURE

2.1.2. Chow motives. — Let Mk,rat denote the category of Chow motives over k. An
object in Mk,rat consists of a triple M = (X, p, r) where X is a smooth projective
variety over k of dimension d say, p is an idempotent in CHd(X×X)Q (i.e., p◦p = p)
and r ∈ Z is an integer. Formally, the category of Chow motives is obtained by
starting with the category of effective motives (i.e., pairs (X, p) with p idempotent)
and inverting the Tate motive

Q(−1) = (P1, {0} ×P1).

Informally, the reader should think of (X, p, r) as first projecting X according to p,
and then “Tate-twisting” by r. In this optic, we have Q(−1) = (spec(k), id,−1).

The morphisms in Mk,rat are described thus: for N = (Y, q, s) another object of M

(2.1.1) Hom(M,N) = q ◦ CHdimY+r−s(X × Y )Q ◦ p.
Note that this convention is opposite to Deligne [17], who uses “cohomological” mo-
tives; this amounts to the opposite of the above category.

Let ∆X be the diagonal on X ×X. We denote (X,∆X , r) by the symbol hX(r),
and if further r = 0 we denote this simply by hX. We then get a covariant functor
h : Vark → Mk,rat by sending f : X → Y to the graph of f on X × Y . The dual
motive M∨ of M is defined by

M∨ = (X, pt, d− r),
where p 7→ pt is the involution induced by interchanging the two components ofX×X.
(Caution: the realizations ofM∨ are closely related to but not exactly the duals of the
realizations of M . See §2.1.3 below.) The category Mk admits a symmetric monoidal
tensor structure defined by

(X, p, r)⊗ (Y, q, s) = (X × Y, p× q, r + s).

The commutativity and associativity constraintsM⊗N ' N⊗M and (M ⊗N)⊗ P '
M ⊗ (N ⊗ P ) are induced by the obvious isomorphisms X × Y ' Y × X and
(X × Y )× Z ' X × (Y × Z). If k → k′ is a field extension, there is a natural base-
change functor Mk →Mk′ , denoted either M 7→M ⊗k k′ or M 7→Mk′ .

There is also a notion of restriction of scalars along a finite field extension for Chow
motives; we warn that it does not correspond to restriction of scalars of the underlying
variety. See [17, Example 0.1.1].

2.1.3. Cohomology. — For any subring A of R, we use A(j) to denote (2πi)jA ⊂ C.
We will need various cohomology theories on VarQ: Betti cohomology Hi

B(XC,Q(j)),
algebraic de Rham cohomology Hi

dR(X, j), `-adic cohomology Hi
et(XQ,Q`(j)), the

Deligne cohomology Hi
D

(XR,R(j)) and motivic cohomology Hi
M (X,Q(j)).

These are all twisted Poincaré duality theories in the sense of Bloch and Ogus [7];
see e.g., [34, Examples 6.7, 6.9, 6.10] and §1,2 of [19]. Moreover, they all admit a cup-
product in cohomology such that the cycle class map is compatible with the product
structure.

ASTÉRISQUE 428



2.1. BEILINSON’S CONJECTURE FOR MOTIVES 19

Any such theory H∗ may be extended to MQ,rat as follows. First, for motives of
the form hX(r) set

Hi(hX(r), j) := Hi+2r(X, j + r).

If f ∈ Hom(hX(r), hY (s)), define

f∗ : Hi(hY (s), j)→ Hi(hX(r), j)

by
f∗(α) = πX,∗(cl(f) ∪ π∗Y (α)),

where πX and πY denote the projections from X × Y onto X and Y respectively.
Then for M = (X, p, r), define

(2.1.2) Hi(M, j) = p∗Hi(hX(r), j).

If Hi is a geometric cohomology theory (such as Hi
B , H

i
dR or Hi

et(MQ)), then it
satisfies usual Poincaré duality and we have canonical isomorphisms

(2.1.3) H−i(M∨) ' (Hi(M))∨.

2.1.4. Comparison isomorphisms and periods. — We continue to suppose that M is
an object of MQ,rat.

There are comparison isomorphisms

compB,dR : Hi
B(MC,Q)⊗C ' Hi

dR(M)⊗C,(2.1.4)

compB,et : Hi
B(MC,Q)⊗Q` ' Hi

et(MQ,Q`).(2.1.5)

Let cB and cdR denote the involutions given by 1⊗c on the left and right of (2.1.4)
respectively, where c denotes complex conjugation. Then via compB,dR, we have ([17,
Proposition 1.4])

(2.1.6) F∞ · cB = cdR,

where, if M = hX is the motive of a variety X, then F∞ denotes the involution
on Hi

B(XC,Q) induced by the action of complex conjugation on the topological
spaceX(C); this definition passes toHi

B(MC,Q) via (2.1.2). Note that F∞ is complex-
linear, whereas cB and cdR are complex antilinear. We will often denote cB by the
usual complex conjugation sign, i.e.,

v̄ = cB(v).

More generally, we can go through the same discussion with Q(j) coefficients:
replacing M by its Tate twist we obtain the comparison isomorphisms

(2.1.7) compB,dR : Hi
B(MC,Q(j))⊗C ' Hi

dR(M, j)⊗C.

We denote by δ(M, i, j) the determinant of the comparison map compB,dR taken with
respect to the natural Q-structuresHB = Hi

B(MC,Q(j)) andHdR = Hi
dR(M, j). This

may be viewed as an element in C×/Q×. The Equation (2.1.6) needs to be modified
slightly; while cB and cdR are still defined as the complex conjugations with reference
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20 CHAPTER 2. MOTIVIC COHOMOLOGY AND BEILINSON’S CONJECTURE

to the real structures defined by (2.1.7), one twists F∞ by (−1)j to take into account
the complex conjugation on Q(j).

The Q-vector space Hi
B(M,Q(j)) is in a natural way the underlying vector space

of a rational Hodge structure, pure of weight w = i−2j; as usual we denote by F ∗HdR

the associated Hodge filtration on HB⊗C = HdR⊗C. Thus HB⊗C =
⊕

p+q=wH
p,q

and F∞ : Hp,q ' Hq,p is a complex-linear isomorphism. We denote by H±B the ±1

eigenspaces for the action of F∞.
We suppose now that (M, i, j) satisfies the following additional condition:

(2.1.8) If w is even, then F∞ acts on Hw/2,w/2 as a scalar ε = ±1.

Let

p± =

{
w−1

2 , if w is odd;
w−1

2 ∓ 1
2ε, if w is even.

.

Set F± = F p
±
HdR and H±dR = HdR/F

∓. Then

dimH±B = dimH±dR

and the Deligne period c±(M, i, j) is defined to be the determinant of the composite
map

H±B ⊗C→ HB ⊗C
compB,dR−−−−−−→ HdR ⊗C→ H±dR ⊗C

with respect to the Q-structures H±B and H±dR, viewed as an element of C×/Q×. Note
that this is defined only under the assumption of (2.1.8).

2.1.5. Cohomology of MR. — Suppose M = hX, and let A be a subring of the com-
plex numbers, containing Q and stable by conjugation. Complex conjugation induces
an involution ι of X(C). This involution is covered by an involution of the constant
sheaf A, which induces complex conjugation on each fiber, and by an involution of the
de Rham complex Ω∗X(C), sending a differential form ω to ι∗ω. Accordingly we obtain
conjugate-linear involutions on de Rham cohomology tensored with C, as well as on
each step of the Hodge filtration; on Betti cohomology with A coefficients, and (since
the involutions are compatible under the map A→ Ω0

X(C)) also Deligne cohomology
with A coefficients.

In each case, the fixed points will be denoted, following Beilinson, by the nota-
tion H∗? (XR,−). Compare [2, p. 2037]. This notation extends, as before, to general
motives M .

Thus, for example,
Hi

B(MR, A) = Hi
B(MC, A)F∞cB

is the subspace fixed by F∞cB, where F∞ is “acting on the topological space MC” (at
least when M = hX) and cB is acting on the coefficients.

On the other hand,
Hi

dR(MR) = Hi
dR(M)⊗R
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2.1. BEILINSON’S CONJECTURE FOR MOTIVES 21

is simply the (real) de Rham cohomology of the associated real algebraic variety (or
motive). Similarly, FnHi

dR(MR) is the nth step of the Hodge filtration on the above
space. Observe, then, that FnHi

dR(MR) has a natural Q-structure.

2.1.6. The fundamental exact sequences and Q-structures. — For n ≥ i
2 + 1 there are

canonical isomorphisms (see [2, §3.2])

Hi+1
D

(MR,R(n)) ' Hi
B(MR,C)/(Hi

B(MR,R(n)) + FnHi
dR(MR))

' Hi
B(MR,R(n− 1))/FnHi

dR(MR),

In the second equation, we regard FnHi
dR(MR) as a subspace of Hi

B(MR,R(n− 1))

via the composite

(2.1.9) π̃n−1 : FnHi
dR(MR) ↪→ Hi

B(MR,C)
πn−1−−−→ Hi

B(MR,R(n− 1)),

where the latter map is the projection along C = R(n)⊕R(n− 1).
This gives rise to two fundamental exact sequences:

(2.1.10) 0→ FnHi
dR(MR)

π̃n−1→ Hi
B(MR,R(n− 1))→ Hi+1

D
(MR,R(n))→ 0

and

(2.1.11) 0→ Hi
B(MR,R(n))→ Hi

dR(MR)/FnHi
dR(MR)→ Hi+1

D
(MR,R(n))→ 0.

These exact sequences can be used to put (different) Q-structures on the R-vector
space detHi+1

D
(MR,R(n)) using the canonical Q-structures on the left two terms of

each sequence. The first, denoted R (M, i, n) will be the Q-structure obtained from
(2.1.10), namely using the Q-structures detHi

B(MR,Q(n− 1)) and det(FnHi
dR(M)).

The second, denoted DR (M, i, n) will be the Q-structure obtained from (2.1.11),
namely using the Q-structures det(Hi

dR(M)/Fn) and detHi
B(MR,Q(n)). These

Q-structures are related by

(2.1.12) DR (M, i, n) = (2π
√
−1)−d

−(M,i,n) · δ(M, i, n) ·R (M, i, n),

where d−(M, i, n) = dimHi
B(MC,Q(n))−. (See [33] (4.9.1).)

2.1.7. L-functions. — For M in MQ,rat and i an integer, the L-function Li(M, s) is
defined by

(2.1.13) Li(M, s) =
∏
p

Lip(M, s),

with
Lip(M, s) = det(1− Frobp p

−s|Hi
et(MQ,Q`)

Ip)−1,

where Frobp denotes a geometric Frobenius at p, the superscript Ip denotes taking
invariants under an inertia subgroup at p and ` is any prime not equal to p.

Implicit in this definition is the following conjecture, which we will will assume:

Each factor Lip(M, s)−1 is in fact a polynomial in p−s, with rational coef-
ficients, independent of the choice of `. Moreover, this factor has no poles
in the plane Re(s) > i

2 .
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22 CHAPTER 2. MOTIVIC COHOMOLOGY AND BEILINSON’S CONJECTURE

See [62, C5 and C6] of Serre’s article on local factors, for example. The last statement is
not necessary for Beilinson’s conjecture, but is very useful in handling bad factors; e.g.,
it would be necessary in formulating Beilinson’s conjecture for the partial L-function,
which is implicitly what we end up using. In fact, we could get by with the weaker
bound Re(s) ≥ i+1

2 .
The Euler product (2.1.13) converges on some right half plane in C; conjecturally,

one also expects (see [69]) that Li(M, s) admits a meromorphic continuation to all
of C that is analytic as long as either i is odd or the pair (M, i) satisfies the following
condition:

(?) i = 2j is even and H2j
et (MQ,Q`(j))

Gal(Q/Q) = 0.

One also expects that Li(M, s) satisfies a functional equation of the form:

(L∞ · L)i(M, s) = (ε∞ · ε)i(M, s) · (L∞ · L)−i(M∨, 1− s),
where L∞ is the archimedean L-factor, and ε∞, ε are ε-factors; for definitions, we
refer to [70].

2.1.8. Regulators and Beilinson’s conjecture. — There are regulator maps

(2.1.14) rD : Hi
M (M,Q(j))⊗R→ Hi

D(MR,R(j)),

which give rise to a morphism of twisted Poincaré duality theories.
Scholl has shown [61, Theorem 1.1.6] that there is a unique way to assign Q-sub-

spaces Hi+1
M (MZ,Q(n)) ⊆ Hi+1

M (M,Q(n)) to each Chow motive over Q, in a way that
respects morphisms, products, and so that Hi+1

M (hXZ,Q(n)) is given by the image of
motivic cohomology of a regular model X , when one exists (for details, see loc. cit.).
We now present a version of Beilinson’s conjectures relating regulators to L-values.

Conjecture 2.1.1 (Beilinson). — Suppose that n ≥ i
2 + 1 and that if n = i

2 + 1 then
(M, i) satisfies the condition (?) above.

(a) Then
rD : Hi+1

M (MZ,Q(n))⊗R→ Hi+1
D

(MR,R(n))

is an isomorphism.
(b) Further, we have equivalently

(2.1.15) rD

(
detHi+1

M (MZ,Q(n))
)

= L−i(M∨, 1− n)∗ ·R (M, i, n)

(where, for typographical reasons, we have written L(. . . )∗ instead of L∗ for the regu-
larized value) and

(2.1.16) rD

(
detHi+1

M (MZ,Q(n))
)

= Li(M,n) ·DR (M, i, n).

We understand the meromorphic continuation of the L-function and its functional
equation, as well as the properties of local Euler factors discussed after (2.1.13), to be
part of this conjecture.
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Remark 3. — We have omitted the description at the central point (conjecture of
Bloch and Beilinson). The point of main interest for us is the near right-of-center
point, given by n = i

2 + 1 (with i even). At this point, the formulation has to be
typically modified to allow for Tate cycles. For the motive that will be of most interest
to us (namely the adjoint motive attached to a tempered automorphic representation)
this is unnecessary since this motive satisfies assumption (?) in the cases of interest.

However, we will make use of the conjecture at the central point in part of our
arguments; there we will simply use Deligne’s formulation [17]. We also note that
we implicitly assume a version of the Tate conjecture below in order to claim that
the adjoint motive is determined up to isomorphism (in the category of Grothendieck
motives, see §2.1.9–§2.1.11) by its associated Galois representations. (See the appendix
and the reference to [63] therein.)

Remark 4. — In Beilinson’s original formulation of this conjecture one postulates the
existence of a Chow motive M0 (Beilinson denotes this M0) such that

(2.1.17) H−i(M∨) = Hi(M0, i)

for all geometric cohomology theories H∗ and all i. Then

L−i(M∨, 1− s) = Li(M0, i+ 1− s),
so the value L−i(M∨, 1 − n)∗ in (2.1.15) can be replaced by Li(M0, i + 1 − n)∗. See
also §2.1.12 below.

2.1.9. Pure motives. — The category of Chow motives has the disadvantage that it is
not Tannakian. To construct a (conjectural) Tannakian category one needs to modify
the morphisms and the commutativity constraint. For any field k, let Mk,hom and
Mk,num denote the categories obtained from Mk,rat by replacing the morphisms in
(2.1.1) by cycles modulo homological and numerical equivalence respectively. Thus
there are natural functors

Mk,rat →Mk,hom →Mk,num.

Jannsen [35] has shown that Mk,num is a semisimple abelian category and that nu-
merical equivalence is the only adequate equivalence relation on algebraic cycles for
which this is the case.

To outline what would be the most ideal state of affairs, we assume the following
standard conjectures on algebraic cycles:

1. (Künneth standard conjecture) For any smooth projective variety X, the Kün-
neth components of the diagonal (with respect to some Weil cohomology theory)
on X ×X are algebraic.

2. Numerical and homological equivalence coincide on CH∗(X)Q.

Then the second functor above is an equivalence of categories, so we can identify
Mk,hom and Mk,num; this will be the category of pure motives or Grothendieck mo-
tives.
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To make this category Tannakian, one needs to modify the commutativity con-
straint as described in [18] §6, [35]. With this new commutativity constraint, the
category of pure motives is Tannakian ([35] Cor. 2); we denote it Mk. If k = Q, then
M 7→ H∗B(MC), M 7→ H∗dR(M) and M 7→ H∗et(MQ) are Tannakian fiber functors.

We say moreover that a motive M is pure of weight w when the cohomology
Hj

B(M,C) is concentrated in degree j = w. In this case, we write for short HB(M,C)

for the graded vector space H∗B(M,C), which is entirely concentrated in degree w.
Note that in general, a pure motive is not necessarily pure of a fixed weight.

2.1.10. Passage from Chow motives to pure motives. — The L-function of a Chow
motive only depends on the associated Grothendieck motive. Therefore, one would
like to make sense of Beilinson’s conjectures directly for Grothendieck motives over Q.
As we shall explain in §2.1.10, §2.1.11, this can be done satisfactorily assuming the
filtration conjectures; and this assumption seems to be inevitable in our current state
of understanding. While the discussion that follows is presumably known to experts,
we were not able to find it in the literature.

When we apply Beilinson’s conjecture to Grothendieck motives, we always under-
stand that the filtration conjectures are assumed. One could remove this, in each
fixed instance, by starting with a Chow motive rather than a Grothendieck motive;
however, it is more natural in our applications to work with Grothendieck motives,
see Remark 9.

For any field k, Beilinson conjectures the existence of a descending filtration F • on
motivic cohomology Hi

M (X,Q(j)) for X in Vark satisfying the properties (ã) through
(ẽ) of [36] Remark 4.5(b):

1. F 0Hi
M (X,Q(j)) = Hi

M (X,Q(j)).

2. On H2j
M (X,Q(j)) = CHj(X)Q, we have F 1 = CHj(X)hom,Q.

3. F • is respected by pushforward and pullback for maps f : X → Y .

4. F rHi1
M (X,Q(j1)) · F sHi2

M (X,Q(j2)) ⊆ F r+sHi1+i2
M (X,Q(j1 + j2)).

5. F rHi
M (X,Q(j)) = 0 for r � 0. For k a number field, F 2Hi

M (X,Q(j)) = 0.

6. There are functorial isomorphisms

GrrF (Hi
M (X,Q(j))) = ExtrMMk

(1, hi−r(X)(j)).

Here MMk is a conjectural abelian category of mixed motives containing Mk,hom

as a full subcategory and 1 denotes the trivial motive h(Spec k).

Assuming these conjectures, one also gets a filtration F • on Hi
M (M,Q(j)) for

M ∈Mk,rat.
Let us note the following consequence of the above conjectures, a proof of which

can be found in [48, §7.3 Remark 3.bis]:

Proposition 2.1.1 (Beilinson). — Assuming the conjectures above on the filtration F •,
the functor Mk,rat →Mk,hom is essentially surjective. Given M ∈Mk,hom, and any
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two lifts M̃ and M̃ ′ of M to Mk,rat, there exists an isomorphism M̃ ' M̃ ′ in Mk,rat

that maps to the identity on M in Mk,hom.

Remark 5. — In fact, (assuming the filtration conjectures) if ξ : M → N is an
isomorphism in Mk,hom, any lift ξ̃ : M̃ → Ñ of ξ to Mk,rat is an isomorphism
in Mk,rat. Indeed, let η : N →M be the isomorphism which is inverse to ξ and let η̃ :

Ñ → M̃ be a lift of η. Then ξ̃η̃ := ξ̃ ◦ η̃ ∈ End(Ñ) maps to the identity in End(N).
Now the filtration conjectures imply that the kernel of the map End(Ñ)→ End(N) is
a nilpotent (two-sided) ideal. It follows from this that ξ̃η̃ is invertible in End(Ñ),
which implies that ξ̃ admits a right inverse ξ̃′. Similarly, η̃ξ̃ is invertible in End(M̃),
so ξ̃ admits a left inverse ξ̃′′. Clearly, ξ̃′ = ξ̃′′, so ξ̃ is an isomorphism.

Corollary 2.1.1. — Let M = (X, p, r) in Mk,hom. For any two lifts M̃ = (X, p̃, r) and
M̃ ′ = (X, p̃′, r) of M to Mk,rat, there exist canonical isomorphisms

GrnF (Hi
M (M̃,Q(j))) ' GrnF (Hi

M (M̃ ′,Q(j))).

Proof. — Let ξ̃ be an element in p̃′ ◦ CHdim(X)(X ×X)Q ◦ p̃ giving an isomorphism
M̃ ' M̃ ′, covering the identity map on M . Then ξ̃ induces maps

ξ̃∗ : Hi
M (M̃ ′,Q(j)))→ Hi

M (M̃,Q(j)))

that preserve the filtration, given as usual by x 7→ p1,∗(ξ ·p∗2(x)). Now ξ̃ is well defined
up to an element in p̃′ ◦CHdim(X)(X×X)hom,Q ◦ p̃ = p̃′ ◦F 1 CHdim(X)(X×X)Q ◦ p̃. It
follows from property (4) of the filtration that the induced map on Grn is independent
of the choice of ξ̃.

This corollary allows us to defined graded pieces of motivic cohomology for motives
in Mk,hom. Indeed, for M ∈Mk,hom, we lift M to M̃ in Mk,rat and define

GrnF (Hi
M (M,Q(j))) := GrnF (Hi

M (M̃,Q(j))).

The corollary above shows that this is independent of the choice of M̃ up to canonical
isomorphism.

Corollary 2.1.2. — Let M = (X, p, r), N = (Y, q, s) ∈ Mk,hom and ξ : M → N a
morphism in Mk,hom. Then ξ induces canonical maps

ξ∗ : GrnF (Hi
M (N,Q(j)))→ GrnF (Hi

M (M,Q(j))).

Proof. — To construct ξ∗, first pick lifts M̃ = (X, p̃, r) and Ñ = (Y, q̃, s) of M and
N respectively to Mk,rat. Let ξ̃ be a lift of ξ to q̃ ◦ CH∗(X × Y ) ◦ p̃. The map

ξ̃∗ : Hi
M (N,Q(j))→ Hi

M (M,Q(j))

preserves filtrations; by the same argument as in the previous propostiion, the induced
map on graded pieces is independent of the choice of ξ̃, and is thus canonical.

The following corollary follows immediately from the canonicity of the map ξ∗.
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Corollary 2.1.3. — 1. Suppose ξ : M → N and ξ′ : N → P are morphisms
in Mk,hom. Then (ξ′ ◦ ξ)∗ = ξ∗ ◦ ξ′∗ on GrnHi

M (P,Q(j)).

2. Suppose that ξ : M → N is an isomorphism in Mk,hom. Then

ξ∗ : GrnHi
M (N,Q(j))→ GrnHi

M (M,Q(j))

is an isomorphism.

2.1.11. Beilinson’s conjectures for pure motives. — Now we specialize the previous
section to the setting of Beilinson’s conjectures on L-values. The key point is that
even though these conjectures are formulated in terms of motivic cohomology of Chow
motives, in each case it is only a certain graded piece that matters, so the conjectures
make sense for Grothendieck motives as well. Indeed, let us now specialize to k = Q,
and let X be a variety over Q. Then:

(i) For n ≥ i
2 + 1, we see from (6) that

Gr0Hi+1
M (X,Q(n)) = HomMQ

(1, hi+1(X)(n)) = 0

since hi+1(X)(n) is pure of weight i+ 1− 2n ≤ −1. Thus in this range we have

Hi+1
M (X,Q(n)) = F 1Hi+1

M (X,Q(n)) = Gr1Hi+1
M (X,Q(n)),

since F 2 = 0 by (5).

(ii) If n = i
2 + 1, the conjecture typically also involves

CHn−1(X)Q/CHn−1(X)hom,Q = Gr0H2n−2
M (X,Q(n− 1)).

(iii) If n = i+1
2 , we are at the center and the conjecture involves

CHn(X)hom,Q = F 1H2n
M (X,Q(n)) = Gr1H2n

M (X,Q(n)),

since F 2 = 0 by (5).

To be more precise, in case (i) (which is the case of main interest in this pa-
per), one needs to work with the subspace of “integral” elements, Hi+1

M (XZ,Q(n)).
But as pointed out earlier, Scholl has defined rational subspaces Hi+1

M (MZ,Q(n))

for M ∈ MQ,rat that are invariant under isomorphisms in MQ,rat. Consequently,
if M ∈ MQ,hom, one can lift M to M̃ in MQ,rat and then consider the sub-
space Hi+1

M (M̃Z,Q(n)), this being independent of the choice of M̃ .

2.1.12. The dual motive. — One sees now that there are two different notions of
the “dual motive”. On the one hand, if M = (X, p, r) is either a Chow motive or a
Grothendieck motive, we have defined M∨ = (X, pt, d − r) with d = dim(X). Recall
that this satisfies

(2.1.18) H−i(M∨) = Hi(M)∨

for any (geometric) cohomology theory. On the other hand, assuming the conjectural
framework described above (so that Mhom is a Tannakian category), one can attach
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to any M in Mhom a motive M∗ in Mhom such that

(2.1.19) Hi(M∗) = Hi(M)∨

for all i. By Prop. 2.1.1, one can lift M∗ to a Chow motive, any two such lifts being
isomorphic but not canonically so. We note the following example: if M = (X,πj , 0)

with πj the Künneth projector onto hj(X), then

M∨ = (X,π2d−j , d),

M∗ = (X,π2d−j , d− j)

and we can take M0 = M = (X,πj , 0) (see Remark 4).

Remark 6. — The case of most interest in this paper is when M ∈Mk,hom is (pure)
of weight zero so that Hi(M) vanishes outside of i = 0. It follows then from (2.1.18)
and (2.1.19) that M∗ = M∨. Further, from (2.1.17) we see that we can choose

M0 = M∗ = M∨,

so all notions of dual agree in this case. Let us restate Beilinson’s conjecture in this
case for n = 1. Writing simply L instead of L0 and R (M), DR (M) for R (M, 0, 1),
DR (M, 0, 1) respectively, the conjecture predicts, equivalently:

(2.1.20) rD

(
detH1

M (MZ,Q(1))
)

= L∗(M∗, 0) ·R (M)

and

(2.1.21) rD

(
detH1

M (MZ,Q(1))
)

= L(M, 1) ·DR (M).

2.2. Polarizations, weak polarizations and volumes

In this section, we examine the fundamental exact sequence (2.1.10) in the presence
of a polarization on M . We also introduce the notion of a weak polarization, which
for us will have all the properties of a polarization except that we replace the usual
definiteness assumption by a non-degeneracy requirement.

2.2.1. Hodge structures. — We first discuss these in the context of rational Hodge
structures. A Q-Hodge structure of weight m consists of a finite dimensional Q-vector
space V and a decomposition

(2.2.1) VC =
⊕

p+q=m

V p,q

such that V p,q = V q,p. The Hodge filtration on VC is given by

F iVC :=
⊕
p≥i

p+q=m

V p,q.

The splitting (2.2.1) can be recovered from the Hodge filtration since V pq = F pVC ∩ F qVC.
IfM ∈MQ, the Betti cohomologyHm

B (MC) carries a Hodge structure of weightm.
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The Hodge structure Q(m) of weight −2m is defined by the cohomology of the
motive Q(m), explicitly:

(2.2.2) V = (2π
√
−1)mQ, V −m,−m = VC.

In particular, Q(1) should be regarded as the Hodge structure of H1(Gm) (or
H2(P1), if one wants to only work with projective varieties). Indeed, if we identify

H1,B(Gm,C) ' C

by integrating the form dz
z , the resulting identification carries the Betti Q-structure

to (2π
√
−1)Q ⊂ C, and the de Rham Q-structure to Q ⊂ C.

If V is a Q-Hodge structure then there is an action of C× on VC, which acts by
the character

(2.2.3) z 7→ zpzq

on V pq. This action preserves V ⊗R ⊂ VC.
For the cohomology of motives defined over Q this action extends to a larger group:

let WR and WC denote the Weil groups of R and C respectively. Thus WC = C×

while WR is the non-split extension

1→ C× →WR → 〈j〉 → 1,

where j2 = −1 and j−1zj = z̄ for z ∈ C×. For M ∈ MQ, we extend the action of
(2.2.3) to the real Weil group via

j = i−p−qF∞ on V pq,

see [70, §4.4] (we have used an opposite sign convention to match with (2.2.3)).

2.2.2. Polarizations on Hodge structures. — A weak polarization on a pure Q-Hodge
structure V of weight m will be a non-degenerate bilinear form

Q : V × V → Q

satisfying (here we continue to write Q for the scalar extension to a bilinear form
VC × VC → C)

(i) Q(u, v) = (−1)mQ(v, u). Thus Q is (−1)m-symmetric.

(ii) Q(V p,q, V p
′,q′) = 0 unless (p, q) = (q′, p′).

We mention various equivalent formulations of these conditions. Firstly, since Q is
defined over Q, we have Q(u, v) = Q(ū, v̄). From this it is easy to see that (ii) may
be replaced by (ii′):

(ii′) F iVC is orthogonal to F i
∗
VC where i∗ := m− i+ 1.

Since Q is non-degenerate and since F iVC and F i
∗
VC have complementary dimensions

in VC, we can also replace (ii′) by (ii′′):

(ii′′) The orthogonal complement of F iVC is F i
∗
VC.

Now define
S := (2π

√
−1)−mQ
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considered as a linear function

S : V ⊗ V → Q(−m).

Then condition (ii′′) above is exactly equivalent to saying that S gives a mor-
phism of Q-Hodge structures. Thus we can equivalently define a weak polarization
on V to consist of a morphism of Q-Hodge structures S as above satisfying
S(u⊗ v) = (−1)mS(v ⊗ u).

A polarization on a Q-Hodge structure V is a weak polarization Q that satisfies
the following additional positivity condition:
(iii) If u ∈ V p,q, u 6= 0, then ip−qQ(u, ū) > 0. (That ip−qQ(u, ū) lies in R follows

from (i) and the fact that Q is defined over Q.)
Let C be the operator on VC given by the action of i ∈ C× (see (2.2.3)). Then

we can rewrite (iii) above as Q(Cu, ū) > 0. This statement holds for all u ∈ VC (and
not just on elements of fixed type (p, q)) on account of (ii). Thus condition (iii) is
equivalent to:
(iii′) The hermitian form (u, v) 7→ Q(Cu, v̄) is positive definite.
Now C restricts to an R-linear operator on VR, and the condition (iii′) is equivalent
to
(iii′′) The R-bilinear form

VR × VR → R, (u, v) 7→ Q(Cu, v)

is symmetric and positive definite.

2.2.3. Polarizations on motives. — A weak polarization on a pure motive M ∈MQ of
weight m will be a morphism

s : M ⊗M → Q(−m),

that is (−1)m-symmetric and such that the induced map

M →M∗(−m)

is an isomorphism. In particular, writing V = HB(MC,C) for the associated Q-Hodge
structure, s induces an isomorphism V

∼←− V ∗(−m), which gives a (−1)m-symmetric
bilinear form

HB(s) : V ⊗ V → Q(−m),

commuting with the action of C×.
Thus HB(s) is a weak polarization of Hodge structures, in the sense of §2.2.2.

A polarization on M is a weak polarization s such that HB(s) is a polarization on V .
For the next statement, recall that V = HB(MC,C) is equipped with an involu-

tion F∞.

Lemma 2.2.1. — The (complexification of the) weak polarization

HB(s) : V ⊗ V → Q(−m)

is equivariant for cB, F∞ and the action of the Hodge S1 on VC.
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Proof. — It is enough to show these assertions for the morphism V ∗(−m)→ V . But
given any morphism f : M → M ′ of objects in MQ the induced morphism on Betti
cohomology commutes with cB, F∞ and S1.

In practice, instead of a weak polarization on M , we can work just with part of
the linear algebraic data given by such a form.

Namely, we give ourselves a nondegenerate symmetric bilinear form

(2.2.4) S : V × V → Q(−m) = (2πi)−mQ

on V = HB(MC,Q), whose complexification SC on VC satisfies:
(a) SC is invariant by F∞ and C×, i.e., by the action of WR, and
(b) SC restricts to a Q-valued form on HdR(M).

This gives a Hermitian form 〈·, ·〉 on VC defined by

〈x, y〉 = S(x, ȳ).

2.2.4. Metrics on Deligne cohomology. — We shall now explain how to use a polar-
ization to equip Deligne cohomology with a quadratic form. In fact, we do not need
a polarization, but simply the linear algebra-data associated to a weak polarization,
as in (2.2.4) and discussion after it.

Recall (for M ∈MQ) the Beilinson exact sequence:

(2.2.5) 0→ FnHi
dR(MR)

π̃n−1−−−→ Hi
B(MR,R(n− 1))→ Hi+1

D
(MR,R(n))→ 0,

where i and n are integers with i ≤ 2n− 1; and the first map is as in (2.1.9).
Let M be pure of weight i and let V be the Q-Hodge structure Hi

B(MC,Q). We
suppose, as in the discussion above, we are given the linear algebraic data associated
to a weak polarization, i.e.,

S : V × V → Q(−i)
and we define Q = (2π

√
−1)iS, as before. The distinction between S and Q is that S is

rational valued on de Rham cohomology, andQ is rational valued on Betti cohomology.

