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AUTOMORPHIC COHOMOLOGY, MOTIVIC COHOMOLOGY,
AND THE ADJOINT L-FUNCTION

by Kartik PRASANNA & Akshay VENKATESH

Abstract. — We propose a relationship between the cohomology of arithmetic groups,
and the motivic cohomology of certain (Langlands-)attached motives. The motivic
cohomology group in question is that related, by Beilinson’s conjecture, to the adjoint
L-function at s = 1. We present evidence for the conjecture using the theory of periods
of automorphic forms, and using analytic torsion.

Résumé. (Cohomologie automorphe, cohomologie motivique et fonction L-adjointe) —
Nous proposons une relation entre la cohomologie des groupes arithmétiques et la co-
homologie motivique de certains motifs attachés. La cohomologie motivique en ques-
tion est liée & la fonction L adjointe en s = 1 par la conjecture de Beilinson. Nous
présentons des éléments de confirmation pour la conjecture en utilisant la théorie des
périodes des formes automorphes et la torsion analytique.

(© Astérisque 428, SMF 2021
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CHAPTER 1

INTRODUCTION

A remarkable feature of the cohomology H*(I', C) of arithmetic groups I is their
spectral degeneracy: Hecke operators can act in several different degrees with exactly
the same eigenvalues. For an elementary introduction to this phenomenon, see [74,
§3]. In some cases, such as Shimura varieties, it can be explained by the action of a
Lefschetz SLy but in general it is more mysterious.

We shall propose here that this degeneracy arises from a hidden degree-shifting
action of a certain motivic cohomology group on H*(T',Q). This is interesting both
as an extra structure of H*(T', Q), and because it exhibits a way to access the mo-
tivic cohomology group. We do not know how to define the action directly, but we
give a formula for the action tensored with C, using the archimedean regulator. Our
conjecture, then, is that this action over C respects Q structures.

The conjecture has numerical consequences: it predicts what the “matrix of periods”
for a cohomological automorphic form should look like. We shall verify a small number
of these predictions. This is the main evidence for the conjecture at present; we should
note that we found the verifications somewhat miraculous, as they involve a large
amount of cancelation in “Hodge-linear algebra.” The most novel aspect of our proofs
is the use of analytic torsion to compute cohomological periods even when there are
no natural cycles to integrate over (§9), and it is this technique that gives rise to what
seems to us the most compelling evidence for the conjecture.

It takes a little while to formulate the conjecture: in §1.1 we will set up notation
for the cohomology of arithmetic groups; as usual it is more convenient to work with
adelic quotients. We formulate the conjecture itself in §1.2. §1.3 discusses the case of
tori—this is just a small reality check. In §1.4 we describe how to extract numerically
testable predictions from the conjecture, some of which we have verified.

1.1. Cohomological representations

Fix a reductive Q-group G, which we always suppose to have no central split torus.
Let S be the associated symmetric space; for us, this will be G/K% , where K% is a
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2 CHAPTER 1. INTRODUCTION

maximal compact connected subgroup of G := G(R); thus S need not be connected,
but G preserves an orientation on it.

Let A¢ denote the finite adeles of Q and let K C G(A¢) be a level structure, i.e.,
an open compact subgroup; we suppose that K factorizes as K = [[, K,. We may
form the associated arithmetic manifold

Y(K) = G(Q)\S x G(A)/K.

If the level structure K is fixed (as in the rest of the introduction) we allow ourselves
to just write Y instead of Y (K).

The cohomology H*(Y, Q) is naturally identified with the direct sum @ H*(T;, Q)
of group cohomologies of various arithmetic subgroups I'; < G(Q), indexed by the
connected components of Y. However, it is much more convenient to work with Y'; for
example, the full Hecke algebra for G acts on the cohomology of Y but may permute
the contributions from various components.

As we recall in (1.1.2) below, the action of the Hecke algebra on H*(Y, C) often
exhibits the same eigencharacter in several different cohomological degrees. Our con-
jecture will propose the existence of extra endomorphisms of H*(Y, Q) that commute
with the Hecke algebra and explain this phenomenon.

First of all, we want to localize at a given character of the Hecke algebra.
For each v not dividing the level of K, i.e., at which K, is hyperspecial, let
Xv : H(G(Qy), Ky) — Q be a character.

Consider the set of automorphic representations 7 = ®m, of G(A) ) such that:

-l #£0;
— T has nonvanishing (g, K% )-cohomology;

— for finite places v not dividing the level of K (places for which K, is hyperspecial)
the representation 7, is spherical and corresponds to the character y,,.

This is a finite set, which we shall assume to be nonempty, say
0= {m,...,m}.

These automorphic representations are nearly equivalent; we moreover shall assume
that:

— each m; is cuspidal;

— each 7; is tempered at co and at one finite place v at which K, is hyperspecial.

Here, the cuspidality assumption is to avoid complications of non-compactness.
The second assumption is simply an unconditional proxy for asserting that m; belong
to a tempered A-packet; temperedness is important for the way we formulate our

conjecture. (One expects that the condition at v implies the condition at oo, cf. [16,
Conjecture 2A]).

1. Here and throughout the paper, we understand automorphic representations not as abstract
representations, but as being realized on subspaces of functions on G(A)/G(Q).

ASTERISQUE 428



1.1. COHOMOLOGICAL REPRESENTATIONS 3

We will be interested in the part of cohomology which transforms according to the
character y, which we will denote by a subscript II:

(1.1.1)  H* Y, Qu={he H*(Y,Q) : Th = x»(T)h for all T € S#4(G(Q,), K,)
and all places v not dividing the level of K.}

We sometimes abridge H* (Y, Q)r to Hjj.

In particular, under our assumptions above, H*(Y,C)yy can be computed from
the (g, K% )-cohomology of the ;. The computation of the (g, Koo )-cohomology of
tempered representations (see [9, Theorem III.5.1] and also [8, 5.5] for the noncompact
case) implies that

» )
(1.1.2) dim HY(Y,R)n =k - ( >7
J—4q
where we understand (2) =0ifa ¢ [0,],
_ dimY -4
= 5 ,
and k = dim H%(Y,R)p. For example, if G = SLy,,, then ¢ = m? and § = m — 1.
In words, (1.1.2) asserts that the Hecke eigensystem indexed by II occurs in every
degree j between ¢ and ¢ 4+ J, with multiplicity proportional to (ij).

(1.1.3) 0 :=rankG —rankK,, g¢:

1.1.1. Galois representations and motives attached to II. — In the situation just de-
scribed, IT should conjecturally [13] have attached to it a compatible system of Galois
representations p, : Gal(Q/Q) — LG(Q,). Actually all that is important for us is the
composition with the adjoint or the co-adjoint representation of “G:

Adp,: Gal(Q/Q) — GL(g® Q,), Ad*p,:Gal(Q/Q) — GL(g® Q,),

where g denotes the Lie algebra of the dual group G (considered as a split reductive
Q-group) and g = Hom(g, Q) is its linear dual. In fact, if G is not simply connected the
representation p, requires, for its definition, a modification of the notion of L-group
(see again [13]); however, no such modification should be required for Ad py or Ad* py;
see §4.2 and in particular footnote 1 for more discussion.

We will assume throughout, as is predicted by the Langlands program, that Ad py
and Ad* p, are Galois representations underlying a Grothendieck motive; this weight
zero motive will be denoted by AdII or Ad* II respectively. Thus, for example, the
Galois representation on the étale realization of AdII is identified with Ad py.

Before we proceed, a brief remark about “adjoint” versus “coadjoint.” The repre-
sentations Ad p, and Ad* py = (Ad py)* are isomorphic if G is semisimple, because
of the Killing form. Consequently, the associated motives AdIT and Ad* II should be
isomorphic. However, both to handle the reductive case and to be more canonical, we
will distinguish between the two.
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4 CHAPTER 1. INTRODUCTION

1.2. The conjecture

It is expected (cf. (3.2) of [41]) that the adjoint L-function
L(S? H’ Ad*)’

that is to say, the L-function attached to the motive Ad* II, is holomorphic at s = 1
under our assumptions (in particular, that G has no central split torus). According to
Beilinson’s conjecture, the value of this L-function is related to a regulator on a certain
motivic cohomology group attached to Ad™ II. It is this motivic cohomology group that
will play the starring role in our conjecture. We defer to later sections more careful
expositions of points of detail; in particular, what we need of motivic cohomology and
Beilinson’s conjectures is summarized in §2, and discussion of “automorphic versus
motivic” L-functions, at least in the case we need it, is given in §6.4.4.

First, to the real reductive group G = Ggr we shall attach in §3 a canonical C-vector
space dg, such that dim(ag) = §; it can be described in either of the following ways:

— ag is the split component of a fundamental Cartan subalgebra inside Lie(G)c;

A~

— the dual af, := Homc(ag, C) is the fixed points, on the Lie algebra Lie(T) of
the dual maximal torus, of wyo, where wy is a long Weyl element and o is the
(pinned) action of complex conjugation on G.

We shall construct in §3 an action of the exterior algebra A" af;, on the (g, K% )-co-
homology of a tempered representation of G(R). This gives rise to a natural degree-
shifting action of A" a; on H*(Y, C)y, with the property that the associated map

(1.2.1) HIY(Y,C)n® \ ag = H™(Y,C)n

is an isomorphism. For a more careful discussion see §3.

Next, standard conjectures allow us to attach to a Grothendieck motive M over Q
a motivic cohomology group H&(Mz, Q(j)) (the subscript Z means that these are
classes that “extend to an integral model”; the group H@ should however be inde-
pendent of integral model). Then HC%(MZ, Q(j)) is a Q-vector space, conjecturally
finite dimensional, and is equipped with a regulator map whose target is the Deligne
cohomology Hi@(Mm R(j)). We are interested in the case of M = Ad*II, and write
for brevity:

(1.2.2) L := H},((Ad" )z, Q(1)).

In this case (§5.1) the target of the archimedean regulator (tensored with C) is canon-
ically identified with ag; we get therefore a map

(1.2.3) LR C — ag,

which is conjecturally an isomorphism.
Write L* = Hom(L, Q) for the Q-dual and LE = Hom(L, C). Dualizing (1.2.3),
the map

(1.2.4) a — L
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1.3. THE CASE OF TORI 5

is again conjecturally an isomorphism. We are ready to formulate our central

Conjecture 1.2.1. — Notation as above: H*(Y, C)11 is the subspace of cohomology as-
sociated to the automorphic form II, ag is the C-vector space associated to G, and
L is, as in (1.2.2), the motivic cohomology of the adjoint motive associated to II.

Then the action of \* a% on H*(Y,C)n described above is compatible with rational
forms, i.e., if an element of af, maps to L*, then its action on cohomology preserves
H*(Y,Q)n € H*(Y,C)m.

In particular, the conjecture means that

There is a natural, graded action of \* L* on H(Y,Q)m, with respect to
which the cohomology is freely generated in degree q.

As we mentioned earlier, this is interesting because it suggests a direct algebraic
relationship between motivic cohomology and the cohomology of arithmetic groups.
At present we cannot suggest any mechanism for this connection; it doesn’t seem to
be readily related to other heuristics in the Langlands program. The occurrence of
algebraic K-groups of rings of integers in the stable homology of GL,, (see, e.g., [67,
p 25]) is likely a degenerate case of it. For the moment, we must settle for trying to
check certain numerical consequences.

Although it is not the concern of this paper, the conjecture has a p-adic counter-
part, which itself has a rich algebraic structure. As written, the conjecture postulates
an action of L* on H*(Y,Q)r; this action (assuming it exists) is pinned down be-
cause we explicitly construct the action of L. But the conjecture also implies that
Lap = L* ® Q, acts on the cohomology with p-adic coefficients H*(Y, Q,)r. Conjec-
turally, the p-adic regulator gives an isomorphism

(1.2.5) L®Q, — H}(Q,Ad" py(1)),

where the subscript f denotes the “Bloch-Kato Selmer group,” [6]. This means that
there should be an action of H}(Q,Ad" p,(1))* on H*(Y,Qp)n by degree 1 graded
endomorphisms. The papers [21] and [75] give two different ways of producing this
action. One advantage of the p-adic analogue of the conjecture is that it is more
amenable to computations, and numerical evidence for its validity will be given in [25].

Finally we were informed by Michael Harris that Alexander Goncharov has also
suggested, in private communication, the possibility of a connection between the mo-
tivic cohomology group Ly and the cohomology of the arithmetic group.

1.3. The case of tori

We briefly explicate our constructions in the case of tori. In this case the conjecture
is easy, but this case is helpful for reassurance and to pinpoint where there need to
be duals in the above picture.

Let T be an anisotropic Q-torus. Let a7 be the canonical C-vector space attached
to T, as in the discussion preceding (1.2.1). Then a’. is canonically identified with the
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6 CHAPTER 1. INTRODUCTION

dual of
ar = Lie(S) ® C,
where S is the maximal R-split subtorus of Tgr. This identification gives a natural
logarithm map
log : T(R) — ar,
characterized by the fact that it is trivial on the maximal compact subgroup K., and
coincides with the usual logarithm map on the connected component of S(R).
The associated symmetric space is

Y =T(Q\T(R) x T(Af)/KKZ,.

Then Y has the structure of a compact abelian Lie group: each component is the
quotient of T(R)°/KS, ~ ar by the image of

A={teT(Q):te T(R)° K},

which is a discrete cocompact subgroup of T(R).

As in the general discussion above, there is a natural action of A" a’ on the coho-
mology of Y. In this case the action of v € A" a%. is by taking cup product with Q(v).
Here,

*
Q: /\ ap — invariant differential forms on ¥’

comes from the identification of the tangent space of T(R)/K., at the identity
with ap. Note that, for v € a¥., the cohomology class of Q(v) is rational (i.e., lies
in H'(Y,Q)) if and only if (log(5),v) € Q for all § € A.

On the other hand, as in our prior discussion, to any cohomological representation II
is associated a motive Ad*II of dimension equal to dim(7). In fact, Ad*II is the
Artin motive whose Galois realization is the (finite image) Galois representation on
X«(T)® Q. Then HjM(Ad* I,Q(1)) = T(Q) ® Q and the subspace of “integral”
classes is then identified with

(1.3.1) HY,((Ad*I)z,Q(1)) = A® Q.
The regulator map HclM(Ad* I1z,Q(1)) — ar is just the logarithm map.
Then Conjecture 1.2.1 just says: if v € a}. takes Q-values on log(A), then cup

product with Q(v) preserves H*(Y, Q). But this is obvious, because the assumption
means that Q(v) defines a class in H*(Y, Q).

1.4. Numerical predictions and evidence for the conjecture

We now turn to describing our evidence for the conjecture. To do so, we must
first extract numerical consequences from the conjecture; for this we put metrics on
everything. It turns out there are plenty of consequences that can be examined even
with minimal knowledge of motivic cohomology.

ASTERISQUE 428



1.4. NUMERICAL PREDICTIONS AND EVIDENCE FOR THE CONJECTURE 7

Throughout this section, we continue with the general setup of §1.1; in particular,
all the cohomological automorphic representations that we consider are tempered
cuspidal.

By a metric on a real vector space we mean a positive definite quadratic form; by
a metric on a complex vector space we mean a positive definite Hermitian form. If
V is a vector space with metric (—, —), there are induced metrics on A*V and on V'*;
these arise by thinking of a metric as an isomorphism to the (conjugate) dual space,
and then by transport of structure. Explicitly, the induced metric on A\™ V is given
by the formula:

(1.4.1) (VI A AU, w1 A+ Awp,) = det ((vg, wy)) .

A perfect pairing V x V! — R of metrized real vector spaces will be said to
be a “metric duality” when there are dual bases for V,V’ that are simultaneously
orthonormal (equivalently: V' — V* is isometric, for the induced metric on V*).

If V is a metrized real vector space and Vo C V is a Q-structure, i.e., the Q-span
of an R-basis for V, then we can speak of the volume of Vg,

(1.4.2) vol Vg € R*/Q,

which is, by definition, the covolume of Zv; + ...Zwv, for any Q-basis {vi,...,v,}
for Vi, with respect to the volume form on Vg defined by the metric. Explicitly

(1.4.3) (vol V)? = det((v;, v;)).

We will later allow ourselves to use the same notation even when the form (—, —) is
not positive definite; thus vol Vq could be a purely imaginary complex number. By
(1.4.1), the volume of Vq equals the norm of a generator of A" Vq for the induced
metric on A"V, that is to say

(1.4.4) vol Vg = vol /\ Vq.

Fix an invariant bilinear Q-valued form on Lie(G), for which the Lie algebra of Ko,
is negative definite and the induced form on the quotient is positive definite. This gives
rise to a G-invariant metric on the symmetric space, and thus to a Riemannian metric
on Y. Once this is fixed, H/(Y,R) and H?(Y,C)i; both get metrics by means of the
L? norm on harmonic forms. (Scaling the metric g — g leaves the notion of harmonic
form unchanged; but it scales the metric on H* by A¥/?~¢ where d = dim(Y").)

The Poincaré duality pairing H7(Y,R) x H’" (Y,R) — R, where j + j* = dim(Y),
induces a metric duality, in the sense just described. The same conclusions are true
for the induced pairing

(1.4.5) Hj(Y,R) x HL (V,R) - R

between the II part and the ﬁ—part, where II denotes the contragredient of II; since
we are supposing that II arose from a Q-valued character of the Hecke algebra, we
have in fact II ~ II.
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8 CHAPTER 1. INTRODUCTION

In §3.5, we explain how to introduce on a}, a metric for which the action of \* af, is
“isometric,” i.e., for w € H1(Y,C)y and v € /\t ag, we have

(1.4.6) [w - vl = [w]l -]

This metric on af;, depends, of course, on the original choice of invariant form
on Lie(G). It also induces a metric, by duality, on ag.

Note that we also introduce an R-structure on aj—the “twisted real structure”,
see Definition 3.1.2—which is compatible with the real structure L ® R ¢ L ® C,
and preserves the real structure H4(Y,R) C H%(Y, C)—see Lemma 5.1.1 and Propo-
sition 5.5.1. Therefore, we get also corresponding statements for real cohomology.

With these preliminaries, we now examine explicit period identities that follow
from our conjecture:

Prediction 1.4.1. — Suppose that dim H4(Y,C)y = 1. Let w be a harmonic g-form
on'Y whose cohomology class generates H1(Y, Q). Then

(1.4.7) (w,w) ~ (vol L),

where the volume of L is measured with respect to the metric induced by the inclusion
L C ag, or more precisely the inclusion of L into the twisted real structure on ag
discussed above; we have used the notation A ~ B for A/B € Q*.

Note that (1.4.7) is equivalent to
(w,w)

2
L)
where w is now an arbitrary nonzero harmonic ¢-form belonging to H4(Y, C)p and
7y is a generator for Hy (Y, Q)m.

At first sight, (1.4.7) or the equivalent (1.4.8) look like they would require a com-
putation of the motivic cohomology group L to test. However, Beilinson’s conjecture
implies a formula for vol(L) in terms of the adjoint L-function and certain other
Hodge-theoretic invariants. Thus, although not formulated in a way that makes this
evident, (1.4.7) can be effectively tested without computation of motivic cohomology.

To assist the reader we say a few words about how Beilinson’s conjecture is used to
compute vol(L)—it is, in fact, used twice. First of all, Beilinson’s conjecture applied
to the adjoint L-function of IT expresses a special value of that L-function as the
product of

(1.4.8)

~ (vol L),

(a) a certain period depending only on the underlying Hodge structure, and
(b) a regulator, given by the volume of L above.

In the main text, this fact is expressed by (2.2.9), which will be applied with M the
motive underlying this adjoint L-function—the period from (a) is the “volg F''” term
of (2.2.9), and the regulator from (b) is the “volg HOIM” of (2.2.9). Now, to remove term
(a) we use Beilinson’s conjecture a second time (in fact, in this case, the conjecture
reduces to Deligne’s conjecture about critical values). In the examples that we study,
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1.4. NUMERICAL PREDICTIONS AND EVIDENCE FOR THE CONJECTURE 9

there is a second L-function in the picture, and Deligne’s conjecture shows that its
value at a certain critical point coincides with (a) up to Q*. This rather surprising
equality is expressed by (7.2.10) in the main text. Therefore, by taking the ratio of
these two applications of Beilinson’s conjecture, we obtain a formula for vol(L) purely
in terms of L-functions.

Proof (that Conjecture 1.2.1 implies Prediction 1.4.1). — Let v generate A° L* (the
top exterior power). The conjecture implies that w’ = w - v gives a nonzero element
of HY (Y, Q)r, where ¢ + ¢* = dim(Y"). Since (1.4.5) is a metric duality we get

(1.4.9) lwlizz - lw'll: € Q*.
By (1.4.6), we have
(1.4.10) lw'l[Lz = [lwllLz - Il
Combining (1.4.9) and (1.4.10) yields
(1.4.11) (wy,w) - ||v|| € Q.
Now ||v|| is precisely the volume (see (1.4.4)) of L* with respect to the given metric
on a}; said differently, ||v||~! is the volume of L for the dual metric on ag. O

The first piece of evidence for the conjecture, informally stated, is a verification of
Prediction 1.4.1, in the following sense (see Theorem 7.2.1 for precise statement):

Evidence for Prediction 1.4.1. — Assume Beilinson’s conjecture, as formulated in §2.
Assume also the Ichino-Ikeda conjecture on period integrals and the “working hypothe-
ses” on local period integrals, all formulated in §6.10.

Let (G,H) be as in the “cohomological GGP cases” of §6.3: either we have
(PGL,41 x PGL,, D GL,,) over Q®, or (PGL, 11 x PGL,, D GL,) over a quadratic
imaginary field, or (SO,41 X SO, D SO,,) over a quadratic imaginary field.

Then, for w a cohomological form on G, and 7y the homology class of the cycle
defined by H we have
2

1.¢]

(1.4.12) oo

€ v/Q(volL)™%.

In other words, (1.4.8) is always compatible with the period conjectures of Ichino-Ikeda,
up to possibly a factor in \/Q.

Remark 1. — The left-hand side of (1.4.12) is nonzero if and only if both:

2. Note that many cases of the Ichino-Ikeda conjecture are already known: we include in our for-
mulation the GL, X GLj, 41 cases, which were established by Jacquet, Piatetski-Shapiro and Shalika.
Also, the working hypotheses on local period integrals are primarily used to handle archimedean
integrals. In view of recent work there is reason to hope that they should be soon removed.

3. In this case, we prove not (1.4.12) but a slight modification thereof, since the hypothesis
dim H4(Y,C)p = 1 is not literally satisfied.
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— the central value of the Rankin-Selberg L-function for II is nonvanishing, where
II is the automorphic representation underlying w;

— (in the SO cases only): there is abstractly a nonzero H(A)-invariant functional
on II (this condition can be rephrased in terms of e-factors, by [81]).