Proposition 2.2.1. — Let (·, ·) denote the bilinear form u, v 7→ Q(u, v̄) on
Hi
B(MR,R(n− 1)). Then
1. The form (·, ·) is R-valued.
2. Suppose that i is even. Then the form (·, ·) is symmetric and non-degenerate

and so is its restriction to the subspace π̃n−1(FnHi
dR(MR)). In particular, it

induces by orthogonal projection a non-degenerate form, also denoted (·, ·), on
the quotient Hi+1

D
(MR,R(n)).

3. If i = 2n−2 and S arises from a polarization, the form (·, ·) on Hi+1
D

(MR,R(n))

is symmetric and positive-definite.

Proof. — The form Q is real-valued on Hi
B(MC,R) and so Q(u, v̄) = Q(ū, v). Let

u, v ∈ Hi
B(MR,R(n− 1)). Then ū = (−1)n−1u and same for v; thus

Q(u, v̄) = Q(ū, v) = Q((−1)n−1u, (−1)n−1v̄) = Q(u, v̄),
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from which we see that (·, ·) is R-valued.
Now suppose that i is even. Then Q is symmetric, and so (v, u) = Q(v̄, u) =

Q(u, v̄) = Q(ū, v) = (u, v). Thus (·, ·) is symmetric.
The Hermitian form (u, v) 7→ S(u, v̄) is nondegenerate, and so (u, v) 7→ ReQ(u, v̄)

is a nondegenerate real-valued quadratic form on VC considered as a real vector space.
Now the inclusion R(n− 1) ↪→ C induces an identification (§2.1.5)

Hi
B(MR,R(n− 1)) = Hi

B(MC,C)cB=(−1)n−1,F∞=(−1)n−1

(2.2.6)

= V
cB=(−1)n−1,F∞=(−1)n−1

C .

The quadratic form ReQ(u, v̄) is preserved by cB, and Q(F∞u, F∞v) = (−1)iQ(u, v̄);
since i is even, we see that ReQ(u, v̄) is preserved by F∞. Therefore, the restriction
of ReQ(u, v̄) to Hi

B(MR,R(n− 1)) remains nondegenerate, since this subspace is an
eigenspace for the action of the Klein four-group generated by F∞, cB, and this group
preserves ReQ(u, v̄).

The same analysis holds verbatim replacing VC by V p,q ⊕ V q,p, and shows
that ReQ(u, v̄) is nondegenerate on (V p,q ⊕ V q,p)cB=(−1)n−1,F∞=(−1)n−1

. Since

π̃n−1(FnHi
dR(MR)) =

⊕
p≥n
p+q=i

(V p,q ⊕ V q,p)cB=(−1)n−1,F∞=(−1)n−1

,

the non-degeneracy of (·, ·) restricted to π̃n−1(FnHi
dR(MR)) follows.

Finally, for (3), we note that when i = 2n − 2, the orthogonal complement
of π̃n−1(FnHj

dR(MR)) is just

(V n−1,n−1)cB=(−1)n−1,F∞=(−1)n−1

and the restriction of (·, ·) to this subspace is positive definite if S is a polarization.

2.2.5. Motives of weight zero. — The case of most interest to us is when M is of
weight 0 and n = 1, i = 0 and we restrict to this case for the rest of this section.

The exact sequence (2.2.5), specialized to n = 1 and i = 0 is:

(2.2.7) 0→ F 1HdR(M)⊗Q R
π̃0−→ H0

B(MR,R)→ H1
D(MR,R(1))︸ ︷︷ ︸

=H1
M

(MZ,Q(1))⊗R

→ 0,

where the equality in the second line is conditional on Beilinson’s conjecture. The
map π̃0 here is given by:

π̃0(x) =
1

2
(x+ x̄).

Note that the Weil group WR acts naturally on HB(MC,R) and the fixed set can be
described in equivalent ways:

HB(MC,R)WR = subspace of the (0, 0)-Hodge part of HB(MC,C) fixed by F∞ and cB
= orthogonal complement of π̃0

(
F 1HdR(M)⊗Q R

)
inside HB(MR,R),
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for any weak polarization s on M . Thus (2.2.7) induces an isomorphism

(2.2.8) HB(MC,R)WR
∼−→ H1

D(MR,R(1)).

Proposition 2.2.1 implies that, if we are given a weak polarization s on M , then
the form S induces onHB(MC,R)WR

∼−→ H1
D

(MR,R(1)) a non-degenerate quadratic
form; if s is actually a polarization, this quadratic form is in fact positive definite.

2.2.6. Volumes. — We continue to study the setting of a weight 0 motiveM . In what
follows, we do not need the full structure of a polarization: all we need is the associated
linear-algebraic data, i.e., S as in Equation (2.2.4), and thus we will just assumeM to
be so equipped. Recall that although S is nondegenerate, no definiteness properties
are imposed on it.

We can compute the volumes (in the sense of (1.4.2)) of the three Q-vector spaces
appearing in (2.2.7), using the metric arising from S.

The restriction of SC to HB(MR,R) = V F∞,cBC is just given by (x, y) 7→ SC(x, y).
When we pull back this form to F 1HdR(M)⊗R via π̃0, the result is

(x, y) = 〈x+ x̄

2
,
y + ȳ

2
〉 =

1

4
(SC(x, ȳ) + SC(x̄, y)) =

1

4
(SC(x, ȳ) + SC(x, ȳ))

=
1

2
ReSC(x, ȳ) =

1

2
SC(x, ȳ).

Here we have used that SC(x, ȳ) ∈ R for x, y ∈ F 1HdR(M) ⊗ R: this is because
cB preserves HdR(M)⊗R (since cB and cdR commute), and so ȳ ∈ HdR(M)⊗R also.

The next lemma describe some basic results concerning these volumes and their
relations. In particular, up to factors of Q×, the squares of these volumes do not
depend on the choice of S:

Lemma 2.2.2. — With notation as above, the square of volS HB(MR,Q) lies in Q×,
and the square of volS F

1HdR(M) is, at least up to Q×, independent of the choice of
the form S (subject to S satisfying the conditions (a) and (b) after (2.2.4)).

If we moreover assume Beilinson’s conjecture, as formulated in (2.1.20), we have:

(2.2.9) volS H
1
M (MZ,Q(1)) ∼Q× L

∗(M∗, 0) · volS HB(MR,Q)

volS F 1HdR(M)
,

where L∗ means highest non-vanishing Taylor coefficient; and again all volumes are
computed with respect to the form S.)

Proof. — The first assertion is immediate, since S is rational-valued on HB(MC,Q).
We next prove the assertion concerning volS F

1HdR(M). The form S descends to a
perfect pairing

S : F 1HdR(M)×HdR(M)/F 0HdR(M)→ Q,

and hence a perfect pairing

S : detF 1HdR(M)× det(HdR(M)/F 0)→ Q.
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Note also that the complex conjugation cB induces an isomorphism

F 1HdR(M)⊗C ' (HdR(M)/F 0)⊗C.

Choose generators v+, v− for the Q-vector spaces detF 1HdR(M) and det(HdR(M)/F 0).
If dimF 1HdR(M) = d, the image of v+ under the natural projection

ϕ :
∧d

(HdR(M)⊗C)→
∧d (

HdR(M)/F 0 ⊗C
)

is a generator for the right-hand side, so we have

(2.2.10) ϕ(v+) = λ · v−

for some scalar λ ∈ C× (in fact, in R×) which is obviously independent of the choice
of S. The volume of F 1HdR(M) is then given by

(2.2.11) 2d ·
(
volS F

1HdR(M)
)2

= SC(v+, v+) = SC(v+, ϕ(v+)) = λ · S(v+, v−).

The result follows since S(v+, v−) ∈ Q×.
We finally verify (2.2.9): by (2.1.20) we have:

(2.2.12) det(HB(MR,Q)) · L∗(M∗, 0) ∼ detF 1HdR(M) · det(H1
M (MZ,Q(1))),

which we should regard as an equality inside∧∗
HB(MR,R) '

∧∗
(F 1HdR(MR))⊗

∧∗
H1

D(MR,R(1)).

Computing volumes of both sides of (2.2.12) with respect to the polarization we
get (2.2.9).

We remark that the lemma allows us to define volF 1HdR(M) up to
√

Q×—namely,
take

√
λ where λ is in (2.2.10)—even without a polarization.
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CHAPTER 3

FUNDAMENTAL CARTAN
AND TEMPERED COHOMOLOGICAL REPRESENTATIONS

In this section, we will associate a canonical C-vector space aG to the real reductive
group GR; its complex-linear dual will be denoted by a∗G. These vector spaces depend
on GR only up to isogeny.

Despite the notation, the group GR does not need to be the extension of a reductive
group over Q; for this section alone, it can be an arbitrary real reductive group. We
denote by G the real points of GR. Similarly, in this section alone, we will allow LG to
denote the dual group of the real algebraic group, rather than the Q-algebraic group;
in other words,

LG = Ĝo Gal(C/R),

rather than the variant with Gal(Q/Q).
We shall then construct an action of

∧∗
a∗G on the cohomology of any tempered,

cohomological representation of G, over which this cohomology is freely generated in
degree q. We will always have

(3.0.1) dim a∗G = δ = rank(G)− rank(K∞).

The short version is that the vector space a∗G is dual to the Lie algebra of the split
part of a fundamental Cartan algebra, but we want to be a little more canonical (in
particular, define it up to a unique isomorphism).

We will give two definitions of a∗G. The first in §3.1 is analogous to the definition
of “canonical maximal torus” of a reductive group. The second definition in §3.2 uses
the dual group.

There is a natural real structure on aG, arising from either of the constructions.
However, what will be more important to us is a slightly less apparent real structure,
the “twisted real structure,” which we define in Definition 3.1.2.

In §3.4 we construct the action of
∧∗
a∗G on the (g,K∞)-cohomology of a tempered

representation; in fact we will work with (g,K0
∞)-cohomology, where K0

∞ is the iden-
tity component of K∞. The book [9] is a standard reference for (g,K∞) cohomology.

We follow in this section the convention of allowing g etc. to denote the complexi-
fications of the Lie algebras and reserving gR or Lie(GR) for the real Lie algebra. We
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write kR for the Lie algebra of K∞; let θ be the Cartan involution of gR that fixes
kR, and pR the −1 eigenspace for θ, with complexification p. Thus g = k⊕ p. Finally,
let ZG be the center of GR, with Lie algebra z and real Lie algebra zR.

Moreover, let us fix

(3.0.2) BR = an invariant, θ-invariant, R-valued quadratic form on gR,

with the property that BR(X, θ(X)) is negative definite. (Invariant means that it
is invariant by inner automorphisms, whereas θ-invariant means BR(θ(X), θ(Y )) =

BR(X,Y ).) For example, if GR is semisimple, the Killing form has these properties.
Note that such a form gives rise to a positive definite metric on gR/kR, and this
normalizes a Riemannian metric on the locally symmetric space Y (K).

3.1. First construction of a∗G via fundamental Cartan subalgebra

A fundamental Cartan subalgebra of gR is a θ-stable Cartan subalgebra whose
compact part (the fixed points of θ) is of maximal dimension among all θ-stable
Cartan subalgebras. These are all conjugate, see [82, 2.3.4]. Let δ be the dimen-
sion of the split part (−1 eigenspace of θ) of a fundamental Cartan subalgebra. Then
δ = rank(G)− rank(K∞). Informally, δ is the smallest dimension of any family of tem-
pered representations of G. The integer δ depends only on the inner class of GR. For
almost simple groups, δ = 0 unless GR is “a complex group” (i.e., GR ' ResC/RG∗

where G∗ is a simple complex reductive group) or GR is (up to center and inner
twisting) SLn(n ≥ 3),Esplit

6 or SOp,q where p, q are odd.
Consider triples (a, b, q) that arise thus: Begin with a Cartan subgroup B ⊂ K◦∞,

with Lie algebra bR ⊂ kR and complexified Lie algebra b ⊂ k. Form its centralizer
tR = aR ⊕ bR inside gR, where aR is the −1 eigenspace for θ; it is a fundamental
Cartan subalgebra with complexification t = a⊕ b. Pick generic x ∈ ibR and let q be
the sum of all eigenspaces of x on g which have non-negative eigenvalue. Thus q is a
Borel subalgebra and its torus quotient is a⊕ b.

Proposition 3.1.1. — Suppose (a, b, q) and (a′, b′, q′) arise, as described above,
from (b, x) and (b′, x′).

Then there then there exists g ∈ GR(C) such that Ad(g) carries (a, b, q)

to (a′, b′, q′) and preserves the real structure on a (i.e., carries aR ⊂ a to a′R ⊂ a′).
Moreover, any two such g, g′ induce the same isomorphism a→ a′.

Note that (a, b, q) and (a′, b′, q′) need not be conjugate under GR(R).

Proof. — The last (uniqueness) assertion is obvious: g, g′ differ by an element of the
Borel subgroup corresponding to q, which act as as the identity on its torus quotient.

We thank the referee for suggesting the following proof (much shorter than our
original one): There certainly exists such a g carring q to q′, and a ⊕ b to a′ ⊕ b′. It
suffices to show that the map

Ad(g) : a⊕ b→ a′ ⊕ b′
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commutes both with complex conjugation and with the Cartan involution. For this, it
suffices to show that the adjoint action of θ(g) and ḡ also carry (q, a⊕b) to (q′, a′⊕b′),
for this characterizes them up to the centralizer of a⊕ b.

But θ(g) takes θ(q) = q to θ(q′) = q′, and similarly it takes a⊕ b to a′ ⊕ b′. Also,
ḡ takes q to q′ (all complex conjugations are for the real structure on G) and takes
a⊕ b to a′⊕ b′. Since q̄ is the opposite to q with respect to a⊕ b, and similarly for q′,
we see that ḡ also takes q to q′ as claimed.

Therefore, a or aR as above is well-defined up to unique isomorphism; we denote
this common space by aG. More formally,

(3.1.1) aG := lim←−
(a,b,q)

a,

and we define a∗G to be its C-linear dual. Visibly aG does not depend on the isogeny
class of GR - it depends only on the Lie algebra Lie(GR). It is also equipped with a
canonical real structure arising from aR ⊂ a.

There is another real structure on a of importance to us. To describe it, the following
lemma (which we shall prove in §3.1.1) will be useful:

Lemma 3.1.1. — With notation as described, let nK ∈ K◦∞ normalize b and take the
parabolic subalgebra q ∩ k ⊂ k to its opposite, with respect to the Cartan subalgebra b.
Similarly, let nG ∈ GR(C) normalize a⊕ b and carry q to its opposite. Then nG and
nK both preserve a, and coincide on it.

It is at least clear that nK preserves a, and the same statement for nG can be
proved in a fashion that is analogous to the proof of Proposition 3.1.1. However, the
full statement seems a bit tricker, which is why we confine the proof to §3.1.1.

Definition 3.1.1. — The long Weyl element is the involution of aG = lim←−(a,b,q)
a in-

duced by the common action of nG or nK from the prior lemma.

The long Weyl element preserves aG,R, since wK can be represented by an element
of K∞. We use it to define a second real structure:

Definition 3.1.2. — The twisted real structure a′G,R on aG is the fixed points of the
involution given by

(X 7→ X̄) · w,
where X 7→ X̄ is the antilinear involution defined by aG,R, and w is the long Weyl
group element for aG.

3.1.1. Root systems on b. — The following section—whose aim is to prove
Lemma 3.1.1—owes much to an anonymous referee of this paper, whose sugges-
tions greatly simplified our previous arguments.

Write M for the centralizer of a in GC; it is a Levi subgroup. Write m for the
(complex) Lie algebra of M.
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It is proved in [20, Proposition 18.2.3]; that the set of roots of b on g form a not
necessarily reduced root system inside the dual of ibR/i(zR∩bR); we regard the latter
as an inner product space by using the form BR. (The reference cited uses the Killing
form, but B has all the necessary properties for the argument.)

We will abuse notation slightly and simply say that these roots form a root system

∆(g : b) ⊂ ib∗R,
with the understanding that their span is only the subspace of ib∗R orthogonal to the
central space zR ∩ bR ⊂ bR. Then the roots ∆(k : b) on k or the roots ∆(m : b) on m
form subsystems of ∆(g : b). The Weyl groups of these root systems will be denoted
WG,WK ,WM respectively; these are all regarded as subgroups of Aut(b). We note
two useful facts about this setup:

— Each root of b on g is either a root on k or a root on m:

(3.1.2) ∆(g : b) = ∆(k : b) ∪∆(m : b).

Indeed, for α a root of b on g, the corresponding root subspace gα is preserved
by θC, the complex-linear extension of the Cartan involution for gR, and also
by ad(a). If the fixed space of θC on gα is nontrivial, then α lies inside ∆(k : b).
Otherwise θC acts as −1 on gα, and for Z ∈ a, X ∈ gα we compute

−[Z,X] = θ([Z,X]) = [θ(Z), θ(X)] = [−Z,−X] = [Z,X].

so that a centralizes the whole root space; in particular, gα ⊂ m. This proves
(3.1.2).

— Each element of WM has a representative nM ∈ GR(C) which normalizes a
and b. For this it is harmless to assume (passing to the derived group) that G is
semisimple, and to consider the case of a root reflection sβ for some root
β ∈ ∆(m : b). Now β is the restriction of some root β∗ of a ⊕ b on m, and
so w has a representative w̃ inside the normalizer of a ⊕ b inside MC; now w̃

preserves a, and therefore it preserves b too by consideration of the Killing form.
(At the last step, we note that aR, bR are orthogonal to one another under BR,
which follows from the fact that they are in different eigenspaces for the Cartan
involution.)

Lemma 3.1.2. — Suppose that C , C ′ are chambers for ∆(g : b) that lie in a fixed
chamber for ∆(k : b). (Here, a“chamber” for a root system is a connected component of
the complement of all hyperplanes orthogonal to the roots.) Then there is wM ∈WM ,
the Weyl group of ∆(m : b), such that wM C = C ′.

Proof. — Because of (3.1.2) a fixed chamber for ∆(k : b) is subdivided by hyper-
planes H orthogonal to roots β ∈ ∆(m : b); the corresponding reflection sα ∈ W (m :

b) allows one to move between the two sides of this H .
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Conclusion of the proof of Lemma 3.1.1. We choose a chamber C in ibR for ∆(g : b)

that is associated to q, i.e., for x ∈ C the Borel subalgebra q ⊃ b⊕ a is spanned from
non-negative root spaces of x.

Let wK be the automorphism of b induced by nK (equivalently n−1
K ). Let wG be an

element in the Weyl group of ∆(g : b) such that wGC = −C (this is possible because
the Weyl group WG acts simply transitively on chambers).

Then wKwGC and C both lie in the same positive chamber for ∆(k : b). By
Lemma 3.1.2 there is wM ∈ WM such that wM C = wKwGC . Choose a representa-
tive nM ∈ GR(C) for this wM , normalizing a and b. Then n := nK · nM ∈ GR(C)

normalizes a and b; this element n takes the chamber C to −C , and so it takes q to qop.
We may therefore suppose n = nG. It follows that nG preserves a, and its action on a
coincides with nK .

3.2. Second construction of a∗G via the dual group

Let T̂ ⊂ B̂ be the standard maximal torus and Borel in Ĝ. Let LW denote the
normalizer of T̂ inside ĜoGal(C/R), modulo T̂ . There exists a unique lift w0 ∈ LW

of the nontrivial element of Gal(C/R) with the property that w0 sends B̂ to the
opposite Borel (w.r.t. T̂ ). Moreover, we may choose a representative of w0 that lies
inside Ĝ(R) o Gal(C/R), unique up to T̂ (R); thus the space Lie(T̂ )w0 carries a real
structure arising from the real structure on T̂ . (Here, and in what follows, we are using
the structure of Ĝ as a split Chevalley group to speak of its R points, as mentioned
in §1.6).

We will show that a∗G can be identified with Lie(T̂ )w0 , in a fashion that carries the
real structure a∗G,R to the natural real structure on the latter space.

Observe, first of all, that a choice of (a, b, q) as before yields a torus T ⊂ GR with
Lie algebra a⊕ b, and a Borel subgroup of GR ×R C containing T, with Lie algebra
q; then we get identifications

(3.2.1) Lie(T̂ ) ' X∗(T̂ )⊗C = X∗(T)⊗C = (a⊕ b)∗.
We have used the fact that, for any complex torus S, we may identify Lie(S) with
X∗(S) ⊗ Lie(Gm) and thus with X∗(S) ⊗ C, choosing the basis for Lie(Gm) that is
dual to dz

z .
If we choose a different triple (a′, b′, q′) there exists g ∈ GR(C) conjugating (a, b, q)

to (a′, b′, q′); the maps (3.2.1) differ by Ad(g). In particular, we get by virtue of
Proposition 3.1.1, a map

(3.2.2) Lie(T̂ )→ lim←−
(a,b,q)

a∗ = a∗G.

Lemma 3.2.1. — The map (3.2.2) carries Lie(T̂ )w0 isomorphically onto a∗G, and pre-
serves real structures.
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Moreover, the long Weyl group element wĜ for T̂ , carrying B̂ to its opposite, pre-
serves Lie(T̂ )w0 , and is carried under this identification to the long Weyl element
acting on a∗G (see discussion after Lemma 3.1.1).

This justifies using Lie(T̂ )w0 as an alternate definition of a∗G.
In the following proof, we will refer to the “standard” antiholomorphic involution

on T̂ or its Lie algebra. The torus T̂ is, by definition, a split torus; as such it has a
unique split R-form, and we refer to the associated antiholomorphic involution as the
“standard” one.

Proof. — Under the identification of (3.2.1) the action of w0 on Lie(T̂ ) is carried to
the action on X∗(T) ⊗C = (a ⊕ b)∗ of an automorphism γ of g that belongs to the
same outer class as complex conjugation, and switches q and its opposite qop relative
to a⊕b. However, by virtue of the construction of q from an element x ∈ ibR, complex
conjugation switches q and qop. It follows that γ corresponds precisely to the action
of complex conjugation c on X∗(T) ⊗C. It readily follows that it acts by −1 on b∗

and 1 on a∗. This shows that Lie(T̂ )w0 is carried isomorphically onto a∗G by (3.2.2).
Now the antiholomorphic involution (c⊗ (z 7→ z̄)) on X∗(T)⊗C = (a⊕ b)∗ fixes

precisely a∗R ⊕ b∗R. Transporting to Lie(T̂ ) by means of the above identification, we
see that the real structure on (aR ⊕ bR)∗ ⊂ (a ⊕ b)∗ corresponds to the antiholo-
morphic involution c′ on Lie(T̂ ) which is the composition of w0 with the standard
antiholomorphic involution. In particular, restricted to the w0-fixed part, c′ reduces
to the standard antiholomorphic involution. This proves the statement about real
structures.

For the second claim, we note that wĜ and w0 commute, so certainly wĜ preserves
Lie(T̂ )w0 ; under the identifications of (3.2.1) wĜ corresponds to an element of the
Weyl group of (a ⊕ b) which sends q to the opposite parabolic. This coincides with
the long Weyl element for aG by Lemma 3.1.1.

3.3. The tempered cohomological parameter

We will next construct a canonical identification

(3.3.1) a∗G ' Lie algebra of the centralizer of ρ : WR → LG,

where ρ is the parameter of any tempered cohomological representation for G; corre-
spondingly we get

(3.3.2) aG ' fixed points of Ad∗ ρ : WR → GL(g̃) on g̃,

where Ad∗ : LG→ GL(g̃) is the co-adjoint representation.
To see this we must discuss the L-parameter of tempered cohomological represen-

tations:
Write as usual WR = C× ∪ C×j, where j2 = −1, for the real Weil group. Let

ρ : WR → LG be a tempered Langlands parameter whose associated L-packet contains
a representation with nonvanishing (g,K0

∞) cohomology (with respect to the trivial
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local system, as always in this paper). In particular, the infinitesimal character of
this representation coincides with that of the trivial representation. The infinitesimal
character can be read off from the C× part of the Langlands parameter (see [49,
§15.1, Lemma] although we believe this result to be folklore). Therefore, by examining
infinitesimal characters, we can conjugate ρ in Ĝ to a representation ρ0 such that

(3.3.3) ρ0|C× : C× → LG

is given by ΣG(
√
z/z̄), where ΣG is the canonical cocharacter Gm → Ĝ given by the

sum of all positive coroots. The connected centralizer of ρ0|C× is then T̂ , so the image

of j in LG must normalize T̂ and sends B̂ to B̂op. Therefore, ρ0(j) defines the same
class as w0 inside LW (notation of §3.2) and therefore

(3.3.4) a∗G = Lie algebra of the centralizer of ρ0.

Now ρ = Ad(g)ρ0 for some g ∈ Ĝ; since the centralizer of ρ0 is contained in T̂ , g is
specified up to right translation by T̂ , and consequently the induced map

Lie algebra of the centralizer of ρ0
∼→ Lie algebra of the centralizer of ρ

is independent of the choice of g. Composing with (3.3.4), we arrive at the desired
identification (3.3.1).

Remark 7. — In general, there are multiple possibilities for the conjugacy class of ρ,
i.e., multiple L-packets of tempered cohomological representations; however, if GR is
simply connected or adjoint, ρ is unique up to conjugacy: any two choices of w0 differ
by an element t ∈ T̂ , which lies in the fixed space for τ : z 7→ 1/zw0 on T̂ . Thus
we must verify that every element of the τ -fixed space T̂ τ is of the form x · τ(x) for
some x ∈ T̂ ; equivalently that T̂ τ is connected. If Ĝ is simply connected, coroots give
an isomorphism Grm ' T̂ , and the map α 7→ −w0α permutes the coroots; we are
reduced to verifying connectivity of fixed points in the case of τ the swap on G2

m or
τ trivial on Gm, which are obvious. The adjoint case is similar, replacing the use of
coroots by roots.

3.4. The action of the exterior algebra
∧∗
a∗G on the cohomology of a tempered repre-

sentation

In this section, we will construct an action of
∧∗
a∗G on H∗(g,K0

∞; Π), for any
finite length, tempered, cohomological representation Π of G. In this situation, by
“cohomological,” we mean that every constituent of Π is cohomological—note that Π is
tempered, and thus semisimple.

This action will have the property that the induced map

(3.4.1) Hq(g,K0
∞; Π)⊗

j∧
a∗G −→ Hq+j(g,K0

∞; Π)
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is an isomorphism. Here q is the minimal dimension in which the (g,K0
∞)-cohomology

is nonvanishing; explicitly, we have 2q + dimCaG = dimY (K). The action of
∧∗
a∗G

will commute with the natural action of K∞/K
0
∞ on H∗(g,K0

∞; Π).
As a general reference for (g,K0

∞) cohomology, the reader may refer to [9]. In general,
(g,K0

∞) cohomology of π is computed by a complex with terms HomK0
∞

(
∧p
g/k, π).

However, for unitary irreducible cohomological π, all the differentials in this complex
vanish (as proved by Kuga, see [9, Theorem 2.5]); so we may identify the (g,K0

∞)

cohomology with HomK0
∞

(
∧p
g/k, π).

We construct the action first in the simply connected case, and then reduce the
general case to that one.

3.4.1. The action for GR simply connected. — Here G is connected, as is its maximal
compact; and the cohomological, tempered representations are indexed (with notation
as in §3.1) by choices of a positive chamber C for the root system ∆(g : b):

We have already explained that such a chamber C gives rise to a Borel subgroup q
and a notion of positive root for ∆(g : b). Vogan and Zuckerman [76] attach to C a
tempered cohomological representation π(C ) characterized by the additional fact that
it contains with multiplicity one the irreducible representation VC of K∞ = K0

∞ with
highest weight

µC = the sum of roots associated to root spaces in u ∩ p,
where u is the unipotent radical of q. (See [76, Theorem 2.5]). Moreover, it is known
that VC is the only irreducible representation of K∞ that occurs both in π(C ) and
in
∧∗
p (proof and discussion around [76, Corollary 3.7]).

We write V−C for the dual representation to VC ; its lowest weight is then equal
to −µC . Let us fix a highest v+ ∈ VC and a lowest weight vector v− in V−C , with
weights µC and −µC . In what follows, a vector of “weight µ” means that it transforms
under the character µ of q ∩ k: and a vector “of weight −µ” transforms under that
character of qop ∩ k, where qop is the parabolic subgroup associated to −C . In other
words, “weight µ” is a requirement on how the vector transforms by a Borel subalgebra,
not merely a toral subalgebra.

Write W [C ] for the VC -isotypical subspace of an arbitrary K∞-representation W ,
and W [−C ] for the ṼC -isotypical subspace. Thus W [C ] = VC ⊗ Hom(VC ,W ) and
f 7→ f(v±) gives isomorphisms

Hom(VC ,W ) = vectors in W of weight µC under q ∩ k,(3.4.2)

Hom(V−C ,W ) = vectors in W of weight −µC under qop ∩ k.(3.4.3)

Let u be the unipotent radical of qop. From the splitting

(3.4.4) a⊕ (u ∩ p)⊕ (u ∩ p) = p,
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we get a tensor decomposition of
∧∗
p and of

∧∗
p∗. For the spaces of vectors of

weights µ and −µ we get

(3.4.5)

( ∗∧
p

)µ
=

∗∧
a⊗ det(u ∩ p),

( ∗∧
p∗

)−µ
=

∗∧
a∗ ⊗ det(u ∩ p)∗.

In particular, there is a natural inclusion a∗ ↪→ p∗ (from (3.4.4)), and then the
natural action of

∧∗
a∗ on

∧∗
p∗ makes the space of weight −µ vectors in the latter

a free, rank one module. Note that we may regard
∧∗
p∗ either as a left- or a right-

module for
∧∗
a∗; the two actions differ by a sign (−1)deg on a∗. We will use either

version of the action according to what is convenient.
Thus we have an action of

∧∗
a∗ on

(3.4.6) Hom(V−C ,

∗∧
p∗)

∼−→ (

∗∧
p∗)−µ (via f 7→ f(v−)),

given (in the left-hand space) by the rule Xf(v−) = X ∧ f(v−).
There is also a contraction action of

∧∗
a∗ on

∧∗
p: for X ∈ a∗, the rule Y 7→ X ¬ Y

is a derivation of
∧∗
p with degree −1, which in degree 1 realizes the pairing a∗×p→

C. As a reference for contractions, see [10, Chapter 3]. This action again makes the
space of weight µ vectors a free, rank one module.

The two actions are adjoint:

(3.4.7) 〈X ∧A,B〉 = 〈A,X ¬B〉, X ∈ a∗, A ∈
∗∧
p∗, B ∈

∗∧
p,

where the pairing between
∧∗
p and

∧∗
p∗ is the usual one (the above equation looks

a bit peculiar—it might seem preferable to replace X ∧A by A∧X on the left— but
in order to do that we would have to use a different pairing, which we prefer not to
do).

From

(3.4.8) H∗(g,K0
∞;π(C )) =

( ∗∧
p∗ ⊗ π(C )

)K∞

︸ ︷︷ ︸
=HomK∞ (

∧∗ p,π(C))

' Hom(V−C ,

∗∧
p∗)︸ ︷︷ ︸

'(
∧∗ p∗)−µ

⊗Hom(VC , π(C )),

we have also constructed an action of
∧∗
a∗ on the (g,K0

∞) cohomology of π(C ). Again,
it can be considered either as a left action or a right action, the two being related by
means of a sign; we will usually prefer to consider it as a right action.

This action is characterized in the following way: for any f ∈ HomK∞(
∧∗
p, π(C )),

and any vector v of weight µC in
∧∗
p, and for X ∈

∧∗
a∗, we have

(3.4.9) Xf : v 7→ f(X ¬ v).

The left action is related to this via f ·X = (−1)deg(f)(X · f) (X ∈ a∗).
To verify (3.4.9), note that the map f factors through VC ⊂ π(C ). We may replace

π(C ) by VC , regarding f as a K∞-map
∧∗
p → VC , and write f t : V−C →

∧∗
p∗ for

the transpose of f . Now, for v+ ∈ VC a vector of weight µC , the evaluation f(v+) is
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determined by its pairing with a lowest weight vector v− ∈ V−C . We have

〈v−, Xf(v+)〉 = 〈(Xf)tv−, v+〉 = 〈X ∧ f t(v−), v+〉
(3.4.7)

= 〈f t(v−), X ¬ v+〉 = 〈v−, f(X ¬ v+)〉.

In summary, we have a well-defined action of
∧∗
a∗G on the (g,K0

∞) cohomology of
any tempered irreducible cohomological representation. (Strictly speaking, we should
verify that our definitions did not depend on the choice of (b, C ). If k ∈ K∞ con-
jugates (b, C ) to (b′, C ′), then it carries (q, µC ) to (q′, µC ′); there is an isomorphism
ι : π(C ) → π(C ′), and the actions of Ad(k) :

∧∗
a '

∧∗
a′∗ are compatible with the

map on (g,K0
∞) cohomology induced by ι; thus we get an action of

∧∗
a∗G as claimed.)