Without getting into details let us say why we found the proof of (1.4.12) striking.
The conjecture and Prediction 1.4.1 are phrased in terms of the motivic cohomology
group L; this group is closely related to the adjoint L-function L(s,II, Ad) at the
edge point s = 0 or s = 1. By contrast, the Ichino-Ikeda conjecture involves various
Rankin-Selberg type L-functions, and it is, at first, difficult to see what they have to
do with L.

We are saved by the feature that was discussed after (1.4.8). Namely, Beilinson’s
conjecture for the central values of these Rankin-Selberg type L-functions (which in
this case is due to Deligne) involves many of the same “period invariants” as Beilin-
son’s conjecture for the adjoint L-functions at s = 1, leading to various surprising
cancelations—it is the ratio of these two L-functions that recovers vol(L).® A fur-
ther miracle is that all the factors of 7 (the reader can glance at the Table in §7 to
get a sense of how many of them there are) all cancel with one another. Finally, there
are various square classes that occur at several places in the argument, giving rise to
the 1/Q factor. To the extent that we tried to check it, these square classes indeed
cancel, as we would expect; however, we found that this added so much complexity
to the calculations that we decided to omit it entirely.

It may be worth pointing out that in the Ichino-Ikeda conjecture, it is usually
the central L-value that is of most interest, and the adjoint L-value (at s = 1) that
appears may be viewed a “correction factor”. In the analysis above however, the tables
are turned and it is the adjoint L-value at 1 that is of central importance while the
central L-value provides the correction terms in the period identity.

We would also like to acknowledge that there is a substantial body of work on the
cohomological period in degree g, for example [58, 39, 54, 53, 22]|. The focus of those
works is the relationship between this period and Deligne’s conjecture, and many of
these papers go much further than we do in verifying what we have simply called
“working hypotheses,” and in evading the issues arising from possibly vanishing cen-
tral value. Our work adds nothing in this direction, but our focus is fundamentally
different: it sheds light not on the interaction betwen this period and Deligne’s conjec-
ture, but rather its interaction with the motivic cohomology group mentioned above.
(Closer in spirit to this paper is the work [72], where the relationship between periods
in different degrees and the adjoint L-function plays an important role.)

Remark 2. — The fact that we obtain no information when the Rankin-Selberg
L-function vanishes at the critical point may seem disturbing at first. However, we do
not regard it as onerous: if one assumes standard expectations about the frequency of

4. See §8 of [73] for an attempt at understanding this striking coincidence.
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1.4. NUMERICAL PREDICTIONS AND EVIDENCE FOR THE CONJECTURE 11

non-vanishing L-values, it should be possible to deduce (1.4.8) for all such II—again,
up to W , and assuming Beilinson’s conjectures.

Consider, for example, the case of PGL,, over an imaginary quadratic field. For
any cohomological automorphic representation w9 on PGLq, the equality (1.4.8) can
be verified using known facts about nonvanishing of L-functions. (Note that in this
case the evaluation of the left-hand side in terms of L-functions was already carried
out by Waldspurger [81].) Now for a given form 73 on PGL3 one expects that there
should be a cohomological form 75 on PGLy for which L(%, w3 X ) # 0; in this case,
our Result (1.4.12) above permits us to deduce the validity of (1.4.8) for 73 x 74, and
thus for w3 (and then also for w3 X 7o for any m3). We may then proceed inductively
in this way to PGL,, for arbitrary n.

Admittedly, such non-vanishing results seem to be beyond current techniques of
proof; nonetheless this reasoning suggests that the result above should be regarded
as evidence in a substantial number of cases.

As for the “working hypotheses” on archimedean period integrals, these do not seem
entirely out of reach; a key breakthrough on nonvanishing has now been made by Sun
[68]. We have formulated the hypotheses fairly precisely and we hope that the results
of this paper will give further impetus to studying and proving them.

Next, suppose that dim H4(Y, C)y = d > 1. Choose a basis w1, . . .,wg of harmonic
forms whose classes give a Q-basis for H?(Y, Q). Then similar reasoning to the above
gives

(1.4.13) det ((wi,w;)) ~ (vol L)%

More precisely, if G, G’ are inner forms of one another, we may equip the associ-
ated manifolds Y and Y’ with compatible metrics—i.e., arising from invariant bi-
linear forms on Lie(G) and Lie(G’) which induce the same form on Lie(G) ® Q =
Lie(G') ® Q. Assume that there exist automorphic representations IT and II' as in
§1.1 corresponding to (for almost all v) matching characters x,, x, of the local Hecke
algebras. We assume that all the representations in II and II' are tempered cuspidal,
as before.

Prediction 1.4.2. — Suppose, as discussed above, that G, G’ are inner forms of one
another, and I1, II' are nearly-equivalent automorphic representations, contributing to
the cohomology of both Y and Y'. Equip Y,Y' with compatible metrics, as explained
above. Then )

det ((ws,w; ) ~ det ((w],w))*,
where d = dim HY(Y, Q)11, d' is similarly defined, and the w,w’ are as above a basis

for harmonic forms which give Q-rational bases for cohomology.

Again, this prediction is pleasant because it does not mention motivic cohomology.
The general phenomenon that period matrices for different inner forms are related
has been observed for Shimura varieties where it is closely tied to the Tate conjecture
[65], [50], [23], [52]. However, the prediction above suggests that such relationships
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exist also outside the Hermitian case. This feature is (to us) rather unexpected (see,
however, [14] for an example of this in a simple setting). Rather than focus on this,
we move on to a more interesting consequence.

The above examples mentioned only periods in the lowest cohomological degree (q)
to which tempered representations contribute. The conjecture, however, gives control
on the cohomology groups H*(Y,Q)n in intermediate dimensions ¢ < j < ¢*. In
principle, it allows us to compute the entire “period matrix” of cohomology, i.e., the
matrix of pairings (7;,w;) between a Q-basis +; for homology and an orthogonal
basis w; of harmonic forms, given a complete knowledge of L. It is difficult, however,
to test this directly, for two reasons:

— it is almost impossible to numerically compute with motivic cohomology, and

— it is hard to exhibit explicit cycles in those dimensions (at least, it is hard to
exhibit cycles that are geometrically or group-theoretically natural).

Here is a case where we can finesse both of these issues. Suppose that £ D F'is a
field extension. Start with an F-algebraic group G; let G be the restriction of scalars
of G from F to Q, and let G be the restriction of scalars of G x g E to Q. We write
dr,qF,0r, qr for the quantities defined in (1.1.3) but for Gr and Gg respectively. A
(near-equivalence class of) cohomological automorphic representation(s) IIg for Gp
conjecturally determines a base change lift Il on Gg. Let Li, and L, be the
motivic cohomology groups attached to I, II g respectively. We will assume that the
archimedean regulator is an isomorphism on these groups; in particular dim L1, = ég
and dim Ly, = dr. Now there is a natural map (dualizing a norm map) Lj;, — Ljj_
and the induced map

op Sr
(1.4.14) N Livr € NLig

has image a Q-line inside A\°" Li g

To get a sense of what this implies, suppose that we can fix a level structure
for Gg such that the associated manifold Yg satisfies dim H92(Yg, C), = 1. Then
the Q-line above should, according to the conjecture, give rise to a “distinguished”
Q-line Qn C H%*®197 (Yp, Q)—namely, we act on the Q-line H9*(Yg, Q), using
the image of (1.4.14). The conjecture also allows us to predict various periods of
the cohomology class 1 in terms of L-functions. In some special cases when E/F is
quadratic (e.g., when G = GL,,) this is related to the theory of base change; but
when [E : F| > 2 this seems to be a new and “exotic” type of base change identity
(indeed, in the classical theory, only quadratic base changes have a nice “period”
interpretation). We can generalize this in various evident ways, e.g., if E/F is Galois
we can isolate various subspaces of Ly g indexed by representations of Gal(E/F),
and make a corresponding story for each one.

Let us turn this discussion into a more precise prediction in one case:

Prediction 1.4.3. — Notation as above; suppose that E/F is Galois, with Galois group
Galg,p, and split at all infinite primes. Choose a level structure for Gr and a
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Galg, p-invariant level structure for Gg, giving arithmetic manifolds Yr and Yg re-
spectively. Fix compatible metrics on Yr and Yg. Suppose again that

dlIIl HqF (YFa Q)HF = dlm HQE (YE? Q)HE =1

Then there exist harmonic representatives wp,wg,wry for nonzero classes in

Gal
(1.4.15) H? (Yr, Q)up, H (Ye, Q)uy, H=4" (Y5, Q) *' "
such that
willllwe | .
(1.4.16) W eVIE:F|-Q".

In the case p = 1, the third space of (1.4.15) is also one-dimensional and wg,w'
and wf; are all determined up to Q*; we can achieve a similar situation in general by
a slightly more careful discussion of w,.

As in (1.4.8), we can translate this to a statement of periods and L? norms. The
nice thing about (1.4.16) is that, like the second prediction, it doesn’t involve any
motivic cohomology.

Proof. — Let vp be a generator for \°" Lf p- As in (1.4.11) we have

(wr,wr) - [lvrllar € Q7

Let vg be the image of vp under (1.4.14) and set Wy = wg - vg. Also |vg|ay =
VIE : F] x ||vp|lap. Taking norms and using (1.4.6) we get the result. O

The second piece of evidence for the conjecture is a verification of Prediction 1.4.3,
in the following setting (see §9.5 and also Theorem 9.1.1 for a more general statement):

Evidence for Prediction 1.4.3. — (1.4.16) is valid up to /Q* when G is an inner
form of PGLo, F is a quadratic imaginary field, E O F is a cyclic cubic extension,
and (for level structures precisely specified) Il is the only non-trivial representation

contributing to H*(Yr) and Ilg is the only non-trivial representation contributing

Note that we do this without knowing how to produce any cycles on the nine-
manifold Yz in dimension g + 0 = 4! Rather we proceed indirectly, using analytic
torsion.

In fact, in the text, we prove a stronger result (Theorem 9.1.1), which relies for its
phrasing on Beilinson’s conjectures.

1.5. Some problems and questions

Here are a few problems that are suggested by the conjecture:

(i) General local systems: it would be interesting to generalize our discussion beyond
the case of the trivial local system. While the general picture should adapt
to that setting, the verifications described in §1.4 use the specific numerology
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of Hodge numbers associated to the trivial local system—it is by no means
apparent the same miraculous cancelations should occur in general.

(ii) Non-tempered representations: our entire discussion in this paper concerns only
tempered representations, but it seems very likely that the phenomenon contin-
ues in the non-tempered case. For example, that part of the cohomology of Y
associated with the trivial automorphic representation shows interesting con-
nections with algebraic K-theory. It seems important to formulate precisely the
conjecture in the general case.

(iii) Coherent cohomology: a Hecke eigensystem can appear in multiple cohomolog-
ical degrees. For example, this already happens for the modular curve, in the
case of weight one. It would be good to develop a version of the theory of this
paper that applies to that context.

(iv) We have formulated here a conjecture concerning rational cohomology; but,
of course, it would be most desirable to understand the integral story. It is
plausible that this can be done by integrating the current discussion with that
of the derived deformation ring, developed in [21].

1.6. Notation

We gather here some notation that will be consistently used throughout the paper.

As in §1.4, we will often refer to the “volume” of a vector space: if Vq is a rational
vector space, equipped with a real-valued symmetric bilinear form (—,—) on Vg, we
define volg V € C*/Q* by the rule

(vol VQ)? = det({(uvs, v;)),

for a Q-basis vy, . .., v,. If the form (—, —) is indefinite, the volume could be imaginary.

G will denote a reductive group over Q; for all the global conjectures we will
assume that G has no central split torus. G denotes the dual group to G, a complex
reductive Lie group. It is equipped with a pinning, in particular a “Borus” T c B. We
put 'G = G Gal(Q/Q), as usual. Now G and LG can be descended to algebraic
groups over Z, using the Chevalley form of @; we will, by a slight abuse of notation,
refer to the R-points of the resulting groups by a(R) and “G(R). We will also write
G g and “Gp for the corresponding algebraic groups over Spec R.

Note that, at certain points in the paper it will be useful to refer to the “c-group”
a modification of the L-group that (in effect) does not require one to choose square
roots in normalizing the Langlands correspondence. The definition of this group is
recalled in §A.2.

We denote by G = G(R) the real points of G and by K., a maximal compact
subgroup of G. Set gq = Lie(G) to be the Q-Lie algebra, and set

gr = Lie(G) = gq ® R, tr = Lie(Kw),
g=9r®C, t=tgr ®C.
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We denote by Ggr the base-change of G from Q to R, and similarly define G¢.
We set

(1.6.1) [G] = G(Q\G(A)

to be the associated adelic quotient. We will usually use the letter K to denote an
open compact subgroup of G(Ag). For such a K, we have an attached “arithmetic
manifold,”

(1.6.2) Y(K) = [G]/KS, - K,

which coincides with the definition given in the introduction.

There are two numerical invariants attached to G and Y (K) which will occur
often. Firstly, the difference 6 = rank(G) — rank(Ks) between the ranks of G and
its maximal compact subgroup. Secondly, the minimal cohomological dimension ¢ in
which a tempered G-representation has nonvanishing (g, K, )-cohomology; these are
related via 2¢ + § = dim Y (K).

The notation g denotes the complex Lie algebra that is the Lie algebra of G and
if R is any ring we denote by gr the Lie algebra of G as an R-group. Also, as above,
g denotes the linear dual of g, i.e.,

g = Homc(g, C)

and we similarly define gq to be the Q-dual of gq.

We use the word “cohomological” in a slightly more narrow way than usual. A rep-
resentation of G(R) is cohomological, for us, if it has nontrivial (g, K% )-cohomology.
In other words, we do not allow for the possibility of twisting by a finite dimen-
sional representation; any cohomological representation, in this sense, has the same
infinitesimal character as the trivial representation.

IT will usually denote a near-equivalence class of cohomological automorphic rep-
resentations on G, or a variant with a stronger equivalence relation; 7 will usually be
an automorphic representation belonging to this class.

For any automorphic L-function L(s) and any special value sp, we denote
by L*(so) the leading term of the Taylor expansion of L(s) at s = sg, ie.,
L*(sg) = lims_,s,(s — 80) ""L(s), where r is the order of vanishing of the mero-
morphic function L(s) at s = sg. Occasionally, when typographically convenient, we
will write this instead as L(sg)*.

We often use the notation A ~ B to mean that A = aB for some a € Q*. We
will often also encounter situations where (A/B)? € QX, in which case we write

AN\/Q—XB.

For fields £’ D E, an E-structure on an E’-vector space V' is, by definition, an

E-vector subspace V C V' such that V ® g B/ — V'. If V is a complex vector space
we denote by V the conjugate vector space with the same underlying space and
conjugated scaling. So there is a tautological antilinear map V +— V that we denote

by v +— 7.
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If @ is a nondegenerate quadratic form on a finite-dimensional vector space V', and
Q™ a form on the dual space V*, we say that @ and Q* are in duality if Q) induces Q*
via the isomorphism V' = V* associated to Q; this is a symmetric relation. The Gram
matrices of () and QQ* with reference to dual bases are inverse;  and Q* are called
“inverse” quadratic forms by Bourbaki [11, Chapter 9].

The terminology Q-motive will be used to denote a motive with coefficients in Q.
This will be mostly relevant in §8.
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CHAPTER 2

MOTIVIC COHOMOLOGY AND BEILINSON’S CONJECTURE

The first part (§2.1) of this section is a recollection of Beilinson’s conjecture and
the theory of motives. The second part (§2.2) is less standard: we use a polarization
to put a metric on Deligne cohomology. The most important result is Lemma 2.2.2,
which allows us to compute volumes of certain motivic cohomology groups in terms
of values of L-functions.

2.1. Beilinson’s conjecture for motives

In this section we recall Beilinson’s conjecture for motives. For simplicity, we restrict
to the case of motives defined over Q and coefficients in Q, which is the main case
we require. The summary below follows for the most part [33] §4, which the reader is
referred to for more details. (Our notation however is somewhat different.)

2.1.1. Cycles and correspondences. — For k£ a field, let Vary denote the category
of smooth projective varieties over k. For any variety Y € Vary, let CH’ (Y)q de-
note the Q-vector space given by the group of algebraic cycles of codimension j
on Y modulo rational equivalence, tensored with Q. If we replace rational equiv-
alence by homological or numerical equivalence, the corresponding Q-vector spaces
will be denoted CHﬁom(Y)Q and CHJ _(Y)q respectively. If % € CH’(Y)q and
%, € CH*(Y)q, there is a well defined intersection product 7 - %, € CH/™F(Y)q.
This makes CH*(Y)q := @‘;i:n(l)(y) CH’(Y)q into a graded commutative Q-algebra
with multiplication given by the intersection product.

If X,Y € Vary, a correspondence on X XY is an element of CH"(X x Y)q. Corre-
spondences may be composed as follows: if X,Y, Z € Vary, and Z; € CH*(X x Y)q,
Z» € CH*(Y x Z)q, then

ZooZy = P13,x (p12(%) 'P§3(%))a

Whereplg:XxYxZ—>X><Y,p23:X><Y><Z—>Y><Zandp13:X><Y><Z—>X><Z
denote the natural projections. Note that if 7, € CH/(X x Y)q and %, € CH*(Y x Z)q,
then % 0 % € CHITF=dm() (X » 7)q.
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2.1.2. Chow motives. — Let ¢} rat denote the category of Chow motives over k. An
object in oM rat consists of a triple M = (X, p,r) where X is a smooth projective
variety over k of dimension d say, p is an idempotent in CHd(X x X)q (i.e., pop=p)
and r € Z is an integer. Formally, the category of Chow motives is obtained by
starting with the category of effective motives (i.e., pairs (X, p) with p idempotent)
and inverting the Tate motive

Q(-1) = (P',{0} x P').
Informally, the reader should think of (X,p,r) as first projecting X according to p,
and then “Tate-twisting” by 7. In this optic, we have Q(—1) = (spec(k),id, —1).
The morphisms in oM rat are described thus: for N = (Y, g, s) another object of M

(2.1.1) Hom (M, N) = go CH"™YT"=5(X x Y)q op.

Note that this convention is opposite to Deligne [17], who uses “cohomological” mo-
tives; this amounts to the opposite of the above category.

Let Ax be the diagonal on X x X. We denote (X, Ax,r) by the symbol hX(r),
and if further r = 0 we denote this simply by hX. We then get a covariant functor
h : Vary — oM rat by sending f : X — Y to the graph of f on X x Y. The dual
motive MV of M is defined by

Mv = (X,pt,d— T)a

where p — p? is the involution induced by interchanging the two components of X x X.
(Caution: the realizations of MV are closely related to but not exactly the duals of the
realizations of M. See §2.1.3 below.) The category oM, admits a symmetric monoidal
tensor structure defined by

(X,p,r) @ (Y,q,8) = (X xY,pxgq,r+s)

The commutativity and associativity constraints M@N ~ NQM and (M  N) @ P ~
M ® (N ® P) are induced by the obvious isomorphisms X x Y ~ Y x X and
(XXY)XxZ~Xx (Y xZ).Ifk— k'is a field extension, there is a natural base-
change functor ¢, — oM/, denoted either M — M ®; k' or M — M.

There is also a notion of restriction of scalars along a finite field extension for Chow
motives; we warn that it does not correspond to restriction of scalars of the underlying
variety. See [17, Example 0.1.1].

2.1.3. Cohomology. — For any subring A of R, we use A(j) to denote (27i)’A C C.
We will need various cohomology theories on Varg: Betti cohomology Hj(Xc, Q(4)),
algebraic de Rham cohomology Hjy (X, j), ¢-adic cohomology Hét(Xa, Q¢(j)), the
Deligne cohomology Hc%(XR, R(j)) and motivic cohomology HQ%(X, Q3))-

These are all twisted Poincaré duality theories in the sense of Bloch and Ogus [7];
see e.g., [34, Examples 6.7, 6.9, 6.10] and §1,2 of [19]. Moreover, they all admit a cup-
product in cohomology such that the cycle class map is compatible with the product
structure.
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Any such theory H* may be extended to cMq rat as follows. First, for motives of
the form hX(r) set
H'(hX(r),7) = H*"(X,j+r).
If f € Hom(hX (r),hY (s)), define
froH' (WY (s),4) — H'(hX(7), )
by
[H(a) = mx . (cl(f) Umy (a)),
where mx and my denote the projections from X x Y onto X and Y respectively.
Then for M = (X, p,r), define
(2.1.2) H'(M,j) = p*H"(hX(r), 7).
If H' is a geometric cohomology theory (such as Hp, Hig or H}(Mg)), then it

satisfies usual Poincaré duality and we have canonical isomorphisms
(2.1.3) H (M) ~ (H'(M))".

2.1.4. Comparison isomorphisms and periods. — We continue to suppose that M is
an object of cMQ ras-

There are comparison isomorphisms
(2.1.4) compg 4g : H3(Mc,Q) ® C ~ Hir (M) ® C,

(2.1.5) compg o : Hi(Mc, Q) ® Qp ~ Hét(M67 Qo).

Let cg and cqr denote the involutions given by 1® ¢ on the left and right of (2.1.4)
respectively, where ¢ denotes complex conjugation. Then via compg 4r, we have ([17,
Proposition 1.4])

(216) Foo *CB = CdR,

where, if M = hX is the motive of a variety X, then F,, denotes the involution
on Hi(Xc,Q) induced by the action of complex conjugation on the topological
space X (C); this definition passes to Hj(Mc, Q) via (2.1.2). Note that F, is complex-
linear, whereas cg and cqr are complex antilinear. We will often denote cg by the
usual complex conjugation sign, i.e.,

o = cg(v).

More generally, we can go through the same discussion with Q(j) coefficients:
replacing M by its Tate twist we obtain the comparison isomorphisms

(2.1.7) compg gy : H(Mc, Q(j)) ® C ~ Hig (M, j) ® C.

We denote by d(M, 1, j) the determinant of the comparison map compg 4y taken with
respect to the natural Q-structures Hg = Hj(Mc, Q(j)) and Hqr = H'g (M, 5). This
may be viewed as an element in C*/Q*. The Equation (2.1.6) needs to be modified
slightly; while cg and cqgr are still defined as the complex conjugations with reference
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to the real structures defined by (2.1.7), one twists F., by (—1)7 to take into account
the complex conjugation on Q(j).

The Q-vector space H5(M, Q(5)) is in a natural way the underlying vector space
of a rational Hodge structure, pure of weight w = i —2j; as usual we denote by F* Hyr
the associated Hodge filtration on Hg ® C = Hgr ® C. Thus Hg ® C = @p+q=w HP4
and F, : H?? ~ H?P is a complex-linear isomorphism. We denote by Hfgt the £1
eigenspaces for the action of F.

We suppose now that (M, i, j) satisfies the following additional condition:

(2.1.8) If w is even, then F,, acts on HY/>%/2 a5 a scalar e = +1.
Let
£ “’T_l, if w is odd;
L VS T ‘
5~ F 56, il wiseven.

Set F* — F*" Hyg and H3;, = Har/F¥. Then
dim Hi = dim H3;
and the Deligne period c¢t(M,i,7) is defined to be the determinant of the composite
map
compg 4gr

HE®C— Hg®C Hir®C— HE ©C

with respect to the Q-structures Hét and HdiR, viewed as an element of C*/Q*. Note
that this is defined only under the assumption of (2.1.8).

2.1.5. Cohomology of M. — Suppose M = hX, and let A be a subring of the com-
plex numbers, containing Q and stable by conjugation. Complex conjugation induces
an involution ¢ of X (C). This involution is covered by an involution of the constant
sheaf A, which induces complex conjugation on each fiber, and by an involution of the
de Rham complex 2% (©)’ sending a differential form w to t*w. Accordingly we obtain
conjugate-linear involutions on de Rham cohomology tensored with C, as well as on
each step of the Hodge filtration; on Betti cohomology with A coefficients, and (since
the involutions are compatible under the map A — Q%{(C)) also Deligne cohomology
with A coefficients.

In each case, the fixed points will be denoted, following Beilinson, by the nota-
tion Hj(Xgr,—). Compare [2, p. 2037]. This notation extends, as before, to general
motives M.

Thus, for example,

Hi (Mg, A) = Hi (Mg, A)F=cs
is the subspace fixed by Fi,cp, where F, is “acting on the topological space Mg” (at
least when M = hX) and cp is acting on the coeflicients.

On the other hand,

Hig(Mg) = Hig(M) © R
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is simply the (real) de Rham cohomology of the associated real algebraic variety (or
motive). Similarly, F"Hiy (Mg) is the nth step of the Hodge filtration on the above
space. Observe, then, that F" Hig (Mg) has a natural Q-structure.

2.1.6. The fundamental exact sequences and Q-structures. — For n > % + 1 there are
canonical isomorphisms (see [2, §3.2])

HE (Mg, R(n)) ~ Hy (Mg, C)/(Hy (Mg, R(n)) + F" Hig (Mg))
~ H(Mr,R(n —1))/F"Hir (Mg),

In the second equation, we regard F"H!y (Mg) as a subspace of Hi(Mg,R(n — 1))
via the composite

(2.1.9) Fno1: FP"Hip(Mg) — Hi(Mg,C) == Hy(Mg,R(n — 1)),
where the latter map is the projection along C = R(n) @ R(n — 1).

This gives rise to two fundamental exact sequences:
(2.1.10) 00— F"Hig(Mr) ™" Hy(Mg,R(n — 1)) — H (Mg, R(n)) — 0
and
(2.1.11) 0 — Hj(Mg,R(n)) — Hip(Mr)/F"Hig(Mr) — Hi ' (Mg, R(n)) — 0.

These exact sequences can be used to put (different) Q-structures on the R-vector
space det HC%H(MR, R(n)) using the canonical Q-structures on the left two terms of
each sequence. The first, denoted R(M,i,n) will be the Q-structure obtained from
(2.1.10), namely using the Q-structures det Hj (Mg, Q(n — 1)) and det(F"Hig (M)).
The second, denoted DR (M, i,n) will be the Q-structure obtained from (2.1.11),
namely using the Q-structures det(Hiz(M)/F™) and det H;(Mgr,Q(n)). These
Q-structures are related by

(2.1.12) DRAM iyn) = (2m/=1)~8 MLim) L 5(M i n) - RAM, i, n),
where d~ (M, i,n) = dim H (Mg, Q(n)) ™. (See [33] (4.9.1).)

2.1.7. L-functions. — For M in oMq rat and i an integer, the L-function L*(M, s) is
defined by

(2.1.13) Li(M,s) =[] LL(M,s),

with
Ly, (M, s) = det(1 — Frob, p~*| Hi (Mg, Q) ") ™,
where Frob,, denotes a geometric Frobenius at p, the superscript I, denotes taking
invariants under an inertia subgroup at p and ¢ is any prime not equal to p.
Implicit in this definition is the following conjecture, which we will will assume:

Each factor L;(M ,8)" ! is in fact a polynomial in p~*, with rational coef-

ficients, independent of the choice of ¢. Moreover, this factor has no poles
in the plane Re(s) > 5.
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See [62, C5 and C6] of Serre’s article on local factors, for example. The last statement is
not necessary for Beilinson’s conjecture, but is very useful in handling bad factors; e.g.,
it would be necessary in formulating Beilinson’s conjecture for the partial L-function,
which is implicitly what we end up using. In fact, we could get by with the weaker
bound Re(s) > L.

The Euler product (2.1.13) converges on some right half plane in C; conjecturally,
one also expects (see [69]) that L*(M,s) admits a meromorphic continuation to all
of C that is analytic as long as either 4 is odd or the pair (M, ) satisfies the following
condition:

(%) i = 2j is even and H (Mg, Qu(j)) ¥/ = 0.
One also expects that L?(M, s) satisfies a functional equation of the form:
(Loo - L)Y (M, 5) = (€00 - €)"(M, 8) - (Loo - L) { (MY, 1 — 5),

where L., is the archimedean L-factor, and e..,e are e-factors; for definitions, we
refer to [70].

2.1.8. Regulators and Beilinson’s conjecture. — There are regulator maps
(2.1.14) rg Hj (M, Q(5)) ® R — Hy(Mr,R(7)),
which give rise to a morphism of twisted Poincaré duality theories.

Scholl has shown [61, Theorem 1.1.6] that there is a unique way to assign Q-sub-
spaces H%l(Mz, Q(n)) C chj‘gl(M, Q(n)) to each Chow motive over Q, in a way that
respects morphisms, products, and so that Hg;l(hX 7,Q(n)) is given by the image of
motivic cohomology of a regular model ¥, when one exists (for details, see loc. cit.).
We now present a version of Beilinson’s conjectures relating regulators to L-values.

Conjecture 2.1.1 (Beilinson). — Suppose that n > % + 1 and that if n = % + 1 then
(M, 1) satisfies the condition (x) above.
(a) Then
T Hﬁl(Mz, Qn)) R — Hgl(MR,R(n))
is an isomorphism.
(b) Further, we have equivalently

(2.1.15) r9 <det H N (Mg, Q(n))) — LMY, 1= n)* - R(M,i,n)

(where, for typographical reasons, we have written L(...)* instead of L* for the regu-
larized value) and

(2.1.16) ro (det H N (Mg, Q(n))) — Li(M,n) - DR(M, i, n).

We understand the meromorphic continuation of the L-function and its functional
equation, as well as the properties of local Euler factors discussed after (2.1.13), to be
part of this conjecture.
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Remark 3. — We have omitted the description at the central point (conjecture of
Bloch and Beilinson). The point of main interest for us is the near right-of-center
point, given by n = % + 1 (with ¢ even). At this point, the formulation has to be
typically modified to allow for Tate cycles. For the motive that will be of most interest
to us (namely the adjoint motive attached to a tempered automorphic representation)
this is unnecessary since this motive satisfies assumption (x) in the cases of interest.

However, we will make use of the conjecture at the central point in part of our
arguments; there we will simply use Deligne’s formulation [17]. We also note that
we implicitly assume a version of the Tate conjecture below in order to claim that
the adjoint motive is determined up to isomorphism (in the category of Grothendieck
motives, see §2.1.9-§2.1.11) by its associated Galois representations. (See the appendix
and the reference to [63] therein.)

Remark 4. — In Beilinson’s original formulation of this conjecture one postulates the
existence of a Chow motive M, (Beilinson denotes this M) such that
(2.1.17) H™ (M) = H"(My,1)

for all geometric cohomology theories H* and all . Then
L™ (MY,1—5s)=L"(My,i+1—s),

so the value L=¢(MV,1 — n)* in (2.1.15) can be replaced by L*(My,i+ 1 —n)*. See
also §2.1.12 below.

2.1.9. Pure motives. — The category of Chow motives has the disadvantage that it is
not Tannakian. To construct a (conjectural) Tannakian category one needs to modify
the morphisms and the commutativity constraint. For any field k, let oM hom and
My num denote the categories obtained from oM rat by replacing the morphisms in
(2.1.1) by cycles modulo homological and numerical equivalence respectively. Thus
there are natural functors

%,rat - (’ﬂ{k,hom - Wk,nurn-

Jannsen [35] has shown that ¢ num is a semisimple abelian category and that nu-
merical equivalence is the only adequate equivalence relation on algebraic cycles for
which this is the case.

To outline what would be the most ideal state of affairs, we assume the following
standard conjectures on algebraic cycles:

1. (Kiinneth standard conjecture) For any smooth projective variety X, the Kiin-
neth components of the diagonal (with respect to some Weil cohomology theory)
on X x X are algebraic.

2. Numerical and homological equivalence coincide on CH*(X)q.

Then the second functor above is an equivalence of categories, so we can identify
My hom and My num; this will be the category of pure motives or Grothendieck mo-
tives.
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To make this category Tannakian, one needs to modify the commutativity con-
straint as described in [18] §6, [35]. With this new commutativity constraint, the
category of pure motives is Tannakian (|35] Cor. 2); we denote it oM. If k = Q, then
M — Hp(Mc), M — Hjg(M) and M — H( (Mg) are Tannakian fiber functors.

We say moreover that a motive M is pure of weight w when the cohomology
H]g(M, C) is concentrated in degree j = w. In this case, we write for short Hg(M, C)
for the graded vector space Hj(M,C), which is entirely concentrated in degree w.
Note that in general, a pure motive is not necessarily pure of a fixed weight.

2.1.10. Passage from Chow motives to pure motives. — The L-function of a Chow
motive only depends on the associated Grothendieck motive. Therefore, one would
like to make sense of Beilinson’s conjectures directly for Grothendieck motives over Q.
As we shall explain in §2.1.10, §2.1.11, this can be done satisfactorily assuming the
filtration conjectures; and this assumption seems to be inevitable in our current state
of understanding. While the discussion that follows is presumably known to experts,
we were not able to find it in the literature.

When we apply Beilinson’s conjecture to Grothendieck motives, we always under-
stand that the filtration conjectures are assumed. One could remove this, in each
fixed instance, by starting with a Chow motive rather than a Grothendieck motive;
however, it is more natural in our applications to work with Grothendieck motives,
see Remark 9.

For any field k, Beilinson conjectures the existence of a descending filtration F'® on
motivic cohomology HZM(X ,Q(4)) for X in Vary satisfying the properties (a) through
(&) of [36] Remark 4.5(b):

L FOH}(X,Q())) = H),/(X,Q(j))-
2. On H(X,Q(j)) = CH/(X)q, we have F! = CH/(X)nom,q-
3. F* is respected by pushforward and pullback for maps f: X — Y.
4. FTH}(X,Q(jh)) - F*H3/(X,Q(j2)) € FrTH3 (X, Q(jr + j2))-
5. F'H),/(X,Q(j)) = 0 for 7 > 0. For k a number field, F>H}, (X, Q(5)) = 0.
6. There are functorial isomorphisms
G (i (X, Q())) = Extin, (1,57 (X) (7).

Here MMy, is a conjectural abelian category of mized motives containing oMy hom
as a full subcategory and 1 denotes the trivial motive h(Speck).

Assuming these conjectures, one also gets a filtration F'® on HZJW(M ,Q(5)) for
M e Cﬂﬁc,rat-

Let us note the following consequence of the above conjectures, a proof of which
can be found in [48, §7.3 Remark 3.bis]:

Proposition 2.1.1 (Beilinson). — Assuming the conjectures above on the filtration F*°,
the functor oMy rat — M hom @5 essentially surjective. Given M € oMy hom, and any
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two lifts M and M’ of M to oMy rat, there exists an isomorphism M~ M in M rat
that maps to the identity on M in My hom-

Remark 5. — In fact, (assuming the filtration conjectures) if £ : M — N is an

isomorphism in M hom, any lift 5 M — N of € to My rat is an isomorphism
in @M rat- Indeed, let n : N — M be the 1somorphlsm which is inverse to £ and let 7 :

N — M be a lift of n. Then & :=£oij € End(N) maps to the identity in End(N).
Now the filtration conjectures imply that the kernel of the map End(N) — End(N ) is
a nilpotent (two—s1ded) ideal. It follows from this that 577 is invertible in End(N ),
which implies that § admits a right inverse f Slmllarly, 77§ is invertible in End(M ),
so € admits a left inverse £”. Clearly, £ = £, so € is an isomorphism.

Corollary 2.1.1. — Let M = (X, p,T) in cM hom- For any two lifts M= (X,p,7r) and
M' = (X,p',r) of M to My rat, there exist canonical isomorphisms

Grs (H'y, (M, Q())) = Grp(Hi (M, Q(4)))-

Proof — Let £ be an element in § o CHd‘m(X)(X x X)q o p giving an isomorphism
M~ M , covering the identity map on M. Then £ induces maps

&+ Hy(M',Q()))) = Hi(M,Q(3)))

that preserve the filtration, given as usual by £ — p1 (£ p3(z)). Now € is well defined
up to an element in p’' o CHdim(X)(X X X)hom,qoP = p o F* CHI™(X) (X xX)qop. It
follows from property (4) of the filtration that the induced map on Gr™ is independent
of the choice of &. O

This corollary allows us to defined graded pieces Q\f/ motivic cohomology for motives
in oM hom- Indeed, for M € oMy hom, we lift M to M in oM rar and define

Gr' (H'y, (M, Q(j))) == Gr' (H (M, Q(5))).

The corollary above shows that this is independent of the choice of M up to canonical
isomorphism.

Corollary 2.1.2. — Let M = (X,p,r),N = (Y,q,8) € Mg hom and & : M — N a
morphism in oMy hom- Then & induces canonical maps

€+ Grip(H}), (N, Q(5))) — Grip(Hj, (M, Q())))-

Proof. — To construct £*, first pick lifts M = (X,p,r) and N = (Y,qG,s) of M and
N respectively to cMy rat- Let € be a lift of € to §o CH*(X x Y) o 5. The map

€+ H),(N,Q(5)) — Hj,(M,Q(j))
preserves filtrations; by the same argument as in the previous propostiion, the induced
map on graded pieces is independent of the choice of £, and is thus canonical. O

The following corollary follows immediately from the canonicity of the map £*.
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Corollary 2.1.3. — 1. Suppose £ : M — N and £ : N — P are morphisms
in Mg nom- Then (§' 0 &)* =€* o0& on Gr"H’, (P, Q(5))-
2. Suppose that & : M — N is an isomorphism in cM hom- Then
£ : Gr"H}, (N, Q(5)) — Gr"H},(M, Q(j))

is an isomorphism.

2.1.11. Beilinson’s conjectures for pure motives. — Now we specialize the previous
section to the setting of Beilinson’s conjectures on L-values. The key point is that
even though these conjectures are formulated in terms of motivic cohomology of Chow
motives, in each case it is only a certain graded piece that matters, so the conjectures
make sense for Grothendieck motives as well. Indeed, let us now specialize to k = Q,
and let X be a variety over Q. Then:

(i) For n > £ + 1, we see from (6) that

Gr’H3 (X, Q(n)) = Homyy, (1, A7H(X) (1)) = 0
since h**1(X)(n) is pure of weight i + 1 — 2n < —1. Thus in this range we have
HiPY(X,Q(n) = FTHS (X, Q(n)) = Gr' HiP (X, Q(n)),
since F? = 0 by (5).
(ii) If n = % + 1, the conjecture typically also involves
CH" (X)q/ CH" " (X )nom,q = Gr’H3} (X, Q(n — 1)).
(iii) If n = #, we are at the center and the conjecture involves
CHn(X)homaQ = Flszf:L(X, Q(Tl)) = GrlHj;L(X? Q(n))a
since F? = 0 by (5).

To be more precise, in case (i) (which is the case of main interest in this pa-
per), one needs to work with the subspace of “integral” elements, HC%I(XZ, Q(n)).
But as pointed out earlier, Scholl has defined rational subspaces HJZ'}/LI(MZ, Q(n))
for M € oMq rat that are invariant under isomorphisms in Mg ras. Consequently,

if M € cMgnom, one can lift M to M in Mg rat and then consider the sub-
space Hé;l(Mz, Q(n)), this being independent of the choice of M.

2.1.12. The dual motive. — One sees now that there are two different notions of
the “dual motive”. On the one hand, if M = (X,p,r) is either a Chow motive or a
Grothendieck motive, we have defined MV = (X,p’,d — r) with d = dim(X). Recall
that this satisfies

(2.1.18) H™ (M) =H (M)Y

for any (geometric) cohomology theory. On the other hand, assuming the conjectural
framework described above (so that ¢M,om is a Tannakian category), one can attach
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to any M in cMom @ motive M* in ¢M,om such that
(2.1.19) H'(M*) = H'(M)"
for all i. By Prop. 2.1.1, one can lift M* to a Chow motive, any two such lifts being

isomorphic but not canonically so. We note the following example: if M = (X, 7;,0)
with 7; the Kiinneth projector onto h7(X), then

MV = (Xaﬂ-Zd—j)d)a
M* = (XaWQd—j)d_j)
and we can take My = M = (X, 7;,0) (see Remark 4).

Remark 6. — The case of most interest in this paper is when M € oM hom is (pure)
of weight zero so that H*(M) vanishes outside of i = 0. It follows then from (2.1.18)
and (2.1.19) that M* = MV. Further, from (2.1.17) we see that we can choose

My=M*= M,
so all notions of dual agree in this case. Let us restate Beilinson’s conjecture in this

case for n = 1. Writing simply L instead of L° and R(M), DR(M) for R (M,0,1),
DR(M,0,1) respectively, the conjecture predicts, equivalently:

(2.1.20) rg (det HY, (Mz,Q(1))) = L*(M*,0) - R(M)
and
(2.1.21) rg (det HY, (Mz,Q(1))) = L(M, 1) - DRAM).

2.2. Polarizations, weak polarizations and volumes

In this section, we examine the fundamental exact sequence (2.1.10) in the presence
of a polarization on M. We also introduce the notion of a weak polarization, which
for us will have all the properties of a polarization except that we replace the usual
definiteness assumption by a non-degeneracy requirement.

2.2.1. Hodge structures. — We first discuss these in the context of rational Hodge
structures. A Q-Hodge structure of weight m consists of a finite dimensional Q-vector
space V and a decomposition

(2.2.1) Ve= @ vre
pt+g=m
such that VP4 = V%P, The Hodge filtration on V¢ is given by
F'Ve:= @ vre

P>
p+g=m

The splitting (2.2.1) can be recovered from the Hodge filtration since VP? = FPVe N F4Ve.
If M € oMq, the Betti cohomology Hf'(Mc) carries a Hodge structure of weight m.
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The Hodge structure Q(m) of weight —2m is defined by the cohomology of the
motive Q(m), explicitly:
(2.2.2) V=Qr/o1)"Q, VT = V.

In particular, Q(1) should be regarded as the Hodge structure of H;(G,,) (or
H,(P!), if one wants to only work with projective varieties). Indeed, if we identify

H5(G,,,C)~C

by integrating the form ‘iz—z, the resulting identification carries the Betti Q-structure
to (271v/—1)Q C C, and the de Rham Q-structure to Q C C.

If V is a Q-Hodge structure then there is an action of C* on V¢, which acts by
the character
(2.2.3) z — 2Pz

on VP4, This action preserves V @ R C V.

For the cohomology of motives defined over Q this action extends to a larger group:
let WRr and W¢ denote the Weil groups of R and C respectively. Thus Wg = C*
while Wg is the non-split extension

1—-C* = Wgr— (j) > 1,
where j2 = —1 and j~'zj = z for z € C*. For M € oMq, we extend the action of
(2.2.3) to the real Weil group via
j=1"P9F, on VP9,

see [70, §4.4] (we have used an opposite sign convention to match with (2.2.3)).

2.2.2. Polarizations on Hodge structures. — A weak polarization on a pure Q-Hodge
structure V' of weight m will be a non-degenerate bilinear form

Q:VxV-Q
satisfying (here we continue to write @ for the scalar extension to a bilinear form
Ve x Ve — C)
(i) Q(u,v) = (-1)"Q(v,u). Thus @ is (—1)™-symmetric.
(i) Q(VP9,VP" ) = 0 unless (p,q) = (¢,7').
‘We mention various equivalent formulations of these conditions. Firstly, since @ is

defined over Q, we have Q(u,v) = Q(u, ). From this it is easy to see that (ii) may
be replaced by (ii’):

(ii") F*Vg is orthogonal to F* Vg where i* := m — i + 1.

Since Q is non-degenerate and since F*Vg and F'" Vg have complementary dimensions
in Vo, we can also replace (ii’) by (ii”):

(ii”) The orthogonal complement of F*Vg is F¥ V.

Now define
S:=(2rv-1)""Q
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considered as a linear function

S: VeV - Q(—m).
Then condition (ii”) above is exactly equivalent to saying that S gives a mor-
phism of Q-Hodge structures. Thus we can equivalently define a weak polarization
on V to consist of a morphism of Q-Hodge structures S as above satisfying
Su®v)=(-1)"S(veu).

A polarization on a Q-Hodge structure V is a weak polarization @) that satisfies
the following additional positivity condition:

(iil) If w € VP9, u # 0, then *79Q(u, ) > 0. (That i»~2Q(u, ) lies in R follows
from (i) and the fact that @ is defined over Q.)

Let C be the operator on V¢ given by the action of ¢ € C* (see (2.2.3)). Then
we can rewrite (iii) above as Q(Cu, @) > 0. This statement holds for all u € V¢ (and
not just on elements of fixed type (p,q)) on account of (ii). Thus condition (iii) is
equivalent to:

(iii") The hermitian form (u,v) — Q(Cu,?) is positive definite.
Now C restricts to an R-linear operator on Vg, and the condition (iii’) is equivalent
to
(iii”) The R-bilinear form
Ve xVr =R, (u,v)— Q(Cu,v)

is symmetric and positive definite.