Finally, it is convenient to extend the action to representations that are not irre-
ducible, in the obvious fashion: If Π is any tempered representation of finite length,
we have

H∗(g,K0
∞; Π) =

⊕
α

Hom(πα,Π)⊗H∗(g,K0
∞;πα),

the sum being taken over (isomorphism classes of) tempered cohomological represen-
tations πα; we define

∧∗
a∗G to act term-wise.

Remark 8. — It is also possible to construct this action using the realization of
tempered cohomological representations as parabolic induction from a discrete series
on M. We omit the details.

3.4.2. Interaction with automorphisms. — We continue to suppose that GR is
semisimple and simply connected. Suppose that α is an automorphism of GR that
arises from the conjugation action of the adjoint form Gad, preserving K∞. If
Π is a tempered representation of finite length, then so is its α-twist αΠ, defined
by αΠ(α(g)) = Π(g).

Also α induces an automorphism Y 7→ α(Y ) of p; the K∞ representations p and
αp are intertwined via the inverse map Y 7→ α−1(Y ).

Lemma 3.4.1. — Let Π be tempered cohomological of finite length. The natural map

(3.4.10) HomK∞(

∗∧
p,Π)→ HomK∞(

∗∧
p, αΠ),

which sends f to the composite
∧∗
p '

∧∗
(αp)

αf→ αΠ, commutes the
∧∗
a∗G actions

on both spaces.

Proof. — This reduces to the irreducible case. So suppose that π = π(C ), where C is
a chamber C ⊂ ib∗R, giving rise to data (a, b, q). Adjusting α by an element of K∞,
we may suppose that α preserves K∞ and b and the Borel subalgebra q ∩ k ⊂ k.

If W is an irreducible K∞-representation of highest weight µ, then αW has high-
est weight µ ◦ α−1. Therefore the representation απ(C ) contains the K∞-representa-
tion with highest weight µC ◦ α−1, which is associated to the chamber α(C ) and the
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parabolic α(q):
απ(C ) = π(α(C )).

Now α sends (a, b, q) to (a, b, α(q)). Although it belongs only to Gad(R) it can be
lifted to GR(C), and so the following diagram commutes:

(3.4.11) aG
C
//

α

��

a

=

��
aG

α(C)
// a,

where the vertical arrows refer to the identification of a with aG induced by the triples
(a, b, q) (at top) and (a, b, α(q)) (at bottom).

Note that the map Y 7→ α−1(Y ) takes (
∧∗
p)µα

−1 → (
∧∗
p)µ (where the weight

spaces are computed for the usual actions, not the twisted ones). The map (3.4.10)
explicitly sends f to f ′ : Y ∈

∧∗
p 7→ f(α−1(Y )); if f on the left factors through

highest weight µ, then f ′ on the right factors through highest weight µα−1.
For v ∈ (

∧∗
p)µ and X ∈

∧∗
a∗G we have α(v) ∈ (

∧∗
p)µα

−1

and, for f as above,

(Xf)′ : αv 7→ (Xf)(v) = f(X ¬ v),

(α(X)f ′) : αv 7→ f ′(α(X) ¬ α(v)) = f(X ¬ v).

In view of diagram (3.4.11) this proves the statement.

3.4.3. Interaction with duality and complex conjugation. — Suppose that j+ j′ = d =

dim(Y (K)). Let Π be a tempered cohomological representation of finite length. There
is a natural pairing

(3.4.12) Hj(g,K∞,Π)×Hj′(g,K∞, Π̃) −→ det p∗,

corresponding to

(

j∧
p∗ ⊗Π)K∞ ⊗ (

j′∧
p∗ ⊗ Π̃)K∞ −→ det p∗,

amounting to cup product on the first factors and the duality pairing on the second
factors.

Lemma 3.4.2. — The pairing (3.4.12) has the following adjointness:

〈f1 ·X, f2〉 = 〈f1, (wX) · f2〉
for X ∈

∧∗
a∗G, and w the long Weyl group element (Lemma 3.1.1).

Proof. — This reduces to the irreducible case Π = π(C ); its contragredient is π(−C ),
parameterized by the chamber−C associated to (a, b, qop). We must verify that a∗G acts
(up to sign) self-adjointly for the the cup product

j∧
p∗[−C ]⊗

d−j∧
p∗[C ]→ det p∗,
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or, what is the same, the map

Hom(V−C ,

j∧
p∗)⊗Hom(VC ,

d−j∧
p∗)→ Hom(V−C ⊗ VC ,det p∗)→ det p∗.

Suppose f1 ∈ Hom(V−C ,
∧j
p∗) and f2 ∈ Hom(VC ,

∧d−j
p∗); their image under the

first map is given by v1 ⊗ v2 7→ f1(v1) ∧ f2(v2). This map factors through the
one-dimensional subspace of invariants on V−C ⊗ VC ; to evaluate it on a generator
for that space, we may as well evaluate it on v− ⊗ v+, which has nonzero projec-
tion to that space. In other words, we must prove the adjointness statement for
(f1, f2) 7→ f1(v−) ∧ f2(v+). For X ∈

∧∗
a∗ we have

(f1 ·X)(v−) ∧ f2(v+) = f1(v−) ∧X ∧ f2(v+) = f1(v−) ∧ (Xf2)(v+),

where the sign is as in the statement of the lemma. However, the identifications of a
with aG arising from (a, b, q) and (a, b, qop) differ by a long Weyl group element, as
in Lemma 3.1.1.

Lemma 3.4.3. — Let Π be a tempered, finite length, cohomological representation, and
observe that the natural real structure on p induces a “complex conjugation” antilinear
map H∗(g,K∞,Π) → H∗(g,K∞,Π), where, as usual, Π denotes the representation
with the same underlying vectors but the scalar action modified by complex conjuga-
tion.

Then the following diagram commutes:

(3.4.13) H∗(g,K∞,Π)⊗
∧∗
a∗G

//

��

H∗(g,K∞,Π)

��

H∗(g,K∞,Π)⊗
∧∗
a∗G

// H∗(g,K∞,Π),

where all vertical maps are complex conjugation; the complex conjugation on a∗G is
that corresponding to the twisted real structure.

Proof. — Again, this reduces to the irreducible case Π = π(C ). Fixing an invariant
Hermitian form on VC , we may identify V−C with VC , in such a way that v+ = v−.

The following diagram commutes:

(3.4.14) HomK(V−C ,
∧∗
p)
S 7→Sv−//

S 7→S̄
��

(∧∗
p
)−µ
conjugation
��

HomK(VC ,
∧∗
p)

R 7→Rv−//
(∧∗
p
)µ
,

where we define S̄ by S̄(v̄) = S(v). There is an induced complex conjugation
∗∧
p[−C ]︸ ︷︷ ︸

HomK(V−C ,
∧∗ p)⊗V−C

→
∗∧
p[C ]︸ ︷︷ ︸

HomK(VC ,
∧∗ p)⊗VC

,
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where we tensor S 7→ S̄ with the conjugation on V−C , and then the following diagram
is also commutative:

(3.4.15)
∧∗
p[−C ]⊗

∧∗
a //

(S 7→S̄)⊗conj.

��

∧∗
p[−C ]

conjugation
��∧∗

p[C ]⊗
∧∗
a //

∧∗
p[C ],

where the conjugation on a∗ is that which fixes a∗R.
This gives rise to (3.4.13)—however, just as in the previous lemma, the identifica-

tions of a with aG induced by (a, b, q) and (a, b, qop) again differ by the long Weyl
element, and so in (3.4.13) we take the conjugation on aG as being with reference to
the twisted real structure.

3.4.4. Construction for general GR. — Let GR now be an arbitrary reductive group
over R.

Let G′ be the simply connected cover of the derived group of GR, and let ZG be
the center of GR. Thus there is an isogeny G′ × ZG → GR. Let g′, k′, aG′ be the
various Lie algebras for G′. Let aZ be the a-space for ZG; it is naturally identified
with the Lie algebra of a maximal split subtorus. We have

aG = aG′ ⊕ aZ .
For any representation Π of G let Π′ be its pullback to G′; this is a finite length

tempered representation. There is a natural identification

H∗(g,K0
∞; Π) =

∗∧
aZ ⊗H∗(g′,K′∞; Π′).

Our foregoing discussion has given an action of
∧∗
aG′ on the second factor; and so

we get an action of
∗∧
aG′ ⊗

∗∧
aZ =

∗∧
(aG′ ⊕ aZ)∗ =

∗∧
a∗G

on H∗(g,K0
∞; Π). Lemma 3.4.2 and Lemma 3.4.3 continue to hold in this setting.

Observe that the group K∞/K
0
∞
∼→ π0G(R) acts naturally on H∗(g,K0

∞; Π). By
the discussion of §3.4.2, this action of a∗G will commute with the action of K∞/K

0
∞.

3.5. Metrization

As remarked near (1.4.6) it is very convenient to put a Euclidean metric on a∗G in
such a way that the induced action on cohomology is isometric.

Let the bilinear form BR be as in (3.0.2). With notation as in §3.1, BR induces a
invariant quadratic form on aR ⊕ bR, so also on aR and a∗R. In particular, we get a
C-valued positive definite hermitian form on a∗G. Then:

Lemma 3.5.1. — Let X ∈
∧∗
a∗G. Let Π be a finite length cohomological tempered

representation. Let T ∈ Hq(g,K0
∞,Π), where q is the minimal cohomological degree
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as in (3.4.1); equip H∗(g,K0
∞,Π) with the natural hermitian metric (arising from a

fixed inner product on Π, and the bilinear form BR). Then

‖T ·X‖ = ‖T‖‖X‖.

Proof. — This reduces to the case where GR is simply connected, and then
again to the case when Π = Π(C ) is irreducible. There it reduces to a similar
claim about the weight space (

∧∗
p∗)−µ, since (with notations as previous) the

map Hom(V−C ,
∧∗
p∗)

∼→
(∧∗
p∗
)−µ of (3.4.6) is isometric (up to a constant scalar,

which depends on the choice of highest weight vector) for the natural Hermitian forms
on both sides. But the corresponding claim about (

∧∗
p∗)−µ is clear from (3.4.5),

noting that the factors a and (u⊕ ū) ∩ p are orthogonal to one another under B.

The following explicit computation will be useful later:

Lemma 3.5.2. — Suppose GR is one of GLn,ResC/R GLn, and endow g with the
invariant quadratic form B = tr(X2) or trC/R tr(X2), where tr is taken with refer-
ence to the standard representation. Then, with reference to the identification (3.2.2),
the form on a∗G,R induced by the dual of B is the restriction of the trace form
on ĝ (by which we mean the sum of the trace forms on the two factors, in the case
of ResC/R GLn). A similar result holds when GR is one of SOn and ResC/R SOn,
except that the form on a∗G,R is the restriction of 1

4 · (trace form).

Proof. — Write t̂r for the trace form on ĝ, in each case. As explained in (3.2.1) the
choice of (a, b, q) induces a natural perfect pairing of C-vector spaces

(a⊕ b)⊗ Lie(T̂ )︸ ︷︷ ︸
⊃Lie(T̂ )w0

→ C,

wherein Lie(T̂w0) is identified with the dual of a. We want to show that, under this
pairing, the form tr |a is in duality with the form t̂r|Lie(T̂ )w0

. Since a and b are or-

thogonal with respect to tr, it is enough to check that the form tr on a ⊕ b and t̂r

on Lie(T̂ ) are in duality.
It is convenient to discuss this in slightly more generality: Note that, if H is a

reductive group over C, the choice of a nondegenerate invariant quadratic form Q

on h = Lie(H) induces a nondegenerate invariant quadratic form Q̂ on the dual Lie
algebra ĥ. Indeed, choose a torus and Borel (TH ⊂ BH) in H; then Q restricts to a
Weyl-invariant form on the Lie algebra of TH , and the identification

Lie(TH) ' Lie(T̂ )∗,

induced by (TH ⊂ BH) allows us to transport Q to a Weyl-invariant form on Lie(T̂ ).
This does not depend on the choice of pair (TH ⊂ BH), because of invariance of Q.
Finally the resulting Weyl-invariant form on Lie(T̂ ) extends uniquely to an invariant
form on ĥ.
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In this language, the question is precisely to compute Q̂, where H = GC and Q is
the complexification of tr, i.e., a form on the Lie algebra of GC.

(i) GR = GLn. Here it is clear that t̂r = tr,

(ii) GR = ResC/R GLn. Here again t̂r = tr.
The associated complex group is GLn × GLn, and the form there is

tr(X1)2 + tr(X2)2. The dual form on gln × gln is thus, again, the trace form
on GLn ×GLn.

(iii) GR = SOn: In this case we have

(3.5.1) t̂r =
1

4
(tr on the dual group) .

We will analyze the cases of SO(2) and SO(3), with the general cases being
similar:

(a) Consider SO(2), which we realize as the stabilizer of the quadratic
form q(x, y) = xy. The maximal torus is the image of the generating
co-character χ : t 7→

(
t 0
0 t−1

)
, and (with the standard identifications)

〈χ, χ′〉 = 1 where χ′ is the co-character χ : t 7→
(
t 0
0 t−1

)
of the dual SO(2).

Denote simply by dχ the image of the standard generator of Lie(Gm)

under χ. Then 〈dχ, dχ〉tr = 2, and so 〈dχ′, dχ′〉t̂r = 1
2 .

(b) Consider SO(3), which we realize as the stabilizer of the quadratic
form q(x, y) = xy + z2, and a maximal torus is the image of the co-
character χ : diag(t, t−1, 1). This is dual to the same character χ′ as above
(now considered as a character of SL2). We reason just as in (a).

(iv) ResC/R SOn. Here again (3.5.1) holds. To see this, note that the associated
complex group is SOn × SOn, and the form there is given by tr(X2

1 ) + tr(X2
2 );

then the result follows from (iii).
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CHAPTER 4

THE MOTIVE OF A COHOMOLOGICAL
AUTOMORPHIC REPRESENTATION:

CONJECTURES AND DESCENT
OF THE COEFFICIENT FIELD

We briefly formulate a version of the standard conjectures relating cohomological
automorphic forms and motives, taking some care about coefficient fields. A more
systematic discussion of the general conjectures is presented in the appendix; for the
moment we present only what is needed for the main text.

4.1. The example of a fake elliptic curve

To recall why some care is necessary, let us consider the example of a fake elliptic
curve over a number field F : this is, by definition, an abelian surface A over F which
admits an action of an (indefinite) quaternion algebra D ↪→ EndF (A)⊗Q.

In any realizationH1(A) admits a natural rightD-action, and thus, for any rational
prime `, one gets a Galois representation

ρA,` : Gal(Q/F )→ GLD(H1(AQ,Q`)) ' (D ⊗Q`)
×,

where the latter identification depends on a choice of a basis for H1(AQ,Q`) over
D ⊗Q`. If ` is not ramified in D, a choice of splitting D ⊗ Q` ' M2(Q`) converts
this to a genuine two-dimensional representation

ρA,` : Gal(Q/F ) −→ GL2(Q`).

This is expected to correspond to an automorphic form π on PGL2(AF ) with Hecke
eigenvalues in Q, characterized by the fact that we have an equality

tr(ρA,`(Frobv)) = av(π)

for all but finitely many v; here tr denotes the trace and av(π) is the Hecke eigenvalue
of π at v.

The correspondence between π and A, in this case, has two deficiencies. The first
is that the dual group of PGL2 is SL2 but the target of the Galois representation is
(D ⊗Q`)

×. The second is that the automorphic form π has Q coefficients; but there
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is no natural way, in general, to squeeze a motive of rank two with Q-coefficients out
of A. One could get a rank two motive after extending coefficients to some splitting
field of D, but this is somewhat unsatisfactory.

However, although one cannot directly construct a rank two motive attached
to ρA,`, it is possible to construct a rank three motive that is attached to the compo-
sition Ad ρA,` with the adjoint representation PGL2 → GL3. Namely, construct the
motive

(4.1.1) M = End0
D(h1(A)),

where EndD denotes endomorphisms that commute with the natural (right) D-action
on h1(A) and the superscript 0 denotes endomorphisms with trace zero. This is a
motive over F of rank three with Q-coefficients, which can be explicitly realized as a
sub-motive of h1(A)⊗ h1(A)∗.

Write g for the Lie algebra of SL1(D); this is a three-dimensional Lie algebra over Q,
and is an inner form of sl2. We have natural conjugacy classes of identifications

Het(M,Q`) ' g⊗Q`,

HB(Mv,C,Q) ' g,
for any infinite place v of F .

We expect that this phenomenon is quite general. Below we formulate, in a general
setting, the properties that such an “adjoint motive” M attached to a cohomological
automorphic form should have.

4.2. The conjectures

It will be useful to formulate our conjectures over a general number field; thus let
F be a number field, let GF be a reductive group over F , and let π be an automorphic
cohomological tempered representation for GF . (Recall from §1.6 that “cohomologi-
cal,” for this paper, means cohomological with reference to the trivial local system.)
The definitions that follow will depend only on the near-equivalence class of π.

We suppose that π has coefficient field equal to Q, i.e., the representation πv has
a Q-structure for almost all v. One can attach to π the associated archimedean pa-
rameter

WFv −→ LG,

for any archimedean place v. The Langlands program also predicts that π should
give rise to a Galois representation valued in a slight modification of LG (see [13]). (1)

Composing these representation with the adjoint representation of the dual group on

1. Here we draw attention to a slight subtlety: this Galois representation is characterized by the
conjugacy classes of Frobenius, and in some (rather rare) cases this may not characterize it up to
global conjugacy. However, this problem does not occur if the target group is GLn, and in particular
the composition of this representation with the adjoint is uniquely characterized. It is only this
composition which enters into our conjecture.

ASTÉRISQUE 428



4.2. THE CONJECTURES 53

its Lie algebra ĝ, we arrive at representations

Ad ρ` : GF −→ Aut(ĝQ`
).(4.2.1)

Ad ρv : WFv −→ Aut(ĝC).(4.2.2)

of the Galois group and each archimedean Weil group. With these representations in
hand, we can formulate the appropriate notion of “adjoint motive attached to (the
near equivalence class of) π,” namely,

Definition 4.2.1. — An adjoint motive associated to π is a weight zero Grothendieck
motive M over F with Q coefficients, equipped with an injection of Q-vector spaces

ιv : HB(Mv,C,Q) −→ ĝQ
for every infinite place v, such that:

The image of HB(Mv,C,Q) is the fixed set of an inner twisting of the
standard Galois action on ĝQ. Said differently, ιv identifies HB(Mv,C)

with an inner form ĝQ,∗ of ĝQ:

(4.2.3) ιv : HB(Mv,C,Q)
∼−→ ĝQ,∗ ⊂ ĝQ.

(This inner form may depend on v.) Moreover, for any such v, and for any rational
prime `, we require:

1. The isomorphism

(4.2.4) Het(MF̄ ,Q`) ' HB(Mv,C,Q)⊗Q Q`
ιv→ ĝQ,∗ ⊗Q` ' ĝQ`

identifies the Galois action on the étale cohomology of M with a representation
in the conjugacy class of Ad ρ` (see (4.2.1)).

2. The isomorphism

(4.2.5) HdR(M)⊗Q C ' HB(Mv,C,Q)⊗Q C
ιv→ ĝQ,∗ ⊗C ' ĝC

identifies the action of the Weil group WFv on the de Rham cohomology of M
with a representation in the conjugacy class of Ad ρv (see (4.2.2)).

3. Each Q-valued bilinear form on ĝQ, invariant by the action of LGQ
(2), induces

a weak polarization M ×M → Q with the property that, for each v, its Betti
realization HB(Mv,C) ×HB(Mv,C) → Q is identified, under ιv, with the given
bilinear form. (3)

We are not entirely sure if every cohomological π should have an attached adjoint
motive, because of some slight subtleties about descent of the coefficient field from Q

to Q. However, it seems very likely that the overwhelming majority should admit
such attached adjoint motives, and we will analyze our conjectures carefully only in

2. Explicitly, this means it is invariant both by inner automorphisms of G and by the pinned
outer automorphisms arising from the Galois action on the root datum.

3. Observe that a Q-valued invariant bilinear form on gQ induces also a Q-valued bilinear form
on gQ,∗, characterized by the fact that their linear extensions to gQ agree.
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this case. (One can handle the general case at the cost of a slight loss of precision,
simply extending coefficients from Q to a large enough number field.)

In the appendix we explain more carefully what the correct conjectures for motives
attached to automorphic representations should look like and why, if we suppose that
the Galois representation has centralizer that is as small as possible, these conjectures
imply the existence of an adjoint motive associated to π. Moreover, assuming the Tate
conjecture, this motive is uniquely determined up to isomorphism.

Remark 9. — We could have also in principle formulated this conjecture in terms of
Chow motives rather than Grothendieck motives, since as explained in Prop. 2.1.1—
assuming Beilinson’s filtration conjectures—every Grothendieck motive lifts to a Chow
motive which is well defined up to isomorphism. However, the formulation with
Grothendieck motives is more natural for two reasons:

1. The category of Grothendieck motives is (conjecturally) semi-simple Tannakian;
the Tannakian formalism is important to the way we formulate the automorphic
to motivic correspondence in the appendix. On the other hand, the category of
Chow motives is not even abelian in general. (See the introduction and Cor. 3.5
of [60] for a discussion of this issue.)

2. Technically, to define the relevant motivic cohomology group that occurs in
our main conjecture below, one needs to work with a lift to the category of
Chow motives. However, as explained in §2.1.11, the filtration conjectures imply
that this motivic cohomology group is nevertheless independent of the choice
of such lift, up to canonical isomorphism. Thus all objects involved in the main
conjecture below only depend on the associated Grothendieck motive.

Note that even in the more familiar setting of Shimura varieties, the known construc-
tions of motives associated to cohomological automorphic forms typically only yield
Grothendieck motives, eg. the case of GL2 modular forms of higher weight that is
discussed in [59]. Thus it is psychologically useful to break up the problem of attach-
ing a motive to an automorphic form into two steps: first, construct a Grothendieck
motive, and then lift it to a Chow motive. In the setting that is of most interest in
this paper (non-hermitian symmetric spaces), neither of these steps is easy since the
locally symmetric space has no natural structure of an algebraic variety.
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FORMULATION OF THE MAIN CONJECTURE

Here we combine the ideas of the prior two sections to precisely formulate the
main conjecture. (We have already formulated it in the introduction, but we take the
opportunity to write out a version with the assumptions and conjectures identified as
clearly as possible.)

We briefly summarize our setup. We return to the setting of §1.1 so that G is a
reductive Q-group without central split torus. Now let H be the Hecke algebra for K
at good places, i.e., the tensor product of local Hecke algebras at places v at which
K is hyperspecial. We fix a character χ : H → Q, and let

Π = {π1, . . . , πr}
be the associated set of cohomological automorphic representations which contribute
to cohomology at level K, defined more precisely as in §1.1. The set Π determines χ
and we suppress mention of χ from our notation.

Just as in our introductory discussion in §1.1 we make the following

Assumption: Every πi is cuspidal and tempered,

where, as in §1.1, “tempered” is a proxy for “tempered Arthur parameter” and is taken
to mean tempered at ∞ and at one unramified place. We define

(5.0.1) H∗(Y (K),Q)Π = {α ∈ H∗(Y (K),Q) : Tα = χ(T )α for all T ∈H}
and similarly H∗(Y (K),C)Π, etc.

Let Ad Π be the adjoint motive associated to Π, in the sense of Definition 4.2.1.
We have attached to G a canonical C-vector space a∗G in §3. Also a∗G comes with a
real structure, the “twisted real structure” of Definition 3.1.2.

We shall first explain (§5.1) why the Beilinson regulator on the motivic cohomology
of Ad Π, with Q(1) coefficients, takes values in (a space canonically identified with)
a∗G, and indeed in the twisted real structure on this space. Then, after a brief review
of cohomological automorphic representations (§5.3) we will be able to define an
action of a∗G on the cohomology H∗(Y (K),C)Π and then we formulate precisely our
conjecture in §5.4. Finally, Proposition 5.5.1 verifies various basic properties about
the action of a∗G (e.g., it is self-adjoint relative to Poincaré duality and it preserves
real structures).

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2021



56 CHAPTER 5. FORMULATION OF THE MAIN CONJECTURE

5.1. The Beilinson regulator

The motive Ad Π has weight zero. The Beilinson regulator gives
(5.1.1)

H1
M (Ad Π,Q(1))

(2.2.8)→ HB((Ad Π)C,R)WR ↪→ HB((Ad Π)C,C)WR
(4.2.5)−→ ĝWR

(3.3.1)−→ a∗G,

where the last two arrows are isomorphisms of complex vector spaces. Proceeding
similarly for the dual motive, we get a map

(5.1.2) H1
M (Ad∗Π,Q(1))→ aG,

and, just as in the introduction, we call L the image of (5.1.2); thus if we accept
Beilinson’s conjecture, L is a Q-structure on aG.

We want to understand how (5.1.1) interacts with the real structure on a∗G. Recall
that we have defined a second “twisted” real structure on a∗G, in Definition 3.1.2.

Lemma 5.1.1. — The map HB(Ad Π)C,R)WR → a∗G has image equal to the twisted
real structure on a∗G. In particular, the Beilinson regulator carries H1

M (Ad Π,Q(1))

into the twisted real structure on a∗G.

Proof. — We may as well suppose that (4.2.5) identifies the WR-action with the ac-
tion ρ0 : WR → Aut(ĝ) arising from ρ0 normalized as in (3.3.3). Also, (4.2.5) allows
us to think of the “Betti” conjugation cB on HdR(Ad Π)⊗C = HB((Ad Π)C)⊗C as
acting on ĝ. From (4.2.3) the fixed points of cB are given by ĝQ,∗⊗R and so cB is an
inner twist of the standard antiholomorphic involution. (By “standard antiholomor-
phic involution” we mean the involution of ĝ with respect to the Chevalley real form.)
Since ρ0(S1) preserves real Betti cohomology, cB commutes with ρ0(S1).

Define an antilinear self-map ι on ĝ via

ι(X) = Ad(wĜ)X,

where X refers to the standard antilinear conjugation, and wĜ is an element of Ĝ(R)

that normalizes T̂ and takes B̂ to B̂op. Then ι also commutes with the action of ρ0(S1).
The composition ιcB is now an inner automorphism of ĝ which commutes

with ρ0(S1) and thus is given by conjugation by an element of T̂ . Thus ι and cB act
in the same way on the Lie algebra t̂ of T̂ .

The image of HB((Ad Π)C,R)WR
(4.2.5)−→ ĝWR is just the fixed points of cB. However,

we have just seen that cB and ι act the same way on ĝWR ⊂ t̂. The fixed points of ι
on ĝWR ' a∗G give (by Lemma 3.2.1 and Definition 3.1.2) the twisted real structure.

5.2. Trace forms

Endow ĝQ with any nondegenerate LGQ-invariant Q-valued quadratic form B̂; it
gives by scalar extension a complex valued quadratic form on ĝ. The pullback of this
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form under
HB((Ad Π)C,Q) ' ĝ∗

defines (part (3) of Definition 4.2.1) a weak polarization Q on Ad Π: since ĝ∗ is an
inner form, the restriction of B̂ is actually Q-valued on it.

We may form the corresponding Hermitian form Q(x, cBy) on HB((Ad Π)C,C);
when restricted to HB((Ad Π)C,C)WR ' a∗G, this is given by

(5.2.1) (X,Y ) ∈ a∗G × a∗G 7→ B̂(X,Ad(wĜ)Y ),

where the conjugation is that with reference to gR, and wĜ is as in Lemma 5.1.1.
This form is real-valued when restricted to the twisted real structure, since (writing

just wX for Ad(w)X, etc.):

(5.2.2) B̂(X,wĜY ) = B̂(X,wĜY ) = B̂(w−1

Ĝ
X,Y ) = B̂(wĜX,Y )

and wĜX = X,wĜY = Y on the twisted real structure.
We warn the reader that, although real-valued, the form (5.2.1) need not be positive

definite on the twisted real structure. This corresponds to the fact that the form B̂

gives a weak polarization on Ad Π but not necessarily a polarization.

5.3. Review of cohomological automorphic forms

For any cohomological automorphic representation π for G, denote by Ω the natural
map

(5.3.1) Ω : HomK◦∞
(

p∧
g/k, πK)→ p-forms on Y (K)︸ ︷︷ ︸

Ωp(Y (K))

,

where πK , as usual, denotes the K-invariants in π.
Indeed, Ωp(Y (K)) can be considered as functions on G(F )\ (G(A)×

∧p
g/k) /K◦∞K

that are linear on each
∧p
g/k-fiber. Explicitly, forX ∈ g/k and g ∈ G(A), we can pro-

duce a tangent vector [g,X] to G(F )gK◦∞K ∈ Y (K)—namely, the derivative of the
curve G(F )getXK◦∞K at t = 0. This construction extends to X1 ∧ · · · ∧Xp ∈

∧p
g/k

by setting
[g,X1 ∧ · · · ∧Xp] = [g,X1] ∧ · · · ∧ [g,Xp],

which belongs to the pth exterior power of the tangent space at the point gK. The
map Ω is normalized by the requirement that, for f ∈ HomK◦∞

(
∧p
g/k, πK) and

Xi ∈ g/k, we have

(5.3.2) Ω(f)([g,X1 ∧ · · · ∧Xp]) = f(X1 ∧ · · · ∧Xp)(g).

As discussed in §3.4, we may identify Hp(g,K0
∞;πK) = HomK0

∞
(
∧p
g/k, πK) for

unitary cohomological π. We will freely make use of this identification. In particular,
the map Ω defines a map on cohomology

(5.3.3) Ω : Hp(g,K0
∞;πK)→ Hp(Y (K),C).
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This map is injective if Y (K) is compact, or if π is cuspidal, by [8, 5.5]; in particular, if
we have fixed a Hermitian metric on g/k we also get a Hermitian metric on the image,
by taking L2-norms of differential forms. We also put a metric on Hp(g,K0

∞;πK) for
which (5.3.3) is isometric.

Moreover, this story is compatible, in the natural way, with complex conjugation:
if T ∈ Hp(g,K0

∞;πK), we have Ω(T̄ ) = Ω(T ), where T̄ ∈ H∗(g,K0
∞;π) is defined

so that T̄ (v̄) = T (v) and the embedding π ↪→ ( functions on [G]) is obtained by
conjugating the corresponding embedding for π. If π and π are the same (i.e., they
coincide as subrepresentations of functions on [G], and so we have an identification
π ' π) we shall say that T is real if T = T̄ ; in that case Ω(T ) is a real differential
form and defines a class in Hp(Y (K),R).

5.4. Formulation of main conjecture

In the setting at hand, the map Ω induces (see [8]) an isomorphism

(5.4.1)
r⊕
i=1

H∗(g,K0
∞;πKi )

Ω−→ H∗(Y (K),C)Π.

We have previously defined (§3.4) an action of
∧∗
a∗G on each H∗(g,K0

∞;πKi ), and we
may transfer this action via Ω to get an action of

∧∗
a∗G on H∗(Y (K),C)Π.

We now formulate the main conjecture assuming that Π satisfies the assumptions
formulated at the beginning of the section (in particular, it is tempered). We also need
to assume the existence of an adjoint motive attached to Π and part (a) of Beilinson’s
conjecture (Conjecture 2.1.1) as extended to pure motives in §2.1.11. We will keep
these as standing assumptions for the rest of the article. Observe then that the image
of H1

M (Q,Ad∗Π(1)) under (5.1.2) gives a well defined Q-structure on aG. Then we
have the following:

Main conjecture (Motivic classes preserve rational automorphic cohomology). — The
induced Q-structure on

∧∗
a∗G preserves

H∗(Y (K),Q)Π ⊂ H∗(Y (K),C)Π

for the action just defined.

5.5. Properties of the a∗G action

Proposition 5.5.1. — The action of
∧∗
a∗G on H∗(Y (K),C)Π just defined has the fol-

lowing properties:

(i) Fix a bilinear form BR on GR, as in §3.5; it gives rise to a hermitian
metric on a∗G and a Riemannian metric on Y (K) by that discussion.
Then if T ∈ Hq(Y (K),C)Π is in minimal cohomological degree, we have
‖XT‖ = ‖X‖‖T‖ for X ∈

∧∗
a∗G; the hermitian metric on H∗(Y (K),C)Π is

that obtained by its identification with harmonic forms.
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(ii) The action of
∧∗
a∗G on H∗(Y (K),C)Π satisfies the same adjointness property

as that formulated in Lemma 3.4.2, with respect to the Poincaré duality pairing.

(iii) Suppose that the character χ of the Hecke algebra is real-valued. Then the twisted
real structure on a∗G preserves real cohomology H∗(Y (K),R)Π.

Proof. — The map (5.4.1) is isometric, so property (i) is now immediate from
Lemma 3.5.1.

It will be convenient, just for the remainder of the proof, to abuse notation and
write Π for the direct sum

⊕r
i=1 πi.

For property (ii): Regard Π as embedded in functions on G(Q)\G(A), by con-
jugating the elements of Π. We note, first of all, that for T ∈ H∗(g,K0

∞; ΠK) and
T ′ ∈ H∗(g,K0

∞,Π
K

) with deg(T ) + deg(T ′) = dim(Y (K)) the pairing
∫
Y (K)

Ω(T ) ∧ Ω(T ′)

is proportional to the natural pairing H∗(g,K0
∞; ΠK) ⊗ H∗(g,K0

∞,Π
K

) → (det p)∗,
where we integrate Π against Π. (The coefficient of proportionality has to do with
choices of measure, and will not matter for us.) This integration pairing identifies Π̃

with Π, thus giving Π̃ an embedding into the space of functions on [G]; and so the
pairing ∫

Y (K)

Ω(T ) ∧ Ω(T ′), T ∈ H∗(g,K0
∞; ΠK), T ′ ∈ H∗(g,K∞, Π̃K)

is proportional to the natural pairing on H∗(g,K0
∞; ΠK)×H∗(g,K0

∞; Π̃K). Then the
conclusion follows from Lemma 3.4.2.

For (iii) note that, by the discussion at the end of §5.3, the following diagram
commutes

(5.5.1) H∗(g,K∞,Π
K) //

conjugation

��

H∗(Y (K),C)Π

conjugation

��

H∗(g,K∞,ΠK) // H∗(Y (K),C)Π.

Our claim now follows from Lemma 3.4.3.

To conclude, we discuss adjointness a little more. The Langlands parameter of the
contragredient Π̃ is obtained from Π by composition with the Chevalley involution,
which we shall denote by C0: this is a pinned involution of Ĝ that acts, on T̂ , as the
composition of inversion and the long Weyl group element. The general conjectures
(see the appendix) predict that there exists an identification of motives d : Ad Π '
Ad Π̃ which fits into a commutative diagram

(5.5.2) HB(Ad Π,C)
(4.2.3)

//

��

ĝ

C

��

HB(Ad Π̃,C)
(4.2.3)

// ĝ,

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2021



60 CHAPTER 5. FORMULATION OF THE MAIN CONJECTURE

where C is the composite of C0 with an inner automorphism. We denote also by d the
resulting isomorphism H1

M (Ad∗Π,Q(1))→ H1
M (Ad∗ Π̃,Q(1))).

Lemma 5.5.1. — With assumptions as above: The action of H1
M (Ad∗Π,Q(1))∗

on H∗(Y (K),C)Π, induced by (5.1.2), and the similar action of H1
M (Ad∗ Π̃,Q(1))∗

on H∗(Y (K),C)Π̃, are adjoint to one another, up to sign, with respect to the Poincaré
duality pairing and the identification of motivic cohomologies induced by d:

〈f1 ·X1, f2〉 = −〈f1, X2 · f2〉,

where X1 ∈ H1
M (Ad∗Π,Q(1))∗ and X2 ∈ H1

M (Ad∗ Π̃,Q(1))∗ correspond under the
identification induced by d.

Proof. — Conjugating the horizontal arrows in (5.5.2) we may suppose that the in-
duced actions of WR on ĝ, top and bottom, both arise from the maps ρ0 normalized
as in (3.3.3); since C intertwines these, it must be a conjugate of C0 by T̂ .

Thus we get:

(5.5.3) H1
M (Ad∗Π,Q(1)) //

d

��

g̃WR

C

��

(3.3.2)
// aG

−w

��
H1

M (Ad∗ Π̃,Q(1))) // g̃WR
(3.3.2)

// aG,

where w is the long Weyl element on a∗G, and we used Lemma 3.2.1 (or the same
statements transposed to the dual Lie algebra). Our conclusion now follows from the
prior adjointness results (part (ii) of the proposition).

This discussion has also shown:

Lemma 5.5.2. — If Π ' Π̃, then the image of H1
M (Ad∗Π,Q(1)) inside aG is stable

by w.
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CHAPTER 6

PERIOD INTEGRALS

6.1. — The remainder of the paper is devoted to giving evidence for Prediction 1.4.1.
As discussed there, we must analyze quantities of the type (1.4.8)—that is to say,
integrals of cohomology classes on Y (K) against cycles. In this section we will study
such integrals when the cycles come from a sub-locally symmetric space Z(U) defined
by a Q-subgroup H ⊂ G. We will relate these integrals to L-functions in two steps:
— Proposition 6.9.1 relates the integral of an L2-normalized automorphic coho-

mology class over Z(U) (i.e., the reciprocal of the left-hand side of (1.4.8)) to
a more standard automorphic period integral—that is to say, the integral of a
certain automorphic form over [H].

— Then, we rely on standard conjectures and assumptions about periods of auto-
morphic forms to express the latter in terms of L-values (Theorem 6.11.1).

The steps in the section are routine, but one must be careful about factors of π,
normalizations of metrics, volumes, and so forth. Similar results have been derived by
several other authors in related contexts; for example, see [58, §3].

The pairs (G,H) that we study are a subset of those arising from the Gan-Gross-
Prasad conjecture; we specify them in §6.3. There is no reason not to consider other
examples of periods, but these are convenient for several reasons:
— It is an easily accessible source of examples, but sufficiently broad to involve

various classical groups;
— There are uniform conjectural statements (after Ichino-Ikeda);
— Although we invoke simply the uniform conjectural statements, there are in fact

many partial results towards them known. (1)

Recall our notation A ∼ B whenever A/B ∈ Q∗.

6.2. Setup on submanifolds

Let H ⊂ G be a reductive Q-subgroup.

1. For example, in the PGL cases it seems that all the hypotheses of §6.10 are known except (iv),
the exact evaluation of archimedean integrals on the cohomological vector.
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We write H,G for the R-points, K∞ for a maximal compact subgroup of G and
U∞ for a maximal compact subgroup of H. We write (e.g.,) dH for the dimension
of H and rH for its rank (for us this means always the geometric rank, i.e., the rank
of the C-algebraic group HC). We introduce notation for the various Lie algebras:

g = Lie(GC), k = Lie(K∞)C, p = g/k, pG = dim(p),

h = Lie(HC), u = Lie(U∞)C, pH = h/u, pH = dim(pH).

These are complex vector spaces, but they are all endowed with natural real forms;
as before we denote (e.g) by hR the natural real form of h, and so forth.

Let U ⊂ H(Af) be a compact open subgroup, and define the analog of Y (K) (see
(1.6.2)) but with G replaced by H and K replaced by U :

Z(U) = H(Q)\H(A)/U◦∞U.

Fixing an H-invariant orientation on H/U◦∞, we get an H(A)-invariant orientation
of H(A)/U◦∞U and thus an orientation of Z(U). (If Z(U) is an orbifold, choose a
deeper level structure U ′ ⊂ U such that Z(U ′) is a manifold; then Z(U ′) admits a
U/U ′-invariant orientation.) This discussion gives a fundamental class

[Z(U)] ∈ HBM
pH (Z(U),Q),

where we work with Q coefficients, rather than Z coefficients, to take into account
the possibility of orbifold structure.

Let g = (g∞, gf ) ∈ G(A) = G(R) ×G(Af ) be such that Ad(g−1)U∞U ⊂ K∞K.
Then also Ad(g−1

∞ ) carries U◦∞ to K◦∞. Then the map induced by right multiplication
by g, call it

(6.2.1) ι : Z(U)
×g−→ Y (K),

is a proper map. Moreover, the action of U∞/U
◦
∞ on Z(U) corresponds, under ι, to

its action on Y (K) via Ad(g−1
∞ ) : U∞/U

◦
∞ → K∞/K

◦
∞.

The image of Z(U) is a pH -dimensional cycle on Y (K) and defines a Borel-Moore
homology class

ι∗[Z(U)] ∈ HBM
pH (Y (K),Q).

Our goal will be to compute the pairing of this with classes in H∗(Y (K),Q)Π, and
interpret the result in terms of “automorphic periods.”

Remark 10. — Now the class ι∗[Z(U)] can only be paired with compactly supported
classes. The classes that we pair with will be attached to cuspidal automorphic rep-
resentations. Therefore, the associated cohomology classes lift, in a canonical way, to
compactly supported cohomology, by [8, Theorem 5.2]; if ω is a cuspidal harmonic
form, the integral of ι∗ω over Z(U) coincides with the pairing of this compactly sup-
ported class with ι∗[Z(U)]. In other words, in the setting of §1.1, the map

H∗c (Y (K),C)→ H∗(Y (K),C)
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induces an isomorphism when localized at the ideal of the Hecke algebra corresponding
to Π. In what follows we will then pair ι∗[Z(U)] with such cuspidal cohomology classes
without further comment.

6.3. — We will study the following cases:
1. Let E = Q(

√
−DE) be an imaginary quadratic field. For (V, q) a quadratic

space over E, with dim(V ) ≥ 2, set (V ′, q′) = (V, q)⊕ (E, x2), and put

HE = SO(V ) ⊂ GE = SO(V ′)× SO(V ),

with respect to the diagonal embedding. Put H = ResE/Q HE , G = ResE/Q GE .

2. Let E = Q(
√
−DE) be an imaginary quadratic field. For V a finite-dimensional

E-vector space, set V ′ = V ⊕ E and put

HE = GL(V ) ⊂ GE = PGL(V ′)× PGL(V ).

Define H,G by restriction of scalars, as before.
3. Let E = Q. For V a finite-dimensional Q-vector space, set V ′ = V ⊕Q and put

H = GL(V ) ⊂ G = PGL(V ′)× PGL(V ).

In this case, we set HE = H,GE = G.
These cases correspond to cases of the Gross-Prasad conjecture where the cycle

Z(U) has dimension pH equal to theminimal tempered cohomological degree for Y (K),
i.e.,

(6.3.1) pH =
1

2
(dG − dK − (rG − rK)) ⇐⇒ pG − 2pH = rG − rK .

This dimensional condition is satisfied in the cases Up,q × Up+1,q ⊃ Up,q and
SOp,q × SOp+1,q ⊃ SOp,q only when q = 1; that is why we did not discuss these cases.

The numerical data in the cases we will consider is presented in Table 1. We shall
also need the following lemma, which assures us that the archimedean component of g
(as defined before (6.2.1)) is almost determined:

Lemma 6.3.1. — In all examples of §6.3, the fixed point set of (the left action of) U∞
on G/K∞ is a single orbit of the centralizer of H in G; in particular, the condition
Ad(g−1

∞ )U∞ ⊂ K∞ determines g∞ up to right translation by K∞ and left translation
by this centralizer.

Note that K∞/K
◦
∞ is nontrivial only in case (3), i.e., the GL cases over Q. In this

case, the induced map
Ad(g−1

∞ ) : U∞/U
◦
∞ → K∞/K

◦
∞

will be an isomorphism; both groups are isomorphic to ±1. In particular, right trans-
lation of g∞ by K∞ does not affect the image of the embedding Z(U)→ Y (K), and
indeed affects the embedding itself only through the action of U∞/U

◦
∞ on the source.

The Lenma will mean that, in computations, we may suppose that Ad(g−1
∞ )H ⊂ G

arises from the “standard” inclusion of the real group of type H into the group of
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type G. By explicit computations with the standard realizations, we see that this
inclusion is compatible with Cartan involutions. In other words, if θ is the Cartan
involution of G that fixes K∞, then Ad(g−1

∞ )H is stable by θ and θ induces a Cartan
involution of Ad(g−1

∞ )H, fixing Ad(g∞)−1U∞.

Proof. — In what follows, On and Un mean these compact groups in their standard
realizations as stabilizers of the forms

∑
x2
i on Rn and

∑
|zi|2 on Cn. The embed-

dings On ↪→ On+1 etc. are the standard ones also.
Consider, first, case (3) in the numbering at the start of §6.3: We must compute the

fixed points of On−1 acting on pairs of a scaling class of a positive definite quadratic
form on Rn−1, and a scaling class of a positive definite quadratic form on Rn. There is
a unique fixed point on scaling classes of positive definite forms on Rn−1. Thus, we are
left to compute the fixed points of On−1 acting on scaling classes of quadratic forms
on Rn: A positive definite quadratic form q on Rn whose scaling class is fixed by On−1

is actually fixed by On−1 (it is clearly fixed up to sign, and then definiteness makes it
fixed). By considering the action of −Id ∈ On−1 we see that q =

∑n−1
i=1 x

2
i + (axn)2.

Such forms constitute a single orbit of the centralizer of GLn−1(R) within PGLn(R),
which implies the claimed result.

The remaining cases follow similarly from the computation of the following sets:

Case 2: The fixed points of Un−1 acting on scaling classes of positive definite Hermi-
tian forms on Cn:

As above, any such form is
∑n−1
i=1 |zi|2 + a|zn|2; again, these form a single

orbit of the centralizer of GLn−1(C) within PGLn(C), as desired.

Case 1: The fixed points of SOn acting on SOn+1(C)/SOn+1(R).
Suppose SOn ⊂ gSOn+1g

−1 for g ∈ SOn+1(C); then SOn fixes the sub-
space gRn+1 ⊂ Cn+1; this subspace gives a real structure on Cn+1 and of
course

∑n+1
i=1 x

2
i will be positive definite on this subspace.

For n ≥ 3, the only R-structures of Cn+1 that are fixed by SOn are of the
form α.Rn ⊕ β.R, (α, β ∈ C×), and moreover if

∑
x2
i is real and positive

definite on this space, this means it is simply the standard structure Rn+1.
It follows that gRn+1 = Rn+1, and so g ∈ SOn+1 as desired. Thus the fixed
set mentioned above reduces to a single point.

For n = 2, there are other real structures fixed by SOn, namely

{x+ iϕ(x) : x ∈ R2} ⊕R,

where ϕ ∈M2(R) commutes with SO2. However, for
∑
x2
i to be real-valued

on this space we should have ϕ + ϕT = 0; the real structure is therefore of
the form

{(x+ iAy, y − iAx) : (x, y) ∈ R2} ⊕R,

for some A ∈ R; definiteness of
∑
x2
i means that A2 < 1. This is the im-

age of the standard real structure by the matrix 1√
1−A2

(
1 iA
−iA 1

)
, which lies
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in SO2(C) ⊂ SO3(C) and (obviously) centralizes the commutative group
SO2(C).

G H dG/K dH/U dG/K − 2dH/U

SOn(C)× SOn+1(C) SOn(C) n2 n2−n
2 n

PGLn(C)× PGLn+1(C) GLn(C) 2n2 + 2n− 1 n2 2n− 1

PGLn(R)× PGLn+1(R) GLn(R) n2 + 2n− 1 n2+n
2 n− 1

Table 1. The cases of the Gross-Prasad family that we will study

6.4. Setup on automorphic representations and differential forms

We now fix assumptions on the automorphic representations to be studied.
Let Π be as in §1.1: a (near-equivalence class of) cohomological automorphic rep-

resentation(s) for G at level K, satisfying the assumptions formulated there. In par-
ticular, we may define, as in (5.0.1), the Π-subspace H∗(Y (K),Q)Π ⊂ H∗(Y (K),Q)

of rational cohomology.
In fact, we want to impose a stricter condition, namely a multiplicity one condition

on cohomology. This is very convenient: it makes everything defined over Q and forces
Π to be a singleton.

6.4.1. The condition in the case of imaginary quadratic base field. — In the cases be-
sides PGLn×PGLn+1 over Q, we assume that the level structure K has multiplicity
one for Π, in the sense that

(6.4.1) dimHq(Y (K),Q)Π = 1.

In particular, in this case, there is just one automorphic representation in Π con-
tributing to this cohomology, Π = {π} say; in particular π = π. We ask that π be
tempered cuspidal (just as in our prior discussion in §1.1). In this case, we obtain
from π a harmonic differential form

ω ∈ Ωq(Y (K)),

whose cohomology class generates Hq(Y (K),R)Π. This form is unique up to real
scalars.

6.4.2. The case of PGLn × PGLn+1 in the case of rational base field. — In the re-
maining case G = PGLn × PGLn+1/Q, it is impossible to satisfy (6.4.1) because of
disconnectedness issues. We ask instead that (2)

(6.4.2) dimHq(Y (K),Q)±Π = 1,

2. For example, for the group PGL2, a tempered cohomological representation contributes two
dimensions to cohomology—an antiholomorphic form and a holomorphic form; these are interchanged
by the action of O2, and so (6.4.2) holds.
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where ± denotes eigenspaces under K∞/K
◦
∞ ' {±1}. This again means there is

just one automorphic representation Π = {π} contributing to this cohomology (see
discussion of cohomological representations for PGLn(R) in [45, §3] or [54, §5]); we
again require that π = π is tempered cuspidal. In this case, we similarly obtain from π

harmonic differential forms
ω± ∈ Ωq(Y (K))

whose cohomology classes generate Hq(Y (K),R)±Π .

6.4.3. Rational structures. — Under our assumptions above, we discuss rational struc-
tures on the representation.

Fix a character χ : K∞/K
◦
∞ → {±1}. Both sides of

(6.4.3) Hom(K∞,χ)(

q∧
g/k, πK) ' Hom(K∞,χ)(

q∧
g/k, π∞)⊗ πKf

are one-dimensional, and the map T 7→ Ω(T ) of §5.3 identifies this with Hq(Y (K),C)χπ.
This cohomology space is one-dimensional, and has a rational structure, namely
Hq(Y (K),Q)χπ.

Note that the induced real structure on the left-hand side is simply the natural one
(arising from combining the real structures on g, k and on πK , thought of as a space
of complex-valued functions). In what follows we may accordingly refer to an element
of Hom(K∞,χ)(

∧q
g/k, πK) as being “real.”

It also follows, examining the right-hand side of (6.4.3), that the Hecke action on
each πKvv is by rational scalars, and therefore πv itself admits a Q-rational structure
(arbitrarily take a Kv-stable vector, and take the rational span of its translates). Our
situation has been rendered particularly simple by our multiplicity one hypothesis—
see [77, Lemma I.1] for a related argument using multiplicity one, and [37] for a more
complete discussion of rationality fields.

6.4.4. L functions. — In the situation above, we can consider the L-functions
L(π, ρ, s) attached to a representation ρ of the dual group of G; here, we will only
be concerned with the standard representation and the adjoint representation. (Here,
the standard representation of the product of two classical groups is simply the tensor
product of their standard representations.)

Let us summarize the state of knowledge concerning meromorphic continuation
of these L-functions (this is simply assumed in Beilinson’s conjectures, but much is
known unconditionally). For the partial L-function—that is to say, the L-function
ignoring archimedean factors and factors at ramified finite places—the situation is as
follows:

— In the PGL cases, both standard and adjoint L-functions have meromorphic
continuation in s because of the Rankin-Selberg method [32].

— In the SO case, the situation is the same if we impose the assumption that

(*) the form π has a transfer π∗ to the general linear group
GLm ×GLm′ (with (m,m′) = (n, n) or (n− 1, n+ 1)).
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Here we use in addition to the Rankin-Selberg method, the theory of exterior
square L-functions from the Langlands-Shahidi method [64] to handle the ad-
joint L-function.

In more detail, (*) demands an automorphic form π∗ on the general linear
group whose Hecke eigenvalues at almost all primes coincide with the functo-
rial transfer of π. Assumption (*) has been proved by Arthur in the quasisplit
case [1]—the form π∗ need not be cuspidal, but it is readily described in terms
of cuspidal constituents. It is currently the focus of substantial work to extend
to the general case (see [38] for parallel work in the case of unitary groups).

In addition (assuming (*) in the orthogonal case) one has definitions of the corre-
sponding local L-factor at all places, and work of Henniart [27, §1.2] and [28] moreover
shows that the local factors thus defined are, in fact, compatible with the local Lang-
lands correspondence for GL.

In any case, for our main theorems, it is not necessary to assume (*); rather we can
simply use the assumptions that are already made in Beilinson’s conjecture. Namely,
the output of this section involves only the partial L-function omitting ramified fi-
nite places (see Theorem 6.11.1); this manifestly agrees with the “motivic” L-function
whenever one has a motive that matches the L-function at good places, and the as-
sumptions that are part of Beilinson’s conjecture imply that it admits a meromorphic
continuation. We will transition to the completed motivically normalized L-function
(i.e., including ramified finite factors) after (7.2.4).

6.5. Tamagawa measure versus Riemannian measure

On [G] there are two measures, one arising from the Riemannian structure and one
from the Tamagawa measure. Our eventual goal is to compare them. For the moment,
we explain carefully how to construct both of them:

For the Riemannian measure, we first fix once and for all the “standard” represen-
tation of G, or rather of an isogenous group G′. Let η : G′ → GL(W ) be the following
Q-rational faithful representation: in all cases, we take W to be ResE/Q(V ′⊕V ), and
we take G′ to be the restriction of scalars of SL(V ′)×SL(V ) in cases (2) and (3), and
G′ = G in case (1).

Define the form B on gQ via

(6.5.1) B(X,Y ) = trace(dη(X).dη(Y )).

This defines a G-invariant Q-valued quadratic form B on the Lie algebra. Note that
(the real-linear extension of) B is invariant by the Cartan involution θ on gR, by
explicit computation. Moreover B is nondegenerate and negative definite on the as-
sociated splitting kR + ipR, because the standard representation η just introduced
carries the associated maximal compact of G′(C) into a unitary group. It follows
that B is negative definite on kR and positive definite on pR. In particular, B defines
a Riemannian structure on Y (K).
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We will also use the same letter B to denote the corresponding Hermitian form on
the complexification of any of these spaces, e.g., 〈−,−〉B on p ' g/k is the Hermitian-
linear extension of B from pR to p.

We shall also equip hQ ⊂ gQ with the restriction of the form B, i.e., with the form
arising similarly with the representation η|h. When extended to hR this coincides with
the pullback of B under Ad(g−1

∞ ) : hR → gR, since the form B was invariant; therefore
the restricted form is preserved by a Cartan involution fixing U∞ (see remark after
Lemma 6.3.1), and similarly defines a Riemannian structure on Z(U).

For Tamagawa measure, what one actually needs is a measure on gAQ
, where AQ is

the adele ring of Q. Choose a volume form on gQ:

(6.5.2) ωG ∈ det(g∗Q).

Let ψ be the standard additive character of AQ/Q, whose restriction to R is given
by x 7→ e2πix. We choose the ψv-autodual measure on Qv for every place v; from
that and ωG we obtain a measure on gv = g ⊗ Qv for every place v, and so also a
measure µv on G(Qv).

By abuse of notation we refer to all the measures µv as “local Tamagawa measures.”
They depend on ωG, but only up to Q×, and their product

∏
v µv is independent of ωG.

We proceed similarly for H, fixing a volume form ωH ∈ det(h∗), which gives rise
to local Tamagawa measures on H(Qv) and a global Tamagawa measure on H(A).

The last needs a short discussion: Note that in case (2) and (3) the group H has
a center equal to Gm, and so the product of local measures is formally divergent;
however,

∏
v(1− q−1

v )−1µv is convergent, and whenever we write an integral over H

against the measure
∏
µv, it will appear in combination with a product of ζ functions

that formally contains the factor ζ(1). We shall therefore understand that this ζ(1)

should be incorporated into the measure, i.e., ζ(1) is removed from the expression
outside the integral, and the measure is modified to be

∏
v(1 − q−1

v )−1µv. We hope
this causes no confusion; the expressions are always formally valid and then literally
valid when interpreted in this way.

6.6. Lattices inside Lie algebras

We choose an integral lattice inside g and k:
For g, we simply choose a lattice gZ ⊂ gQ of volume 1 for ωG, i.e., 〈ωG,det gZ〉 = 1.
For k, Macdonald [44] has specified a class of lattices kcmpt

Z ⊂ kR deriving from a
Chevalley basis. First choose in k a Chevalley basis associated to the complexification
of the compact real Lie group K◦∞. This can be done in such a way that the compact
form kR is the R-linear span of the torus elements of

√
−1Hi (where Hi are the torus

elements indexed by simple roots), together with Xα +X−α and i(Xα−X−α), where
α varies over all positive roots. We take kcmpt

Z to be the integral span of these elements.
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With these definitions, we define discriminants of g, k, p thus:

disc g := 〈det gZ,det gZ〉B ,(6.6.1)

disc k := 〈det kcmpt
Z ,det kcmpt

Z 〉−B ,(6.6.2)

disc p :=

∣∣∣∣disc g

disc k

∣∣∣∣ .(6.6.3)

Note that

(6.6.4) disc g = 〈ωG, ωG〉−1
B ,

and that the signs of the discriminants of g, k, p are given by (−1)dK , 1, 1 respectively.
Also all these definitions carry over to H: in particular, we define disc pH in a similar
way.

We need:

Lemma 6.6.1. — The discriminants of g, k, p all belong to Q×.

Proof. — For disc(g) this follows from the fact that B is Q-valued. It is enough to
prove the result for k. There we observe that

det kZ ∈ Q× · i
dK+rK

2 det kChev
Z ,

where kChev
Z is a Chevalley lattice in k arising from the complexification of K◦∞. The

representation η defining the bilinear form B gives a representation ηC of the Cheval-
ley group underlying kC; this representation, like all representations of the complex-
ified Chevalley group, can be defined over Q and so the trace form takes rational
values on kChev

Z , as desired.

Note that the same reasoning applies to H; thus the discriminants of h, u, pH all
lie in Q× too.

6.7. Factorization of measures on G

First let us compute the Riemannian volume of K∞. Macdonald [44] shows that,
for any top degree invariant differential form ν on K◦∞, regarded also as a volume
form on the Lie algebra in the obvious way, we have

(6.7.1) ν-volume of K◦∞ =
∏
i

2πmi+1

mi!
ν(det kcmpt

Z ) ∼ ∆K · ν(det kcmpt
Z ),

where ∆K = π(dK+rK)/2; here the mi are the exponents of the compact Lie group
K◦∞, so that

∑
mi = (dK − rK)/2. Therefore,

vol(K◦∞) := Riemannian volume of K◦∞ w.r.t. −B|k ∼ ∆K ·
√

disc(k).
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We can factor det(g∗R) ' det(k∗R) ⊗ det(p∗R), and with reference to such a factor-
ization,

ωG
(6.6.4)

=
1√
|disc g|

· ωK ⊗ ωP ,

where ωK ∈ det k∗R is determined (up to sign) by the requirement that 〈ωK , ωK〉−B = 1,
and similarly ωP ∈ det p∗R is determined by requiring that 〈ωP , ωP 〉B = 1. We can
regard ωK and ωP as differential forms on K∞ and G/K∞, extending them from the
identity tangent space by invariance; the measures on K∞ and G/K∞ defined by the
differential forms ωK and ωP coincide with the Riemannian measures (associated
to −B|k and B|p respectively).

This implies that
local Tamagawa measure on G pushed down to G/K◦∞

Riemannian measure on G/K◦∞ w.r.t. B|p
=

vol(K◦∞)√
|disc g|

(6.7.2)

∼ ∆K ·
√

disc p.

6.8. Tamagawa factors

Let µf denote the volume of K ⊂ G(Af) with respect to Tamagawa measure (more
precisely: the product of local Tamagawa measures as in §6.5, over finite places).
Evaluating µf is a standard computation, and is particularly straightforward in the
split cases where we use it: There is an L-function ∆G attached to G, with the
property that its local factor at almost all places is given by pdim G

#G(Fp) ; for example, if
G = SLn, then ∆G = ζ(2) . . . ζ(n). Then µf ∼ ∆−1

G . We shall later use the notation

∆G,v = local factor of ∆G at the place v.

Let us introduce

(6.8.1) ∆G/K = ∆G/∆K ,

where ∆K = π(dK+rK)/2 as before. We can define similarly ∆H/U .
Now examine the Riemannian measure on Y (K). We write

(6.8.2) Y (K) =
∐
i

Γi\G/K◦∞,

where I = G(Q)\G(Af)/K and, for i ∈ I with representative gi, we have
Γi = G(Q) ∩ giKg−1

i . If we choose a fundamental domain Fi ⊂ G(R), right in-
variant by K◦∞, for the action of Γi, then

∐
i FigiK is a fundamental domain in G(A)

for the action of G(Q), and FigiK maps bijectively to Y (K)i, the ith component
of Y (K) under (6.8.2). The global Tamagawa measure of FigiK equals µf multiplied
by the local Tamagawa measure of Fi; on the other hand, the Riemannian measure
of Y (K)i is the Riemannian measure of Fi/K◦∞, and so by (6.7.2) we have

(6.8.3)
projection of Tamagawa measure to Y (K)

Riemannian measure on Y (K)
∼ ∆−1

G/K

√
disc p.
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Similarly,

(6.8.4)
projection of Tamagawa measure to Z(U)

Riemannian measure on Z(U)
∼ ∆−1

H/U

√
disc pH .

6.9. Cohomological periods versus automorphic periods

We now carry out the first step mentioned in §6.1. Our situation and notation on
groups, manifolds, automorphic forms differential forms and measures is as stated in
§6.2–§6.5.

Proposition 6.9.1. — Fix ν0
H ∈ det(pH,R) with 〈ν0

H , ν
0
H〉B = 1; let νH = Ad(g−1

∞ )ν0
H

the the corresponding element of
∧pH p:

det(pH) =

pH∧
pH

Ad(g−1
∞ )−→

pH∧
p.

If T ∈ HomK◦∞
(
∧pH g/k, πK) lies in a K∞/K

◦
∞ eigenspace and induces the differential

form Ω(T ) on Y (K), as in (5.3.1), then

(6.9.1)

∣∣∣∫Z(U)
ι∗Ω(T )

∣∣∣2
〈Ω(T ),Ω(T )〉R

∼ (disc p)
1/2

∆2
H/U

∆G/K
·

∣∣∣∫[H]
gT (νH)dh

∣∣∣2
〈T (νH), T (νH)〉

(where we regard the statement as vacuous if T (νH) = 0). Here gT (νH) is the translate
of T (νH) ∈ π by g = (g∞, gf ), and 〈T (νH), T (νH)〉 is the L2-norm

∫
[G]
|T (νH)|2 with

respect to Tamagawa measure.
On the left-hand side the L2-norm of Ω(T ) is taken with respect to Riemannian

measure (3) on Y (K) induced by B (thus the subscript R), whereas on the right-hand
side everything is computed with respect to Tamagawa measure.

Proof. — We follow the convention that a subscript R will denote a computation with
respect to the Riemannian measure induced by B. Although this measure is defined
on the locally symmetric space Y (K), we will also refer to a “Riemannian” measure
on [G]; this is simply a Haar measure that is normalized to project to the Riemannian
measure under [G]→ Y (K).

We want to integrate ι∗Ω(T ) over Z(U), for which we will first evaluate ι∗Ω(T )

against a unit length element in the determinant of a tangent space. Take a point
in Z(U) represented by h ∈ H(A), with tangent space T , and consider a positively
oriented unit length element of the top exterior power

∧dimT
T . In the notation

established after (5.3.1) such an element is denoted by [h, ν0
H ], and its pushforward

by ι is given by
[hg,Ad(g−1

∞ )ν0
H ] = [hg, νH ].

Consequently, the value of ι∗Ω(T ) on this unit length element is given by T (νH)(hg).

3. The reason we use Riemannian measure at all is that it interfaces well with the action of aG
(e.g., Proposition 5.5.1 part (i)).
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The integral of ι∗Ω(T ) over Z(U) is therefore the same as the integral of T (νH)(hg)

over Z(U) with respect to Riemannian measure. Note that h 7→ T (νH)(hg) in-
deed defines a function on Z(U): for u ∈ U◦∞, writing u′ = Ad(g−1

∞ )u, we have
T (νH)(hug) = T (νH)(hg · u′) = T (u′ · νH)(hg), but u′ preserves νH , because u pre-
serves ν0

H .
Therefore, when we integrate Ω(T ) over the cycle representing ι∗[Z(U)] we get∫

Z(U)

ι∗Ω(T ) =

∫
Z(U)

gT (νH)dRh
(6.8.4)∼ ∆H/U

√
disc pH

∫
[H]

gT (νH)dh.

here dR is Riemannian measure on Z(U) and dh is Tamagawa measure, and
g = (g∞, gf ) as before; we also used the fact (disc pH)1/2 ∼ (disc pH)−1/2.

Next we compute the norm of Ω(T ) with respect to Riemannian volume and com-
pare it to the Tamagawa-normalized L2 norm of T (νH). Let B be a B-orthogonal
basis for

∧pH pR. For each x ∈B, if we evaluate Ω(T ) at x (considered at the tangent
space of the identity coset) we get, by definition, T (x) evaluated at the identity. More
generally the sum ∑

x∈B

|T (x)|2

defines a function on [G]/K that is K◦∞-invariant, and therefore descends to Y (K);
its value at a point of Y (K) is the norm of Ω(T ) at that point. Integrating over Y (K)

with respect to Riemannian norm, we see

〈Ω(T ),Ω(T )〉R =
∫
g∈Y (K)

(∑
x∈B |T (x)|2

)
dRg(6.9.2)

=

∫
g∈Y (K)(

∑
x∈B |T (x)|2)dRg

〈T (νH),T (νH)〉R 〈T (νH), T (νH)〉R(6.9.3)

= ‖T‖2
〈T (νH),T (νH)〉 〈T (νH), T (νH)〉R.(6.9.4)

Here we define

(6.9.5) ‖T‖2 =
∑
x∈B〈T (x), T (x)〉L2([G])

and the L2-norm is now computed with respect to Tamagawa measure on [G]. After
translating (6.8.3) between Riemannian and Tamagawa measure for 〈T (νH), T (νH)〉R,
the result follows from Lemma 6.9.1 below.