2.2.3. Polarizations on motives. — A weak polarization on a pure motive M € Mg of
weight m will be a morphism
s: MM — Q(—m),
that is (—1)™-symmetric and such that the induced map
M — M*(—m)

is an isomorphism. In particular, writing V' = Hg(M¢, C) for the associated Q-Hodge
structure, s induces an isomorphism V <~ V*(—m), which gives a (—1)™-symmetric
bilinear form
HB(S) VeV - Q(_m)v

commuting with the action of C*.

Thus Hgp(s) is a weak polarization of Hodge structures, in the sense of §2.2.2.
A polarization on M is a weak polarization s such that Hg(s) is a polarization on V.

For the next statement, recall that V = Hg(M¢, C) is equipped with an involu-
tion Fo.

Lemma 2.2.1. — The (complezification of the) weak polarization
Hg(s): VRV — Q(—m)

is equivariant for cg, Fs and the action of the Hodge S' on V.
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Proof. — Tt is enough to show these assertions for the morphism V*(—m) — V. But
given any morphism f : M — M’ of objects in ¢Mq the induced morphism on Betti
cohomology commutes with cg, F, and S*. O

In practice, instead of a weak polarization on M, we can work just with part of
the linear algebraic data given by such a form.
Namely, we give ourselves a nondegenerate symmetric bilinear form
(2.2.4) S:VxV—-Q(—m)=(2m)""Q
on V = Hg(Mc, Q), whose complexification Sc on V¢ satisfies:
(a) Sc is invariant by F, and C*, i.e., by the action of Wg, and
(b) Sc restricts to a Q-valued form on Hyr(M).
This gives a Hermitian form (-,-) on V¢ defined by

(z,y) = S(2,9).

2.2.4. Metrics on Deligne cohomology. — We shall now explain how to use a polar-
ization to equip Deligne cohomology with a quadratic form. In fact, we do not need
a polarization, but simply the linear algebra-data associated to a weak polarization,
as in (2.2.4) and discussion after it.

Recall (for M € oMq) the Beilinson exact sequence:

(22.5) 0 — F"Hip(Mg) ™% Hj(Mp,R(n — 1)) — Hi (Mg, R(n)) — 0,

where ¢ and n are integers with ¢ < 2n — 1; and the first map is as in (2.1.9).

Let M be pure of weight i and let V be the Q-Hodge structure H(Mc, Q). We
suppose, as in the discussion above, we are given the linear algebraic data associated
to a weak polarization, i.e.,

S:VxV - Q(—i)
and we define Q = (2mv/—1)*S, as before. The distinction between S and @ is that S is
rational valued on de Rham cohomology, and () is rational valued on Betti cohomology.

Proposition 2.2.1. — Let (-,-) denote the bilinear form u,v +— Q(u,7) on
Hi(Mg,R(n —1)). Then

1. The form (-,-) is R-valued.

2. Suppose that i is even. Then the form (-,-) is symmetric and non-degenerate
and so is its restriction to the subspace Tn—1(F"Higz(MR)). In particular, it
induces by orthogonal projection a non-degenerate form, also denoted (-,-), on
the quotient Hgl(MR, R(n)).

3. Ifi =2n—2 and S arises from a polarization, the form (-,-) on HC%H(MR, R(n))
is symmetric and positive-definite.

Proof. — The form @ is real-valued on H5(Mc,R) and so Q(u,v) = Q(@,v). Let
u,v € H5(Mg,R(n — 1)). Then % = (—1)"'u and same for v; thus

Q(u,7) = Q(u,v) = Q((-1)"""u, (-=1)"7'0) = Q(u, ),
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from which we see that (-,-) is R-valued.

Now suppose that ¢ is even. Then @ is symmetric, and so (v,u) = Q(v,u) =
Q(u,v) = Q(@,v) = (u,v). Thus (-,-) is symmetric.

The Hermitian form (u,v) — S(u,?) is nondegenerate, and so (u,v) — Re Q(u, v)
is a nondegenerate real-valued quadratic form on Vi considered as a real vector space.

Now the inclusion R(n — 1) < C induces an identification (§2.1.5)

(2.2.6) Hi(Mg,R(n — 1)) = Hy(Mg, C)=(D" " Feo=(-1)"""

_ VéB:(_l)n_l’F —(—1n-? .

The quadratic form Re Q(u,?) is preserved by cg, and Q(Fpott, Foov) = (—1)'Q(u, v);
since ¢ is even, we see that Re Q(u, ¥) is preserved by Fi,. Therefore, the restriction
of Re Q(u,?) to Hy(Mg,R(n — 1)) remains nondegenerate, since this subspace is an
eigenspace for the action of the Klein four-group generated by F,, cg, and this group
preserves Re Q(u, 7).

The same analysis holds verbatim replacing Ve by VP4 @& V9P and shows

that Re Q(u, D) is nondegenerate on (V9 @ Vq*p)ch(_l)Wl’F°°=(_1)n71. Since

Fn 1 (F"Hig(MR)) = EB (VP4 g VaP)ens=(=)""  Fo=(=1)"""

p=n
p+q=i

the non-degeneracy of (-, -) restricted to 7,_1(F"Hiz (Mg)) follows.
Finally, fop (3), we note that when ¢ = 2n — 2, the orthogonal complement
of Tp_1(F"Hlz(Mg)) is just

(Vn—l,n—l)ch(—l)n717Foo:(_1)n71

and the restriction of (-, -) to this subspace is positive definite if S is a polarization. [

2.2.5. Motives of weight zero. — The case of most interest to us is when M is of
weight 0 and n = 1, 4 = 0 and we restrict to this case for the rest of this section.
The exact sequence (2.2.5), specialized to n =1 and ¢ = 0 is:

(2.2.7) 0 — F'Hyr(M) @q R ™% HY(Mgr,R) — HL(Mg,R(1)) — 0,
————
=H},(Mz,Q(1))®R

where the equality in the second line is conditional on Beilinson’s conjecture. The
map 7o here is given by:

fole) = 5o +).

Note that the Weil group Wg acts naturally on Hg(Mc,R) and the fixed set can be
described in equivalent ways:

Hgp(Mc,R)"® = subspace of the (0,0)-Hodge part of Hg(Mc, C) fixed by Fy, and cp
= orthogonal complement of 7 (F' Hyr(M) ®q R) inside Hg(Mg,R),

SOCIETE MATHEMATIQUE DE FRANCE 2021



32 CHAPTER 2. MOTIVIC COHOMOLOGY AND BEILINSON’S CONJECTURE

for any weak polarization s on M. Thus (2.2.7) induces an isomorphism
(2.2.8) Hg(Mc,R)"® = H (Mg, R(1)).

Proposition 2.2.1 implies that, if we are given a weak polarization s on M, then
the form S induces on Hg(Mc, R)"® — Hé)(MR, R(1)) a non-degenerate quadratic
form; if s is actually a polarization, this quadratic form is in fact positive definite.

2.2.6. Volumes. — We continue to study the setting of a weight 0 motive M. In what
follows, we do not need the full structure of a polarization: all we need is the associated
linear-algebraic data, i.e., S as in Equation (2.2.4), and thus we will just assume M to
be so equipped. Recall that although S is nondegenerate, no definiteness properties
are imposed on it.
We can compute the volumes (in the sense of (1.4.2)) of the three Q-vector spaces
appearing in (2.2.7), using the metric arising from S.
The restriction of S¢ to Hg(Mgr,R) = ng’cB is just given by (z,y) — Sc(z,y).
When we pull back this form to F1Hyr (M) ® R via g, the result is
z+ZT y+y
(z,y) = 9 ' o9

) = 1 (Sc(@,9) + Scl@,y)) = (Sc(z,9) + 5o(,5)
1

1
= §ReSc(x,g) = 550(37’37)-

Here we have used that Sc(z,7) € R for z,y € F'Hqr(M) ® R: this is because
cg preserves Hqr (M) ® R (since cg and cqg commute), and so § € Har (M) @ R also.

The next lemma describe some basic results concerning these volumes and their
relations. In particular, up to factors of Q*, the squares of these volumes do not
depend on the choice of S:

Lemma 2.2.2. — With notation as above, the square of volg Hg(Mg, Q) lies in Q*,
and the square of volg FLHar (M) is, at least up to Q*, independent of the choice of
the form S (subject to S satisfying the conditions (a) and (b) after (2.2.4)).

If we moreover assume Beilinson’s conjecture, as formulated in (2.1.20), we have:

~volg Hp(MR, Q)

VOlS FlHdR(M) ’
where L* means highest non-vanishing Taylor coefficient; and again all volumes are
computed with respect to the form S.)

(2.2.9) volg H}),(Mz,Q(1)) ~qx L*(M*,0)

Proof. — The first assertion is immediate, since S is rational-valued on Hg(Mc, Q).
We next prove the assertion concerning volg F1Hyr(M). The form S descends to a
perfect pairing

S: F'Har(M) x Har(M)/F°Har(M) — Q,
and hence a perfect pairing

S :det F*Hyr(M) x det(Har(M)/F°) — Q.
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Note also that the complex conjugation cg induces an isomorphism
F'Hyr(M) ® C =~ (Har(M)/F°) ® C.
Choose generators v*, v~ for the Q-vector spaces det F'Hyr(M) and det(Hggr(M)/F°).
If dim F'Hyqr (M) = d, the image of v+ under the natural projection
@ /\d(HdR(M) ®C) — /\d (Har(M)/F° ® C)
is a generator for the right-hand side, so we have
(2.2.10) p(F) =X~

for some scalar A € C* (in fact, in R*) which is obviously independent of the choice
of S. The volume of F!Hygr (M) is then given by

(2.2.11) 2% (volg F*Har(M))® = Sc(vt,vF) = Sc(vt, o)) = A- S(v*,v7).

The result follows since S(vt,v™) € Q.
We finally verify (2.2.9): by (2.1.20) we have:

(22.12)  det(Hg(Mg,Q)) - L*(M*,0) ~ det F' Hqr (M) - det(H),(Mz, Q(1))),
which we should regard as an equality inside
N He(Mg,R) ~ \ (F'Har(Mg)) ® /\ H}) (Mg, R(1)).

Computing volumes of both sides of (2.2.12) with respect to the polarization we
get (2.2.9). O

We remark that the lemma allows us to define vol F* Hyr (M) up to /Q*—namely,
take v/\ where X is in (2.2.10)—even without a polarization.
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CHAPTER 3

FUNDAMENTAL CARTAN
AND TEMPERED COHOMOLOGICAL REPRESENTATIONS

In this section, we will associate a canonical C-vector space ag to the real reductive
group Gr; its complex-linear dual will be denoted by af,. These vector spaces depend
on Gg only up to isogeny.

Despite the notation, the group Ggr does not need to be the extension of a reductive
group over Q; for this section alone, it can be an arbitrary real reductive group. We
denote by G the real points of Gg. Similarly, in this section alone, we will allow “G to
denote the dual group of the real algebraic group, rather than the Q-algebraic group;
in other words,

L@ = G x Gal(C/R),
rather than the variant with Gal(Q/Q).

We shall then construct an action of A" af, on the cohomology of any tempered,
cohomological representation of G, over which this cohomology is freely generated in
degree q. We will always have

(3.0.1) dim af; = ¢ = rank(G) — rank(Ko).

The short version is that the vector space ag, is dual to the Lie algebra of the split
part of a fundamental Cartan algebra, but we want to be a little more canonical (in
particular, define it up to a unique isomorphism).

We will give two definitions of af;. The first in §3.1 is analogous to the definition
of “canonical maximal torus” of a reductive group. The second definition in §3.2 uses
the dual group.

There is a natural real structure on a¢, arising from either of the constructions.
However, what will be more important to us is a slightly less apparent real structure,
the “twisted real structure,” which we define in Definition 3.1.2.

In §3.4 we construct the action of A" ag, on the (g, Ko )-cohomology of a tempered
representation; in fact we will work with (g, K% )-cohomology, where K%  is the iden-
tity component of K.,. The book [9] is a standard reference for (g, Ko, ) cohomology.

We follow in this section the convention of allowing g etc. to denote the complexi-
fications of the Lie algebras and reserving gr or Lie(Gr) for the real Lie algebra. We
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write tg for the Lie algebra of K ; let 6 be the Cartan involution of gr that fixes
tr, and pr the —1 eigenspace for 8, with complexification p. Thus g = ¢ @ p. Finally,
let Z¢ be the center of Gr, with Lie algebra 3 and real Lie algebra 3g.

Moreover, let us fix

(3.0.2) Br = an invariant, 6-invariant, R-valued quadratic form on gg,

with the property that Br(X,60(X)) is negative definite. (Invariant means that it
is invariant by inner automorphisms, whereas -invariant means Br(0(X),0(Y)) =
Bgr(X,Y).) For example, if Gg is semisimple, the Killing form has these properties.
Note that such a form gives rise to a positive definite metric on gr/tr, and this
normalizes a Riemannian metric on the locally symmetric space Y (K).

3.1. First construction of af, via fundamental Cartan subalgebra

A fundamental Cartan subalgebra of gr is a @-stable Cartan subalgebra whose
compact part (the fixed points of ) is of maximal dimension among all -stable
Cartan subalgebras. These are all conjugate, see [82, 2.3.4]. Let ¢ be the dimen-
sion of the split part (—1 eigenspace of 6) of a fundamental Cartan subalgebra. Then
§ = rank(G) — rank(K, ). Informally, ¢ is the smallest dimension of any family of tem-
pered representations of G. The integer § depends only on the inner class of Gg. For
almost simple groups, § = 0 unless Gr is “a complex group” (i.e., Ggr ~ Resc/rG*
where G* is a simple complex reductive group) or Ggr is (up to center and inner
twisting) SL,,(n > 3), B or SO, , where p, g are odd.

Consider triples (a, b, q) that arise thus: Begin with a Cartan subgroup B C K¢,
with Lie algebra br C tr and complexified Lie algebra b C €. Form its centralizer
tr = ar @ bgr inside gr, where agr is the —1 eigenspace for 6; it is a fundamental
Cartan subalgebra with complexification t = a @ b. Pick generic x € ibgr and let q be
the sum of all eigenspaces of  on g which have non-negative eigenvalue. Thus q is a
Borel subalgebra and its torus quotient is a @ b.

Proposition 3.1.1. — Suppose (a,b,q) and (a/,b',q") arise, as described above,
from (b,z) and (b',2').

Then there then there exists g € Gr(C) such that Ad(g) carries (a,b,q)
to (a/,b’,q') and preserves the real structure on a (i.e., carries ag C a to ag C o’).
Moreover, any two such g,g' induce the same isomorphism a — a'.

Note that (a,b,q) and (a’,b’,q") need not be conjugate under Gr(R).

Proof. — The last (uniqueness) assertion is obvious: g, ¢’ differ by an element of the
Borel subgroup corresponding to g, which act as as the identity on its torus quotient.

We thank the referee for suggesting the following proof (much shorter than our
original one): There certainly exists such a g carring q to q’, and a® b to a’ ® b’. It
suffices to show that the map

Ad(g):adb—d @b
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commutes both with complex conjugation and with the Cartan involution. For this, it
suffices to show that the adjoint action of 6(g) and g also carry (q,a®b) to (q’,a’®b’),
for this characterizes them up to the centralizer of a @ b.

But 6(g) takes 6(q) = q to 6(q') = ¢, and similarly it takes a & b to a’ & b’. Also,
g takes g to q’ (all complex conjugations are for the real structure on G) and takes
a®btoa @b’. Since q is the opposite to q with respect to a @ b, and similarly for ¢’,
we see that g also takes q to q’ as claimed. O

Therefore, a or ar as above is well-defined up to unique isomorphism; we denote
this common space by ag. More formally,

(3.1.1) ag := lim a,
(a,b,q)
and we define af, to be its C-linear dual. Visibly ag does not depend on the isogeny
class of Gg - it depends only on the Lie algebra Lie(Ggr). It is also equipped with a
canonical real structure arising from ag C a.
There is another real structure on a of importance to us. To describe it, the following
lemma (which we shall prove in §3.1.1) will be useful:

Lemma 3.1.1. — With notation as described, let ng € K2 normalize b and take the
parabolic subalgebra q N € C ¥ to its opposite, with respect to the Cartan subalgebra b.
Similarly, let ng € Gr(C) normalize a® b and carry q to its opposite. Then ng and
ng both preserve a, and coincide on it.

It is at least clear that ng preserves a, and the same statement for ng can be
proved in a fashion that is analogous to the proof of Proposition 3.1.1. However, the
full statement seems a bit tricker, which is why we confine the proof to §3.1.1.

Definition 3.1.1. — The long Weyl element is the involution of ag = liﬂl(a o.0) % in-

duced by the common action of ng or ni from the prior lemma.

The long Weyl element preserves ag R, since wg can be represented by an element
of K. We use it to define a second real structure:

Definition 3.1.2. — The twisted real structure a’G’R on ag is the fixed points of the
involution given by

(X = X) - w,
where X — X is the antilinear involution defined by ag r, and w is the long Weyl
group element for ag.

3.1.1. Root systems on b. — The following section—whose aim is to prove
Lemma 3.1.1—owes much to an anonymous referee of this paper, whose sugges-
tions greatly simplified our previous arguments.

Write M for the centralizer of a in Gg; it is a Levi subgroup. Write m for the
(complex) Lie algebra of M.
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It is proved in [20, Proposition 18.2.3]; that the set of roots of b on g form a not
necessarily reduced root system inside the dual of ibr /i(3r Nbr); we regard the latter
as an inner product space by using the form Bg. (The reference cited uses the Killing
form, but B has all the necessary properties for the argument.)

We will abuse notation slightly and simply say that these roots form a root system

A(g:b) Cibg,

with the understanding that their span is only the subspace of ibg orthogonal to the
central space 3r N br C br. Then the roots A(£: b) on ¢ or the roots A(m: b) on m
form subsystems of A(g: b). The Weyl groups of these root systems will be denoted
Wea, Wi, W respectively; these are all regarded as subgroups of Aut(b). We note
two useful facts about this setup:

— Each root of b on g is either a root on £ or a root on m:
(3.1.2) A(g:b)=A(t:b)UA(m:b).

Indeed, for a a root of b on g, the corresponding root subspace g, is preserved
by 8¢, the complex-linear extension of the Cartan involution for gr, and also
by ad(a). If the fixed space of ¢ on g, is nontrivial, then « lies inside A(% : b).
Otherwise f¢ acts as —1 on g,, and for Z € a, X € g, we compute

-2, X]=6(12,X]) = 0(2),6(X)] = [-2,-X] = [Z, X].

so that a centralizes the whole root space; in particular, g, C m. This proves
(3.1.2).

— Each element of W), has a representative ny; € Ggr(C) which normalizes a
and b. For this it is harmless to assume (passing to the derived group) that G is
semisimple, and to consider the case of a root reflection sg for some root
B € A(m:b). Now (3 is the restriction of some root 5* of a @ b on m, and
so w has a representative w inside the normalizer of a @ b inside M¢; now W
preserves a, and therefore it preserves b too by consideration of the Killing form.
(At the last step, we note that ar, br are orthogonal to one another under Bg,
which follows from the fact that they are in different eigenspaces for the Cartan
involution.)

Lemma 3.1.2. — Suppose that C,C are chambers for A(g : b) that lie in a fized
chamber for A(%: b). (Here, a“chamber” for a root system is a connected component of
the complement of all hyperplanes orthogonal to the roots.) Then there is wyr € Wy,
the Weyl group of A(m :b), such that wpC=C'.

Proof. — Because of (3.1.2) a fixed chamber for A(¥ : b) is subdivided by hyper-
planes ¢# orthogonal to roots 8 € A(m : b); the corresponding reflection s, € W(m :
b) allows one to move between the two sides of this /. O
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Conclusion of the proof of Lemma 3.1.1. We choose a chamber C in ibgr for A(g : b)
that is associated to g, i.e., for € C the Borel subalgebra q D b @ a is spanned from
non-negative root spaces of x.

Let wk be the automorphism of b induced by nx (equivalently nl_(l). Let wg be an
element in the Weyl group of A(g : b) such that wgC = —C (this is possible because
the Weyl group W acts simply transitively on chambers).

Then wrgwgC and C both lie in the same positive chamber for A(t : b). By
Lemma 3.1.2 there is wy; € Wy such that wpC = wgwgC. Choose a representa-
tive ny; € Gr(C) for this wys, normalizing a and b. Then n := ng - ny € Gr(C)
normalizes a and b; this element n takes the chamber C to —C, and so it takes q to q°P.
We may therefore suppose n = ng. It follows that ng preserves a, and its action on a
coincides with ng.

3.2. Second construction of af, via the dual group

Let T C B be the standard maximal torus and Borel in G. Let LW denote the
normalizer of T inside G x Gal(C/R), modulo T'. There exists a unique lift wo € W
of the nontrivial element of Gal(C/R) with the property that wy sends B to the
opposite Borel (w.r.t. f) Moreover, we may choose a representative of wg that lies
inside G(R) x Gal(C/R), unique up to T(R); thus the space Lie(T)™° carries a real
structure arising from the real structure on T. (Here, and in what follows, we are using
the structure of G as a split Chevalley group to speak of its R points, as mentioned
in §1.6).

We will show that a7, can be identified with Lie(f )¥°, in a fashion that carries the
real structure ag; g to the natural real structure on the latter space.

Observe, first of all, that a choice of (a, b, q) as before yields a torus T C Ggr with
Lie algebra a & b, and a Borel subgroup of Gg xXgr C containing T, with Lie algebra
q; then we get identifications

(3.2.1) Lie(T) ~ X, (T)® C= X*(T)® C = (a ® b)*.
We have used the fact that, for any complex torus S, we may identify Lie(S) with
X«(S) ® Lie(G,,) and thus with X, (S) ® C, choosing the basis for Lie(G,,) that is
dual to dz—z.

If we choose a different triple (a’, b, q') there exists g € Gr(C) conjugating (a, b, q)
to (a’,b’,q'); the maps (3.2.1) differ by Ad(g). In particular, we get by virtue of
Proposition 3.1.1, a map

~

(3.2.2) Lie(T) —» lim a* = aj.
(a,b,q)
Lemma 3.2.1. — The map (3.2.2) carries Lie(j;)“’O isomorphically onto af,, and pre-

serves real structures.
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Moreover, the long Weyl group element wg for f, carrying B to its opposite, pre-
serves Lie(T)™°, and is carried under this identification to the long Weyl element
acting on ag, (see discussion after Lemma 3.1.1).

This justifies using Lie(T )“’0 as an alternate definition of ag;.

In the following proof, we will refer to the “standard” antiholomorphic involution
on T or its Lie algebra. The torus T is, by definition, a split torus; as such it has a
unique split R-form, and we refer to the associated antiholomorphic involution as the
“standard” one.