Lemma 6.9.1. — Notation as above; in particular (G,H) are as in §6.3 and B is
the trace form defined in (6.5.1). Let T ∈ HomK◦∞

(
∧pH g/k, πK) lie in a K∞/K

◦
∞

eigenspace (necessarily one-dimensional, see §6.4). Let νH be as in Proposition 6.9.1,
and the norm ‖T‖ be as in (6.9.5). Then

〈T (νH), T (νH)〉
‖T‖2〈νH , νH〉B

=
〈g∞T (νH), g∞T (νH)〉
‖T‖2〈νH , νH〉B

∈ Q.

Note that 〈νH , νH〉B = 1, by the way it was defined in the statement of Proposi-
tion 6.9.1, but we prefer to write the expression above because it is scaling invariant.
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Proof. — Observe the ratio under consideration is invariant under rescaling the norm
either on source or target of T , or rescaling T , or rescaling νH . The validity of the
statement depends only on the data

(6.9.6) (G(R) ⊃ K∞,H(R) ⊃ U∞, g∞, π∞, T )

together with the scaling class of the form induced by B on pR and pH . By
Lemma 6.3.1, it suffices to treat the case when g∞ = e, the identity element, and
G(R) ⊃ K∞,H(R) ⊃ U∞ is one of the following:

PGLn(R)× PGLn+1(R) ⊃ POn × POn+1, GLn(R) ⊃ On.(6.9.7)

PGLn(C)× PGLn+1(C) ⊃ PUn, GLn(C) ⊃ Un.(6.9.8)

SOn+1(C)× SOn(C) ⊃ SOn+1 × SOn, SOn(C) ⊃ SOn.(6.9.9)

In all cases, O and U refer to the standard orthogonal form
∑
x2
i and the standard

Hermitian form
∑
|zi|2.

In other words, the assertion in question is a purely archimedean one, and we may
freely assume that G,H are the Q-split forms in the first case, and (the restriction
of scalars of the) Q(i)-split forms in the second and third cases. With these Q-struc-
tures, the inclusion of H into G is Q-rational, the form B remains Q-rational on
the Q-Lie algebra, and moreover the maximal compacts U∞,K∞ described above are
actually defined over Q. Therefore, pR and also

∧pH pR inherits a Q-structure, and
the line RνH ⊂

∧pH pR is thus defined over Q. We may freely replace νH , then, by a
Q-rational element ν′H ∈ R.νH .

First let us consider the latter two cases: GR is a “complex group” and so
K∞ = K0

∞. In this case (see §3.4.1 or the original paper [76]) T factors through
a certain K∞-type δ ⊂ π∞, which occurs with multiplicity one inside

∧pH p. In
particular, 〈T (v), T (v)〉 is proportional simply to 〈projδ(v),projδ(v)〉B . The ratio in
question is therefore simply

(dim δ)−1 〈projδν
′
H ,projδν

′
H〉B

〈ν′H ,ν′H〉B
.

It suffices to see that projδν
′
H is Q-rational. However, the isomorphism class of δ is

fixed by outer automorphisms of K∞: the highest weight of δ is the sum of positive
roots, and the character of δ on the center of K∞ is trivial. It follows that projδ, as
a self-map of

∧pH p, is actually defined over Q.
In the remaining case (6.9.7), fix a character χ : K∞ → {±1}. The subspace

Hom(

pH∧
p, π∞)(K∞,χ) ⊂ Hom(

pH∧
p, π∞)

transforming under (K∞, χ), remains 1-dimensional (if nonzero). This space consists
precisely of the K∞-homomorphisms

pH∧
p −→ π∞|K∞ ⊗ χ.

In this case there is a unique irreducible K∞-representation δ′ ⊂
∧pH p which is

common to
∧pH p and π∞|K∞ ⊗χ. This δ′ splits into two irreducibles when restricted
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to K0
∞ = PSOn+1 × PSOn(R); these two irreducibles are switched by K∞/K

0
∞,

which is just the outer automorphism group of K0
∞, and each irreducible occurs with

multiplicity one inside π∞ (one in each irreducible factor of π∞|SLn+1× SLn
). It follows

that the projection from
∧pH p to the δ′-isotypical component is actually defined

over Q, and we can proceed just as before.

6.10. Working hypotheses on period integrals

We now simplify (6.9.1) a little bit further using the Ichino-Ikeda conjecture [29].
Note that the original conjectures of Ichino and Ikeda were formulated only for or-
thogonal groups, but in fact the analogue of their conjecture is known to be valid
in the GL case (see, e.g., [57, Theorem 18.4.1], although the result is well-known to
experts).

At this point it is convenient, in cases (1) and (2) from §6.3, to work with the
E-groups HE ,GE instead of their restriction of scalars to Q. Recall that we regard
E = Q in the remaining case.

To normalize Tamagawa measures, we must choose a measure on Ev for each place;
we choose these measures so that the volume of AE/E is 1 and so that the measure
of the integer ring of Ev is Q-rational for every finite place v, and 1 for almost every
place v. Note that this implies that, for v the archimedean place of E,

(6.10.1) measure on Ev ∼ D1/2
E · Lebesgue.

Fix now E-rational invariant differential forms of top degree on HE and GE and use
this to define Tamagawa measures dh and dg on HE(AE) = H(AQ) and GE(AE) =

G(AQ), thus on [H] = [HE ] and [GE ] = [G]; these global Tamagawa measures
coincide with the ones made using Q-rational differential forms.

We factorize dh and dg as
∏
dhv and

∏
dgv where dhv, dgvs are local Tamagawa

measures, and the factorization is over places of E rather than places of Q. As before,
the dhv, dgv depend on the choices of differential form, but they only depend up
to Q×, since |e|v ∈ Q× for each e ∈ E and each place v.

We will use the following expected properties; not all are presently known, and
thus we regard the currently unproven ones as assumptions. (i) is known in the PGL

cases and is the Ichino-Ikeda conjecture in the orthogonal case; (ii) is known in all
cases and it should be possible to establish (iii) with some effort. Finally (iv) is a
problem of special functions.
(i) (Global integral): Suppose that, with reference to a factorization π =

⊗
πv,

gT (νH) can be factored (4)as
⊗

v ϕv and factorize also the inner product. Then∣∣∣∫[H]
gT (νH)dh

∣∣∣2∫
[G]
|T (νH)|2dg ∼

∏
v

∫
H(Fv)

〈hvϕv,ϕv〉dhv
〈ϕv,ϕv〉 ,

4. In our application, we will only have to deal with a factorizable vector, because of the one-
dimensionality of (6.4.3). However, we note for completeness that knowledge of a factorizable Her-
mitian form on pure tensors determines the Hermitian form; the Hermitian forms arising from the
periods we consider are factorizable by multiplicity one.
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where the right-hand side is regularized as a global L-value according to (ii)
below.

This is the conjecture of Ichino-Ikeda [29]. Its validity in the PGL case is
folklore, see e.g., [57, Theorem 18.4.1].

(ii) (Local integrals at almost all nonarchimedean places): At almost all nonar-
chimedean places v, with local Tamagawa measures dhv, we have

(6.10.2)

∫
H(Fv)

〈hvϕv, ϕv〉dhv
〈ϕv, ϕv〉︸ ︷︷ ︸
:=LHSv

=
∆G,v

∆2
H,v

L( 1
2 , πv; ρ)

L(1, πv,Ad)︸ ︷︷ ︸
:=RHSv

,

where the representation ρ of the L-group of G is that corresponding to the
Rankin-Selberg L-function in the SO cases, and that corresponding to the square
of the Rankin-Selberg L-function in the PGL cases. Also ∆H,v and ∆G,v are the
local factors described in §6.8.

This is known in the SO cases by [29, Theorem 1.2] (note that our measure
normalization differs from theirs), and in the PGL cases by [26, §2].

(iii) (Local integrals at the remaining nonarchimedean places) If v is a nonar-
chimedean place and πv admits a Q-rational structure (as is the case in our
setting, see §6.4.3), then for ϕv in this Q-structure we have

(6.10.3) LHSv ∈ Q,

where LHSv is the left-hand side of (6.10.2).
We believe this should not too difficult to show— on the left hand side, for

example, the ratio 〈hvϕv,ϕv〉〈ϕv,ϕv〉 is already a rational-valued function of hv. However,
we do not know a reference, and to make the argument carefully would take us
too far afield.

(iv) (Rationality, archimedean places) For v the unique archimedean place of E, let T
and νH be as in Lemma 6.9.1. The condition we will enunciate depends only on
the same archimedean data as in (6.9.6), and we thus may freely assume (just
as in the discussion following that equation) that g∞ = e and that (GR,HR)

have been put in the standard position of Lemma 6.3.1.
Moreover, if we are in the PGLn × PGLn+1 over Q case, assume that T

transforms under the character of K∞/K
◦
∞ ' {±1} given by x 7→ xn+1: this is

the only case that will be encountered in our application in §7, and the specific
choice of character arises from numerology discussed in §7.0.1.

Finally write ϕ∞ ∈ π∞ for the archimedean component of the factorizable
vector g∞T (νH); this is uniquely defined up to scalar multiple, and the associ-
ated line is characterized purely locally (take the image of νH under a nonzero
element of HomK◦∞

(
∧pH g/k, π∞) and translate by g∞).

With these choices of data, we have

(6.10.4)
LHSv
RHSv

∼ DdH/2
E ,
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where DE was the absolute value of the discriminant of E. (We understand here
that the RHSv, which involves an archimedean L-factor, is defined via the local
Langlands correspondence for archimedean fields.)

Aside from the factor DdH/2
E , this simply states the belief that “in good sit-

uations, the archimedean integral behaves like the nonarchimedean integrals.”
This belief must be applied with caution, see e.g [31] for other examples where
this is expected to be false, but seems reasonable in the instances at hand. The
factor DdH/2

E is necessary to make the conjecture independent of E, because of
(6.10.1). Note the very fact that LHSv is nonzero is not known in all cases; it
has been proven by B. Sun by a remarkable positivity argument in the GLn
cases [68].

6.11. Summary

Combining Proposition 6.9.1 with the working hypotheses of §6.10, we have proved:

Theorem 6.11.1. — Let ι : Z(U)→ Y (K) be, as in §6.2, a map of arithmetic manifolds
associated to the inclusion H ⊂ G and the element g = (g∞, gf ) ∈ G(A), as in §6.3.

Let π be as in §6.4, a cohomological automorphic representation for G, tempered
at ∞ and cuspidal, with π = π.

In the PGLn×PGLn+1/Q case let χ be the order 2 character of K∞ described after
(6.10.4); otherwise we understand χ to be trivial. Let

T ∈ Hom(K∞,χ)(

q∧
g/k, πK)

be nonzero and real, and let Ω(T ) be the associated differential form on Y (K) (as in
(5.3.1)).

Assume the working hypothesis on period integrals (§6.10). Then

(6.11.1)

(∫
Z(U)

ι∗Ω(T )
)2

〈Ω(T ),Ω(T )〉R
∈ Qcfc∞

(
L(ur)( 1

2 , π; ρ)

L(ur)(1, π,Ad)

)
,

where (ur) means that we omit factors at finite ramified places, ρ is the representation
of the L-group occurring in (6.10.2), c2f ∈ Q×, c∞ is a half-integral power of π, and
the subscript R means that we compute the L2-norm with respect to a Riemannian
measure normalized as in §6.5. Explicitly:

cf =
(

disc p ·DdH
E

)1/2 (
∈
√

Q×
)
,

c∞ =

(
∆K

∆2
U

)(
∆G,∞

∆2
H,∞

)(
L∞( 1

2 , π; ρ)

L∞(1, π,Ad)

)
.

Moreover, if L(ur)( 1
2 , π; ρ) 6= 0 and there exists a nonzero H(A)-invariant func-

tional on the space of π, it is possible to choose the data (g∞, gf ) and level structure U
in such a way that the left-hand side of (6.11.1) is also nonzero.
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Proof. — This follows by putting together Proposition 6.9.1 with the statements of
§6.10. (See §6.4.3 for the rational structures, used for (6.10.3).)

Note that the assumption that T was real means that Ω(T ) is a real differential
form, and that T (νH) is a real-valued function on [G]; this allows us to drop absolute
value signs. We were able to drop the ramified factors using (6.10.3). The last sentence
of the theorem follows because for each finite place v of E and any nonzero ϕv ∈ πv, it
is (under the assumption quoted) possible to choose gv ∈ GE(Ev) with the property
that

∫
HE(Ev)

〈hvgvϕv, gvϕv〉 6= 0 (see [81] or [57]).
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CHAPTER 7

COMPATIBILITY WITH THE ICHINO-IKEDA CONJECTURE

We now study more carefully the compatibility of our conjecture with the Ichino-
Ikeda conjectures on periods. We work in the following situation:

Let H ⊂ G be as discussed in §6.3. Each case involves a field E, which is either
imaginary quadratic Q(

√
−DE) or E = Q.

As in §6.3, we use (e.g.,) GE for G regarded as an E-group and G for it as a
Q-group and similar notations for Lie algebras: in particular gE is the Lie algebra
of GE , an E-vector space, whereas gQ = ResE/QgE is the Q-Lie algebra that is the
Lie algebra of G.

We use other notation as in section §6.4, §6.2 and 6.3; in particular we have a map
of arithmetic manifolds

ι : Z(U)→ Y (K)

associated to H,G and the element g = (g∞, gf ) ∈ G(A). The Borel-Moore cycle
ι∗[Z(U)] defined by H lies in the minimal cohomological dimension for tempered
representations for G (see (6.3.1) and Table 1), which we shall now call q:

q = pH = minimal cohomological dimension for tempered representations.

Finally, as in §6.4, we have fixed a near equivalence class Π of automorphic represen-
tations; only one representation π in Π contributes to cohomology at level K.

7.0.1. The cycle Z(U) and its twisted versions. — We have available in all cases the
class ι∗[Z(U)] in Borel-Moore homology. However in the case G = PGLn × PGLn+1

we want to twist it, for reasons that we will now explain:
The point is that the fundamental class of Z(U) is not preserved by the action

of U∞/U◦∞ ' {±1}. Rather, the nontrivial element −1 alters the orientation by a
sign (−1)n+1, as one sees by a direct computation (cf. [45, 5.1.1]. Therefore, ι∗[Z(U)]

transforms as x 7→ xn+1 under K∞/K
◦
∞ ' {±1}; as such, it can only pair nontrivially

with a cohomology class of this sign. By twisting it, we will produce a class that trans-
forms under the opposite character x 7→ xn. This motivates the precise numerology
of the twisting below:

Fix an auxiliary quadratic character ψ of A×Q/Q
× which, at ∞, gives the sign

character of R∗. The function ψ ◦ det now gives rise to a locally constant function
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on [H], and thus a Borel-Moore cycle

[Z(U)]ψ ∈ HBM
pH (Z(U),Q)

of top dimension on Z(U). To be precise first choose U ′ ⊂ U on which ψ is constant,
so that ψ gives a locally constant function on Z(U ′), then push forward the resulting
cycle and multiply by 1

[U :U ′] ; however, this will equal zero unless ψ was trivial on U
to start with. It will be convenient to write for ε ∈ {±1}

(7.0.1) [Z(U)]ε =

{
[Z(U)], ε = (−1)n+1;

[Z(U)]ψ, ε = (−1)n.

The notation is designed so that [Z(U)]ε has trivial sign under U∞/U
◦
∞ if ε = 1 and

nontrivial sign if ε = −1.

7.1. Motivic cohomology; traces and metrics and volumes

We assume that there exists an adjoint motive Ad Π attached to Π, in the sense of
Definition 4.2.1. By its very definition, it is equipped with an isomorphism

(7.1.1) HB(Ad Π,C) ' ĝQ,∗ ⊗C = ĝ,

where ĝQ,∗ is as in Definition 4.2.1. Now we may define the motivic cohomology group

(7.1.2) LΠ = H1
M (Ad∗Π,Q(1)),

as in (1.2.2). As described in §5.1, the regulator on LΠ takes the shape

(7.1.3) LΠ −→ aG
and indeed LΠ lands inside the twisted real structure on aG (see §5.1).

There are two natural metrics which can be used to compute the volume of LΠ.
One of these metrics arises from a bilinear form on the Lie algebra of G, and the other
one arises from a bilinear form on the Lie algebra of the dual group. We will need
to pass between the volumes with respect to these metrics in our later computations,
and so we explain now why they both give the same volume, up to ignorable factors.

As per §5.2 we can equip Ad Π with a weak polarization whose Betti incarnation is
the standard trace form on ĝ itself. Note that ĝ is a sum of classical Lie algebras; by
“standard trace form,” we mean that we take the form tr(X2) on each factor, where
we use the standard representation of that factor. This is visibly Q-valued on ĝQ. We
refer to this as the “trace weak polarization” and denote it by t̂r.

This induces a quadratic form (denoted t̂r
∗
) on g̃, by duality, which corresponds

to a weak polarization on Ad∗Π. As in §2.2.4 we may use this to induce a quadratic
real-valued form on H1

D
((Ad∗Π)R,R(1)), which we extend to a Hermitian form on

H1
D((Ad∗Π)R,R(1))⊗C.

As in §2.2.5 this C-vector space is identified with g̃WR , and thus with aG. (Here,
and in the remainder of this proof, we understand WR to act on g by means of the
tempered cohomological parameter, normalized as in §3.3.)
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Explicitly, this induced Hermitian form on aG is given by

(7.1.4) (X,Y ) ∈ aG × aG 7→ t̂r
∗
(X · wY ),

where w is the long Weyl group element; we used the computation of the Betti con-
jugation in the proof of Lemma 5.1.1.

By its construction the Hermitian form (7.1.4) is a real-valued quadratic form
when it is restricted to the twisted real structure a′G,R. This quadratic form need not
be positive definite, since we started only with a “weak” polarization, but this makes
little difference to us. The volume of LΠ with reference to t̂r

∗
may be analyzed by

means of Lemma 2.2.2 (the failure of positive definiteness means that the volume may
be purely imaginary: the square of the volume is, by definition, the determinant of
the Gram matrix). We denote this volume by volt̂r(LΠ).

On the other hand there is a different Hermitian form on a∗G, which is positive def-
inite, and whose interaction with the norm on harmonic forms is easy to understand.
Namely, we have equipped (§6.5) gQ with a Q-rational bilinear form, the trace form
for a standard representation; this form endows Y (K) with a Riemannian metric.
Then, by (i) of Proposition 5.5.1, a∗G acts “isometrically” (in the sense specified there)
for the dual of the form given by

(7.1.5) (X,Y ) ∈ aG × aG 7→ B(X,Y ).

This form is also real-valued on the twisted real structure (a∗G,R)′, and moreover
it defines a positive definite quadratic form there. It is positive definite because
B(X, X̄) > 0 for X ∈ p, and this contains (a representative for) aG. To see that
it is real-valued, observe that

(7.1.6) B(X,wY ) = B(X,wY ) = B(w−1X,Y ) = B(wX, Y ),

so B(X,Y ) ∈ R if X,Y belong to the twisted real structure; but if Y belongs to the
twisted real structure, so does Ȳ .

By Lemma 3.5.2, the quadratic forms given by restriction of t̂r to a∗G,R ⊂ ĝ, and the
restriction of B to aG,R, are in duality with one another (after possibly multiplying
t̂r by 1

4 ); thus also their complex-linear extensions t̂r on a∗G ⊂ ĝ and B on aG are dual
to one another (up to the same possible rescaling). Noting that t̂r

∗
on g̃WR and t̂r

on gWR are also dual quadratic forms, it follows that (as quadratic forms on aG) we
have an equality B = t̂r

∗
(up to the same possible rescaling).

We will be interested in

voltr(LΠ) := volume of LΠ with respect to (7.1.5).

Choosing a Q-basis xi for LΠ and with notation as above, we compute:

voltr(LΠ)2 (7.1.5)
= detB(xi, xj)

Lem. 3.5.2
= 4k t̂r

∗
(xi, xj) = 4k det(w)t̂r

∗
(xi, wxj)(7.1.7)

= (4k det(w)) volt̂r(LΠ)2(7.1.8)

for some k ∈ Z. Clearly det(w) = ±1; it is possible that det(w) = −1, but in any case
our final results will have factors of

√
Q× which allow us to neglect this factor.
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7.2. — We may state our theorem:

Theorem 7.2.1. — Notation as before, so that (H,G) is as in §6.3, the embed-
ding Z(U)→ Y (K) is set up as in §6.2, and the cuspidal cohomological automorphic
representation Π is as in §6.4.

Make the following assumptions:

(a) Beilinson’s conjectures on special values of L-functions (both parts (a) and (b)
of Conjecture 2.1.1) extended to pure motives as discussed in §2.1.11.

(b) Existence of an adjoint motive attached to Π (as in Definition 4.2.1), arising
from a Ĝ-motive attached to Π (Conjecture B.1 in the appendix). (1)

(c) Working hypotheses on period integrals (§6.10).

Then, with ω, ω± as in §6.4, and cycles [Z(U)]± as in §7.0.1, we have

〈ω, ι∗[Z(U)]〉2

〈ω, ω〉
∈
√

Q (voltr LΠ)
−1
,(7.2.1)

〈ω+, ι∗[Z(U)]+〉2

〈ω+, ω+〉
〈ω−, ι∗[Z(U)]−〉2

〈ω−, ω−〉
∈
√

Q (voltr LΠ)
−2
,(7.2.2)

where [Z(U)]± is as in (7.0.1); the pairing 〈ω, ι∗[Z(U)]〉 is to be interpreted as in
Remark 10.

Moreover, in case (7.2.1): if the central value of the Rankin-Selberg L-function
attached to Π is nonvanishing and there exists a nonzero H(A)-invariant functional
on the space of Π, it is possible to choose the data (g∞, gf ) and level structure U in
such a way that the

√
Q factor is nonzero. A similar assertion holds for (7.2.2), where

we require the same conditions both for Π and its twist Πψ (see (7.2.3)).

Note that (7.2.1) and (7.2.2) conform exactly to the prediction of the conjecture—
see (1.4.8) and (1.4.13). In an early draft of this paper, we attempted to eliminate the
factor of

√
Q× as far as possible, and indeed found that (to the extent we computed)

the square classes all appear to cancel—often in a rather interesting way. However,
this makes the computation exceedingly wearisome, and to spare both ourselves and
our readers such pain, we have omitted it from the present version of the paper.

Proof. — We will now give the proof of the theorem, relying however on several
computations that will be carried out in the next section. To treat the two cases
uniformally, it will be convenient to use the following shorthand for this proof only:

– For all cases except PGLn × PGLn+1 over Q, we put π = Π. The reader is
advised to concentrate on this case, the modifications for the other case being
straightforward but notationally complicated.

1. The latter conjecture is, roughly speaking, a generalization of requiring the existence of an
adjoint motive, but replacing the adjoint representation of the dual group by all representations at
once. However Conjecture B.1 is a little less precise about coefficient fields than the existence of an
adjoint motive as in Definition 4.2.1.
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– In the remaining case of PGLn × PGLn+1 over Q, we “double” everything.
First of all, factor Π = ΣPGLn � ΣPGLn+1

as an external tensor product of
an automorphic representation on PGLn and an automorphic representation
on PGLn+1, as we may.

Now define a new automorphic representation on PGLn × PGLn+1

(7.2.3) Πψ =

{
(ΣPGLn · ψ)� ΣPGLn+1 , n ∈ 2Z,

ΣPGLn � (ΣPGLn+1 · ψ), else

be the twist of Π by the quadratic character ψ, i.e., we twist by ψ ◦ det only
on the even-dimensional factor so that the resulting automorphic representation
remains on PGL.

Now, put
π = Π�Πψ

considered as an automorphic representation of (PGLn × PGLn+1)2. Observe
that the adjoint motive attached to Πψ is identified with the adjoint motive
attached to Π; thus Lπ = LΠ ⊕ LΠ.

Finally replace all the groups G,K∞, H,U∞ by a product of two copies: thus
G = (PGLn(R)× PGLn+1(R))2, H∞ = GLn(R)×GLn(R) and so on.

We have proved in Theorem 6.11.1 that

(7.2.4) left-hand side of (7.2.1) ∼Q× cfc∞
L(ur)( 1

2 , π; ρ)

L(ur)(1, π,Ad)
,

where ρ is the representation of the dual group of G described in that theorem. Note
in particular that cf ∈

√
Q×. In the (PGLn ×PGLn+1)2 case, the same result holds,

replacing (7.2.1) by (7.2.2), and now taking ρ to be the sum of two copies of the tensor
product representations of the two factors.

Now the L-functions defined above are Euler products over unramified places, to-
gether with an archimedean factor, and these agree with the corresponding motivic
L-function arising from the Ĝ-motive of π. Moreover, for these motivic L-functions,
the factors at missing (ramified) places are rational and nonvanishing, by the as-
sumptions discussed in (2.1.13). So we can replace L(ur) by the full L-function, which
we henceforth understand to be the motivic L-function obtained from the assumed
Ĝ-motive attached to π:

(7.2.5) left-hand side of (7.2.1) ∼Q× cfc∞
L( 1

2 , π; ρ)

L(1, π,Ad)
.

So let us look at the right-hand side of (7.2.1) or (7.2.2), according to which case
we are in. Lemma 2.2.2, applied with tr the trace weak polarization and p an arbitrary
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weak polarization on Adπ, implies

volumet̂rH
1
M (Ad∗ π,Q(1)) ∼Q× L

∗(0, π,Ad)
volt̂r HB((Ad∗ π)R ,Q)

volt̂r F
1HdR(Ad∗ π)

∼√
Q×

L∗(0, π,Ad)

volp F 1HdR(Adπ)
,

where we also used, at the last step, the fact that volt̂r F
1HdR(Ad∗ π) ∼√

Q×

volp F
1HdR(Adπ), beause Adπ and Ad∗ π are abstractly isomorphic and volS F

1 is
independent, up to

√
Q×, of the choice of weak polarization S (again, Lemma 2.2.2).

Using (7.1.7) and (7.2.4), we see that proving (7.2.1) or (7.2.2) is equivalent to
verifying

(7.2.6) c∞
L( 1

2 , π; ρ)

L(1, π,Ad)

L∗(0, π,Ad)

volp F 1HdR(Adπ)
∈
√

Q.

The functional equation means that L∗(0, π,Ad) =
√

∆Ad
L∞(1,π,Ad)
L∗∞(0,π,Ad)L(1, π,Ad),

where ∆Ad ∈ Q× is the conductor of the adjoint L-function; so, substituting the
expression for c∞ from Theorem 6.11.1, we must check

(7.2.7)
L∞( 1

2 , π; ρ)

L∗∞(0, π,Ad)︸ ︷︷ ︸
γ′1

(
∆K

∆2
U

)(
∆G,∞

∆2
H,∞

)
︸ ︷︷ ︸

γ′2

·
L( 1

2 , π; ρ)

volp(F 1HdR)
∈
√

Q.

Now computing case-by-case (see Table 1 below):

(7.2.8) γ′1 ∼Q× (2πi)−m, γ′2 ∼Q× 1,

where

(7.2.9) m =


n(n+ 1), if G = PGLn × PGLn+1;

n(n+ 1), if G = ResE/Q(PGLn × PGLn+1);

2n2, if G = ResE/Q(SO2n × SO2n+1);

2n(n+ 1), if G = ResE/Q(SO2n+1 × SO2n+2).

Moreover (assuming Deligne’s conjecture [17], which is a special case of Beilinson’s
conjecture):

(7.2.10)
L( 1

2 , π; ρ)

volp(F 1HdR(Adπ))
∈
√

Q · (2πi)m,

with m the same integer as above. Equation (7.2.10) requires an argument, and is
in fact quite surprising: the numerator is related to the Rankin-Selberg L-function
and the denominator to the adjoint L-function, and so it is not apparent they should
cancel. This is the surprising cancelation that we have referred to in the introduction,
and we prove it in the next section.

The final assertion of Theorem 7.2.1 follows immediately from the corresponding
assertion in Theorem 6.11.1.
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Table 1. Collates data about the various cases; repeatedly uses∑m
i=1 i(m + 1− i) = 1

6
m(m + 1)(m + 2). “same” means “same as the other

entry in the same row.” “sym” means “extend by symmetry.”

G∞ SO2n × SO2n+1/C SO2n+1 × SO2n+2/C

H∞ SO2n/C SO2n+1/C

(dK + rK) 4n2 + 2n 4n2 + 6n+ 2

(dU + rU ) 2n2 2n2 + 2n

∆K/∆
2
U (

√
π)(2n) (

√
π)2n+2

∆G,∞
∏n−1
i=1 ΓC(2i)2ΓC(n)ΓC(2n)

∏n
i=1 ΓC(2i)2ΓC(n+ 1)

∆H,∞
∏n−1
i=1 ΓC(2i)ΓC(n)

∏n
i=1 ΓC(2i)

∆G,∞/∆
2
H,∞ ΓC(2n)/ΓC(n) = π−n ΓC(n+ 1) = π−n−1

L(1/2, π∞, ρ) ∼Q×

π−
1
3

(2n−1)(2n)(2n+1)−n(n+1)

∼Q×

π−
1
3

(2n)(2n+1)(2n+2)−n(n+1)

L∗(0, π∞,Ad) ∼Q× π−
8
3

(n−1)n(n+1)+n2−3n ∼Q× π−
4
3
n(n+1)(2n+1)+n(n+1)

L(1/2,π∞,ρ)
L∗(0,π∞,Ad)

∼Q× π−2n2 ∼Q× π−2n(n+1)

M (2n− 2, 0)1, . . . , (n, n− 2)1,
(n− 1, n− 1)2, sym.

(2n, 0), . . . , (n+ 1, n− 1),
(n, n)2, sym.

N (2n− 1, 0), (2n− 2, 1),
. . . , (0, 2n− 1)

(2n− 1, 0), (2n− 2, 1),
. . . , (0, 2n− 1)

M ⊗N (4n− 3, 0)1, (4n− 4, 1)2 . . .,
(3n− 1, n− 2)n−1

(4n− 1, 0)1, (4n− 2, 1)2, . . .,
(3n, n− 1)n

(3n− 2, n− 1)n+1, . . .,
(2n− 1, 2n− 2)2n, sym.

(3n− 1, n)n+2, . . .,
(2n, 2n− 1)2n+1, sym.

L(s,ResE/QM ⊗N) (
∏n−1
i=1 ΓC(s− i+ 1)i ·∏2n−1

i=n ΓC(s− i+ 1)i+1)2

(
∏n
i=1 ΓC(s− i+ 1)i ·∏2n

i=n+1 ΓC(s− i+ 1)i+1)2

Ad(M) see text see text

Ad(N) (2n− 1, 1− 2n)1, (2n− 2, 2− 2n)1,
(2n− 3), 3− 2n)2,

same

((2n− 4),−(2n− 4))2, . . .,
(1,−1)n, (0, 0)n, sym)
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G∞ PGLn × PGLn+1/C (PGLn × PGLn+1/R)2

H∞ GLn/C (GLn/R)2

(dK + rK) 2n2 + 4n− 2 2n2 + 2n

(dU + rU ) n2 + n n(n− 1) + 2[n/2]

∆K/∆
2
U (

√
π)2n−2 π2n−2[n/2]

∆G,∞ (
∏n
i=2 ΓC(i))2ΓC(n+ 1) (

∏n
i=2 ΓR(i))4ΓR(n+ 1)2

∆H,∞ (
∏n
i=1 ΓC(i))

∏n
i=1 ΓR(i))2

∆G,∞/∆
2
H,∞ ΓC(n+ 1)/ΓC(1)2 ∼ π1−n ΓR(n+ 1)2/ΓR(1)4 ∼

π2([n/2]−n)

L(1/2, π∞, ρ) ∼Q× π−
2
3
n(n+1)(n+2) same

L∗(0, π∞,Ad) ∼Q× π−
1
3
n(n+1)(2n+1) same

L(1/2,π∞,ρ)
L∗(0,π∞,Ad)

∼Q× π−n(n+1) same

M (n− 1, 0), (n− 2, 1),
. . . , (0, n− 1)

same

N (n, 0), (n− 1, 1), . . . , (0, n) same

M ⊗N (2n− 1, 0)1, (2n− 2, 1)2,
. . . , (n, n− 1)n, sym.

same

L(s,ResE/QM ⊗N) (ΓC(s)1ΓC(s− 1)2

· · ·ΓC(s− n+ 1)n)2
same

(L(s,M ⊗N)L(s,M ′ ⊗N)
for E = Q)

Ad(M) (n− 1, 1− n)1, . . .,
(1,−1)n−1, (0, 0)n−1, sym.

same

Ad(N) (n,−n)1, . . .,
(1,−1)n, (0, 0)n, sym.

same

L(s,Π,Ad) (
∏j
i=1 ΓC(s+ i)j+1−i ·∏j+1
i=1 ΓC(s+ i)j+2−i)2

same
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CHAPTER 8

HODGE LINEAR ALGEBRA
RELATED TO THE ICHINO-IKEDA CONJECTURE

In this section, we will prove most brutally (7.2.10) from the prior section. To
recapitulate, and unpack some notation, this asserts that, for an automorphic co-
homological representation Π of G as in Theorem 7.2.1, we have (under Deligne’s
conjectures)
(8.0.1)

√
Q(2πi)m 3


L( 1

2 ,Π)

volp(F 1HdR(Ad Π)) ,G = SOn × SOn+1/E or
L( 1

2 ,Π)2

volp(F 1HdR(Ad Π)) ,G = PGLn × PGLn+1/E or
L( 1

2 ,Π)2

volp(F 1HdR(Ad Π))

L( 1
2 ,Π

ψ)2

volp(F 1HdR(Ad Π)) ,G = PGLn × PGLn+1/Q,

where m is in (7.2.9), p is a weak polarization on Ad(Π) and, in the last equation, ψ is
a quadratic character as in §7.0.1, and Πψ is as in (7.2.3). In all cases the L-function
above is now the Rankin-Selberg L-function.