Proof. — Under the identification of (3.2.1) the action of wy on Lie(T) is carried to
the action on X*(T) ® C = (a ® b)* of an automorphism v of g that belongs to the
same outer class as complex conjugation, and switches q and its opposite q°P relative
to a@b. However, by virtue of the construction of q from an element z € ibg, complex
conjugation switches q and q°P. It follows that v corresponds precisely to the action
of complex conjugation ¢ on X*(T) ® C. It readily follows that it acts by —1 on b*
and 1 on a*. This shows that Lie(j:)“’0 is carried isomorphically onto af, by (3.2.2).

Now the antiholomorphic involution (¢ ® (z — z)) on X*(T) ® C = (a ® b)* fixes
precisely ag @ by . Transporting to Lie(f) by means of the above identification, we
see that the real structure on (ar ® br)* C (a @ b)* corresponds to the antiholo-
morphic involution ¢’ on Lie(T) which is the composition of wy with the standard
antiholomorphic involution. In particular, restricted to the wy-fixed part, ¢’ reduces
to the standard antiholomorphic involution. This proves the statement about real
structures.

For the second claim, we note that wg and wp commute, so certainly wg preserves
Lie(f)wf’; under the identifications of (3.2.1) wg corresponds to an element of the
Weyl group of (a @ b) which sends g to the opposite parabolic. This coincides with
the long Weyl element for ag by Lemma 3.1.1. O

3.3. The tempered cohomological parameter

We will next construct a canonical identification
(3.3.1) al, ~ Lie algebra of the centralizer of p : Wg — G,
where p is the parameter of any tempered cohomological representation for G; corre-
spondingly we get
(3.3.2) ag ~ fixed points of Ad* p: Wr — GL(g) on g,
where Ad* : LG — GL(g) is the co-adjoint representation.

To see thls we must discuss the L-parameter of tempered cohomological represen-
tations:

Write as usual Wr = C* U C*j, where j2 = —1, for the real Weil group. Let

p: Wr — LG be a tempered Langlands parameter whose associated L-packet contains
a representation with nonvanishing (g, K¢ ) cohomology (with respect to the trivial
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local system, as always in this paper). In particular, the infinitesimal character of
this representation coincides with that of the trivial representation. The infinitesimal
character can be read off from the C* part of the Langlands parameter (see [49,
§15.1, Lemmal although we believe this result to be folklore). Therefore, by examining
infinitesimal characters, we can conjugate p in Gtoa representation py such that

(3.3.3) Pol gy 1 CF — G

is given by ¥ (1/2/Z), where X is the canonical cocharacter G,, — G given by the
sum of all positive coroots. The connected centralizer of pg lox is then T', so the image

of j in “G must normalize T and sends B to B°P. Therefore, po(j) defines the same
class as wg inside W (notation of §3.2) and therefore

(3.3.4) a;; = Lie algebra of the centralizer of pg.

Now p = Ad(g)po for some g € @; since the centralizer of pg is contained in f, g is
specified up to right translation by 7', and consequently the induced map

Lie algebra of the centralizer of py — Lie algebra of the centralizer of p

is independent of the choice of g. Composing with (3.3.4), we arrive at the desired
identification (3.3.1).

Remark 7. — 1In general, there are multiple possibilities for the conjugacy class of p,
i.e., multiple L-packets of tempered cohomological representations; however, if Ggr is
simply connected or adjoint, p is unique up to conjugacy: any two choices of wy differ
by an element t € T\, which lies in the fixed space for 7 : z — 1/2"° on T. Thus
we must verify that every element of the 7-fixed space T is of the form z - 7(x) for
some x € f; equivalently that T is connected. If G is simply connected, coroots give
an isomorphism Gj, ~ f, and the map a — —wpa permutes the coroots; we are
reduced to verifying connectivity of fixed points in the case of 7 the swap on G2, or
7 trivial on G,,, which are obvious. The adjoint case is similar, replacing the use of
coroots by roots.

3.4. The action of the exterior algebra /" a}, on the cohomology of a tempered repre-
sentation

In this section, we will construct an action of A" af on H*(g,K%;II), for any
finite length, tempered, cohomological representation II of G. In this situation, by
“cohomological,” we mean that every constituent of IT is cohomological—note that II is
tempered, and thus semisimple.

This action will have the property that the induced map

J
(3.4.1) HY(g, K% 1) @ \ ag; — HTH (g, K% ;10)
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is an isomorphism. Here ¢ is the minimal dimension in which the (g, K% )-cohomology
is nonvanishing; explicitly, we have 2¢ + dimcag = dim Y (K). The action of A* a%
will commute with the natural action of K., /K% on H*(g,K ;II).

As a general reference for (g, K% ) cohomology, the reader may refer to [9]. In general,
(g,K%) cohomology of 7 is computed by a complex with terms Homyo (A" g/, 7).
However, for unitary irreducible cohomological 7, all the differentials in this complex
vanish (as proved by Kuga, see [9, Theorem 2.5]); so we may identify the (g,K%)
cohomology with Homgo (A" g/t, 7).

We construct the action first in the simply connected case, and then reduce the
general case to that one.

3.4.1. The action for Ggr simply connected. — Here G is connected, as is its maximal
compact; and the cohomological, tempered representations are indexed (with notation
as in §3.1) by choices of a positive chamber C for the root system A(g: b):

We have already explained that such a chamber C gives rise to a Borel subgroup q
and a notion of positive root for A(g : b). Vogan and Zuckerman [76] attach to C a
tempered cohomological representation 7 (C) characterized by the additional fact that
it contains with multiplicity one the irreducible representation V; of Ko, = K% with
highest weight

e = the sum of roots associated to root spaces in unNp,

where u is the unipotent radical of g. (See [76, Theorem 2.5]). Moreover, it is known
that V; is the only irreducible representation of K., that occurs both in 7(C) and
in A" p (proof and discussion around [76, Corollary 3.7]).

We write V_p for the dual representation to Vp; its lowest weight is then equal
to —pe. Let us fix a highest v+ € V; and a lowest weight vector v~ in V_g, with
weights pe and —pe. In what follows, a vector of “weight ©” means that it transforms
under the character p of g N €: and a vector “of weight —u” transforms under that
character of q°P N ¢, where q°P is the parabolic subgroup associated to —C. In other
words, “weight 1” is a requirement on how the vector transforms by a Borel subalgebra,
not merely a toral subalgebra.

Write WC] for the Vpg-isotypical subspace of an arbitrary K,-representation W,
and W[—C] for the Vj-isotypical subspace. Thus W[(] = V; ® Hom(Vp, W) and
f — f(vF) gives isomorphisms

(3.4.2) Hom(Vp, W) = vectors in W of weight ppe under q N €,
(3.4.3) Hom(V_g, W) = vectors in W of weight —ue under q°° N ¢€.
Let u be the unipotent radical of q°P. From the splitting

(3.4.4) a®unNp)d @nyp) =,
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we get a tensor decomposition of A*p and of A*p*. For the spaces of vectors of
weights p and —u we get
—u

(3.4.5) </*\p> /\a®detuﬂp (/\p) =/*\a*®det(ﬁmp)*.

In particular, there is a natural inclusion a* — p* (from (3.4.4)), and then the
natural action of A" a* on A" p* makes the space of weight —u vectors in the latter
a free, rank one module. Note that we may regard /™ p* either as a left- or a right-
module for A" a*; the two actions differ by a sign (—1)4°¢ on a*. We will use either
version of the action according to what is convenient.

Thus we have an action of A" a* on

(3.4.6) Hom(V_, \ p*) == (\p*) ™ (via f — f(v7)),

given (in the left-hand space) by the rule X f(v=) = X A f(v™).

There is also a contraction action of A* a* on A" p: for X € a*, theruleY — X .Y
is a derivation of A\* p with degree —1, which in degree 1 realizes the pairing a* x p —
C. As a reference for contractions, see [10, Chapter 3]. This action again makes the
space of weight u vectors a free, rank one module.

The two actions are adjoint:

(3.4.7) (X NA,B)=(A,X .B), Xea',Ae \p*,Be \»,

where the pairing between A" p and A" p* is the usual one (the above equation looks
a bit peculiar—it might seem preferable to replace X A A by A A X on the left— but
in order to do that we would have to use a different pairing, which we prefer not to
do).

From

*

Koo *
@A&IF@K&MWD=<AW®W@> ~ Hom(V_¢, /\ p*) ® Hom(V;, 7(C)),

=Homk ., (A" p,7(C))
we have also constructed an action of A* a* on the (g, K% ) cohomology of 7(C). Again,
it can be considered either as a left action or a right action, the two being related by
means of a sign; we will usually prefer to consider it as a right action.
This action is characterized in the following way: for any f € Homxk__ (A" p,7(C)),
and any vector v of weight pe in A™p, and for X € A" a*, we have

(3.4.9) Xfroe f(X -o).

The left action is related to this via f - X = (—1)()(X . f) (X € a*).

To verify (3.4.9), note that the map f factors through V; C 7(C). We may replace
7(C) by Vg, regarding f as a Koo-map A*p — Vg, and write f! : V_, — A" p* for
the transpose of f. Now, for v € V; a vector of weight ug, the evaluation f(v") is
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determined by its pairing with a lowest weight vector v~ € V_p. We have
(T, Xf(0T)) = (X)o7, 07) = (X A fi(v7),07)
(3.4.7) _ _
= (ffv), X wut) = (07, f(X ).

In summary, we have a well-defined action of A" a}, on the (g,K%) cohomology of
any tempered irreducible cohomological representation. (Strictly speaking, we should
verify that our definitions did not depend on the choice of (b,C). If ¥ € K, con-
jugates (b,C) to (b',C'), then it carries (q,u¢) to (q', ue); there is an isomorphism
t:m(C) — w(C'), and the actions of Ad(k) : A"a ~ A" a’* are compatible with the
map on (g, K% ) cohomology induced by ¢; thus we get an action of A* af; as claimed.)

Finally, it is convenient to extend the action to representations that are not irre-
ducible, in the obvious fashion: If IT is any tempered representation of finite length,

we have
H*(g,K2;1T) = @ Hom (o, IT) ® H* (g, K; 7a),

the sum being taken over (isomorphism classes of) tempered cohomological represen-
tations m,; we define A" af; to act term-wise.

Remark 8. — It is also possible to construct this action using the realization of
tempered cohomological representations as parabolic induction from a discrete series
on M. We omit the details.

3.4.2. Interaction with automorphisms. — We continue to suppose that Ggr is
semisimple and simply connected. Suppose that a is an automorphism of Gg that
arises from the conjugation action of the adjoint form G?d, preserving Koo. If
II is a tempered representation of finite length, then so is its a-twist *II, defined
by “II(e(g)) = l(g).

Also «a induces an automorphism Y — «a(Y) of p; the K, representations p and
“p are intertwined via the inverse map Y — a~(Y).

Lemma 3.4.1. — Let I1 be tempered cohomological of finite length. The natural map

(3.4.10) Homg__ (/\ p,IT) — Homx_ (/\ p,I0),

which sends f to the composite N"p =~ N (“p) 4 “TI, commutes the \* a}y actions
on both spaces.

Proof. — This reduces to the irreducible case. So suppose that m = 7(C), where C is
a chamber C C ib}, giving rise to data (a,b,q). Adjusting o by an element of K,
we may suppose that a preserves K, and b and the Borel subalgebra q N € C &.

If W is an irreducible K, -representation of highest weight p, then “W has high-
est weight p o 1. Therefore the representation “m(C) contains the K.,-representa-
tion with highest weight u o @', which is associated to the chamber a(C) and the
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parabolic a(q):
*m(0) = m((C))-
Now « sends (a, b, q) to (a,b,a(q)). Although it belongs only to G24(R) it can be
lifted to Gr(C), and so the following diagram commutes:

(3.4.11) ac——a

o I

ag —— a,

where the vertical arrows refer to the identification of a with ag induced by the triples
(a,b,q) (at top) and (a,b, a(q)) (at bottom).

Note that the map Y — a~1(Y) takes (A*p)*® " — (A" p)* (where the weight
spaces are computed for the usual actions, not the twisted ones). The map (3.4.10)

explicitly sends f to ' : Y € A*p — f(a"(Y)); if f on the left factors through
1

highest weight p, then f’ on the right factors through highest weight pa™!.
For v € (A*p)* and X € A" af; we have a(v) € (A" p)** " and, for f as above,
(Xf) tav = (X[)(v) = f(X - v),
(@(X)f) v > f(a(X) —a()) = F(X —v).

In view of diagram (3.4.11) this proves the statement. O

3.4.3. Interaction with duality and complex conjugation. — Suppose that j+ 5 = d =
dim(Y (K)). Let II be a tempered cohomological representation of finite length. There
is a natural pairing

(3.4.12) H(g, Koo, IT) x H’ (g, Koo, IT) — det p*,

corresponding to

J i
(N\p* @)= @ (/\ p* @ I~ — detp*,
amounting to cup product on the first factors and the duality pairing on the second
factors.

Lemma 3.4.2. — The pairing (3.4.12) has the following adjointness:

(fi- X, fo) = (fr, (wX) - f2)
for X € N" a%, and w the long Weyl group element (Lemma 8.1.1).

Proof. — This reduces to the irreducible case II = 7((); its contragredient is 7(—C),
parameterized by the chamber —C associated to (a, b, q°°). We must verify that af, acts
(up to sign) self-adjointly for the the cup product

J

d—j
Ap =& A p*[C] — det p*,
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or, what is the same, the map
J d—j
Hom(V_g, /\ p*) ® Hom(V, /\ p*) — Hom(V_¢ ® V;, det p*) — det p*.

Suppose fi € Hom(V_g, A’ p*) and f, € Hom(Vg,/\d_j p*); their image under the
first map is given by v1 ® va +— fi1(v1) A fa(vz). This map factors through the
one-dimensional subspace of invariants on V_p ® Vp; to evaluate it on a generator
for that space, we may as well evaluate it on v~ ® v™, which has nonzero projec-
tion to that space. In other words, we must prove the adjointness statement for

(fi, f2) = fi(wv™) A fa(vT). For X € A" a* we have
(fi - X)) A f2(0) = iv ) AX A fo(v) = fi(vT) A (X fo)(0),
where the sign is as in the statement of the lemma. However, the identifications of a

with ag arising from (a, b,q) and (a, b, q°P) differ by a long Weyl group element, as
in Lemma 3.1.1. O

Lemma 3.4.3. — Let I be a tempered, finite length, cohomological representation, and
observe that the natural real structure on p induces a “complex conjugation” antilinear
map H*(9,Koo, 1) — H*(g,Koo,II), where, as usual, II denotes the representation
with the same underlying vectors but the scalar action modified by complex conjuga-
tion.

Then the following diagram commutes:

(3.4.13) H*(g, Koo, TI) @ A™ 0y —— H*(g, Koo, T0)

| J

H*(Q)Komﬁ) ® /\* az# — H*(gaKooaﬁ)y

where all vertical maps are complex conjugation; the complex conjugation on ay is
that corresponding to the twisted real structure.

Proof. — Again, this reduces to the irreducible case II = 7(C). Fixing an invariant
Hermitian form on Vp, we may identify V_; with Vp, in such a way that vt = v~.
The following diagram commutes:

(3.4.14) Homg (Voe, A" p) Z=2% (A" p) ™"
ls,_,g J/conjugation
R—Rv-

Homg (Ve, A" p) —— (A" P)M )

where we define S by S() = S(v). There is an induced complex conjugation

Avl=C1 = Asl@
——

Homp (V_g, A" p)®V_¢ Homp (Vo, A* p)®V,
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where we tensor S +— S with the conjugation on V_g, and then the following diagram
is also commutative:

(3.4.15) N p[=Cl® N a—— A" p[-(]
\L(S»—»S)@con‘j. lconjugation
N plCl® N"a —— \"p[C],
where the conjugation on a* is that which fixes afg.
This gives rise to (3.4.13)—however, just as in the previous lemma, the identifica-

tions of a with ag induced by (a,b,q) and (a,b,q°P) again differ by the long Weyl
element, and so in (3.4.13) we take the conjugation on ag as being with reference to

the twisted real structure. O
3.4.4. Construction for general Gg. — Let Ggr now be an arbitrary reductive group
over R.

Let G’ be the simply connected cover of the derived group of Ggr, and let Zg be
the center of Gr. Thus there is an isogeny G’ x Zg — Ggr. Let g/, ¥,ag be the
various Lie algebras for G’. Let az be the a-space for Zg; it is naturally identified
with the Lie algebra of a maximal split subtorus. We have

ag = agr dag.

For any representation II of G let IT' be its pullback to G’; this is a finite length
tempered representation. There is a natural identification

H*(g,K2:;T) = /\ az @ H* (¢, KL;T').

Our foregoing discussion has given an action of A" ag: on the second factor; and so
we get an action of

* * * *
/\aG/ ®/\az = /\(aG/ @az)* = /\aé

on H*(g,KY ;II). Lemma 3.4.2 and Lemma 3.4.3 continue to hold in this setting.

Observe that the group Ko./K% = mG(R) acts naturally on H*(g,K% ;II). By
the discussion of §3.4.2, this action of a¥, will commute with the action of K /K%.

3.5. Metrization

As remarked near (1.4.6) it is very convenient to put a Euclidean metric on af; in
such a way that the induced action on cohomology is isometric.
Let the bilinear form Bg be as in (3.0.2). With notation as in §3.1, Br induces a
invariant quadratic form on ar ® br, so also on ar and ag. In particular, we get a
C-valued positive definite hermitian form on af,. Then:

Lemma 3.5.1. — Let X € \* aty. Let II be a finite length cohomological tempered
representation. Let T € H9(g, K% ,II), where q is the minimal cohomological degree
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as in (3.4.1); equip H*(g, K% ,II) with the natural hermitian metric (arising from a
fized inner product on I, and the bilinear form Bgr). Then

1T - X = 1T Xl-

Proof. — This reduces to the case where Ggr is simply connected, and then
again to the case when II = II(C) is irreducible. There it reduces to a similar
claim about the weight space (A" p*)~#, since (with notations as previous) the
map Hom(V_g, A" p*) 5 (A*p*) " of (3.4.6) is isometric (up to a constant scalar,
which depends on the choice of highest weight vector) for the natural Hermitian forms
on both sides. But the corresponding claim about (A" p*)™* is clear from (3.4.5),
noting that the factors a and (u @ it) N p are orthogonal to one another under B.

The following explicit computation will be useful later:

Lemma 3.5.2. — Suppose Gr is one of GLy,Resc/r GL,, and endow g with the
invariant quadratic form B = tr(X?) or tro/r tr(X?2), where tr is taken with refer-
ence to the standard representation. Then, with reference to the identification (3.2.2),
the form on af; g induced by the dual of B is the restriction of the trace form
on g (by which we mean the sum of the trace forms on the two factors, in the case
of Resc/r GLy). A similar result holds when Gr is one of SO, and Resc/r SOn,
ezcept that the form on ag g s the restriction ofi - (trace form).

Proof. — Write tr for the trace form on g, in each case. As explained in (3.2.1) the
choice of (a, b, q) induces a natural perfect pairing of C-vector spaces

~

(a®b)® Lie(T) — C,
N——
SLie(T)®o

wherein Lie(f“’“) is identified with the dual of a. We want to show that, under this
pairing, the form tr la is in duality with the form trlLie(’f)wO' Since a and b are or-

thogonal with respect to tr, it is enough to check that the form tr on a @ b and tr
on Lie(f) are in duality.

It is convenient to discuss this in slightly more generality: Note that, if H is a
reductive group over C, the choice of a nondegenerate invariant quadratic form @
on h = Lie(H) induces a nondegenerate invariant quadratic form @ on the dual Lie
algebra E Indeed, choose a torus and Borel (Ty C By) in H; then @ restricts to a

Weyl-invariant form on the Lie algebra of Ty, and the identification

Lie(Ty) ~ Lie(T)*,
induced by (Ty C Bpy) allows us to transport @ to a Weyl-invariant form on Lie(f).
This does not depend on the choice of pair (Tyg C Bp), because of invariance of Q.

Finally the resulting Weyl-invariant form on Lie(T) extends uniquely to an invariant
form on b.
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In this language, the question is precisely to compute @, where H = G¢ and Q is
the complexification of tr, i.e., a form on the Lie algebra of G¢.
(i) Gr = GL,. Here it is clear that fr = tr,
(i) Gr = Resc/r GL,,. Here again tr = tr.
The associated complex group is GL, x GL,, and the form there is

tr(X1)2 + tr(X2)2. The dual form on gl, x gl, is thus, again, the trace form
on GL,, x GL,,.

(iii) Gr = SO, In this case we have

(3.5.1) tr

1
1 (tr on the dual group).

We will analyze the cases of SO(2) and SO(3), with the general cases being
similar:

(a) Consider SO(2), which we realize as the stabilizer of the quadratic
form ¢(z,y) = xy. The maximal torus is the image of the generating
co-character x : t — (| t91), and (with the standard identifications)
(x,x’) = 1 where x’ is the co-character x : t — (3 t91) of the dual SO(2).
Denote simply by dy the image of the standard generator of Lie(G,,)
under x. Then (dx, dx)s = 2, and so (dx’,dx')g = 3-

(b) Consider SO(3), which we realize as the stabilizer of the quadratic
form q(z,y) = 2y + 22, and a maximal torus is the image of the co-
character  : diag(¢,t~1,1). This is dual to the same character x’ as above

(now considered as a character of SLy). We reason just as in (a).

(iv) Resg/r SOy. Here again (3.5.1) holds. To see this, note that the associated
complex group is SO,, x SO, and the form there is given by tr(X?) + tr(X3);
then the result follows from (iii). O
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CHAPTER 4

THE MOTIVE OF A COHOMOLOGICAL
AUTOMORPHIC REPRESENTATION:
CONJECTURES AND DESCENT
OF THE COEFFICIENT FIELD

We briefly formulate a version of the standard conjectures relating cohomological
automorphic forms and motives, taking some care about coefficient fields. A more
systematic discussion of the general conjectures is presented in the appendix; for the
moment we present only what is needed for the main text.

4.1. The example of a fake elliptic curve

To recall why some care is necessary, let us consider the example of a fake elliptic
curve over a number field F': this is, by definition, an abelian surface A over F' which
admits an action of an (indefinite) quaternion algebra D — Endp(A) ® Q.