This will follow (as explained below) from (8.3.5), (8.4.8), (8.6.2), (8.7.1) in the
four cases.

We note that Yoshida [83] has given an elegant “invariant-theoretic” framework for
doing computations of the type that we carry out here. However we will follow a fairly
direct approach, along the lines taken by M. Harris [24]. In any case the main point
is similar: the period invariants described in §8.2 behave quite well under functorial
operations. The ICM address of the second-named author [73, §9] contains a first
attempt to describe a more conceptual interpretation of these calculations.

8.1. Preliminaries

In all the cases, the group G is the product of two classical groups

G = ResE/Q(G1 ×G2),

where E is either Q or a quadratic imaginary extension of Q, and G1, G2 are reductive
E-groups.
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There is a choice of whether we take G1 to be the larger or smaller group. In the
case of PGLn × PGLn+1, we take G1 = PGLn, G2 = PGLn+1. In the cases involving
SOn×SOn+1 we take G1 to be the even orthogonal group, G2 to be the odd orthogonal
group and E the imaginary quadratic field. Then we may factor Π into automorphic
representations πi on Gi:

Π = (π1 � π2).

We will often use the abbreviation j = n− 1 in the PGLn × PGLn+1 cases.
First of all, let us describe how to construct a Q-motive whose L-function agrees

with the L-function appearing in (8.0.1). We are going to make use of the C-groups
to avoid various choices of twist that are necessary to present the same material with
L-groups. See the appendix, especially §A.2, for a summary of this theory.

The dual groups of the algebraic E-groups G1 and G2 are classical groups, and
as such their C-groups have a “standard” representation: standard on the dual group
factor, and we fix the Gm factor so that the weight of the associated motive is given
by n− 1 in the PGLn cases and k− 2 in the SOk cases. The reader is referred to Ap-
pendix D for more detail on these standard representations, and for the computation
of the Hodge numbers of all the relevant motives. The archimedean L-factors in the
table can be deduced from the Hodge numbers by the recipe in [17, §5.3].

Conjecture B.1 of the appendix states that attached to π1, π2 are systems of motives
indexed by representations of the C-group; in particular, attached to the “standard
representations” just mentioned, we get motives M (for π1) and N (for π2).

Here a subtlety arises, similar to that discussed in §4.1: the morphisms from the
motivic Galois group to the C-group (from Conjecture B.1) are not necessarily defined
over Q. Thus, in general, we can construct the motivesM,N only with Q-coefficients,
rather than with Q-coefficients. For the moment, however, we suppose they can be
realized with Q-coefficients, and write M and N for the motives with Q-coefficients
thus attached to π1 and π2 respectively. This italicized assumption is not necessary:
the argument can be adapted to the general case by using an auxiliary coefficient
field; for expositional ease we postpone this argument to Sec. 8.8.

Proceeding under the italicized assumption for the moment, then, we obtain Q-mo-
tivesM and N defined over E, whose L-functions coincide with the L-functions of the
standard representations of π1 and π2, shifted by a factor of one-half of the weight of
the motive. By computing the determinant of the standard representations, we verify

(8.1.1) det(M) ' Q(−n(n− 1)/2) anddet(N) ' Q(−n(n+ 1)/2)

in the PGL cases, and

(8.1.2) det(M) ' Q(−2n(n− 1))χ (SO2n) and det(N) ' Q(−n(2n− 1)) (SO2n+1),

where χ is the quadratic character of E that arises from the action on the Dynkin dia-
gram of SO2n. These equalities will be used to evaluate period determinants attached
to M and N .
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We will need to use the notion of restriction of scalars for motives, as defined in
[17, Example 0.1.1]. If we write

M = ResE/Q(M ⊗N),

then we have an equality of L-functions:

(8.1.3) L(s+
1

2
,Π) = L(s+ r,M) = L(s,M(r)),

where (since Π is unitarily normalized) the shift r − 1
2 equals half the weight of M.

Here

r =


n, if G = PGLn × PGLn+1

n, if G = ResE/Q(PGLn × PGLn+1)

2n− 1, if G = ResE/Q(SO2n × SO2n+1)

2n, if G = ResE/Q(SO2n+1 × SO2n+2).

In the case PGLn × PGLn+1 over Q it is also useful to note that

L(s+
1

2
,Πψ) = L(s+ r,Mψ) = L(s,Mψ(r))

with Πψ as in (7.2.3) and one can express Mψ either as Mψ⊗N or M ⊗Nψ; here, in
all cases, the superscript ψ on a motive means that we tensor by the one-dimensional
Artin motive corresponding to ψ. In general twisting by ψ can change the determinant,
so that the twisted motiveMψ (or Nψ) may only correspond to an automorphic form
on GLn (or GLn+1) rather than PGLn (or PGLn+1); however this does not affect the
computations below, and because ofMψ⊗N = M⊗Nψ we can freely twist whichever
factor is most convenient for the computation.

We will freely use the c+, c−, δ periods of a motive defined over Q; these are defined
in §2.1.4.

To avoid very heavy notation, we shall write:

LM = F 1H0
dR(ResE/Q Ad(M)),

LN = F 1H0
dR(ResE/Q Ad(N)).

These are Q-vector spaces. If the motives in question are equipped with a weak
polarization, we may compute the volumes of LM , LN according to this polarization,
as in §2.2.6. However, these volumes can be defined intrinsically, as in the proof of
Lemma 2.2.2. Thus if we write vol(LM ) without specifying a polarization, we mean
the class in C×/

√
Q× defined as in that lemma.

Also, observe that the adjoint motives for M and Mψ are canonically identified,
so we do not need to distinguish between LM and LMψ .

We note that the adjoint motive for Π is identified with ResE/Q Ad(M) ⊕
ResE/Q Ad(N), and so

(8.1.4) vol(F 1H0
dR(Ad Π)) = vol(LM ) vol(LN ),
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the equality being of complex numbers up to
√

Q×. Moreover assuming Deligne’s
conjecture [17], which is a special case of Beilinson’s conjecture, for the motive M(r),
we have:

(8.1.5)
L(0,M(r))

c+(M(r))
∈ Q.

Now combining (8.1.4), (8.1.3) and (8.1.5), we see that the sought after relation
(8.0.1) reduces to a relation between c+(M(r)), vol(LM ), vol(LN ), namely

(8.1.6)
c+(M(r))e

vol(LM ) vol(LN )
∼√

Q×
(2πi)m

in the SO cases (with e = 1) or the PGL over E case (with e = 2), or in the remaining
case:

(8.1.7)
c+(M(r))2

vol(LM ) vol(LN )

c+(Mψ(r))2

vol(LM ) vol(LN )
∼√

Q×
(2πi)m.

We verify these statements case-by-case in (8.3.5), (8.4.8), (8.6.2), (8.7.1) below.

8.2. Period invariants of motives

Our proof of (8.1.6) and (8.1.7) will be to write both sides in terms of certain
elementary “period invariants” attached to the motives M and N . More precisely
we attach an invariant Qp ∈ C×/E× to the motive M , any integer p for which
F pHdR(M)/F p+1HdR(M) is one-dimensional, and an embedding σ : E ↪→ C. Such
period invariants have been previously considered by M. Harris [23].

Here is a general overview of the computations that go into the proofs. Firstly,
one has the period matrices for M , N and M ⊗ N that relate the different ratio-
nal structures on the Betti and de Rham realizations of these motives. The Deligne
periods c±(M), c±(N) and c±(M ⊗N) are obtained as determinants of certain sub-
matrices, corresponding to eigenspaces for the action of complex conjugation cB on
the Betti side and certain pieces of the Hodge filtration on the de Rham side. On
the other hand, the de Rham realization of the motives that appear here have a
particularly simple Hodge filtration; in most cases, the graded pieces are just one-
dimensional. This allows us to define (as mentioned above) certain additional period
invariants Qp,Rp that measure the failure of cB to preserve the rational structure on
graded pieces of H∗dR(M), respectively H∗dR(N). The three ingredients that we use
then are:

1. The period matrix of M ⊗N is the tensor product of the period matrices of M
and N ; from this one deduces a formula for c±(M ⊗ N) in terms of c±(M),
c±(N) and the invariants Qp, Rq.

2. The realizations of the adjoint motives Ad(M) and Ad(N) may be thought of as
subspaces of the realizations of M ⊗M∨ and N ⊗N∨. Using this, the volumes
of LM and LN can also be computed in terms of Qp and Rq.
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3. Finally, the determinants of the period matrices of M and N can be computed
in terms of c±(M), Qp and c±(N), Rp. On the other hand, these determinants
are essentially powers of 2πi, so this yields an additional relation.

Putting these three ingredients together yields the desired Formulas (8.1.6) and
(8.1.7).

8.2.1. Bases. — Let M be a pure motive over Q of weight m and let V denote the
Q-Hodge structure H∗B(MC,Q). Let VC =

⊕
p V

p,m−p be the Hodge decomposition.
The Betti-de Rham comparison isomorphism yields a natural injective map

(8.2.1) V p,m−p → F pH∗dR(M)⊗C,

which induces an isomorphism

(8.2.2) V p,m−p ' F pH∗dR(M)

F p+1H∗dR(M)
⊗C.

This isomorphism gives a Q-structure on V p,m−p, namely that coming from FpH∗dR(M)
Fp+1H∗dR(M) .

In what follows, we often use the injective map (8.2.1) to identify V p,m−p with a
subspace of F pH∗dR(M)⊗C.

Lemma. — Let ωp be any element of V p,m−p that is Q-rational for the Q-structure
defined above. Then cdR(ωp) = ωp. Equivalently, F∞(ωp) = cB(ωp) = ω̄p.

Proof. — The element ωp corresponds via the isomorphism above to an element ω̃p
in F pHm

dR(M) that is well defined up to elements of F p+1Hm
dR(M). Let us fix once

and for all such an ω̃p so that

ηp := ωp − ω̃p ∈ F p+1Hm
dR(M)⊗C.

Then
cdRωp − ωp = cdRηp − ηp ∈ F p+1Hm

dR(M)⊗C

(since cdR preserves the Hodge filtration). Since cdR preserves the spaces V p,m−p

and V p,m−p injects into Hm
dR(M)/F p+1Hm

dR(M)⊗C, we deduce that cdRωp = ωp, as
claimed.

8.2.2. Motives overE. — Now suppose thatM is a motive over E; for this subsection,
suppose that E is an imaginary quadratic field.

Let σ denote the given embedding of E in C and σ̄ the complex conjugate of σ. Then
the interaction between the Betti-de Rham comparison isomorphisms and complex
conjugation is described by the commutativity of the following diagram:

H∗dR(M)⊗E,σ C
'
ϕσ
//

cdR

��

H∗B(Mσ,C)⊗C =: Vσ

F∞·cB
��

H∗dR(M)⊗E,σ̄ C
'
ϕσ̄
// H∗B(Mσ̄,C)⊗C =: Vσ̄.
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Here cdR is complex conjugation on the second factor, cB is complex conjugation on
the second factor, F∞ denotes the map on H∗B induced by complex conjugation on the
underlying analytic spaces, and ϕσ, ϕσ̄ denote the comparison isomorphisms. For ω̃
any element in H∗dR(M), we denote by ω̃σ and ω̃σ̄ the images of ω̃ under ϕσ and ϕσ̄
respectively.

Note that

F∞ : V p,qσ → V q,pσ̄ , cB : V p,qσ → V q,pσ and so F∞cB : V p,qσ → V p,qσ̄ .

Now the map
ϕσ : F pH∗dR(M)⊗C→

⊕
i≥p

V i,m−iσ

induces an isomorphism

(8.2.3)
F pH∗dR(M)

F p+1H∗dR(M)
⊗C ' V p,m−pσ ,

and likewise with σ replaced by σ̄.
Next, we discuss how restriction of scalars interacts with cohomology. If M is any

motive over E, then

(8.2.4) H∗dR(ResE/Q(M)) = H∗dR(M),

viewed as a Q-vector space, and

(8.2.5) H∗B(ResE/Q(M)) = H∗B,σ(M)⊕H∗B,σ̄(M).

(See [17, §0.5].)

8.2.3. Standard elements ω̃, ω. — We return to allowing E to be either Q or a
quadratic imaginary field.

Now, we will use the following notation. For the various M defined over E that we
will consider, let p be any integer such that dimF p/F p+1 = 1 and p∗ the dual integer,
so that p+ p∗ equals the weight m of M .

We denote by
ω̃p ∈ F pH∗dR(M)

any element that spans the one-dimensional quotient F pH∗dR(M)/F p+1H∗dR(M).
For σ : E ↪→ C an embedding we define

ωσp ∈ HB(Mσ,C)p,p
∗

the element corresponding to ω̃p via the isomorphism (8.2.3). If E = Q we will omit
the σ. Observe that

(8.2.6) F∞cB(ωσp ) = ωσ̄p .

Whenever ωp and ωp∗ are defined, we define complex scalars Qσp by the rule

(8.2.7) ωσp = cB(ωσp ) = Qσpω
σ
p∗ ·


1, p < p∗;

1 = (−1)m, p = p∗;

(−1)m, p > p∗.
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Observe that

(8.2.8) QσpQσp∗ = (−1)m.

This invariant is compatible with complex conjugation:

Lemma 8.2.1. — Qσp = Qσ̄p .

Proof. — We have for p ≤ p∗

F∞(Qσpω
σ
p∗)

(8.2.6)
= ωσ̄p and F∞(Qσ̄p∗ω

σ̄
p )

(8.2.6)
= (−1)mωσp∗ ,

which together imply that QσpQσ̄p∗ = (−1)m; now compare with (8.2.8).

As a result, we will sometimes write

|Qp|2 = Qσp · Qσ̄p ,
noting that the right-hand side doesn’t depend on σ, and equals 1 if p = p∗. In
particular, in the case when E = Q so that Qσp = Qσ̄p we have Qp = ±1 in middle
dimension p = p∗.

8.3. The case of PGLn × PGLn+1 over Q

In this case (see Appendix D), the dimension of each graded piece of the Hodge
filtration, for both M and N , equals 1. Recall that we write j = n− 1 for the weight
of M . Therefore, let ωi, ω̃i, 0 ≤ i ≤ j be the standard elements attached to M , as in
§8.2.3, and Qi, 0 ≤ i ≤ j the associated quadratic period invariants, as in §8.2.3. The
corresponding elements attached to N will be denoted ηi, η̃i,Ri for 0 ≤ i ≤ j + 1.

We may form the dual bases ω̃∨p ∈ HdR(M∨) = HdR(M)∨ and ω∨p ∈ HB(M∨,C) =

HB(M,C)∨, defined as usual by the rule

〈ω̃a, ω̃∨b 〉 = δab.

Then ω̃∨p gives a basis for F−pHdR(M∨)/F 1−pHdR(M∨) and is associated to the
element ω∨p ∈ H−p,−p

∗
(M∨,C) under the isomorphism (8.2.2), but now for M∨.

Defining period invariants Q∨ for M∨ using this basis, we get

Q∨p = ±Qp∗ .

Write ωp,q = ωp ⊗ ω∨j−q ∈ H0
B(M ⊗M∨,C) and ω̃p,q = ω̃p ⊗ ω̃∨j−q ∈ H0

dR(M ⊗M∨).
The subspace F 1H0

dR(Ad(M)) has as a Q-basis the elements

(8.3.1) ω̃p,q, p+ q ≥ j + 1.

Recall, from the proof of Lemma 2.2.2, that the square of volF 1HdR(AdM) can
be computed via computing the image of a generator of detF 1HdR(AdM) under the
complex conjugation map to det(HdR/F

0HdR). (See in particular (2.2.11)). In the
case at hand, a generator for detF 1HdR is given by∧

p+q≥j+1

ω̃p,q =
∧

p+q≥j+1

ωp,q,
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and its complex conjugate is given by ∏
p+q≥j+1

QpQq

 ∧
p+q≥j+1

ωp∗,q∗ =

 ∏
p+q≥j+1

QpQq

 ∧
p+q≥j+1

ω̃p∗,q∗ ,

where the last equality is valid in the determinant of H0
dR(AdM)/F 0HdR. Therefore

(8.3.2) vol(LM ) ∼√
Q×

∏
0≤p≤j

Qpp.

Likewise, for N , we get:

(8.3.3) vol(LN ) ∼√
Q×

∏
0≤p≤j+1

Rp
p .

Now M ⊗N has a unique critical point, namely s = j + 1. We will now compute
square of the period

c+(M ⊗N(j + 1))

in the case j = 2t is even; the case j odd is exactly similar.
We first note that since M is attached to a form on PGLn, F∞ acts on Htt(M)

by +1. Let e+
0 , . . . , e

+
t be a Q-basis of HB(M)+ and e−t+1, . . . , e

−
2t a Q-basis

of HB(M)−; here + and − refer to the F∞-eigenvalue. Then

(e+
0 · · · e

+
t e
−
t+1 · · · e

−
2t) = (ω0 · · ·ωt ω2t · · ·ωt+1)

(
AM BM

CM DM

)
,

where AM , BM , CM and DM are of sizes (t+1)×(t+1), (t+1)×t, t×(t+1) and t×t
respectively. Likewise let f+

0 , . . . , f
+
t be a Q-basis of HB(N)+ and f−t+1, . . . , f

−
2t+1 a

Q-basis of HB(N)−. Then

(f+
0 · · · f

+
t f
−
t+1 · · · f

−
2t+1) = (η0 · · · ηt η2t+1 · · · ηt+1)

(
AN BN

CN DN

)
,

where AN , BN , CN and DN all have size (t+1)×(t+1). Note that the ith row of CM
(resp. of DM ) is equal to Qi (resp. −Qi) times the ith row of AM (resp. of BM ).
Likewise the ith row of CN (resp. of DN ) is equal to Ri (resp. −Ri) times the ith
row of AN (resp. of BN ).

Let us compute both c±(M ⊗N) in terms of c±(M) and c±(N). Since

HB(M ⊗N)+ = (HB(M)+ ⊗HB(N)+)⊕ (HB(M)− ⊗HB(N)−)

and (with notation F± as in §2.1.4)

F±HdR(M ⊗N) =
⊕

p+q≥j+1

Q · ωp ⊗ ηq,

we get c+(M ⊗N) = det(X), where(
(e+
i ⊗ f

+
k )i,k (e−i′ ⊗ f

−
k′ )i′,k′

)
=
(

(ωp ⊗ ηq)p,q (ωp′ ⊗ ηq′)p′,q′
)
X
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and the indices i, k, i′, k′, p, q range over 0 ≤ i ≤ t, 0 ≤ k ≤ t, 2t ≥ i′ ≥ t + 1,
2t+ 1 ≥ k′ ≥ t+ 1, 0 ≤ p ≤ t, 0 ≤ q ≤ t and (p′, q′) ranges over pairs such that p′ > t

or q′ > t but p′+ q′ ≤ 2t. Note that if p′ > t then q′ ≤ t and 0 ≤ 2t−p′ < t. Likewise,
if q′ > t, then p′ ≤ t and 0 ≤ 2t+1−q′ ≤ t. Let A∗M and B∗M be the matrices obtained
from AM and BM by deleting the last row. Using the relations ω2t−p = Q−1

p F∞(ωp)

and η2t+1−q = R−1
q F∞(ηq), we see that

c+(M ⊗N) =
∏

0≤p<t

Qp+1
p

∏
0≤q≤t

R q
q · det

(
AM ⊗AN BM ⊗BN
A∗M ⊗AN −B∗M ⊗BN

)
=

∏
0≤p<t

Qp+1
p

∏
0≤q≤t

R q
q · det(AM ⊗AN ) · det(−2B∗M ⊗BN )

∼Q×

∏
0≤p<t

Qp+1
p

∏
0≤q≤t

R q
q · det(AM )t+1 det(AN )t+1 det(B∗M )t+1 det(BN )t

=
∏

0≤p<t

Qp+1
p

∏
0≤q≤t

R q
q · (c+(M)c−(M))t+1 · c+(N)t+1c−(N)t.

Now

δ(M) = det

(
AM BM

CM DM

)
=

∏
0≤p<t

Qp · det

(
AM BM

A∗M −B∗M

)

=
∏

0≤p<t

Qp · det

(
AM BM

0 −2B∗M

)
∼Q×

∏
0≤p<t

Qp · c+(M)c−(M).

Likewise,

(8.3.4) δ(N) ∼Q×

∏
0≤q≤t

Rq · c+(N)c−(N).

Thus, up to Q× factors, c+(M ⊗N) equals

∏
0≤p<t

Qp+1
p

∏
0≤q≤t

R q
q ·

δ(M)
∏

0≤p<t

Q−1
p

t+1

·

δ(N)
∏

0≤q≤t

R−1
q

t

· c+(N)

= δ(M)t+1δ(N)t ·
∏

0≤p<t

Qp−tp ·
∏

0≤q≤t

R q−t
q · c+(N).

We will also need the same result when we do not assume that F∞ acts on Htt(M)

as +1, for example if we replace M by M ⊗ ψ. A similar computation shows:

Proposition 8.3.1. — Suppose that χ is a quadratic idele character for Q; write
sign(χ) = ±1 according to whether χ is trivial or not on R∗. Then

c±(Mχ ⊗N) ∼Q× δ(M)t+1δ(N)t ·
∏

0≤p<t

Qp−tp ·
∏

0≤q≤t

R q−t
q · c±sign(χ)(N).
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Let R±(M,N) be the ratio defined by:

R±(M,N) :=
c±(M ⊗N(j + 1))2

vol(F 1(Ad(M))) · vol(F 1(Ad(N)))
.

Since j + 1 = 2t+ 1 is odd, we have

c±(M⊗N(j+1)) = (2πi)
1
2 (j+1)·rank(M⊗N)c∓(M⊗N) = (2πi)

1
2 (j+1)2(j+2)c∓(M⊗N).

Therefore, the proposition above, together with the properties of period invariants
given in (8.2.8) and Lemma 8.2.8, and the evaluations (8.3.2) and (8.3.3) of the vol-
umes of the L subspaces, give

R±(Mψ, N) ∼Q× (2πi)(j+1)2(j+2)δ(Mψ)2t+2δ(N)2t ·
∏

0≤q≤t

Rq · c∓sign(χ)(N)2.

By (8.1.1) we have

δ(M)2 and δ(Mψ)2 ∈ (2πi)−j(j+1) · (Q×)2 and δ(N)2 ∈ (2πi)−(j+1)(j+2) ·Q×,
where the computation for δ(Mψ) comes from [17, Proposition 6.5]. We now get from
(8.3.4) our desired result, namely, if ψ has sign −1, then

R±(M,N) ·R±(Mψ, N) ∼Q× (2πi)(j+1)(j+2).(8.3.5)

8.4. The case PGLn × PGLn+1 over imaginary quadratic E

Again M has weight j and rank j + 1. Just as in the prior case, each graded step
of the Hodge filtration has dimension 1, both for M and for N .

Let ω̃0, . . . , ω̃j be a E-basis for H∗dR(M), chosen as in §8.2.3, and with associated
invariants Qσp as in §8.2.3. Just as at the start of §8.3, but now keeping track of
embeddings, we form ωσp ∈ H∗B(Mσ,C), and also the dual bases ω̃∨p , ω∨,σp , and put

ω̃p,q = ω̃p ⊗ ω̃∨j−q ∈ H∗dR(M ⊗M∨)

and similarly ωp,q ∈ H∗B(Mσ ⊗M∨σ ,C).
We may compute the volume of LM in a very similar way to the previous discussion.

In the case at hand, a generator for detF 1HdR is given by∧
p+q≥j+1

ω̃p,q ∧
√
−Dω̃p,q ∼

∧
p+q≥j+1

(ωσp,q, ω
σ̄
p,q) ∧ (

√
−Dωσp,q,−

√
−Dωσp,q),

where we used the isomorphism from (8.2.5) to go from left to right. The complex
conjugate of the above element is given by ∏

p+q≥j+1

|Qp|2|Qq|2
 ∧
p+q≥j+1

( same, replacing p, q by p∗, q∗)︸ ︷︷ ︸
∼Q×det(HdR/F 1HdR)

.

Therefore,

(8.4.1) vol(LM ) ∼√
Q×

∏
0≤p≤j

|Qp|2p.
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There is an identical expression for the volume of LN , simply replacing j by j+ 1 and
Q by R .

For the remainder of this subsection, we fix an embedding σ : E ↪→ C, and when
we write Q,R etc. we mean Qσ,Rσ, etc.

We shall now compute the Deligne periods c±(ResE/Q(M ⊗ N)). Instead of us-
ing the basis consisting of ω̃σi , we can work with the ωσi . Suppose that A is the
(j + 1)× (j + 1) complex matrix defined by

(8.4.2) (e0 · · · ej) = (ωσ0 · · ·ωσj ) ·A.
Note that this depends on the choice of σ, but we fixed one above.

Note that
F∞cB · ei = F∞ei and F∞cB · ωσi = ωσ̄i .

Thus applying F∞cB to (8.4.2), we get

(F∞e0 · · ·F∞ej) = (ωσ̄0 · · ·ωσ̄j ) · Ā.
Likewise, let f0, . . . , fj+1 denote a basis of H∗B,σ(N) and let B be the (j+ 2)× (j+ 2)

complex matrix defined by

(8.4.3) (f0 · · · fj+1) = (ησ0 · · · ησj+1) ·B,
where (η0, . . . , ηj+1) is a E-basis for H∗dR(M). Note that

(8.4.4) at,i = Q−1
t aj−t,i and bt′,i′ = R−1

t′ bj+1−t′,i′ ,

where we repeat that Qt really means Qσt , with the same choice of σ as fixed above.
Now we need to compute the change of basis matrix X between the bases:

(8.4.5) ei ⊗ fi′ ± F∞(ei ⊗ fi′), 0 ≤ i ≤ j, 0 ≤ i′ ≤ j + 1

and

(8.4.6) (ϕσ, ϕσ̄)(ωt ⊗ ηt′), (ϕσ, ϕσ̄)(
√
−Dωt ⊗ ηt′), 0 ≤ t+ t′ ≤ j

of the complex vector spaces

(HB(ResE/Q(M ⊗N))⊗C)± ' H∗dR(ResE/Q(M ⊗N)⊗C)/F∓.

Note that
(ϕσ, ϕσ̄)(ωt ⊗ ηt′) = (ωσt ⊗ ησt′ , ωσ̄t ⊗ ησ̄t′),

while
(ϕσ, ϕσ̄)(

√
−D · ωt ⊗ ηt′) =

√
−D(ωσt ⊗ ησt′ ,−ωσ̄t ⊗ ησ̄t′).

Thus the entries in the (i, i′)th column of X corresponding to the elements in (8.4.5)
and (8.4.6) are  at,ibt′,i′+at,ibt′,i′

2
±(at,ibt′,i′−at,ibt′,i′ )

2
√
−D

 .

Then
det(X) ∼Q×

1
√
−D

(j+1)(j+2)
2

det(Y )
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where Y is the matrix whose entries in the (i, i′)th column corresponding to (t, t′) areat,i · bt′,i
at,i · bt′,i′

 (8.4.4)
=

 at,i · bt′,i′

Q−1
t R−1

t′ aj−t,i · bj+1−t′,i′

 .

As (t, t′) vary over all pairs such that t+ t′ ≤ j, the pairs (t∗, (t′)∗) := (j− t, j+1− t′)
vary over all pairs such that t∗ + (t′)∗ ≥ j + 1. Thus

det(Y ) =

 ∏
0≤t+t′≤j

Q−1
t R−1

t′

 · det(Z),

where up to a permutation of the rows, the matrix Z is just A⊗B. Then

c±(ResE/Q(M ⊗N)) ∼Q×
1

√
−D

1
2 (j+1)(j+2)

· Q−(j+1)
0 Q−j1 · · ·Q

−1
j

·R−(j+1)
0 R−j

1 · · ·R 0
j+1 · det(A)j+2 det(B)j+1.

Now we note that (8.1.1) implies that

(8.4.7) det(A)2 ∼Q× (2πi)−j(j+1) ·
j∏
i=0

Qp,

and in fact that
∏j
i=0 Qp is an element in E of norm 1.

Indeed det(M) is a Tate motive, as observed in (8.1.1); if we denote by HdR(detM)Q
a generator of the canonical Q-line inside its de Rham cohomology, arising from a
Q-rational differential form on Gm, we may write

ω̃0 ∧ ω̃1 ∧ · · · ∧ ω̃j = λ ·HdR(detM)Q

for some λ ∈ E× and computing periods we see that

det(A) ∼Q× λ
−1(2πi)−j(j+1)/2.

On the other hand, we have ω0 ∧ ω1 ∧ · · · ∧ ωj = ω̃0 ∧ ω̃1 ∧ · · · ∧ ω̃j , and comparing
this element with its complex conjugate we find λ̄ = ±λ ·

∏j
i=0 Qj (for an explicit, but

unimportant, choice of sign). This relation determines λ up to Q×, and we have

det(A)2 ∼Q× (2πi)−j(j+1)λ−2 ∼Q× (2πi)−j(j+1)|λ|−2 · λ̄/λ,

which proves (8.4.7). Likewise, det(B)2 ∼Q× (2πi)−(j+1)(j+2)
∏j+1
q=0 R−1

q , where again∏j+1
q=0 R−1

q is an element of E of norm 1.
We may thereby simplify the expression above to

c±(ResE/Q(M ⊗N))2 · (2πi)j(j+1)(j+2)+(j+1)2(j+2)

∼Q×

(
Q−j0 Q2−j

1 . . .Q+j
j

)
·
(

R−j−1
0 R−j+1

1 . . .R j+1
j+1

)
∼Q× |Qj |2j |Qj−1|2(j−2) · · · × |Rj+1|2(j+1)|Rj |2j · · ·
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∼Q×

j∏
p=0

|Qp|2p ·
j+1∏
q=0

|Rq|2q.

Using (8.4.1) and the relation

c+(ResE/Q(M ⊗N)(j + 1)) = (2πi)(j+1)· 12 rank ResE/Q(M⊗N) · c+(ResE/Q(M ⊗N))

= (2πi)(j+1)2(j+2)c+(ResE/Q(M ⊗N),

we find at last

(8.4.8)
c+(ResE/Q(M ⊗N)(j + 1))2

vol(LM )) vol(LN )
∼√

Q×
(2πi)(j+1)(j+2).

8.5. Polarizations

In the remaining orthogonal cases, the motives M and N over the imaginary
quadratic field E are equipped with (weak) polarizations, as follows from the dis-
cussion in the Appendix; these arise from the (orthogonal or symplectic) duality on
the standard representations used to define M and N .

We will make use of these polarizations for our analysis, and thus we summarize
here some useful properties:

We denote by S the weak polarization on M , i.e., S : M ⊗M → Q(−w), with w
the weight of M . As usual, we write

(8.5.1) Q = (2π
√
−1)wS.

Thus the form Q is Q-valued on H∗B(Mσ,Q) (we shall denote this form by Qσ,
and write Sσ = (2π

√
−1)−wQσ on the same space) whereas the form S is E-val-

ued on H∗dR(M). We denote by the same letter S the weak polarization on N .
These polarizations induce also polarizations on Ad(M),Ad(N),M ⊗N by trans-

port of structure, and also on the restriction of scalars from E to Q of any of these
motives; we will again denote these by the same letters, or by (e.g.,) SAd if we want
to emphasize that we are working with the adjoint motive. We denote similarly (e.g.)
QAd
σ , SAd

σ for the forms on the σ-Betti realizations, just as above.