In any realization H'(A) admits a natural right D-action, and thus, for any rational
prime £, one gets a Galois representation

pae: Gal(Q/F) — GLp(H'(4Ag, Qo) ~ (D ® Qo)

where the latter identification depends on a choice of a basis for H!(Ag, Q) over
D ® Qq. If £ is not ramified in D, a choice of splitting D ® Qy ~ M3(Qy) converts
this to a genuine two-dimensional representation

pA/ . Gal(Q/F) — GLQ(Q@)

This is expected to correspond to an automorphic form 7 on PGLy (A r) with Hecke
eigenvalues in Q, characterized by the fact that we have an equality

tr(pa,e(Froby)) = a, ()

for all but finitely many v; here tr denotes the trace and a, (7) is the Hecke eigenvalue
of w at v.

The correspondence between 7 and A, in this case, has two deficiencies. The first
is that the dual group of PGLs is SLs but the target of the Galois representation is
(D ® Q¢)*. The second is that the automorphic form 7 has Q coefficients; but there
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is no natural way, in general, to squeeze a motive of rank two with Q-coefficients out
of A. One could get a rank two motive after extending coefficients to some splitting
field of D, but this is somewhat unsatisfactory.

However, although one cannot directly construct a rank two motive attached
to pa,e, it is possible to construct a rank three motive that is attached to the compo-
sition Ad pa ¢ with the adjoint representation PGLy — GL3. Namely, construct the
motive

(4.1.1) M = Endj,(h'(4)),

where Endp denotes endomorphisms that commute with the natural (right) D-action
on h'(A) and the superscript 0 denotes endomorphisms with trace zero. This is a
motive over F' of rank three with Q-coefficients, which can be explicitly realized as a
sub-motive of h!(A4) ® hl(A)*.

Write g for the Lie algebra of SL; (D); this is a three-dimensional Lie algebra over Q,
and is an inner form of sl;. We have natural conjugacy classes of identifications

Het (M, Q) ~ g ® Qq,
HB(Mv,Ca Q) =9,

for any infinite place v of F'.

We expect that this phenomenon is quite general. Below we formulate, in a general
setting, the properties that such an “adjoint motive” M attached to a cohomological
automorphic form should have.

4.2. The conjectures

It will be useful to formulate our conjectures over a general number field; thus let
F be a number field, let G be a reductive group over F', and let w be an automorphic
cohomological tempered representation for Gg. (Recall from §1.6 that “cohomologi-
cal,” for this paper, means cohomological with reference to the trivial local system.)
The definitions that follow will depend only on the near-equivalence class of 7.

We suppose that 7w has coefficient field equal to Q, i.e., the representation m, has
a Q-structure for almost all v. One can attach to m the associated archimedean pa-
rameter

Wr, — LG,

for any archimedean place v. The Langlands program also predicts that 7 should
give rise to a Galois representation valued in a slight modification of “G (see [13]). ()
Composing these representation with the adjoint representation of the dual group on

1. Here we draw attention to a slight subtlety: this Galois representation is characterized by the
conjugacy classes of Frobenius, and in some (rather rare) cases this may not characterize it up to
global conjugacy. However, this problem does not occur if the target group is GL,,, and in particular
the composition of this representation with the adjoint is uniquely characterized. It is only this
composition which enters into our conjecture.
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its Lie algebra g, we arrive at representations

(4.2.1) Adpe: Gr — Aut(gg;)-

(4.2.2) Adp, : Wg, — Aut(gc).

of the Galois group and each archimedean Weil group. With these representations in

hand, we can formulate the appropriate notion of “adjoint motive attached to (the
near equivalence class of) 7,” namely,

Definition 4.2.1. — An adjoint motive associated to w is a weight zero Grothendieck
motive M over F with Q coefficients, equipped with an injection of Q-vector spaces
L Hp(My,c, Q) — g

for every infinite place v, such that:
The image of Hg(M, c,Q) is the fizred set of an inner twisting of the

standard Galois action on ﬁa. Said differently, v, identifies Hg(M, c)
with an inner form gq . of 9q-

(4.2.3) L : Hg(My,c,Q) — 8q.« C 8g-
(This inner form may depend on v.) Moreover, for any such v, and for any rational
prime £, we require:

1. The isomorphism

(4.2.4) He(Mp, Q) ~ Hp(M, ¢, Q) ®q Qi = Gq.« ® Qv ~ 0g;

identifies the Galois action on the étale cohomology of M with a representation
in the conjugacy class of Ad p; (see (4.2.1)).

2. The isomorphism
(425) HdR(M) RXqQ C~ HB(Mv,07 Q) Xq cs aQ,* ® C ~ ﬁc

identifies the action of the Weil group Wg, on the de Rham cohomology of M
with a representation in the conjugacy class of Ad p, (see (4.2.2)).

3. Each Q-valued bilinear form on gq, invariant by the action of LGq ®, induces
a weak polarization M x M — Q with the property that, for each v, its Betti
realization Hg (M, c) x Hg(M, c) — Q is identified, under v, with the given
bilinear form. (3

We are not entirely sure if every cohomological 7 should have an attached adjoint
motive, because of some slight subtleties about descent of the coefficient field from Q
to Q. However, it seems very likely that the overwhelming majority should admit
such attached adjoint motives, and we will analyze our conjectures carefully only in

2. Explicitly, this means it is invariant both by inner automorphisms of G and by the pinned
outer automorphisms arising from the Galois action on the root datum.

3. Observe that a Q-valued invariant bilinear form on gq induces also a Q-valued bilinear form
on gq,«, characterized by the fact that their linear extensions to gq agree.
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this case. (One can handle the general case at the cost of a slight loss of precision,
simply extending coefficients from Q to a large enough number field.)

In the appendix we explain more carefully what the correct conjectures for motives
attached to automorphic representations should look like and why, if we suppose that
the Galois representation has centralizer that is as small as possible, these conjectures
imply the existence of an adjoint motive associated to w. Moreover, assuming the Tate
conjecture, this motive is uniquely determined up to isomorphism.

Remark 9. — We could have also in principle formulated this conjecture in terms of
Chow motives rather than Grothendieck motives, since as explained in Prop. 2.1.1—
assuming Beilinson’s filtration conjectures—every Grothendieck motive lifts to a Chow
motive which is well defined up to isomorphism. However, the formulation with
Grothendieck motives is more natural for two reasons:

1. The category of Grothendieck motives is (conjecturally) semi-simple Tannakian;
the Tannakian formalism is important to the way we formulate the automorphic
to motivic correspondence in the appendix. On the other hand, the category of
Chow motives is not even abelian in general. (See the introduction and Cor. 3.5
of [60] for a discussion of this issue.)

2. Technically, to define the relevant motivic cohomology group that occurs in
our main conjecture below, one needs to work with a lift to the category of
Chow motives. However, as explained in §2.1.11, the filtration conjectures imply
that this motivic cohomology group is nevertheless independent of the choice
of such lift, up to canonical isomorphism. Thus all objects involved in the main
conjecture below only depend on the associated Grothendieck motive.

Note that even in the more familiar setting of Shimura varieties, the known construc-
tions of motives associated to cohomological automorphic forms typically only yield
Grothendieck motives, eg. the case of GLs modular forms of higher weight that is
discussed in [59]. Thus it is psychologically useful to break up the problem of attach-
ing a motive to an automorphic form into two steps: first, construct a Grothendieck
motive, and then lift it to a Chow motive. In the setting that is of most interest in
this paper (non-hermitian symmetric spaces), neither of these steps is easy since the
locally symmetric space has no natural structure of an algebraic variety.
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CHAPTER 5

FORMULATION OF THE MAIN CONJECTURE

Here we combine the ideas of the prior two sections to precisely formulate the
main conjecture. (We have already formulated it in the introduction, but we take the
opportunity to write out a version with the assumptions and conjectures identified as
clearly as possible.)

We briefly summarize our setup. We return to the setting of §1.1 so that G is a
reductive Q-group without central split torus. Now let ¢# be the Hecke algebra for K
at good places, i.e., the tensor product of local Hecke algebras at places v at which
K is hyperspecial. We fix a character x : ¢/ — Q, and let

= {m,...,m}

be the associated set of cohomological automorphic representations which contribute
to cohomology at level K, defined more precisely as in §1.1. The set II determines x
and we suppress mention of x from our notation.

Just as in our introductory discussion in §1.1 we make the following

Assumption: Every 7; is cuspidal and tempered,

where, as in §1.1, “tempered” is a proxy for “tempered Arthur parameter” and is taken
to mean tempered at co and at one unramified place. We define

(5.0.1) HY(K),Qu={ac H(Y(K),Q) : Ta = x(T)a for all T € ¢/}

and similarly H*(Y (K), C)q, etc.

Let AdII be the adjoint motive associated to II, in the sense of Definition 4.2.1.
We have attached to G a canonical C-vector space aj, in §3. Also af, comes with a
real structure, the “twisted real structure” of Definition 3.1.2.

We shall first explain (§5.1) why the Beilinson regulator on the motivic cohomology
of AdII, with Q(1) coefficients, takes values in (a space canonically identified with)
afy, and indeed in the twisted real structure on this space. Then, after a brief review
of cohomological automorphic representations (§5.3) we will be able to define an
action of ag, on the cohomology H*(Y (K), C)n and then we formulate precisely our
conjecture in §5.4. Finally, Proposition 5.5.1 verifies various basic properties about
the action of af, (e.g., it is self-adjoint relative to Poincaré duality and it preserves
real structures).
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5.1. The Beilinson regulator

The motive AdII has weight zero. The Beilinson regulator gives

(5.1.1)
HY,(AdTL Q1)) *2% Hp((AdI)e, R)™® — Hp((AdI)g, €)% 429 g 229 o2

where the last two arrows are isomorphisms of complex vector spaces. Proceeding
similarly for the dual motive, we get a map

(5.1.2) Hb,(Ad* 1L, Q(1)) — ag,

and, just as in the introduction, we call L the image of (5.1.2); thus if we accept
Beilinson’s conjecture, L is a Q-structure on ag.

We want to understand how (5.1.1) interacts with the real structure on af,. Recall
that we have defined a second “twisted” real structure on af;, in Definition 3.1.2.

Lemma 5.1.1. — The map Hg(AdIl)c,R)"® — af, has image equal to the twisted
real structure on af,. In particular, the Beilinson regulator carries HjM(Ad I1,Q(1))
into the twisted real structure on ag,.

Proof. — We may as well suppose that (4.2.5) identifies the Wgr-action with the ac-
tion pg : Wr — Aut(g) arising from pg normalized as in (3.3.3). Also, (4.2.5) allows
us to think of the “Betti” conjugation cg on Hyr(AdIl) ® C = Hg((AdIl)c) ® C as
acting on g. From (4.2.3) the fixed points of cg are given by gq,  ® R and so cp is an
inner twist of the standard antiholomorphic involution. (By “standard antiholomor-
phic involution” we mean the involution of g with respect to the Chevalley real form.)
Since po(S!) preserves real Betti cohomology, cg commutes with po(S?).
Define an antilinear self-map ¢ on g via

((X) = Ad(wg) X,
where X refers to the standard antilinear conjugation, and wg is an element of @(R)
that normalizes T and takes B to B°P. Then ¢ also commutes with the action of po(S1).

The composition tcg is now an inner automorphism of g which commutes
with po(S!) and thus is given by conjugation by an element of 7. Thus ¢ and cp act
in the same way on the Lie algebra tof T.

4.2.5) ~ .. .

The image of Hg((AdII)c, R)"Wr (129) swr is just the fixed points of cg. However,
we have just seen that cg and ¢ act the same way on g"® C t. The fixed points of ¢
on g"r ~ a¥ give (by Lemma 3.2.1 and Definition 3.1.2) the twisted real structure.

O

5.2. Trace forms

Endow gq with any nondegenerate ©'Gq-invariant Q-valued quadratic form B ; it
gives by scalar extension a complex valued quadratic form on g. The pullback of this
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form under
Hp((Ad)c, Q) ~ 3.
defines (part (3) of Definition 4.2.1) a weak polarization @ on AdII: since . is an
inner form, the restriction of Bis actually Q-valued on it.
We may form the corresponding Hermitian form Q(z,cgy) on Hg((AdI)c, C);
when restricted to Hg((AdIl)c, C)"® ~ a,, this is given by

(5.2.1) (X,Y) € af; x ag — B(X,Ad(wg)Y),
where the conjugation is that with reference to gr, and wg is as in Lemma 5.1.1.

This form is real-valued when restricted to the twisted real structure, since (writing
just wX for Ad(w)X, etc.):

~ JE— ~

(5.2.2) B(X,wgY) = B(X,wgY) = B(wz'X,Y) = B(wgX,Y)

and %ﬁ = X, W =Y on the twisted real structure.

We warn the reader that, although real-valued, the form (5.2.1) need not be positive
definite on the twisted real structure. This corresponds to the fact that the form B
gives a weak polarization on AdII but not necessarily a polarization.

5.3. Review of cohomological automorphic forms

For any cohomological automorphic representation 7 for G, denote by €2 the natural
map

P
(5.3.1) Q) : Homgs_ (/\ g/, 7%) — p-forms on Y (K),

Qr (Y (K))

where 7% as usual, denotes the K-invariants in .

Indeed, QP(Y (K)) can be considered as functions on G(F)\ (G(A) x A" g/¢) /K3 K
that are linear on each A\? g/€-fiber. Explicitly, for X € g/ and g € G(A), we can pro-
duce a tangent vector [g, X] to G(F)gKS K € Y (K)—namely, the derivative of the
curve G(F)ge!*KS K at t = 0. This construction extends to X1 A---A X, € \" g/t
by setting

[97X1 A "'/\XP] = [g,Xl] JARERRA [gaXP]’
which belongs to the pth exterior power of the tangent space at the point gK. The
map () is normalized by the requirement that, for f € Homgs (A" g/t, 7K) and
X, € g/, we have

(5.3.2) Qg Xy A= A Xpl) = F(XL A== A Xp)(9)-

As discussed in §3.4, we may identify H?(g, K3 ;7") = Homgo (A" g/t,7%) for
unitary cohomological w. We will freely make use of this identification. In particular,
the map  defines a map on cohomology

(5.3.3) Q: HP(9,K° ;n%) —» HP(Y(K),C).
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This map is injective if Y (K) is compact, or if 7 is cuspidal, by [8, 5.5]; in particular, if
we have fixed a Hermitian metric on g/¢ we also get a Hermitian metric on the image,
by taking L?-norms of differential forms. We also put a metric on H?(g, K% ; 7¥) for
which (5.3.3) is isometric.

Moreover, this story is compatible, in the natural way, with complex conjugation:
if T € HP(g,K%;7X), we have Q(T) = Q(T), where T € H*(g,K%;7) is defined
so that T(v) = T(v) and the embedding @ — ( functions on [G]) is obtained by
conjugating the corresponding embedding for 7. If 7 and 7 are the same (i.e., they
coincide as subrepresentations of functions on [G], and so we have an identification
7 ~ 7) we shall say that T is real if T = T); in that case Q(T) is a real differential
form and defines a class in H?(Y (K),R).

5.4. Formulation of main conjecture
In the setting at hand, the map Q induces (see [8]) an isomorphism
(5.4.1) P H*(9.K%; nK) -5 H*(Y(K), C)n.
i=1

We have previously defined (§3.4) an action of A" a¥ on each H*(g, K% ;7/), and we
may transfer this action via  to get an action of A" af; on H*(Y (K), C)q.

We now formulate the main conjecture assuming that II satisfies the assumptions
formulated at the beginning of the section (in particular, it is tempered). We also need
to assume the existence of an adjoint motive attached to II and part (a) of Beilinson’s
conjecture (Conjecture 2.1.1) as extended to pure motives in §2.1.11. We will keep
these as standing assumptions for the rest of the article. Observe then that the image
of H:%(Q, Ad*II(1)) under (5.1.2) gives a well defined Q-structure on ag. Then we
have the following;:

Main conjecture (Motivic classes preserve rational automorphic cohomology). — The
induced Q-structure on \* a}, preserves

H*(Y(K),Q)n C H*(Y(K),C)n
for the action just defined.

5.5. Properties of the af, action

Proposition 5.5.1. — The action of \" ag; on H*(Y (K), C)n just defined has the fol-
lowing properties:

(i) Fiz a bilinear form Br on Gr, as in §3.5; it gives rise to a hermitian
metric on af and a Riemannian metric on Y (K) by that discussion.
Then if T € HI(Y(K),C)n is in minimal cohomological degree, we have
I1XT|| = | X|I|IT|| for X € A" ag; the hermitian metric on H*(Y (K),C)n is
that obtained by its identification with harmonic forms.
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(ii) The action of " af on H*(Y (K),C)n satisfies the same adjointness property
as that formulated in Lemma 3.4.2, with respect to the Poincaré duality pairing.

(iii) Suppose that the character x of the Hecke algebra is real-valued. Then the twisted
real structure on ag, preserves real cohomology H*(Y (K),R)m.

Proof. — The map (5.4.1) is isometric, so property (i) is now immediate from
Lemma 3.5.1.

It will be convenient, just for the remainder of the proof, to abuse notation and
write II for the direct sum @;_, m;.

For property (ii): Regard II as embedded in functions on G(Q)\G(A), by con-
jugating the elements of II. We note, first of all, that for T € H*(g,K%;II¥) and
T € H*(g, K%, TI") with deg(T) + deg(T") = dim(Y (K)) the pairing [y, ., (T) A (T")

is proportional to the natural pairing H*(g, K% ;11%) ® H*(g,Kgo,ﬁK) — (detp)*,
where we integrate I against II. (The coefficient of proportionality has to do with
choices of measure, and will not matter for us.) This integration pairing identifies II
with II, thus giving II an embedding into the space of functions on [G]; and so the

pairing

/ QT)AQT), T e H*(g,K%;II¥), T" € H* (g, Koo, II¥)
Y (K)

is proportional to the natural pairing on H*(g, K% ; IT¥) x H*(g, K ; IX). Then the
conclusion follows from Lemma 3.4.2.

For (iii) note that, by the discussion at the end of §5.3, the following diagram
commutes

(5.5.1) H*(g9, Koo, 1K) —— H*(Y(K),C)n
Jconjugation lconjugation
H*(g, Koo, IK) —— H*(Y(K), C)g.-
Our claim now follows from Lemma 3.4.3. O

To conclude, we discuss adjointness a little more. The Langlands parameter of the
contragredient II is obtained from II by composition with the Chevalley involution,
which we shall denote by Cy: this is a pinned involution of G that acts, on f, as the
composition of inversion and the long Weyl group element. The general conjectures
(see the appendix) predict that there exists an identification of motives 0 : AdII ~
AdII which fits into a commutative diagram

(5.5.2) Hy(AdTL C) 22,

[
[
He(AdTT, )22 5

)
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where C is the composite of Cg with an inner automorphism. We denote also by 0 the
resulting isomorphism A, (Ad™IT, Q(1)) — HJ, (Ad" II, Q(1))).
Lemma 5.5.1. — With assumptions as above: The action of Hcl%(Ad* I, Q(1))*

on H*(Y(K), C)u, induced by (5.1.2), and the similar action of HclM(Ad* IT, Q(1))*
on H*(Y(K), C)s, are adjoint to one another, up to sign, with respect to the Poincaré
duality pairing and the identification of motivic cohomologies induced by 0:

(fi- X1, f2) = —(f1, X2 f2),
where X1 € HY, (Ad"IL,Q(1))* and X, € H}),/(Ad" I, Q(1))* correspond under the
identification induced by 0.

Proof. — Conjugating the horizontal arrows in (5.5.2) we may suppose that the in-
duced actions of Wg on @, top and bottom, both arise from the maps py normalized
as in (3.3.3); since C intertwines these, it must be a conjugate of Cy by T

Thus we get:

e (3:3:2)

(5.5.3) HY,(Ad"TL, Q(1)) g ac
lb J/C l—w
1Y, (Ad T, Q1)) —— 5% 22 g,

where w is the long Weyl element on af;, and we used Lemma 3.2.1 (or the same
statements transposed to the dual Lie algebra). Our conclusion now follows from the
prior adjointness results (part (ii) of the proposition). O

This discussion has also shown:

Lemma 5.5.2. — If II ~ I, then the image of H@(Ad* I1,Q(1)) inside ag is stable
by w.
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CHAPTER 6

PERIOD INTEGRALS

6.1. — The remainder of the paper is devoted to giving evidence for Prediction 1.4.1.
As discussed there, we must analyze quantities of the type (1.4.8)—that is to say,
integrals of cohomology classes on Y (K) against cycles. In this section we will study
such integrals when the cycles come from a sub-locally symmetric space Z(U) defined
by a Q-subgroup H C G. We will relate these integrals to L-functions in two steps:
— Proposition 6.9.1 relates the integral of an L2-normalized automorphic coho-
mology class over Z(U) (i.e., the reciprocal of the left-hand side of (1.4.8)) to
a more standard automorphic period integral—that is to say, the integral of a
certain automorphic form over [H].

— Then, we rely on standard conjectures and assumptions about periods of auto-
morphic forms to express the latter in terms of L-values (Theorem 6.11.1).

The steps in the section are routine, but one must be careful about factors of ,
normalizations of metrics, volumes, and so forth. Similar results have been derived by
several other authors in related contexts; for example, see [58, §3].

The pairs (G, H) that we study are a subset of those arising from the Gan-Gross-
Prasad conjecture; we specify them in §6.3. There is no reason not to consider other
examples of periods, but these are convenient for several reasons:

— It is an easily accessible source of examples, but sufficiently broad to involve
various classical groups;

— There are uniform conjectural statements (after Ichino-Ikeda);

— Although we invoke simply the uniform conjectural statements, there are in fact
many partial results towards them known. (™

Recall our notation A ~ B whenever A/B € Q*.

6.2. Setup on submanifolds
Let H C G be a reductive Q-subgroup.
1. For example, in the PGL cases it seems that all the hypotheses of §6.10 are known except (iv),

the exact evaluation of archimedean integrals on the cohomological vector.
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We write H, G for the R-points, K., for a maximal compact subgroup of G and
Us for a maximal compact subgroup of H. We write (e.g.,) dg for the dimension
of H and rg for its rank (for us this means always the geometric rank, i.e., the rank
of the C-algebraic group Hg). We introduce notation for the various Lie algebras:

g = Lie(Gc), ¢t = Lie(Kw)c, p=g/t pc = dim(p),
h = Lie(Hc), u = Lie(Uy)c, e = b/u, pr = dim(pg).

These are complex vector spaces, but they are all endowed with natural real forms;
as before we denote (e.g) by hr the natural real form of §, and so forth.

Let U C H(A¢) be a compact open subgroup, and define the analog of Y (K') (see
(1.6.2)) but with G replaced by H and K replaced by U:

Z(U) = H(Q)\H(A)/ULU.