8.5.1. Polarizations and restriction of scalars. — For a moment, let X denote a po-
larized motive defined over E and X := ResE/QX. Then X inherits a polarization
from X. The corresponding bilinear form Q on H∗B(X) is just the sum of the forms Qσ
and Qσ̄ on Vσ = H∗B,σ(X) and Vσ̄ = H∗B,σ̄(X) respectively. On the de Rham realiza-
tion, the form is just the trace from E to Q of the E-valued form on H∗dR(X). Further,
the C-antilinear isomorphism F∞cB from Vσ to Vσ̄ identifies Qσ and Qσ̄ with com-
plex conjugates of each other. In particular, to compute the form on H∗dR(X), we may
embed H∗dR(X) in Vσ for instance (via ϕσ) and take the trace (from C to R) of the
form Qσ.
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8.5.2. The adjoint motive: polarized case. — Next, some comments on the adjoint
motive. Let w be the weight of the polarized motive M .

Since Ad(M) ⊂ Hom(M,M) 'M ⊗M∨, and since M∨ 'M(w) via the polariza-
tion, we may view Ad(M) as a sub-motive of M ⊗M(w). Now
(8.5.2)

HdR(Ad(M)) ⊂ HdR(M ⊗M∨) = HdR(M)⊗2 ⊗HdR(Q(w))
(2.2.2)
' HdR(M)⊗2.

In this way, we can regard η⊗η′ as an element ofHdR(M⊗M∨) when η, η′ ∈ HdR(M).
Under the above identification the form QAd induced on the adjoint corresponds
to (2π

√
−1)−2wQ⊗2, whereas SAd corresponds to S⊗2.

Similarly, for σ an embedding of E into C, we have

HB(Ad(M)σ,C) ⊂ HB(Mσ ⊗M∨σ ,C)(8.5.3)

= HB(Mσ)⊗2 ⊗HB(Q(w),C)
(2.2.2)

= HB(Mσ,C)⊗2.

Under this identification QAd corresponds to Q⊗2, and SAd corresponds to
(2π
√
−1)2wS⊗2.

8.5.3. — In what follows, we will compute the volume of LM with respect to the
polarization, as described in §2.2.6.

In other words, we compute the volume on Q-vector space LM with reference to
the quadratic form obtained by pulling back the polarization under the map

LM → H∗B(ResE/Q Ad(M),R),

given by x 7→ 1
2 (x+ x̄).

If we regard the target above as H∗B,σ(Ad(M),R) ⊕ H∗B,σ̄(AdM,R) the map is
given by 1

2 (ϕσ + ϕσ, ϕσ̄ + ϕσ̄). Here ϕσ is as in §8.2.2. In other words, the form
on LM is given by

(x, y) := trC/R SAd
σ (

1

2
(xσ + xσ),

1

2
(yσ + yσ))

=
1

2
(trC/R SAd

σ (xσ, yσ) + trC/R SAd
σ (xσ, yσ)).

8.5.4. Period invariants, revisited. — In this case, the previous discussion of period
invariants can be slightly simplified. In §8.2.3 we have introduced elements ω̃p ∈
HdR(M) for each integer p with dimF p/F p+1 = 1. In the cases with a polarization
we can and will choose the elements ω̃p to be self-dual, in that

(8.5.4) S(ω̃p, ω̃p∗) = 1 = Sσ(ωσp , ω
σ
p∗) (p < p∗)

whenever both ω̃p, ω̃p∗ are both chosen. (The second equality follows from the first.)
The same quantity then equals (−1)w for p > p∗.

If p = p∗, which only occurs in even weight w, we cannot guarantee (8.5.4); here
Sσ(ωσp , ω

σ
p ) = σ(S(ω̃p, ω̃p)) lies in E× and its class mod (E×)2 is independent of the
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choice of ω̃p. Define therefore

(8.5.5) αdR(M) = S(ω̃p, ω̃p).

If the weight j is odd, we set αdR(M) = 1. In all cases, this is an element of E× whose
square-class is independent of choices.

We may then evaluate the Qσp in terms of the polarization. It follows from (8.2.7)
that

Qσp =

{
Sσ(ωσp , ω

σ
p ), p < p∗

σ(αdR(M))−1Sσ(ωσp , ω
σ
p ), p = p∗.

Note that Qσp belongs to R× if p 6= p∗; thus, when ω̃p are normalized above, we have
Qσp = Qσ̄p , and we may simply refer to Qp. For p = p∗ we have Qσp ∈ σ(αdR(M))−1R×.

Finally, if ω̃p, ω̃q are both defined, we denote by

ω̃p,q ∈ H∗dR(M ⊗M∨), ωσp,q ∈ HB((M ⊗M∨)σ,C)

the image of ω̃p ⊗ ω̃q and ωp ⊗ ωq, respectively, under the identifications of (8.5.2)
and (8.5.3), respectively.

8.6. SO2n × SO2n+1 over E imaginary quadratic

Recall that M is the motive attached to automorphic form on SO2n, and N the
motive attached to the automorphic form on SO2n+1, and we have fixed polarizations
in §8.5.

8.6.1. Computation of archimedean L-factors. — In this case, the Hodge numbers
for AdM are somewhat irregular, so we will discuss the archimedean computation by
hand. We have

L∞(s,ResE/Q AdN) =
(
ΓC(s+ 2n− 1)1ΓC(s+ 2n− 2)1

· · ·ΓC(s+ 3)n−1ΓC(s+ 2)n−1ΓC(s+ 1)n
2
ΓC(s)n

and

L∗∞(0,ResE/Q AdN) =
(
ΓC(2n− 1)1ΓC(2n− 2)1

· · ·ΓC(3)n−1ΓC(2)n−1ΓC(1)n
2
Γ∗C(0)n

∼Q× π
−2[n·1+(n−1)·(2+3)+···+1·(2n−1+2n−2)]

= π−2[n+
∑n−1
i=1 i(2n−2i+2n−2i+1)]

= π−2[
∑n
i=1 i+4

∑n−1
i=1 i(n−i)] = π−

4
3n(n−1)(n+1)−n(n+1).

For AdM , the Hodge numbers range from (2n−3,−(2n−3)) to (−(2n−3), (2n−3));
the multiplicities are given by

1, 1, . . . , t, t, . . . , n− 1, n− 1, n, n, n, n− 1, n− 1, . . . , t, t, . . . , 1, 1,
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if n = 2t is even, and by

1, 1, . . . , t, t+ 1,−1, n− 1, n, n, n, n− 1, n− 1, . . . t+ 1, t, . . . , 1, 1,

if n = 2t+ 1 is odd. (Here the bar indicates that those terms are skipped.) In the first
case,

L∞(s,ResE/Q AdM) =
(
ΓC(s+ 4t− 3)1ΓC(s+ 4t− 4)1

· · ·ΓC(s+ 2t+ 1)t−1ΓC(s+ 2t)t−1

· ΓC(s+ 2t− 1)t+1ΓC(s+ 2t− 2)t+1

· · ·ΓC(s+ 3)2t−1ΓC(s+ 2)2t−1ΓC(s+ 1)2t2ΓC(s)2t

and

L∗∞(0,ResE/Q AdM) = (ΓC(4t− 3)1ΓC(4t− 4)1 · · ·ΓC(2t+ 1)t−1ΓC(2t)t−1

· ΓC(2t− 1)t+1ΓC(2t− 2)t+1 · · ·ΓC(3)2t−1ΓC(2)2t−1ΓC(1)2t
)2

Γ∗C(0)2t

∼Q× π
−2[2t+(2t−1)(2+3)+···+(t+1)(2t−1+2t−2)+(t−1)(2t+1+2t)+···+1(4t−3+4t−4)]

= π−2[
∑2t−1
i=1 i(4t−2i−1+4t−2i−2)+

∑2t−1
i=1 i] = π−2[4

∑2t−1
i=1 i(2t−i)−2

∑2t−1
i=1 i]

= π−2[4
∑n−1
i=1 i(n−i)−2

∑n−1
i=1 i] = π−

4
3n(n−1)(n+1)+2n(n−1).

Similarly, if n = 2t+ 1, we have:

L∞(s,ResE/Q AdM) = (ΓC(s+ 4t− 1)1ΓC(s+ 4t− 2)1

· · ·ΓC(s+ 2t+ 3)t−1ΓC(s+ 2t+ 2)t−1·
· ΓC(s+ 2t+ 1)tΓC(s+ 2t)t+1

· · ·ΓC(s+ 3)2tΓC(s+ 2)2tΓC(s+ 1)2t+12
ΓC(s)2t+1

and

L∗∞(0,ResE/Q AdM) = (ΓC(4t− 1)1ΓC(4t− 2)1 · · ·ΓC(2t+ 3)t−1ΓC(2t+ 2)t−1

· ΓC(2t+ 1)tΓC(2t)t+1 · · ·ΓC(3)2tΓC(2)2tΓC(1)2t+1)2Γ∗C(0)2t+1

∼Q× π
−2[(2t+1)(0+1)+2t(2+3)+···+(t+1)(2t)+t(2t+1)+(t−1)(2t+2+2t+3)+···+1(4t−2+4t−1)]

= π−2[
∑2t
i=1 i(4t−2i+4t−2i+1)+

∑2t
i=1 i] = π−2[4

∑2t
i=1 i(2t−i)+2

∑2t
i=1 i]

= π−2[4
∑2t
i=1 i(2t+1−i)−2

∑2t
i=1 i]

= π−2[4
∑n−1
i=1 i(n−i)−2

∑n−1
i=1 i] = π−

4
3n(n−1)(n+1)+2n(n−1),

which is the same expression as in the case n = 2t.
Thus, in either case, we have:

L∗(0, π∞,Ad) = L∗∞(0,ResE/Q AdM)L∗∞(0,ResE/Q AdN)(8.6.1)

∼Q× π
− 8

3n(n−1)(n+1)+n2−3n.
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8.6.2. Volume computation. — We first compute the volume term for Ad(N). As
in the PGL cases, all the graded pieces of the Hodge filtration for N are one-
dimensional. Let η̃0, . . . , η̃2n−1 be a basis of H∗dR(N), chosen as before; these define
invariants R0,. . ., R2n−1 as well as a basis BN = (η0, . . . , η2n−1) of H∗dR(N)⊗E,σ C.
(As before, we fix an embedding σ : E ↪→ C and when we write Q,R etc. we
mean Qσ,Rσ, etc.) To compute vol(F 1 Ad(N)), we first write down an explic-
itly a basis for H∗dR ResE/Q Ad(N) ⊗ C. Here Ad(N) is the n(2n + 1)-dimen-
sional subobject of Hom(N,N) consisting of the those endomorphisms L satisfying
Q(Lx, y) +Q(x, Ly) = 0, where Q is the symplectic form on N .

A basis for FmH∗dR(Ad(N))⊗E,σC/Fm+1 is indexed by unordered pairs (i, j) such
that i+ j = m+ (2n− 1) and is given by

{ηi ⊗ ηj + ηj ⊗ ηi : i+ j = m+ (2n− 1)}
or more precisely the image of these elements under the identifications of (8.5.2).

If we replace Ad(N) by ResE/Q(Ad(N)), then we also need to throw in
√
−D

times the basis vectors above. The union of the elements above with m ≥ 1 is then
a C-basis for F 1H∗dR(ResE/Q Ad(N)) ⊗ C. While it is not a Q-basis of the natural
rational structure on this space, it is a Q-basis of the corresponding graded for the
Hodge filtration, so to compute the volume we may as well work with this basis.

In a similar fashion to our previous computations, we get

vol(LN )2 ∼(Q×)2 Dn2

·
(
R 2n

2n−1R 2n−1
2n−2 · · ·Rn+1

n Rn−1
n−1 · · ·R 2

2 R1

)2
and using RiR2n−1−i = (−1), that

vol(LN ) ∼Q× D
1
2n

2

·R−2n
0 R

−(2n−2)
1 · · ·R−2

n−1.

We now turn to Ad(M). For i = 0, . . . , n − 2, n, . . . 2n − 2 pick elements
ω̃i ∈ F iH∗dR(M) according to the discussion of (8.2.3), obtaining invariants Qi
as explained there.

For the two dimensional space FnH∗dR/F
n+1, there is no natural basis, so we just

pick any orthogonal basis {ω̃+
n−1, ω̃

−
n−1} for the form S. Let B̃M = {ω̃i} ∪ {ω̃+

n−1, ω̃
−
n−1}.

Let ω+
n−1, ω

−
n−1 be the images of ω̃+

n−1, ω̃
−
n−1 respectively in Hn−1,n−1

σ (M). Suppose
that

ω+
n−1 = Q11ω

+
n−1 + Q12ω

−
n−1,

ω−n−1 = Q21ω
+
n−1 + Q22ω

−
n−1.

Let BM denote the basis {ω0, . . . , ωn−2, ω
+
n−1, ω

−
n−1, ωn, . . . , ω2n−2} of

HdR(M)⊗E,σ C. As before Ad(M) is the n(2n − 1)-dimensional sub-object
of Hom(M,M) consisting of the those endomorphisms L satisfying

Q(Lx, y) +Q(x, Ly) = 0,

where Q is the symmetric form on M .
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A basis for FmH∗dR(Ad(M))⊗E,σ C/Fm+1 is indexed by unordered pairs (ωi, ωj),
ωi, ωj ∈BM , such that i+ j = m+ (2n− 2) with i 6= j and is given by

{ωi ⊗ ωj − ωj ⊗ ωi : i+ j = m+ (2n− 2)}
again with reference to the isomorphism (8.5.2).

We will compute (vol LM )2 as the determinant of the Gram matrix of the form
described in §8.5.3. The only tricky part is the contribution of terms involving ω±n−1.
Let

x± = ω±n−1 ⊗ ωj − ωj ⊗ ω
±
n−1,

where j lies in the range n ≤ j ≤ 2n − 2. Consider the 4 × 4-matrix X of inner
products (x, y) where x, y run over the elements x±,

√
−Dx±. Set

Q+ = Sσ(ω+
n−1, ω

+
n−1), Q− = Sσ(ω−n−1, ω

−
n−1)

and
A + iB = Sσ(ω+

n−1, ω
−
n−1), A,B ∈ R.

Note for example that, using (8.5.2)

(x+,
√
−Dx+) =

1

2

(
tr SAd

σ (x+,
√
−Dx+) + tr SAd

σ (x+,
√
−Dx+)

)
= 0,

while
(x+, x−) =

1

2

(
tr SAd

σ (x+, x−) + tr SAd
σ (x+, x−)

)
= 2AQj

and

(x+,
√
−Dx−) =

1

2

(
tr SAd

σ (x+,
√
−Dx−) + tr SAd

σ (x+,
√
−Dx−)

)
= 2
√
DBQj .

Then

det(X) = (2Qj)
4 · det


Q+ A 0

√
DB

A Q− −
√
DB 0

0 −
√
DB DQ+ DA√

DB 0 DA DQ−


= (2Qj)

4 ·D2(Q+Q− −A2 − B2)2.

Note that
Q+Q− −A2 − B2 = det(Γ) = ∆ · det(Ξ),

where

Γ :=

(
Q+ A + iB

A− iB Q−

)
, ∆ := Sσ(ω+

n−1, ω
+
n−1)Sσ(ω−n−1, ω

−
n−1), Ξ :=

(
Q11 Q12

Q21 Q22

)
.

We remark that det(Γ) lies in R×, ΞΞ̄ = I and ∆ lies in E×, hence

det(Γ)2 = ∆∆̄ ∈ Q×.
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Combining the above computation with a routine computation of the contribution
from terms not involving ω±n−1, we find

vol(LM )2 ∼(Q×)2 Dn2−n ·
(
Q2n−2

2n−2 · · ·QnnQn−2
n−2 · · ·Q2

2Q1

)2 · det(Γ)2(n−1),

and using QiQ2n−2−i = 1, that

vol(LM ) ∼Q× Q
−(2n−2)
0 Q

−(2n−4)
1 · · ·Q−2

n−2 ·∆n−1 · det(Ξ)n−1.

Let {e0, . . . , e2n−1} and {f0, . . . , f2n−1} be Q-bases for H∗B,σ(M) and H∗B,σ(N)

respectively. Then c+(ResE/Q(M ⊗ N)) is the determinant of the change of basis
matrix between

{ei ⊗ fi′ + F∞(ei ⊗ fi′)}, 0 ≤ i, i′ ≤ 2n− 1,

and
{(ϕσ, ϕσ̄)ω ⊗ η}, {(ϕσ, ϕσ̄)

√
−Dω ⊗ η},

where ω ∈ BM ∩ F tH∗dR(M), η ∈ BN ∩ F t
′
H∗dR(N), 0 ≤ t+ t′ ≤ 2n− 2. We find as

in the previous section that

c±(ResE/QM ⊗N) ∼Q×
√
−D

−2n2

· Q−(2n−2)
0 Q

−(2n−4)
1 · · ·Q−2

n−2

·R−2n
0 R

−(2n−2)
1 · · ·R−2

n−1 · det(Ξ)−n · det(A⊗B),

where A and B are the period matrices given by

(e0 e1 · · · e2n−1) = BM ·A, (f0 f1 · · · f2n−1) = BN ·B.
Computing the Gram matrices of the bases ei and BM with respect to the polarization
and taking determinants, we may compute det(A) and det(B):

det(A)2 ∼Q× ∆−1 · (2πi)−2n(2n−2), det(B)2 ∼Q× (2πi)−2n(2n−1),

so
det(A⊗B) = det(A)2n det(B)2n ∼Q× ∆−n(2πi)−2n2(4n−3).

Finally the center is the point s = 2n− 1 and

c±((ResE/QM ⊗N)(2n− 1)) = c∓(ResE/QM ⊗N) · (2πi)4n2(2n−1).

Putting all of the above together yields:

(8.6.2)
c+((ResE/QM ⊗N)(2n− 1))

vol(LM ) vol(LN )
∼Q× (2πi)2n2

·
√

∆∆̄︸ ︷︷ ︸
∈
√

Q×

·
√
D
n
.

8.7. SO2n+1 × SO2n+2 over E imaginary quadratic

Recall that here N is associated with SO2n+1 and M with SO2n+2. We will
be brief for all the computations are very similar to the prior section, e.g.,
the term L∗(0,AdN) is the same as in the previous section, while the formula
for L∗(0,Ad(M)) is obtained by replacing n by n+1 in the formula from the previous
section.
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The volume computations are also similar: we have

vol(F 1 ResE/Q(AdN)) ∼Q× D
1
2n

2

·R−2n
0 R

−(2n−2)
1 · · ·R−2

n−1,

vol(F 1 ResE/Q(AdM)) ∼Q× Q−2n
0 Q

−(2n−2)
1 · · ·Q−2

n−1 ·∆n · det(Ξ)n,

where ∆, Ξ are defined similarly.

c±(ResE/QM ⊗N) ∼Q×
√
−D

−2n(n+1)
· Q−2n

0 Q
−(2n−2)
1 · · ·Q−2

n−1

·R−2n
0 R

−(2n−2)
1 · · ·R−2

n−1 · det(Ξ)−n · det(A⊗B),

where A and B are the period matrices as before. Now, computing with Gram matrices
as before shows

det(A)2 ∼Q× ∆−1 · (2πi)−2n(2n+2), det(B)2 ∼Q× (2πi)−2n(2n−1),

so
det(A⊗B) = det(A)2n det(B)2n+2 ∼Q× ∆−n(2πi)−n(2n+2)(4n−1).

The center is the point s = 2n and

c±((ResE/QM ⊗N)(2n)) = c∓(ResE/QM ⊗N) · (2πi)4n2(2n+2).

Putting all of the above together yields:

(8.7.1)
c+((ResE/QM ⊗N)(2n))

vol(LM ) vol(LN )
∼Q× (2πi)2n(n+1) ·

√
D
n
.

8.8. Motives with coefficients

We return to the issue mentioned on page 88, namely, the morphism from the
motivic Galois group to the C-group of G1 or G2 might not be defined over Q. In
this remark we outline a modification of the argument above that accounts for this
possibility. We will explain this in the case G = ResE/Q SO(2n)× SO(2n+ 1) for an
imaginary quadratic E, the other cases being similar. The reader is referred to [17]
Sec. 2 for a survey of motives with coefficients and for the formulation of Deligne’s
conjecture in that setting, which we use below.

Choose a large enough number fieldK over which the Ĝi-motives attached to π1, π2

are defined, i.e., so that the associated morphisms from the motivic Galois group to
the C-group of Gi are defined over K.

We get motives attached to π1 and π2 over E with coefficients in K, denoted MK

and NK respectively. Attached to Π one has the motive MK = ResE/Q(MK ⊗NK).
Then

L(2n− 1,MK) ∈ (K ⊗C), c+(MK(2n− 1)) ∈ (K ⊗C)∗/K∗,

where all the tensor products are taken over Q; Deligne’s conjecture states that

(8.8.1)
L(2n− 1,MK)

c+(MK(2n− 1))
∈ K ↪→ (K ⊗C).
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Let AdMK and AdNK be defined as above as sub-motives of MK ⊗MK(2n− 2)

and of NK⊗NK(2n−1) respectively; by the general formalism of the appendix, these
are equipped with polarizations (in the category of motives with K-coefficients). (1)

Then we can define the volumes

vol LM , vol LN ∈ (K ⊗C)×/K×,

generalizing in the obvious way the definition in (1.4.2), and

volF 1H0
dR Ad MK = vol LM vol LN .

Moreover the computations in Sec. 8.6 can be easily modified to show that the fol-
lowing variant of (8.6.2) remains valid:

(8.8.2)
c+(MK(2n− 1))

volF 1HdR Ad MK · (2πi)2n2 ∈
√

(K ⊗Q)∗.

(One uses that the K-action on HB(MK) and HB(MK) commutes with the action
of C× and WR respectively.)

Now we have an equality

(8.8.3) L(
1

2
,Π) = L(2n− 1,MK)

(Rankin-Selberg L-function on the left) which in fact shows that the RHS lies in
(Q⊗C) ↪→ (K ⊗C).

Finally, we note that there is a natural functor

Motives with Q-coefficients 7→ Motives with K-coefficients,

denoted X 7→ XK and we have the relation

(Ad Π)K ' Ad MK ,

where Ad Π is the conjectural adjoint motive with Q-coefficients attached to Π. The
proof of Lemma 2.2.2 shows that the square of the volume volS F

1HdR(Ad Π) (for
any weak polarization S on Ad Π), is (up to Q×) independent of the choice of S.
Moreover,

(8.8.4) volS F
1HdR(Ad Π) = volS F

1HdR(Ad MK)

where the LHS lies in C×/Q×, the RHS in (K ⊗ C)∗/K∗ and the equality
must be viewed as saying the LHS maps to the RHS under the natural map
C×/Q× → (K ⊗C)∗/K∗. Putting everything together (i.e., (8.8.1), (8.8.2), (8.8.3)
and (8.8.4)) gives

(8.8.5)
L( 1

2 ,Π)

volS F 1HdR(Ad Π) · (2πi)2n2 ∈ (Q⊗C) ∩
√

(K ⊗Q)∗,

in particular, the square of the left-hand side lies in (Q ⊗ C) ∩ (K ⊗ Q) = Q, as
desired.

1. It is plausible that this fails in some PGL cases, but there our proofs never used polarizations
and with minor modifications one proceeds without them.
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CHAPTER 9

A CASE WITH δ = 3

In this section we offer what is perhaps the most interesting evidence for our
conjecture, in a case where Y (K) is a 9-manifold. Namely, we verify some of the
numerical predictions in a cohomological degree that is neither minimal nor maximal.
These are degrees in which we cannot even produce explicit cycles!

What we check is the following: our conjecture relatingH3 toH4, H5, H6 holds, “up
to rotation” (see Theorem 9.1.1 for the precise statement). That theorem is phrased
as conditional on Beilinson’s conjectures, but what we actually do is unconditional:
we compute many numerical invariants of the lattices H∗, and we only need Beilin-
son’s conjectures to compare these computations with our conjecture. We also verify
Prediction 1.4.3 unconditionally (at least up to some factors in

√
Q×). It would be

interesting to analyze the square classes that appear in our argument, in order to
eliminate these factors of

√
Q×.

A critical input into our result is the work of M. Lipnowski [42], who combines the
ideas of equivariant analytic torsion with base change.

9.1. Notation and assumptions

– Let F be an imaginary quadratic field (we will regard it as embedded in C) and
E ⊃ F a cyclic extension of degree 3; let σ be a generator for the Galois group
of E/F , so that

Gal(E/F ) = 〈σ〉 = {1, σ, σ2}.
We will assume E/F to be unramified, but this is only so we can apply the

work of [42] in the simplest form; the reader can easily verify that the same
idea would apply for E/F unramified at primes above 3, for example, using the
refined theorems later in [42].

– Choose a non-split quaternion algebra D over F , and let GF be the (algebraic)
group (underlying) D×/F×. Let GE be the base change of G to E; and let

G = GE(E ⊗C) = PGL2(C)× PGL2(C)× PGL2(C)

be the archimedean group at ∞ associated to GE .
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– We denote by aGF (R) or aF for short the (one-dimensional) complex vec-
tor space attached to the real group GF (R) (see §3). Similarly we define
aGE(R) = aE for short, a three-dimensional complex vector space. Note that we
may naturally identify

aE ' aΣF ,
where Σ is the set of embeddings E ↪→ C extending the given embedding of F .

– Let π be an infinite-dimensional automorphic representation for GF , cohomo-
logical at ∞, and let Π be the base-change of π to GE .

– We suppose that π is trivial at each ramified place for D, and with conduc-
tor pf(p) at each prime p that is unramified for D. Put n =

∏
p p

f(p). (If one
allows the case where E/F is ramified, we should additionally assume that n is
relatively prime to the discriminant of E/F .)

– Let KF be the level structure for GF of “level Γ0(n).” By this we mean
KF =

∏
vKv, the product over all finite places v, where

(a) If v is ramified for D, then take Kv = O∗DvF
∗
v /F

∗
v where ODv ⊂ Dv is the

maximal order.

(b) If v is unramified for D, fix an isomorphism Dv ' PGL2(Fv); then Kv is
given by the preimage of the matrices

(
a b
c d

)
∈ PGL2(Ov) where the valu-

ation of c is at least f(v).
We define similarly KE to be the level structure for G “of level Γ0(n · OE),”

where we choose the isomorphisms in (b) in such a way that KE is σ-invariant.

– Let

(9.1.1) Y = Y (KE), Y = Y (KF )

be the corresponding arithmetic manifolds for GE and GF , respectively; thus
Y is nine-dimensional and Y is three-dimensional. Moreover there is a natural
Gal(E/F ) = 〈σ〉-action on Y (arising from the σ-action on GE , which preserves
the level structure). The inclusion GF ↪→ GE gives rise to a map Y → Y σ of Y
into the σ-fixed subspace on Y .

We equip Y with the Riemannian metric arising from the standard Rieman-
nian metric on hyperbolic 3-space H3, and we equip Y with the Riemannian
metric arising from the standard Riemannian metric on H3 ×H3 ×H3.

– We suppose that

(9.1.2) dimH3
cusp(Y,C) = 1.

Here the notation “cusp” should be understood as meaning the contribution of
all infinite-dimensional automorphic representations to cohomology.

(9.1.2) implies firstly that dimH1
cusp(Y ,C) = 1, because of base change, and

secondly that Y, Y have only one connected component (which is equivalent to
asking that the class numbers of E and F are odd). It also implies that π is the
only nontrivial automorphic representation which contributes to the cohomology
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of Y , and similarly Π is the only nontrivial automorphic representation which
contributes to the cohomology of Y .

– Let LΠ be the coadjoint motivic cohomology H1
M (Ad∗Π,Q(1)) as in (7.1.2); let

LΠ ⊗C → aE be the Beilinson regulator, as in (7.1.3). We define similarly Lπ
with its regulator map Lπ ⊗C→ aF . There is a natural action of 〈σ〉 ' Z/3Z

on LΠ, and an identification

(9.1.3) Lπ
∼→ LσΠ.

Before we give the statement of the theorem, let us comment a little on the assump-
tions. Although we do not have any numerical examples, we expect that situations like
the above should be very easy to find given an effective ability to compute H3(Y,C)

numerically. In particular, it is very common (see discussion in [3]) that the cuspi-
dal cohomology of Y is one-dimensional. When that is so, we would expect that the
cuspidal contribution to H3(Y,C) also is one-dimensional, comprising solely the base-
change forms—in situations with δ > 0, cuspidal cohomology in characteristic zero
that does not arise via a lift from another group is considered to be very rare (see,
e.g., [55] for a sample numerical investigation).

Before we formulate the theorem, note that Gal(E/F ), and thus the real group
algebra R[Gal(E/F )], acts on H∗(Y (K),C). By a rotation in the group algebra
R[Gal(E/F )] ' R×C we mean an element of the form (1, z) where |z| = 1.

Theorem 9.1.1. — With the assumptions above, Prediction 1.4.3 (more precisely Equa-
tion (1.4.16)) holds up to

√
Q×.

Moreover, assume Beilinson’s conjectures, as formulated in Conjecture 2.1.1 and
extended to pure motives in §2.1.11, and the existence of a 2-dimensional motive
associated to π (so also Π). Let a∗G, and so also L∗Π, act on H

∗(Y (K),C)Π by means
of the action constructed in §3.

Then there are rotations ri ∈ R[Gal(E/F )], for 1 ≤ i ≤ 3, such that

(9.1.4) H3(Y (K),Q)Π ·
i∧
L∗Π = riH

3+i(Y (K),Q)Π.

In other words, the main Conjecture 1.2.1 holds, up to replacing Q by Q and up
to a rotation in R[Gal(E/F )]. (In fact, Q can be replaced by an extension of the
form Q(

√
a, b1/4) for a, b ∈ Q×, and r3 can be taken trivial.)

Here the tempered cohomology contributes in degrees 3 to 6. The groupsH4 andH5

are “inaccessible”, because it appears to be very difficult to directly construct rational
cohomology classes of this degree. Our method of proof is in fact quite indirect, going
through analytic torsion.

We need some setup first on metrized lattices (§9.2) and then on Reidemeister
torsion (§9.3). This setup will allow us to check that Prediction 1.4.3 holds in §9.5.
The full theorem above will follow from a more detailed analysis, which we carry out
in the remainder of the section. This final analysis uses many of the results of this
paper: it uses the results of Theorem 7.2.1 both over F and over E, the compatibility
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with Poincaré duality (Proposition 5.5.1), and the study of analytic torsion over F
and over E (both usual and σ-equivariant).

9.2. Volumes and functoriality

Some brief remarks about the behavior of volumes under functoriality: Let V be a
Q-vector space equipped with a metric, i.e., V ⊗R is equipped with an inner product.
We define its volume as in (1.4.2). Then

V ∗ := Hom(V,Q), SymkV,

k∧
V

all obtain metrics; similarly, if V,W are Q-vector spaces with metrics, then V ⊗W
inherits a metric.

We have a natural metrized isomorphism
∧k

V '
(∧d−k

V
)∗
⊗ (detV ), where we

wrote det(V ) =
∧dim(V )

V .
Fix an isomorphism f : (V ⊗ R,metric) → (Rn,Euclidean inner product). If we

write f(V ) = Qng for some g ∈ GLn(R), we have vol(V ) = det(g). Using this it is
easy to check the following identities:

vol(V1 ⊗ V2) = (volV1)dimV2(volV2)dimV1(9.2.1)

vol(V ∗) = vol(V )−1,
∏
i

(vol

i∧
V )(−1)i = 1 (dimV ≥ 2),(9.2.2)

where all equalities are in R×/Q×.
If σ is an automorphism of V with prime order, then we denote by V σ the fixed

point space; we denote by Vσ the quotient V/V σ. It will be convenient to abridge

volσ(V ) := vol(V σ),

the volume of the σ-invariants with respect to the induced metric.
Finally, it will be convenient to make the following notation: If Vi are a collection

of Q-vector spaces with metrics, indexed by the integers, and only finitely many Vi
are nonzero, we denote by

(9.2.3) volV∗ =
∏

(vol Vi)
(−1)i ,

the alternating product of the volumes. We will often apply this notation when Vi is
the ith cohomology group of a Riemannian manifold, equipped with the metric that
arises from its identification with harmonic forms.

9.3. Analytic torsion and equivariant analytic torsion. The theorems of Moscovici-
Stanton and Lipnowski

As a reference on this topic see [15] (for the general case) and [43] (for the equiv-
ariant case); see also [47, 5, 4]. We briefly summarize the important points.
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Let M be a compact Riemannian manifold, σ an automorphism of M of prime
order p, G = 〈σ〉 the group generated by σ. Note that the fixed point set Mσ is
automatically a smooth submanifold. (1) We shall suppose that dim(M) and dim(Mσ)

are both odd. We may find a G-stable triangulation of M , by [30], and it may be
assumed to be regular (see [12, Chapter III]).

If W is a real vector space, let det(W ) be the line (= one-dimensional real vector
space) given by

∧dim(W )
W . If W has a Euclidean metric, then det(W ) has a metric

too; this normalizes an element of det(W ) up to sign, the element of norm 1. If
W• is a finite complex of real vector spaces, define detW• =

⊗
i(detWi)

(−1)i , a
one-dimensional real vector space. (Here, L−1 denotes the dual of L, if L is one-
dimensional.) There is a natural isomorphism detW• ' detH∗(W•), where we regard
the cohomology as a complex of vector spaces with zero differential.