Fixing an H-invariant orientation on H/U? , we get an H(A)-invariant orientation
of H(A)/US U and thus an orientation of Z(U). (If Z(U) is an orbifold, choose a
deeper level structure U’ C U such that Z(U’) is a manifold; then Z(U’) admits a
U/U’-invariant orientation.) This discussion gives a fundamental class

(2(U)] € H,y' (Z(U), Q)

H
where we work with Q coefficients, rather than Z coefficients, to take into account
the possibility of orbifold structure.
Let g = (goo, 9f) € G(A) = G(R) x G(Ay) be such that Ad(g7!)UsU C Koo K.
Then also Ad(g3!) carries U2, to K3, . Then the map induced by right multiplication
by g, call it

(6.2.1) L Z(U) 2% Y(K),

is a proper map. Moreover, the action of Uy, /U2, on Z(U) corresponds, under ¢, to
its action on Y (K) via Ad(9}) : Uso /U — Koo /KS,.
The image of Z(U) is a py-dimensional cycle on Y (K) and defines a Borel-Moore
homology class
L[Z(U)] € HEM(Y (K), Q).
Our goal will be to compute the pairing of this with classes in H*(Y(K), Q)m, and
interpret the result in terms of “automorphic periods.”

Remark 10. — Now the class ¢4[Z(U)] can only be paired with compactly supported
classes. The classes that we pair with will be attached to cuspidal automorphic rep-
resentations. Therefore, the associated cohomology classes lift, in a canonical way, to
compactly supported cohomology, by [8, Theorem 5.2]; if w is a cuspidal harmonic
form, the integral of t*w over Z(U) coincides with the pairing of this compactly sup-
ported class with ¢,[Z(U)]. In other words, in the setting of §1.1, the map

H;(Y(K),C) — H*(Y(K),C)
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induces an isomorphism when localized at the ideal of the Hecke algebra corresponding
to II. In what follows we will then pair ¢,[Z(U)] with such cuspidal cohomology classes
without further comment.

6.3. — We will study the following cases:

1. Let E = Q(v/—Dg) be an imaginary quadratic field. For (V,q) a quadratic
space over E, with dim(V') > 2, set (V/,¢') = (V,q) ® (E, x?), and put

Hg =SO(V) C Gg =SO(V’) x SO(V),
with respect to the diagonal embedding. Put H = Resg,q He, G = Resg/q GE.

2. Let E = Q(v/—Dg) be an imaginary quadratic field. For V' a finite-dimensional
E-vector space, set V! =V & E and put

Hg = GL(V) € Gg = PGL(V’) x PGL(V).
Define H, G by restriction of scalars, as before.
3. Let E = Q. For V a finite-dimensional Q-vector space, set V' = V @ Q and put
H=GL(V) Cc G =PGL(V') x PGL(V).
In this case, we set Hy = H,Gg = G.

These cases correspond to cases of the Gross-Prasad conjecture where the cycle
Z(U) has dimension py equal to the minimal tempered cohomological degree for Y (K),
i.€.,

1
(6.3.1) pr = 5 (dg —dx — (1 —Tk)) <= P — 2P =76 ~ Tk
This dimensional condition is satisfied in the cases Upq X Upy1,q D Up, and
SOp.q X SOp+1,g O SO, 4 only when g = 1; that is why we did not discuss these cases.

The numerical data in the cases we will consider is presented in Table 1. We shall
also need the following lemma, which assures us that the archimedean component of g
(as defined before (6.2.1)) is almost determined:

Lemma 6.3.1. — In all examples of §6.3, the fized point set of (the left action of) Us
on G/K is a single orbit of the centralizer of H in G; in particular, the condition
Ad(9:)Us C Koo determines goo up to right translation by Koo and left translation
by this centralizer.

Note that Ko, /K<, is nontrivial only in case (3), i.e., the GL cases over Q. In this

case, the induced map
Ad(g!) 1 Uso /UL — Koo /K2,

will be an isomorphism; both groups are isomorphic to +1. In particular, right trans-
lation of g by Ko does not affect the image of the embedding Z(U) — Y (K), and
indeed affects the embedding itself only through the action of Uy, /US, on the source.

The Lenma will mean that, in computations, we may suppose that Ad(g.')H C G
arises from the “standard” inclusion of the real group of type H into the group of
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type G. By explicit computations with the standard realizations, we see that this
inclusion is compatible with Cartan involutions. In other words, if 6 is the Cartan
involution of G that fixes Ko, then Ad(g;!)H is stable by 6 and 6 induces a Cartan
involution of Ad(g ') H, fixing Ad(goo) 'Use-

Proof. — In what follows, O, and U, mean these compact groups in their standard
realizations as stabilizers of the forms Y z? on R™ and }_ |2;|? on C". The embed-
dings O,, — O,,41 etc. are the standard ones also.

Consider, first, case (3) in the numbering at the start of §6.3: We must compute the
fixed points of O,,_1 acting on pairs of a scaling class of a positive definite quadratic
form on R™~!, and a scaling class of a positive definite quadratic form on R™. There is
a unique fixed point on scaling classes of positive definite forms on R™"~!. Thus, we are
left to compute the fixed points of O,,_; acting on scaling classes of quadratic forms
on R™: A positive definite quadratic form ¢ on R™ whose scaling class is fixed by O,,_1
is actually fixed by O,,_; (it is clearly fixed up to sign, and then definiteness makes it
fixed). By considering the action of —Id € O,,_; we see that ¢ = Z;:ll z2 + (azy)?.
Such forms constitute a single orbit of the centralizer of GL,,_;(R) within PGL,(R),
which implies the claimed result.

The remaining cases follow similarly from the computation of the following sets:

Case 2: The fixed points of U, _; acting on scaling classes of positive definite Hermi-
tian forms on C™:

As above, any such form is 2?2—11 |22 + a|z,|?; again, these form a single
orbit of the centralizer of GL,,_1(C) within PGL,,(C), as desired.

Case 1: The fixed points of SO,, acting on SO,41(C)/SO,+1(R).

Suppose SO,, C ¢SO, 119! for g € SO,,;1(C); then SO,, fixes the sub-
space gR"™1 C C™*!; this subspace gives a real structure on C"*! and of
course E?:ll z? will be positive definite on this subspace.

For n > 3, the only R-structures of C™*! that are fixed by SO,, are of the

form a.R" ® B.R, (a,8 € C*), and moreover if > z2 is real and positive

definite on this space, this means it is simply the standard structure R™*1.
It follows that gR"*! = R™*!, and so g € SO,,;1 as desired. Thus the fixed
set mentioned above reduces to a single point.

For n = 2, there are other real structures fixed by SO,,, namely
{z +ip(r):z € R*} R,

where ¢ € My(R) commutes with SO,. However, for Y z? to be real-valued
on this space we should have ¢ + @7 = 0; the real structure is therefore of
the form

{(z +iAy,y — iAz) : (z,y) € R’} ® R,
for some A € R; definiteness of Y 27 means that A% < 1. This is the im-

age of the standard real structure by the matrix ﬁ (_1 s ), which lies
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in SO2(C) C SO3(C) and (obviously) centralizes the commutative group

S04(C). 0
G ‘ H ‘ da/k ‘ duyu ‘ dg/k — 2dmu
S0, (C) x SO,41(C) | SO,(C) n? non n
PGL,(C) x PGL,;1(C) | GL,(C) | 2n?2+2n—1| n? 2n —1
PGL,(R) X PGL,41(R) | GL,(R) | n2+2n—1 | 25z n—1

TABLE 1. The cases of the Gross-Prasad family that we will study

6.4. Setup on automorphic representations and differential forms

We now fix assumptions on the automorphic representations to be studied.

Let II be as in §1.1: a (near-equivalence class of) cohomological automorphic rep-
resentation(s) for G at level K, satisfying the assumptions formulated there. In par-
ticular, we may define, as in (5.0.1), the II-subspace H*(Y (K),Q)n C H*(Y (K), Q)
of rational cohomology.

In fact, we want to impose a stricter condition, namely a multiplicity one condition
on cohomology. This is very convenient: it makes everything defined over Q and forces
II to be a singleton.

6.4.1. The condition in the case of imaginary quadratic base field. — In the cases be-
sides PGL,, x PGL,, 11 over Q, we assume that the level structure K has multiplicity
one for II, in the sense that

(6.4.1) dim HY(Y (K), Q) = 1.

In particular, in this case, there is just one automorphic representation in II con-
tributing to this cohomology, II = {x} say; in particular 7 = 7. We ask that 7 be
tempered cuspidal (just as in our prior discussion in §1.1). In this case, we obtain
from 7 a harmonic differential form

w € QY (K)),

whose cohomology class generates H?(Y (K),R)p. This form is unique up to real
scalars.

6.4.2. The case of PGL,, x PGL, 1 in the case of rational base field. — In the re-
maining case G = PGL,, x PGL,41/q, it is impossible to satisfy (6.4.1) because of
disconnectedness issues. We ask instead that (?

(6.4.2) dim HY(Y (K), Q)% =1,

2. For example, for the group PGLg2, a tempered cohomological representation contributes two
dimensions to cohomology—an antiholomorphic form and a holomorphic form; these are interchanged
by the action of O2, and so (6.4.2) holds.
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where + denotes eigenspaces under Ko /KS ~ {%1}. This again means there is
just one automorphic representation II = {r} contributing to this cohomology (see
discussion of cohomological representations for PGL, (R) in [45, §3] or [54, §5]); we
again require that m = 7 is tempered cuspidal. In this case, we similarly obtain from 7
harmonic differential forms

wt € QUY (K))
whose cohomology classes generate H4(Y (K), R)3i.

6.4.3. Rational structures. — Under our assumptions above, we discuss rational struc-
tures on the representation.
Fix a character x : Koo /K3, — {£1}. Both sides of

q q
(6.4.3) Hom(KOO’X)(/\ g/%, 7rK) ~ Hom(Koo’X)(/\ 9/t 7o) ® 7ch(
are one-dimensional, and the map T' — Q(T') of §5.3 identifies this with H4(Y (K), C)X.

Ky
This cohomology space is one-dimensional, and has a rational structure, namely

HI(Y (K), Q).

Note that the induced real structure on the left-hand side is simply the natural one
(arising from combining the real structures on g, € and on 7%, thought of as a space
of complex-valued functions). In what follows we may accordingly refer to an element
of Homk__ ,)(A\? g/t 7%) as being “real.”

It also follows, examining the right-hand side of (6.4.3), that the Hecke action on
each mXv is by rational scalars, and therefore 7, itself admits a Q-rational structure
(arbitrarily take a K,-stable vector, and take the rational span of its translates). Our
situation has been rendered particularly simple by our multiplicity one hypothesis—
see [77, Lemma I1.1] for a related argument using multiplicity one, and [37] for a more
complete discussion of rationality fields.

6.44. L functions. — In the situation above, we can consider the L-functions
L(r, p, s) attached to a representation p of the dual group of G; here, we will only
be concerned with the standard representation and the adjoint representation. (Here,
the standard representation of the product of two classical groups is simply the tensor
product of their standard representations.)

Let us summarize the state of knowledge concerning meromorphic continuation
of these L-functions (this is simply assumed in Beilinson’s conjectures, but much is
known unconditionally). For the partial L-function—that is to say, the L-function
ignoring archimedean factors and factors at ramified finite places—the situation is as
follows:

— In the PGL cases, both standard and adjoint L-functions have meromorphic
continuation in s because of the Rankin-Selberg method [32].

— In the SO case, the situation is the same if we impose the assumption that

(*) the form m has a transfer 7* to the general linear group
GL,, X GL,, (with (m,m’) = (n,n) or (n —1,n+1)).
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Here we use in addition to the Rankin-Selberg method, the theory of exterior
square L-functions from the Langlands-Shahidi method [64] to handle the ad-
joint L-function.

In more detail, (*) demands an automorphic form 7* on the general linear
group whose Hecke eigenvalues at almost all primes coincide with the functo-
rial transfer of 7. Assumption (*) has been proved by Arthur in the quasisplit
case [1]—the form 7* need not be cuspidal, but it is readily described in terms
of cuspidal constituents. It is currently the focus of substantial work to extend
to the general case (see [38] for parallel work in the case of unitary groups).

In addition (assuming (*) in the orthogonal case) one has definitions of the corre-
sponding local L-factor at all places, and work of Henniart [27, §1.2] and [28] moreover
shows that the local factors thus defined are, in fact, compatible with the local Lang-
lands correspondence for GL.

In any case, for our main theorems, it is not necessary to assume (*); rather we can
simply use the assumptions that are already made in Beilinson’s conjecture. Namely,
the output of this section involves only the partial L-function omitting ramified fi-
nite places (see Theorem 6.11.1); this manifestly agrees with the “motivic” L-function
whenever one has a motive that matches the L-function at good places, and the as-
sumptions that are part of Beilinson’s conjecture imply that it admits a meromorphic
continuation. We will transition to the completed motivically normalized L-function
(i.e., including ramified finite factors) after (7.2.4).

6.5. Tamagawa measure versus Riemannian measure

On [G] there are two measures, one arising from the Riemannian structure and one
from the Tamagawa measure. Our eventual goal is to compare them. For the moment,
we explain carefully how to construct both of them:

For the Riemannian measure, we first fix once and for all the “standard” represen-
tation of G, or rather of an isogenous group G’. Let n : G’ — GL(W) be the following
Q-rational faithful representation: in all cases, we take W to be Resg /Q(V’ @®V), and
we take G’ to be the restriction of scalars of SL(V’) x SL(V) in cases (2) and (3), and
G’ = G in case (1).

Define the form B on gq via

(6.5.1) B(X,Y) = trace(dn(X).dn(Y)).

This defines a G-invariant Q-valued quadratic form B on the Lie algebra. Note that
(the real-linear extension of) B is invariant by the Cartan involution 6 on gr, by
explicit computation. Moreover B is nondegenerate and negative definite on the as-
sociated splitting g + ipr, because the standard representation 71 just introduced
carries the associated maximal compact of G'(C) into a unitary group. It follows
that B is negative definite on £r and positive definite on pgr. In particular, B defines
a Riemannian structure on Y (K).
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We will also use the same letter B to denote the corresponding Hermitian form on
the complexification of any of these spaces, e.g., (—, —)p on p ~ g/¢ is the Hermitian-
linear extension of B from pgr to p.

We shall also equip hq C gq with the restriction of the form B, i.e., with the form
arising similarly with the representation n|h. When extended to hg this coincides with
the pullback of B under Ad(g3!) : hr — @R, since the form B was invariant; therefore
the restricted form is preserved by a Cartan involution fixing U, (see remark after
Lemma 6.3.1), and similarly defines a Riemannian structure on Z(U).

For Tamagawa measure, what one actually needs is a measure on ga g, where Aq is
the adele ring of Q. Choose a volume form on gq:

(6.5.2) wg € det(gg)-

Let 9 be the standard additive character of Ag/Q, whose restriction to R is given
by = +— e?™® We choose the 1),-autodual measure on Q, for every place v; from
that and wg we obtain a measure on g, = g ® Q, for every place v, and so also a
measure p, on G(Q,).

By abuse of notation we refer to all the measures pu, as “local Tamagawa measures.”
They depend on w¢, but only up to Q*, and their product [[, u., is independent of wg.

We proceed similarly for H, fixing a volume form wy € det(h*), which gives rise
to local Tamagawa measures on H(Q,) and a global Tamagawa measure on H(A).

The last needs a short discussion: Note that in case (2) and (3) the group H has
a center equal to G,,, and so the product of local measures is formally divergent;
however, [T, (1 — g, ')~ 'u, is convergent, and whenever we write an integral over H
against the measure [] p., it will appear in combination with a product of ¢ functions
that formally contains the factor ((1). We shall therefore understand that this (1)
should be incorporated into the measure, i.e., {(1) is removed from the expression
outside the integral, and the measure is modified to be [], (1 — q; 1) i,. We hope
this causes no confusion; the expressions are always formally valid and then literally
valid when interpreted in this way.

6.6. Lattices inside Lie algebras

We choose an integral lattice inside g and &:

For g, we simply choose a lattice gz C gq of volume 1 for wg, i.e., (wg, det gz) = 1.

For £, Macdonald [44] has specified a class of lattices £5"*" C ¢g deriving from a
Chevalley basis. First choose in £ a Chevalley basis associated to the complexification
of the compact real Lie group K . This can be done in such a way that the compact
form £ is the R-linear span of the torus elements of v/—1H; (where H; are the torus
elements indexed by simple roots), together with X, + X_, and i(X, — X_,), where
« varies over all positive roots. We take ‘Eczmpt to be the integral span of these elements.
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With these definitions, we define discriminants of g, ¢, p thus:

(6.6.1) disc g := (det gz, det gz)pB,
(6.6.2) disc £ := (det €5, det £5""") _p,
discg
6.6.3 di = .
( ) 1scp disc €
Note that
(6.6.4) disc g = (wg,wa) 5

and that the signs of the discriminants of g, £, p are given by (—1)9%, 1,1 respectively.
Also all these definitions carry over to H: in particular, we define disc py in a similar
way.

We need:

Lemma 6.6.1. — The discriminants of g, & p all belong to Q*.

Proof. — For disc(g) this follows from the fact that B is Q-valued. It is enough to
prove the result for €. There we observe that
dg+r
detbz € Q% i 2 det €Y,
where P%hev is a Chevalley lattice in ¢ arising from the complexification of K2 . The
representation 7 defining the bilinear form B gives a representation ¢ of the Cheval-
ley group underlying £c; this representation, like all representations of the complex-
ified Chevalley group, can be defined over Q and so the trace form takes rational
values on E%he", as desired. O

Note that the same reasoning applies to H; thus the discriminants of h,u,py all
lie in Q* too.

6.7. Factorization of measures on GG

First let us compute the Riemannian volume of K.,. Macdonald [44] shows that,
for any top degree invariant differential form v on K2, regarded also as a volume
form on the Lie algebra in the obvious way, we have
2nmitl

(6.7.1) v-volume of KZ_ = H

%

—v(det B5"7) ~ A - v(det B5"),
mg:

where Ag = n(4x+7x)/2; here the m; are the exponents of the compact Lie group
K¢, so that > m; = (dx — rk)/2. Therefore,

vol(KZ,) := Riemannian volume of K2 w.r.t. —-B|, ~ Ak - /disc(®).
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We can factor det(gy) ~ det(¥g) ® det(pg), and with reference to such a factor-
ization,

(6.6.4)
wg =

1

\/m wrg @ wp,

where wi € det 8; is determined (up to sign) by the requirement that (wx,wk)_p =1,
and similarly wp € det p} is determined by requiring that (wp,wp)p = 1. We can
regard wg and wp as differential forms on K, and G/K,, extending them from the
identity tangent space by invariance; the measures on K., and G/K, defined by the
differential forms wgx and wp coincide with the Riemannian measures (associated
to —B le and B |‘g respectively).

This implies that

local Tamagawa measure on G pushed down to G/K2, ~ vol(K2,)
(6.7.2) - - 5 = -
Riemannian measure on G/K w.r.t. B|p /| disc g

~ Ak - y/discp.

6.8. Tamagawa factors

Let py denote the volume of K C G(Af) with respect to Tamagawa measure (more
precisely: the product of local Tamagawa measures as in §6.5, over finite places).
Evaluating py is a standard computation, and is particularly straightforward in the
split cases where we use it: There is an L-function Ag attached to G, with the

im G
property that its local factor at almost all places is given by %; for example, if
P

G = SL,, then Ag = ((2)...¢(n). Then u; ~ Ag'. We shall later use the notation
Ag,, = local factor of Ag at the place v.
Let us introduce
(6.8.1) Ag/k = Ac/Ak,

where Ay = 7(4x+7K)/2 35 before. We can define similarly Agu-
Now examine the Riemannian measure on Y (K). We write

(6.8.2) Y(K) =[] Ti\G/KS,,

where I = G(Q)\G(Af)/K and, for ¢ € I with representative g;, we have
I =G(Q) ﬂgiKgi_l. If we choose a fundamental domain F; C G(R), right in-
variant by K2 , for the action of I';, then ], F;¢; K is a fundamental domain in G(A)
for the action of G(Q), and F;g;K maps bijectively to Y (K);, the ith component
of Y(K) under (6.8.2). The global Tamagawa measure of F;g; K equals p multiplied
by the local Tamagawa measure of F;; on the other hand, the Riemannian measure
of Y(K); is the Riemannian measure of F;/K¢_, and so by (6.7.2) we have

projection of Tamagawa measure to Y (K) _1 .
~ AL +/disc p.

6.8.3
( ) Riemannian measure on Y (K) G/K
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Similarly,

projection of Tamagawa measure to Z(U) _ -
.8.4 ~ A7/ d .
(6:84) Riemannian measure on Z(U) H/ Vv AsC P

6.9. Cohomological periods versus automorphic periods

We now carry out the first step mentioned in §6.1. Our situation and notation on
groups, manifolds, automorphic forms differential forms and measures is as stated in
§6.2-§6.5.

Proposition 6.9.1. — Fiz v% € det(pgr) with (v, v%)p = 1; let vy = Ad(9: vy
the the corresponding element of NP¥ p

det(pm) /\JJH Adle) /\P

IfT € Homgs (AP g/t 7) lies in a Koo /K, eigenspace and induces the differential
form Q(T) on Y (K), as in (5.3.1), then

2 2
Loy o] (dise p)!/? 1LV i o7 )1
D), 2w P Bk @), Tom)
(where we regard the statement as vacuous if T'(vg) = 0). Here gT (vir) is the translate
of T(vy) € ™ by g = (900, 9f), and (T(vy),T(vy)) is the L*-norm f |T(ver)|? with
respect to Tamagawa measure.

On the left-hand side the L?-norm of Q(T) is taken with respect to Riemannian
measure® on Y (K) induced by B (thus the subscript R), whereas on the right-hand
side everything is computed with respect to Tamagawa measure.

(6.9.1)

Proof. — We follow the convention that a subscript R will denote a computation with
respect to the Riemannian measure induced by B. Although this measure is defined
on the locally symmetric space Y (K), we will also refer to a “Riemannian” measure
on [G]; this is simply a Haar measure that is normalized to project to the Riemannian
measure under [G] — Y (K).

We want to integrate ¢*Q(T) over Z(U), for which we will first evaluate *Q(T)
against a unit length element in the determinant of a tangent space. Take a point
in Z(U) represented by h € H(A), with tangent space T', and consider a positively
oriented unit length element of the top exterior power /\dimTT. In the notation
established after (5.3.1) such an element is denoted by [h, %], and its pushforward
by ¢ is given by

[hg, Ad(9")vEy) = [hg, va.
Consequently, the value of ¢*Q(T") on this unit length element is given by T'(vg)(hg).