In particular, writing C∗(M,R) for the cochain complex of M with respect to the
fixed triangulation, we get an isomorphism

(9.3.1) detC∗(M,R) ' detH∗(M,R).

Equip the chain complex C∗(M,R) with the metric where the characteristic functions
of cells form an orthonormal basis; give C∗(M,R) the dual metric. Equip the coho-
mology H∗(M,R) with the metric that arises from its identifications with harmonic
forms (here, harmonic forms are endowed with the L2 inner product). These metrics
induce metrics on the one-dimensional vector spaces detC∗(M,R) and detH∗(M,R)

respectively.
We define the Reidemeister torsion ofM (with reference to the given triangulation)

by comparing these metrics, using the identification (9.3.1):

(9.3.2) RT(M) · ‖ · ‖C∗ = ‖ · ‖H∗ .
Evaluate the resulting equality on an element c ∈ detC∗(M,Q); then ‖c‖C∗ is easily
seen to lie in Q×, whereas ‖c‖H∗ ∼Q× volH∗(M,Q), where the right-hand side is
defined as an alternating product as in (9.2.3). Therefore,

(9.3.3) RT(M) ∼ volH∗(M,Q).

We also need an equivariant version of the same discussion. The complex of invari-
ants C∗(M,R)σ has cohomology identified with H∗(M,R)σ; we get

(9.3.4) detC∗(M,R)σ ' detH∗(M,R)σ.

These too have metrics, induced from C∗(M,R) and H∗(M,R); we define the “invari-
ant part” RTσ(M) of the Reidemeister torsion via the same rule (9.3.2), now applied
to (9.3.4). An orthogonal basis for C∗(M,Q)σ is obtained by taking all σ-invariant
cells, and the σ-orbits of cells that are not invariant; we have a similar (dual) basis
for C∗(M,Q)σ. The elements of the resulting basis are orthogonal, and their lengths

1. To see that, note that one can assume the metric to be invariant by averaging under G, and
then the exponential map in the neighborhood of a fixed point provides a linear chart for Mσ near
that point.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2021



114 CHAPTER 9. A CASE WITH δ = 3

are either 1 or √p, where p is the order of σ. Writing εj for the number of j-di-
mensional simplices that are not invariant, we see volCj(M,Q)σ ∼ pεj/2. However,
modulo 2,

∑
εj =

∑
(−1)jεj = χ(M) − χ(Mσ). Both Euler characteristics are zero

(we are dealing with odd-dimensional manifolds). Proceeding as above, we get

RTσ(M) ∼ volH∗(M,Q)σ.

The main theorem of [15] is an equality between RT and an analytic invariant, the
analytic torsion; the main theorem of [43] is a corresponding equality for RTσ. We do
not need to recall these results in full here.

All that is important for us are the following two statements, in the case when
M = Y from (9.1.1), and σ is given by the action of a generator of Gal(E/F ) on Y :

RT(Y ) = 1(9.3.5)

RTσ(Y ) = RT(Y )2.(9.3.6)

These statements are proved by studying the analytic torsion. The proof of (9.3.5)
is exactly as in [46] or [66] (the stated theorems there do not cover the current case,
but the proof applies in exactly the same way). The idea is, roughly speaking, that
the product decomposition of the universal cover of Y means that every Laplacian
eigenvalue occurs in several cohomological degrees, leading to a mass cancelation in
the analytic torsion.

As for (9.3.6), this key relationship is due to Lipnowski [42, §0.2, “Sample Theo-
rem”]. Lipnowski’s results are deduced from the theory of base change: the analytic
torsion counterparts of RT(Y ) and RTσ(Y ) are defined in terms of a regularized trace
of log ∆, acting on Y , and possibly twisted by a power of σ; however the theory of
base change precisely allows one to relate this to corresponding computations on Y . (2)

9.4. Volumes of cohomology groups for Y and Ȳ

We gather some preliminary results related to the volumes of groups Hj(Y,Q) and
Hj(Y ,Q), measured as always with respect to the metric induced by the L2-norm on
harmonic forms.

We have

(9.4.1) volHi(Y,Q) = volHi
Π(Y,Q) · volHi(Y,Q)triv,

2. Here are some notes regarding the translation of Lipnowski’s theorem to the form above:
Lipnowski works in a situation with a Galois group 〈σ〉 of order p and shows that τσ = τp. Here
τ is exactly RT(Y ), for suitable choices of data, but τσ takes some translation: its logarithm is
the logarithmic determinant of the de Rham Laplacian on Y twisted by σ. One obtains the same
logarithmic determinant if we twist by σi for any 1 ≤ i ≤ p − 1. Add up over 1 ≤ i ≤ p − 1 and
apply the main theorem of [43] to the representation of 〈σ〉 which is the difference of the regular
representation and p copies of the trivial representation. We find RT(Y )·τp−1

σ = RTσ(Y )p; therefore,

in our case with p = 3, we find RTσ(Y )3

RT(Y )
= τ2

σ = τ6. To conclude we apply (9.3.5).
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(equality in R×/Q×) by virtue of our assumption that the only cohomological auto-
morphic representations at level K are the trivial representation and Π: the splitting
Hi = Hi

Π ⊕Hi
triv is both orthogonal and defined over Q. Poincaré duality induces a

metric isomorphism Hi(Y,Q) ' Hi∗(Y,Q)∗, where i+ i∗ = 9, and thus

volHi(Y,Q) · volHi∗(Y,Q) ∼ 1

and the same result holds for the trivial and Π parts individually. We have similar
results for the σ-invariant volumes, and also a similar equality for Y :

volHi(Y ,Q) = volHi
π(Y ,Q) · volHi(Y ,Q)triv,

We now compute the various volume terms related to the trivial representation.
Observe that

dimHi(Y ,Q)triv =

{
1, i ∈ {0, 3};
0, else,

and dimHi(Y,Q)triv =


1, i ∈ {0, 9};
3, i ∈ {3, 6};
0, else.

Explicitly speaking, harmonic representatives for H3(Y,R)triv are obtained from the
pullbacks π∗ν under the coordinate projections

(9.4.2) H×H×H→ H,

hereH is the hyperbolic 3-space, and ν the (Riemannian) volume form on it. Moreover,
cup product gives an isomorphism

3∧
H3(Y,Q)triv ' H9(Y,Q) = H9(Y,Q)triv.

Lemma 9.4.1. — We have

(9.4.3) volH∗(Y,Q)triv ∼ 1.

Proof. — It is enough to show that

(9.4.4) vol(H3(Y,Q)triv) vol(H9(Y,Q)triv) ∼ 1,

because then Poincaré duality gives vol(H6(Y,Q)triv) vol(H0(Y,Q)triv) ∼ 1, and that
gives the lemma. To verify (9.4.4), take an orthonormal basis ω1, ω2, ω3 for harmonic
3-forms spanning H3(Y,R)triv. The norm of each one at every point of Y (K) (where
the norm is that induced by the Riemannian structure) equals 1/

√
vol(Y ), where we

measure the volume of Y with respect to the Riemannian measure.
The volume of H3(Y,Q) equals (up to Q×, as usual) equals√

det〈ωi, ωj〉∫
Y
ω1 ∧ ω2 ∧ ω3

=
1∫

Y
ω1 ∧ ω2 ∧ ω3

=
√

vol(Y ).

The first equation is just the Definition (1.4.3), where the denominator adjusts for the
fact that the ωi are not a Q-basis, and, at the last step, we used that ω1 ∧ ω2 ∧ ω3 is
a multiple of the volume form, and its norm at each point is vol(Y )−3/2.
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On the other hand, the volume of H9(Y,Q) equals the L2-norm of d(vol)
vol(Y ) , with

d(vol) the Riemannian volume form, i.e., vol(Y )−1/2. That proves (9.4.4).

Lemma 9.4.2. — We have

(9.4.5) volσ H∗(Y,Q)triv ∼ vol(Y )2.

As above, the volume of Y is measured with respect to the Riemannian structure—
equivalently, with respect to ν.

Proof. — Notation as in (9.4.2), a generator ω3 for H3(Y,Q)σtriv is given as π∗1ν+π∗2ν+π∗3ν

volY
.

To verify this, recall that we have a map Y → Y σ (it is possible that this map is not
surjective but it doesn’t matter). Each π∗i ν pulls back to ν on Y , and in particular
integrates to vol(Y ). Therefore

∫
Y
ω3 = 3, so ω3 really does belong to H3(Y,Q). The

L2-norm of ω3 is given by
√

3 · volY
vol(Y )2

. Therefore, the left hand side of (9.4.5) is

∼ vol(Y )1/2︸ ︷︷ ︸
0

· vol(Y )

vol(Y )1/2︸ ︷︷ ︸
3

· vol(Y )

vol(Y )1/2︸ ︷︷ ︸
6

· vol(Y )1/2︸ ︷︷ ︸
9

= vol(Y )2,

where, on the left, we noted in braces the cohomological degree that is giving rise to
each term (one uses Poincaré duality for 6, 9, and recall that these terms are raised
to the power (−1)6, (−1)9 respectively).

9.5. Proof of Prediction 1.4.3

In what follows we abbreviate

Hi
Π := Hi(Y,Q)Π

for the Π-summand of cohomology.
Combining (9.3.3), (9.3.5), (9.4.1), (9.4.3) and Poincaré duality we get

(9.5.1) vol H4
Π ∈

√
Q× · vol H3

Π,

where the
√

Q× comes from the fact that we took the square root of an equality that
held up to Q×. Next, we have

(9.5.2) volσH∗Π ∼ (volH∗π)
2
,

since from RTσ(Y )
(9.3.6)

= RT(Y )2 we get

(9.5.3) volσH∗Π(Y,Q) · volσH∗(Y,Q)triv ∼
(
volH∗π(Y ,Q) · volH∗(Y ,Q)triv

)2
,

but Lemma 9.4.2, and the simple fact that volH∗(Y ,Q)triv = vol(Ȳ ), implies that
the contribution of the trivial representation on left and right cancel.

Expanding (9.5.2), noting that H3
Π is σ-fixed, and using Poincaré duality, we see(

volσH4
Π

volH3
Π

)2

∼
(

1

volH1
π

)4

,
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that is to say

(9.5.4)
volσH4

Π

(
volH1

π

)2
volH3

Π

=
√
q′,

for some q′ ∈ Q×. This indeed verifies Prediction 1.4.3 up to
√

Q×.

9.6. Computation of volH3
Π and volH1

π

In this case we know (1.4.8) both over E and F :

vol(H3
Π)2 · vol(L∗Π) ∼ √q1,(9.6.1)

vol(H1
π)2 · vol(L∗π) ∼ √q2(9.6.2)

for qi ∈ Q×.
The computation of the periods of cohomological forms on inner forms of GL(2) in

minimal cohomological degree, in terms of associated L-functions, was in essence done
by Waldspurger [79, 78], and (9.6.1), (9.6.2) can be deduced from this computation,
together with a computation along the lines of §8 relating these L-functions to LΠ

and Lπ.
However, we will now briefly outline how to deduce (9.6.1) and (9.6.2) directly from

some mild variants of Theorem 7.2.1, because that theorem already has done all the
appropriate normalizations and Hodge–linear algebra needed to get the result in the
desired form. We will focus on (9.6.2); all steps of the proof of Theorem 7.2.1, and the
variant we will need below, go through with F replaced by E or indeed any CM field,
and that will give (9.6.1). Besides this issue of working over E rather than F , the
reason we need “variants” of Theorem 7.2.1 is to provide enough flexibility to ensure
that the L-values occuring are not zero. One pleasant feature of the current case is
that the hypotheses of §6.10 are all known here.

We apply Theorem 7.2.1 with:

– G the form of SO(3) defined by the reduced norm on the trace-free part of D;
in particular G(F ) = D∗/F ∗.

– H ⊂ G the SO(2)-subgroup defined by a subfield F̃ ⊂ D, quadratic over F , i.e.,
we have H(F ) = F̃ ∗/F ∗.

– The cycle Z(U) will be twisted, as in §7.0.1, by a quadratic idele class character ψ
of F̃ , trivial on F .

The twist mentioned was not used in Theorem 7.2.1, but all steps of the proof go
through. The only change is in the nonvanishing criterion in the last paragraph: one
must replace the Rankin-Selberg L-function by its ψ-twist.

It is possible, by Theorem [80, Theorem 4, page 288] and a local argument, given
below, to choose such F̃ , ψ in such a fashion that:

(a) L( 1
2 ,BCF̃Fπ ⊗ ψ) 6= 0, and
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(b) for v a place of F which remains inert in F̃ , the local ε-factor εv(BCF̃Fπ ⊗ ψ)

equals −1 when D is ramified and otherwise 1.

In both cases BCF̃F means base change (global or local) from F to F̃ . According to the
last paragraph of Theorem 7.2.1, together with the work of Tunnell-Saito [71, 56, 51]
relating invariant linear forms to ε-factors, conditions (a) and (b) imply that the

√
Q

ambiguity in Theorem 7.2.1 is actually nonzero, giving (9.6.2).
Finally, we describe the local argument alluded to above. We will find a pair of

distinct quadratic idele class characters χ1, χ2 of F , and then construct F̃ , ψ from
them, so that there is an equality of L-functions L(F̃ , ψ) = L(F, χ1)L(F, χ2). (Thus,
if χi corresponds to the quadratic extension F (

√
di), we take F̃ = F (

√
d1d2), and ψ

to correspond to the quadratic extension F (
√
d1,
√
d2) over F̃ ).

Let T be the set of ramified places for D. Let S be the set of all places not in T
where π is ramified, together with the archimedean places. Let R be the remaining
places. Our requirements (a) and (b) then translate to:

(a)′ L( 1
2 , π × χ1)L( 1

2 , π × χ2) 6= 0, and

(b)′ εv(π × χ1)εv(π × χ2)χ1χ2(−1) =

{
−1, v ∈ T.
1, v ∈ S

∐
R.

Let us recall (see e.g., the summary in [71, §1]) that for k a local field and σ a rep-
resentation of PGL2(k), the local epsilon factor ε(σ, ψ, 1/2) = ε(σ) is independent of
additive character ψ. Moreover, if σ is a principal series, induced from the character α
of k∗, we have ε(σ) = α(−1); if σ is the Steinberg representation we have ε(σ) = −1,
and for the unramified quadratic twist of the Steinberg representation have ε(σ) = 1.

If χ is a quadratic idele class character of F that is unramified at T and trivial
at S, the global root number of the χ-twist satisfies

ε(π × χ)

ε(π)
=
∏
v∈T

χv($v) ·
∏
v∈R

χv(−1)︸ ︷︷ ︸
=
∏
v∈S

∐
T χv(−1)=1

=
∏
v∈T

χv($v).

In other words, twisting by such a χ changes the global root number by a factor (−1)t,
where t is the number of places in T where χ is nontrivial.

Choose χ1 and χ2 of this type such that χ1 and χ2 are “opposed” at each place
of T (i.e., one is trivial and one is the nontrivial quadratic unramified character), and
such that χ1 and χ2 are both trivial at each place of S. Then

(9.6.3) εv(π × χ1)εv(π × χ2)χ1χ2(−1) =

{
−1, v ∈ T,
1, v ∈ S

∐
R.

The global root numbers of π × χi(i = 1, 2) are both given by ε(π) · (−1)t, where
t is the number of nontrivial places in T for χ1 or χ2 (they have the same parity).
Choosing t appropriately we arrange that ε(π × χ1) = ε(π × χ2) = 1.
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Waldspurger’s result implies that we may now find twists χ′1, χ′2 of χ1, χ2, coinciding
with χ1, χ2 at all places of T

∐
S, such that L( 1

2 , π × χ
′
i) 6= 0. The condition (9.6.3)

continues to hold for the χ′i, so we have achieved (a)’ and (b)’ as required.

9.7. Proof of the remainder of Theorem 9.11

We must verify (9.1.4) for 1 ≤ i ≤ 3. Let us compute volumes of everything in
sight in terms of the volumes of LΠ and Lπ.

First of all,

(9.7.1) vol(H3
Π ⊗ L∗Π)2 (9.2.1)

= vol(H3
Π)6 · vol(LΠ)−2 (9.6.1)∼ vol(H3

Π)2 (9.5.1)∼ vol(H4
Π)2.

Also we have (since H3
Π is σ-fixed):

volσ(H3
Π ⊗ L∗Π)2 = volσ(L∗Π)2 vol(H3

Π)2 (9.1.3)∼ vol(L∗π)2 vol(H3
Π)2(9.7.2)

(9.6.2)∼ (volH3
Π)2

(volH1
π)4

(9.5.4)∼
(
volσH4

Π

)2
.(9.7.3)

We can now deduce the conclusions of the theorem. First of all,

H3
Π ·

3∧
L∗Π =

√
q1H

6
Π.

Both sides above are one dimensional Q-vector spaces, so that this can be checked by
comparing volumes, for which we use (9.6.1), Poincaré duality, and the fact that the
volume of

∧3
L∗Π and L∗Π coincide (see (1.4.4)). That proves (9.1.4) for i = 3 . For i = 1

we use the following lemma, applied with L1 the image of H3
Π ⊗ L∗Π in H4(Y,R)Π,

and L2 := H4
Π.

Lemma. — Let VR be a three-dimensional real vector space with metric, equipped with
an isometric action of 〈σ〉 ' Z/3Z, with dimV σR = 1. Suppose V1, V2 ⊂ VR are two
different Q-structures, both stable under σ. If

(9.7.4) vol(V1) = vol(V2), volσ(V1) = volσ(V2),

then we have
V1 ⊗Q(

√
b) = α(V2 ⊗Q(

√
b))

for a rotation α ∈ R[σ]∗ and some positive b ∈ Q×.

Proof. — We have an isomorphism Q[σ] ' Q ⊕Q[ζ3] and correspondingly we may
split orthogonally

Vi = V σi ⊕ (Vi)σ.

Since V σ1 , V σ2 have the same volume, they are equal. On the other hand, (V1)σ ⊗R =

(V2)σ ⊗R, and these spaces are both isometric to R[ζ3] equipped with the standard
quadratic form |x + iy|2 = x2 + y2. The images of V1, V2 in R[ζ3] must be of the
form αi ·Q[ζ3] for some α ∈ R[ζ3]∗ ' C×; since the volumes of these spaces coincide
in R×/Q× we get |α1|2 = b|α2|2 for some b ∈ Q×. Therefore V1⊗Q(

√
b), V2⊗Q(

√
b)

differ by a rotation as claimed.
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In our case we do not have the exact equality of volumes as in (9.7.4), but only
equality up to certain factors in

√
Q×. Correspondingly, we get L1 = αL2 only after

first extending scalars to a field of the form Q(
√
a1, b

1/4). This implies the case i = 1

in the theorem.
Finally, the case of i = 2 of the theorem follows from Poincaré duality: take

h, h′ ∈ H3
Π and a ∈

∧2
L∗Π, a

′ ∈ L∗Π. Then Lemma 5.5.1 implies

〈h · a, h′ · a′〉 = 〈h · aa′, h′〉 ∈ Q · √q1,

where 〈−,−〉 is the Poincaré duality pairing on H∗(Y,R), and we used (9.6.1)
at the last step. Therefore, the three-dimensional vector spaces H3

Π · L∗Π ⊗ Q and
H3

Π ·
∧2

L∗Π ⊗Q are dual to one another under the Poincaré duality pairing. Since
the former space is a rotation of H4

Π ⊗ Q, as explained above, we deduce that the
latter space is a rotation of H5

Π ⊗Q. This concludes the proof of the theorem.
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APPENDIX

THE MOTIVE OF A COHOMOLOGICAL
AUTOMORPHIC REPRESENTATION

In this appendix, for lack of a sufficiently general reference, we shall formulate the
precise conjectures relating cohomological automorphic representations to motives.

A. The notion of a Ĝ-motive

A.1. The motivic Galois group. — Let F be a number field. Assuming standard con-
jectures, the category MF of Grothendieck motives over F (with Q-coefficients) is a
neutral Tannakian category, with fiber functor sending the motive M to the Betti co-
homology of Mv := M ×v C for an embedding v : F ↪→ C. (See §2.1.9). Fixing such v
gives a motivic Galois group (the automorphisms of this fiber functor), denoted GMot.
It is a pro-algebraic group over Q; it depends on the choice of v, but we will suppress
this dependence in our notation.

For any object M of MF , we let GM denote the algebraic group over Q defined
similarly but with MF replaced by the smallest Tannakian subcategory containingM .
Then GM is of finite type and

(A.1) GMot = lim←−
M

GM .

The natural map

ρM,` : ΓF → GL(H∗et(Mv,Q`)) = GL(H∗B(Mv)⊗Q`)

factors through GM (Q`). Conjecturally the image of this map is Zariski dense
in GM (Q`) [63] §3.2? (sic), and we will assume this in our discussion.

The groups GM and GMot sit in exact sequences:

1→ G0
M → GM → ΓM → 1

and
1→ G0

Mot → GMot → ΓF → 1,

where G0
M and G0

Mot denotes the identity components of GM and GMot respectively.
The group ΓF = Gal(F/F ) may be viewed as the Tannakian group associated with
the Tannakian category of Artin motives over F .
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The Galois representations ρM,` : ΓF → GM (Q`) yields, in the inverse limit, a map

(A.2) ρ` : ΓF → GMot(Q`)

with the property that the composite map ΓF → GMot(Q`)→ ΓF is the identity.

A.2. The group CG. — We will use the C-group defined in [13], see in particular
Proposition 5.3.3 therein. Let G̊ = (Ĝ×Gm)/〈Σ〉, where Σ is the order 2 element de-
fined by (ΣĜ(−1),−1), and ΣĜ is the co-character of T̂ ⊂ Ĝ corresponding to the sum
of all positive roots for G. This has the property that the cocharacter x 7→ (ΣĜ(x), x)

from Gm → Ĝ×Gm admits a square root when projected to G̊; this square root will
be denoted by $:

(A.3) $ : Gm → G̊,

so that we may informally write $(x) = (
√
x,ΣĜ(

√
x)).

We define the C-group as the semidirect product
CG = G̊o ΓF ,

where ΓF acts on Ĝ in the natural way and on Gm trivially. The action of ΓF on G̊
factors through a finite quotient of ΓF . We understand CG to be a pro-algebraic group
defined over Q.

Note that, parallel to the structure of GMot noted above, there is an exact sequence

1→ G̊→ CG→ ΓF → 1.

Just as for Ĝ itself, the complex algebraic groups G̊, CG can be descended to
algebraic groups G̊, CG over Z, using the split Chevalley model of Ĝ; thus their
R-points make sense for any ring R and, by a slight abuse of notation, we will allow
ourselves to write G̊(R), CG(R) for these R-points. We also write G̊R, CGR for the
corresponding R-algebraic groups.

A.3. Ĝ-motives. — A Ĝ-motive X (over F ) will by definition be a homomorphism

(A.4) ιX : GMot,Q →
CGQ

commuting with the projections to ΓF ,and whose projection to Gm/{±1} ' Gm
gives the representation associated to the Tate motive Q(−1).

Here the subscripts refer to base extensions of these algebraic groups to Q. The
morphisms between G-motives X,Y will be understood to be the elements of G̊(Q)
conjugating ιX to ιY ; in particular, the isomorphism class of X depends only on the
G̊(Q)-conjugacy class of ιX .

Then X defines a functor (also denoted X) from finite-dimensional CG-represen-
tations over Q to the category of motives over F with coefficients in Q. In fact, this
functor is a more intrinsic presentation of a Ĝ-motive, because, after all, the motivic
Galois group depends on a choice of fiber functor to begin with.

Composing ιX with ρ` (see (A.2)) gives a map

ρX,` : ΓF
ρ`−→ GMot(Q`)→ GMot,Q(Q` ⊗Q)

ιX−−→ CGQ(Q` ⊗Q).
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Thus we get a representation ρX,λ : ΓF → CGQ(Qλ) for each prime λ of Q above `,
with the property that the composite of this map with the projection CG → ΓF is
the identity.

Lemma A.1 (The Galois representation determines the motive). — If ρX,λ and ρY,λ are
conjugate under G̊(Qλ) for some λ, then also X,Y are isomorphic—i.e., ιX , ιY define
the same G̊(Q)-conjugacy class of maps.

Proof. — If ρX,λ and ρY,λ are conjugate, then ιX and ιY , considered as maps of Qλ-al-
gebraic groups, are conjugate on a Zariski-dense subset of the source (by our assump-
tion that the image of ΓF in GMot(Q`) is dense). Thus ιX and ιY are conjugate
over Qλ. But then they are also conjugate over Q.

If (ρ, Vρ) is a CG-representation over Q, we write Xρ for the associated motive,
i.e., the motive with Q coefficients associated to the composite ρ ◦ ιX . There is a
tautological isomorphism

(A.5) HB(Xρ ×v C,Q) ' Vρ.

B. The Ĝ motive attached to a cohomological automorphic representation

Now let F = Q; we will formulate the precise connections between cohomological
automorphic representation for G, and Ĝ-motives.

It is convenient to start with a character χ : H → Q of the cohomological Hecke
algebra for Y (K), as in §1.1 but allowing Q values. Attached to each embedding
λ : Q ↪→ C there is a near-equivalence class of cohomological automorphic represen-
tation Πλ whose Hecke eigenvalues coincide with λ ◦ χ.

Attached to χ there should be a compatible system of Galois representations to CG
in the following sense: For each nonarchimedean place λ of Q we should have [13,
Conjecture 5.3.4] attached a distinguished conjugacy class of maps

(B.1) ρλ : Gal(Q/Q) −→ CG(Qλ) λ nonarchimedean;

which matches with λ ◦ χ under the Satake correspondence, (see loc. cit. for details).
The basic conjecture concerning the existence of motives (cf. the discussion at the

end of [40, §2]) is then the following:

Conjecture B.1. — Given a cohomology class as above, there exists a Ĝ-motive X
over Q, with the property that for each nonarchimedean λ the Galois representation ρλ
attached to the cohomology class is isomorphic to the Galois representation ρX,λ aris-
ing from X.

C. Descent of the coefficient field for a Ĝ-motive

In §B we have formulated the conjectures over Q. However if the Hecke character χ
takes values in a subfield E ⊂ Q it is of course preferable to work over E. In the
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current section, we outline how to do this, i.e., how to descend the coefficient field of
a Ĝ-motive, at the cost of replacing Ĝ by an inner form.

C.1. Twisting a Galois representation. — Let us first recall how to “apply a Galois
automorphism to a representation.”

Suppose that H is an algebraic group over Q, and σ is an automorphism of Q.
We can define the σ-twist Hσ: if H is defined by various equations fi = 0, then Hσ

is defined by the equations fσi = 0, and so on; if H is defined over Q there is a
canonical isomorphism H ' Hσ. Also σ induces a bijection H(Q)→ Hσ(Q) denoted
by h 7→ hσ.

In particular, given a homomorphism π : H → H ′ of Q-algebraic groups, we obtain
a twisted morphism πσ : Hσ → (H ′)σ, with the property that πσ(hσ) = π(h)σ.

C.2. Descent of coefficients for a motive. — Let X be a Ĝ-motive. For σ ∈ Gal(Q/Q),
we can form a new motive Xσ by the rule

ιXσ = (ιX)σ.

Informally, Xσ applies σ to the coefficients of the system of motives defined by X.
Now let E be a finite extension of Q, and suppose that Xσ ' X for all

σ ∈ Gal(Q/E). In particular, there exists an element gσ ∈ G̊(Q) with the property
that

Ad(gσ)ιX = ιXσ .

Explicitly, this means that for g ∈ GMot(Q) we have Ad(gσ)ιX(gσ) = ιX(g)σ, so that
the image of GMot(Q) is fixed under z 7→ Ad(g−1

σ )zσ.
The element gσ is determined up to Q-points of Z(ιX), the centralizer of ιX inside

G̊Q. In particular, if the centralizer of ιX coincides with the center of G̊Q, the rule
σ 7→ gσ defines a cocycle; its cohomology class lies in

H1(Gal(Q/E), G̊(Q) modulo center) = H1(E, Ĝ modulo center),

where we use the usual notation for Galois cohomology on the right.
This cocycle can be used to descend ĜQ, G̊Q and CGQ to Q-forms Ĝ∗, G̊∗, CG∗,

described as the fixed points of z 7→ Ad(g−1
σ )zσ on the respective (pro)-groups. We

may then descend ιX to a morphism

(C.1) ιX : GMot −→ CG∗ (morphism of E-groups) .

Composition with the adjoint representation of CG∗ should then yield the adjoint
motive described in Definition 4.2.1.

D. Standard representations of the C-group for PGL and SO

According to our prior discussion, a cohomological form for G gives rise to a Ĝ-mo-
tive with Q coefficients; in particular, a representation of CG gives rise to a usual
motive with Q coefficients. The Hodge weights of the resulting motive are given by
the eigenvalues of the weight cocharacter (A.3).
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In the remainder of this section, we specify a standard representation of the C-group
in the cases of interest, namely, G = PGLn and G = SOm. We will compute the
Hodge numbers both for this motive (denoted M) and for the motive associated to
the adjoint representation of CG (denoted AdM). We work over an arbitrary number
field F ; in the text, F will sometimes be an imaginary quadratic extension of Q.

– G = PGLn, G̊ = SLn×Gm/((−1)n+1Idn,−1).

Here

(D.1) $(x) = (Symn−1

[√
x

1/
√
x

]
,
√
x),

and we define the standard representation of G̊ to be the tensor product of
the character x 7→ xn−1 on Gm with the standard representation of SLn. This
extends to CG, by extending trivially on ΓF .

Thus the Hodge numbers of M are

(n− 1, 0), (n− 2, 1) . . . , (1, n− 2), (0, n− 1)

each with multiplicity one, and the Hodge numbers of AdM are

(n− 1,−(n− 1))1, (n− 2,−(n− 2))2 . . . , (1,−1)n−1, (0, 0)n−1,

(−1, 1)n−1 . . . , (−(n− 2), n− 2)2, (−(n− 1), n− 1)1

where we wrote the multiplicities as superscripts.

– G = SO2n, G̊ = SO2n ×Gm/(Idn,−1).

Here

$(x) =

(
Sym2n−2

[√
x

1/
√
x

]
⊕ Id1,

√
x

)
,

where Id1 is the identity matrix in one dimension, and we define the standard
representation of G̊ to be the tensor product of the standard representation
on SO2n and the character x 7→ x2n−2 on Gm. This extends to CG: first extend
it to O2n×Gm/(1,−1), and then use the map CG→ O2n×Gm/(1,−1) extending
the inclusion of G̊; here the map ΓF → O2n should induce the natural action
of ΓF on SO2n = Ĝ by pinned automorphisms.

Thus the Hodge numbers of M are

(2n− 2, 0)1, (2n− 3, 1)1, . . . , (n− 1, n− 1)2, . . . , (1, 2n− 3)1, (0, 2n− 2)1

and the Hodge numbers of Ad(M) (which is of rank n(2n − 1)) range from
(2n− 3,−(2n− 3)) to (−(2n− 3), (2n− 3)) and admit a pattern that depends
on the parity of n. If n = 2t, the multiplicities are given by

1, 1, . . . , t, t, . . . , n− 1, n− 1, n, n, n, n− 1, n− 1, . . . , t, t, . . . , 1, 1,
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where the bar above (t, t) indicates that those terms are skipped. If n = 2t+ 1,
then the multiplicities are

1, 1, . . . , t, t+ 1,−1, n− 1, n, n, n, n− 1, n− 1, . . . t+ 1, t, . . . , 1, 1,

where again the bar has the same interpretation as before.

– G = SO2n+1, G̊ = Sp(2n)×Gm/(−Idn,−1).

Here $ is given by

$(x) = (Sym2n−1

[√
x

1/
√
x

]
,
√
x)

and we define the standard representation of G̊ to be the tensor product of the
standard representation of Sp(2n) and the character x 7→ x2n−1 on Gm. This
extends to CG, by extending trivially on ΓF .

The Hodge numbers of M are

(2n− 1, 0), (2n− 2, 1), . . . , (1, 2n− 2), (0, 2n− 1),

each with multiplicity one. The Hodge numbers of Ad(M) (which is of
rank n(2n + 1)) range from (2n − 1,−(2n − 1)) to (−(2n − 1), (2n − 1)) and
have multiplicities

1, 1, 2, 2, . . . , n− 1, n− 1, n, n, n, n− 1, n− 1, . . . , 2, 2, 1, 1.
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We propose a relationship between the cohomology of
arithmetic groups, and the motivic cohomology of certain
(Langlands-)attached motives. The motivic cohomology group
in question is that related, by Beilinson’s conjecture, to the ad-
joint L-function at s = 1. We present evidence for the conjecture
using the theory of periods of automorphic forms, and using an-
alytic torsion.

Nous proposons une relation entre la cohomologie des
groupes arithmétiques et la cohomologie motivique de certains
motifs attachés. La cohomologie motivique en question est liée à
la fonction L adjointe en s = 1 par la conjecture de Beilinson.
Nous présentons des éléments de confirmation pour la conjecture
en utilisant la théorie des périodes des formes automorphes et la
torsion analytique.
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