3. The reason we use Riemannian measure at all is that it interfaces well with the action of ag
(e.g., Proposition 5.5.1 part (i)).
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The integral of .*Q(T) over Z(U) is therefore the same as the integral of T'(vg)(hg)
over Z(U) with respect to Riemannian measure. Note that h +— T(vg)(hg) in-
deed defines a function on Z(U): for v € US, writing ' = Ad(gz')u, we have
T(vy)(hug) = T(vg)(hg -v') = T(u' - vy)(hg), but v preserves vy, because u pre-
serves 9.

Therefore, when we integrate Q(T") over the cycle representing ¢..[Z(U)] we get

6.8.4 -
/ QT =/ gT(l/H)dRh( ~ )AH/U\/dISC pH/ 9T (v )dh.
Z(U) Z(U) [H]

here dr is Riemannian measure on Z(U) and dh is Tamagawa measure, and
g = (goo, g7) as before; we also used the fact (discpz)'/? ~ (discpm) /2.

Next we compute the norm of Q(T") with respect to Riemannian volume and com-
pare it to the Tamagawa-normalized L? norm of T(vg). Let 3 be a B-orthogonal
basis for A”” pr. For each = € .3, if we evaluate Q(T') at = (considered at the tangent
space of the identity coset) we get, by definition, T'(z) evaluated at the identity. More

generally the sum
Y IT(@)P?

zERB
defines a function on [G]/K that is K -invariant, and therefore descends to Y (K);
its value at a point of Y/(K) is the norm of Q(T') at that point. Integrating over Y (K)
with respect to Riemannian norm, we see

(6.9.2) (QUT), AR = fyey 10 (Laoes I T@)I?) dry
(6.9.3) _ eragCeea TORRS 7y ) 10y
(6.9.4) = %(T(VH%T(VH»R-
Here we define
(6.9.5) IT(]* = X e n(T (@), T(2)) L2 (c))

and the L?-norm is now computed with respect to Tamagawa measure on [G]. After
translating (6.8.3) between Riemannian and Tamagawa measure for (T'(vy), T(vy)) R,
the result follows from Lemma 6.9.1 below. O

Lemma 6.9.1. — Notation as above; in particular (G,H) are as in §6.3 and B is
the trace form defined in (6.5.1). Let T € Homko (A"" g/t %) lie in a Koo/K2,
eigenspace (necessarily one-dimensional, see §6.4). Let vy be as in Proposition 6.9.1,
and the norm ||T|| be as in (6.9.5). Then

<T(VH)7T(VH)> _ <gooT(VH)agooT(l/H)> c Q

IT||* Ve, vi) B IT|1*(ve, vi)

Note that (vy,vy)ps = 1, by the way it was defined in the statement of Proposi-
tion 6.9.1, but we prefer to write the expression above because it is scaling invariant.
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Proof. — Observe the ratio under consideration is invariant under rescaling the norm
either on source or target of T, or rescaling 7', or rescaling vy. The validity of the
statement depends only on the data

(6.9.6) (G(R) D Koo, HR) D Uso, goos Moo, T)
together with the scaling class of the form induced by B on pr and py. By

Lemma 6.3.1, it suffices to treat the case when g,, = e, the identity element, and
G(R) D Koo, HR) D Uy is one of the following:

(6.9.7) PGL,(R) x PGL,41(R) D PO, x PO,41, GL,(R) D O,.
(6.9.8) PGL,(C) x PGL,41(C) D PU,, GL,.(C) D U,.
(6.9.9) S0,,11(C) x S0, (C) D SOpn41 X SO, S0,,(C) > SO,.

In all cases, O and U refer to the standard orthogonal form Y z? and the standard
Hermitian form 3 |2;|2.

In other words, the assertion in question is a purely archimedean one, and we may
freely assume that G, H are the Q-split forms in the first case, and (the restriction
of scalars of the) Q(¢)-split forms in the second and third cases. With these Q-struc-
tures, the inclusion of H into G is Q-rational, the form B remains Q-rational on
the Q-Lie algebra, and moreover the maximal compacts Uy, Ko described above are
actually defined over Q. Therefore, pr and also A" pr inherits a Q-structure, and
the line Rvg C AP¥ pg is thus defined over Q. We may freely replace vy, then, by a
Q-rational element vj; € R.vy.

First let us consider the latter two cases: Ggr is a “complex group” and so
Ko =KY%. In this case (see §3.4.1 or the original paper [76]) T factors through
a certain Ko.-type § C 7o, which occurs with multiplicity one inside A’” p. In
particular, (T'(v), T (v)) is proportional simply to (projs(v),projs(v))p. The ratio in
question is therefore simply

(dim )~ <pr0j5V§;7pf0jav}4)B )
<IJH,VH>B
It suffices to see that projsvf is Q-rational. However, the isomorphism class of ¢ is
fixed by outer automorphisms of K..: the highest weight of § is the sum of positive
roots, and the character of § on the center of K is trivial. It follows that projs, as
a self-map of A7 p, is actually defined over Q.
In the remaining case (6.9.7), fix a character x : Koo — {£1}. The subspace

PH PH
Hom(/\ p, mo0) =) € Hom(/\ p, 7o)

transforming under (K, ), remains 1-dimensional (if nonzero). This space consists
precisely of the K,,-homomorphisms

PH

Np — oo @ x.

In this case there is a unique irreducible K..-representation &' C A" p which is
common to A”” p and Too|,  ®X- This ¢’ splits into two irreducibles when restricted
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to K% = PSO,,.1 x PSO,(R); these two irreducibles are switched by K., /K2,

which is just the outer automorphism group of K% , and each irreducible occurs with

multiplicity one inside 7, (one in each irreducible factor of 7 [ ). It follows
n41 n

that the projection from AP” p to the &’-isotypical component is actually defined
over Q, and we can proceed just as before. O

6.10. Working hypotheses on period integrals

We now simplify (6.9.1) a little bit further using the Ichino-Ikeda conjecture [29].
Note that the original conjectures of Ichino and Ikeda were formulated only for or-
thogonal groups, but in fact the analogue of their conjecture is known to be valid
in the GL case (see, e.g., [57, Theorem 18.4.1], although the result is well-known to
experts).

At this point it is convenient, in cases (1) and (2) from §6.3, to work with the
E-groups Hg, Gg instead of their restriction of scalars to Q. Recall that we regard
E = Q in the remaining case.

To normalize Tamagawa measures, we must choose a measure on F, for each place;
we choose these measures so that the volume of Ag/FE is 1 and so that the measure
of the integer ring of E, is Q-rational for every finite place v, and 1 for almost every
place v. Note that this implies that, for v the archimedean place of F,

6.10.1 measure on F, ~ DY2. Lebesgue.
E

Fix now E-rational invariant differential forms of top degree on Hg and G g and use
this to define Tamagawa measures dh and dg on Hg(Ag) = H(Aq) and Gg(Ag) =
G(Aq), thus on [H] = [Hg] and [Gg] = [G]; these global Tamagawa measures
coincide with the ones made using Q-rational differential forms.

We factorize dh and dg as [[ dh, and [] dg, where dh,,dg,s are local Tamagawa
measures, and the factorization is over places of E rather than places of Q. As before,
the dh,,dg, depend on the choices of differential form, but they only depend up
to Q*, since |e|, € Q* for each e € FE and each place v.

We will use the following expected properties; not all are presently known, and
thus we regard the currently unproven ones as assumptions. (i) is known in the PGL
cases and is the Ichino-Ikeda conjecture in the orthogonal case; (ii) is known in all
cases and it should be possible to establish (iii) with some effort. Finally (iv) is a
problem of special functions.

(i) (Global integral): Suppose that, with reference to a factorization 7 = @ 7y,
gT (ve) can be factored Was @, ¢, and factorize also the inner product. Then

2
| Jyeay 9T (vi2) | L S (g poldne
f[c] |T(ve)|?dg v (Pv,0v) ’

4. In our application, we will only have to deal with a factorizable vector, because of the one-
dimensionality of (6.4.3). However, we note for completeness that knowledge of a factorizable Her-
mitian form on pure tensors determines the Hermitian form; the Hermitian forms arising from the
periods we consider are factorizable by multiplicity one.
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where the right-hand side is regularized as a global L-value according to (ii)
below.

This is the conjecture of Ichino-Tkeda [29]. Its validity in the PGL case is
folklore, see e.g., [57, Theorem 18.4.1].

(Local integrals at almost all nonarchimedean places): At almost all nonar-
chimedean places v, with local Tamagawa measures dh,, we have
Jar,) (hopos o) dhy _Ban L(%,mv;p)

<<Pva(pv> A%I,y L(laﬂ-mAd)’

:=LHS, :=RHS,

where the representation p of the L-group of G is that corresponding to the
Rankin-Selberg L-function in the SO cases, and that corresponding to the square
of the Rankin-Selberg L-function in the PGL cases. Also Ag , and Ag,, are the
local factors described in §6.8.

This is known in the SO cases by [29, Theorem 1.2] (note that our measure
normalization differs from theirs), and in the PGL cases by [26, §2].
(Local integrals at the remaining nonarchimedean places) If v is a nonar-
chimedean place and 7, admits a Q-rational structure (as is the case in our
setting, see §6.4.3), then for ¢, in this Q-structure we have

(6.10.3) LHS, € Q,

(iv)

(6.10.4)

where LHS,, is the left-hand side of (6.10.2).
We believe this should not too difficult to show— on the left hand side, for
example, the ratio w is already a rational-valued function of h,,. However,

we do not know a reference, and to make the argument carefully would take us
too far afield.

(Rationality, archimedean places) For v the unique archimedean place of E, let T
and vy be as in Lemma 6.9.1. The condition we will enunciate depends only on
the same archimedean data as in (6.9.6), and we thus may freely assume (just
as in the discussion following that equation) that g, = e and that (Ggr,Hgr)
have been put in the standard position of Lemma 6.3.1.

vyPu

Moreover, if we are in the PGL,, x PGL,4+; over Q case, assume that T
transforms under the character of Ko, /K2 =~ {£1} given by x — z"*!: this is
the only case that will be encountered in our application in §7, and the specific
choice of character arises from numerology discussed in §7.0.1.

Finally write ¢ € 7y for the archimedean component of the factorizable
vector gooT' (v ); this is uniquely defined up to scalar multiple, and the associ-
ated line is characterized purely locally (take the image of vy under a nonzero
element of Homgs (A" g/¢ 7o) and translate by goo).

With these choices of data, we have
LHS, N DdH /2
RHS, B
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where Dg was the absolute value of the discriminant of E. (We understand here
that the RHS,,, which involves an archimedean L-factor, is defined via the local
Langlands correspondence for archimedean fields.)

Aside from the factor D%H / 2, this simply states the belief that “in good sit-
uations, the archimedean integral behaves like the nonarchimedean integrals.”
This belief must be applied with caution, see e.g [31] for other examples where
this is expected to be false, but seems reasonable in the instances at hand. The
factor D%H /2 i necessary to make the conjecture independent of E, because of
(6.10.1). Note the very fact that LHS, is nonzero is not known in all cases; it
has been proven by B. Sun by a remarkable positivity argument in the GL,
cases [68].

6.11. Summary
Combining Proposition 6.9.1 with the working hypotheses of §6.10, we have proved:

Theorem 6.11.1. — Let.: Z(U) — Y (K) be, as in §6.2, a map of arithmetic manifolds
associated to the inclusion H C G and the element g = (9oo, 95) € G(A), as in §6.3.
Let m be as in §6.4, a cohomological automorphic representation for G, tempered
at 0o and cuspidal, with m = 7.
In the PGL,, x PGL,11/q case let x be the order 2 character of Ko, described after
(6.10.4); otherwise we understand x to be trivial. Let

q
T € Homk . ) (/\ 8/¢,7%)

be nonzero and real, and let Q(T) be the associated differential form on Y (K) (as in
(5.3.1)).
Assume the working hypothesis on period integrals (§6.10). Then

(6.11.1) (IZ(U) L*Q(T)) € Qereso <L(ur)(%’w’p)> ,

<Q(T)7Q(T)>R L(ur)(l)ﬂ-aAd)
where (ur) means that we omit factors at finite ramified places, p is the representation
of the L-group occurring in (6.10.2), Cfc € Q*, ¢ 18 a half-integral power of w, and
the subscript R means that we compute the L?-norm with respect to a Riemannian
measure normalized as in §6.5. Explicitly:

cp = (discp . D}‘fjH)l/2 <€ QX) )

. AK> Ag oo <Loo(;,7r;p)
== \az )\ a3 ) \ITo(,mAad) )

Moreover, if L") (1, m;p) # 0 and there exists a nonzero H(A)-invariant func-
tional on the space of m, it is possible to choose the data (9o0,gy) and level structure U
in such a way that the left-hand side of (6.11.1) is also nonzero.
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Proof. — This follows by putting together Proposition 6.9.1 with the statements of
§6.10. (See §6.4.3 for the rational structures, used for (6.10.3).)

Note that the assumption that T" was real means that Q(7T) is a real differential
form, and that T'(vg) is a real-valued function on [G]; this allows us to drop absolute
value signs. We were able to drop the ramified factors using (6.10.3). The last sentence
of the theorem follows because for each finite place v of E' and any nonzero ¢, € m, it
is (under the assumption quoted) possible to choose g, € Gg(F,) with the property

that fHE(EU)(hnggov,gvgov) # 0 (see [81] or [57]). O
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CHAPTER 7

COMPATIBILITY WITH THE ICHINO-IKEDA CONJECTURE

We now study more carefully the compatibility of our conjecture with the Ichino-
Ikeda conjectures on periods. We work in the following situation:

Let H C G be as discussed in §6.3. Each case involves a field E, which is either
imaginary quadratic Q(v/—Dg) or E = Q.

As in §6.3, we use (e.g.,) Gg for G regarded as an E-group and G for it as a
Q-group and similar notations for Lie algebras: in particular gg is the Lie algebra
of G, an E-vector space, whereas gq = Resp,q@r is the Q-Lie algebra that is the
Lie algebra of G.

We use other notation as in section §6.4, §6.2 and 6.3; in particular we have a map
of arithmetic manifolds

v:Z(U) - Y(K)
associated to H, G and the element g = (9,97) € G(A). The Borel-Moore cycle
1+[Z(U)] defined by H lies in the minimal cohomological dimension for tempered
representations for G (see (6.3.1) and Table 1), which we shall now call ¢:

q = pg = minimal cohomological dimension for tempered representations.

Finally, as in §6.4, we have fixed a near equivalence class II of automorphic represen-
tations; only one representation 7 in II contributes to cohomology at level K.

7.0.1. The cycle Z(U) and its twisted versions. — We have available in all cases the
class ¢,[Z(U)] in Borel-Moore homology. However in the case G = PGL,, x PGL,,41
we want to twist it, for reasons that we will now explain:

The point is that the fundamental class of Z(U) is not preserved by the action
of Uy /U, ~ {%1}. Rather, the nontrivial element —1 alters the orientation by a
sign (—1)"*1, as one sees by a direct computation (cf. [45, 5.1.1]. Therefore, ¢.[Z (U)]
transforms as z — z"*! under Ko, /K&, ~ {£1}; as such, it can only pair nontrivially
with a cohomology class of this sign. By twisting it, we will produce a class that trans-
forms under the opposite character x +— z™. This motivates the precise numerology
of the twisting below:

Fix an auxiliary quadratic character v of Aé /Q* which, at oo, gives the sign
character of R*. The function 3 o det now gives rise to a locally constant function
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on [H], and thus a Borel-Moore cycle
[Z(U)]y € Hy,' (2(V),Q)

of top dimension on Z(U). To be precise first choose U’ C U on which ¢ is constant,
so that 1 gives a locally constant function on Z(U’), then push forward the resulting
cycle and multiply by ﬁ, however, this will equal zero unless ¢ was trivial on U

to start with. It will be convenient to write for ¢ € {+1}
ZU)],  e=(-1)"Y

[ZO)F = { n
[Z(D)]y, e=(-1)"

The notation is designed so that [Z(U)]® has trivial sign under Uy, /U2 if € =1 and
nontrivial sign if e = —1.

(7.0.1)

7.1. Motivic cohomology; traces and metrics and volumes

We assume that there exists an adjoint motive AdII attached to II, in the sense of
Definition 4.2.1. By its very definition, it is equipped with an isomorphism

(7.1.1) Hp(AdIL,C) ~gq.®C =7,

where gq « is as in Definition 4.2.1. Now we may define the motivic cohomology group
(7.1.2) Ly = H},(Ad*TI, Q(1)),

as in (1.2.2). As described in §5.1, the regulator on Ly takes the shape

(7.1.3) Lyn — ag

and indeed Ly lands inside the twisted real structure on ag (see §5.1).

There are two natural metrics which can be used to compute the volume of L.
One of these metrics arises from a bilinear form on the Lie algebra of G, and the other
one arises from a bilinear form on the Lie algebra of the dual group. We will need
to pass between the volumes with respect to these metrics in our later computations,
and so we explain now why they both give the same volume, up to ignorable factors.

As per §5.2 we can equip Ad I with a weak polarization whose Betti incarnation is
the standard trace form on g itself. Note that g is a sum of classical Lie algebras; by
“standard trace form,” we mean that we take the form tr(X?) on each factor, where
we use the standard representation of that factor. This is visibly Q-valued on gg. We
refer to this as the “trace weak polarization” and denote it by fr.

This induces a quadratic form (denoted ﬁr*) on g, by duality, which corresponds
to a weak polarization on Ad*II. As in §2.2.4 we may use this to induce a quadratic
real-valued form on HC%((Ad* Mg, R(1)), which we extend to a Hermitian form on

Hy((Ad* g, R(1)) ® C.

As in §2.2.5 this C-vector space is identified with g""®, and thus with ag. (Here,
and in the remainder of this proof, we understand Wg to act on g by means of the
tempered cohomological parameter, normalized as in §3.3.)
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Explicitly, this induced Hermitian form on ag is given by
(7.1.4) (X,Y) € ag X ag — tr (X - wY),

where w is the long Weyl group element; we used the computation of the Betti con-
jugation in the proof of Lemma 5.1.1.

By its construction the Hermitian form (7.1.4) is a real-valued quadratic form
when it is restricted to the twisted real structure a’G’R. This quadratic form need not
be positive definite, since we started only with a “weak” polarization, but this makes
little difference to us. The volume of Ly with reference to tr may be analyzed by
means of Lemma 2.2.2 (the failure of positive definiteness means that the volume may
be purely imaginary: the square of the volume is, by definition, the determinant of
the Gram matrix). We denote this volume by vols (Lm).

On the other hand there is a different Hermitian form on af,, which s positive def-
inite, and whose interaction with the norm on harmonic forms is easy to understand.
Namely, we have equipped (§6.5) gq with a Q-rational bilinear form, the trace form
for a standard representation; this form endows Y (K) with a Riemannian metric.
Then, by (i) of Proposition 5.5.1, af;, acts “isometrically” (in the sense specified there)
for the dual of the form given by

(7.1.5) (X,Y) € ag X ag — B(X,Y).

This form is also real-valued on the twisted real structure (aj; g)’, and moreover
it defines a positive definite quadratic form there. It is positive definite because
B(X,X) > 0 for X € p, and this contains (a representative for) ag. To see that
it is real-valued, observe that

(7.1.6) B(X,wY) = B(X,wY) = B(w 'X,Y) = B(wX,Y),

so B(X,Y) € Rif X,Y belong to the twisted real structure; but if Y belongs to the
twisted real structure, so does Y.

By Lemma 3.5.2, the quadratic forms given by restriction of tr to agr C g, and the
restriction of B to ag R, are in duality with one another (after possibly multiplying
tr by i); thus also their complex-linear extensions fr on a;, C g and B on ag are dual
to one another (up to the same possible rescaling). Noting that tr on "= and tr
on g"® are also dual quadratic forms, it follows that (as quadratic forms on ag) we
have an equality B = tr (up to the same possible rescaling).

We will be interested in

volt, (L) := volume of Ly with respect to (7.1.5).

Choosing a Q-basis z; for Ly and with notation as above, we compute:

(717) VOltr(LH)2 (7.:1.5) det B(ZL’“@) Lem.:3.5,2 4kﬁ'*(;p“@) = 4k det(w)a‘*(xi7 wxj)

(7.1.8) = (4" det(w)) volg (Lm)?

for some k € Z. Clearly det(w) = %1; it is possible that det(w) = —1, but in any case
our final results will have factors of \/Q* which allow us to neglect this factor.
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7.2. — We may state our theorem:

Theorem 7.2.1. — Notation as before, so that (H,G) is as in §6.3, the embed-
ding Z(U) — Y (K) is set up as in §6.2, and the cuspidal cohomological automorphic
representation I is as in §6.4.

Make the following assumptions:

(a) Beilinson’s conjectures on special values of L-functions (both parts (a) and (b)
of Conjecture 2.1.1) extended to pure motives as discussed in §2.1.11.

(b) Ezistence of an adjoint motive attached to II (as in Definition 4.2.1), arising
from a G-motive attached to II (Conjecture B.1 in the appendiz). V)

(¢) Working hypotheses on period integrals (§6.10).
Then, with w,w* as in §6.4, and cycles [Z(U)]* as in §7.0.1, we have

(7.2.1) W € v/Q (volyy L)™',
w+ Ly +\2
(7.2.2) < 7<w+[,Zu(JZ;] Ch < L12( i € \/> Q (voly, L)~ 7,

where [Z(U)]T is as in (7.0.1); the pairing (w,1.[Z(U)]) is to be interpreted as in
Remark 10.

Moreover, in case (7.2.1): if the central value of the Rankin-Selberg L-function
attached to II is nonvanishing and there exists a nonzero H(A)-invariant functional
on the space of II, it is possible to choose the data (goo,gy) and level structure U in
such a way that the v/Q factor is nonzero. A similar assertion holds for (7.2.2), where
we require the same conditions both for II and its twist ¥ (see (7.2.3)).

Note that (7.2.1) and (7.2.2) conform exactly to the prediction of the conjecture—
see (1.4.8) and (1.4.13). In an early draft of this paper, we attempted to eliminate the
factor of \/@ as far as possible, and indeed found that (to the extent we computed)
the square classes all appear to cancel—often in a rather interesting way. However,
this makes the computation exceedingly wearisome, and to spare both ourselves and
our readers such pain, we have omitted it from the present version of the paper.

Proof. — We will now give the proof of the theorem, relying however on several
computations that will be carried out in the next section. To treat the two cases
uniformally, it will be convenient to use the following shorthand for this proof only:

— For all cases except PGL,, x PGL,4+1 over Q, we put m = II. The reader is
advised to concentrate on this case, the modifications for the other case being
straightforward but notationally complicated.

1. The latter conjecture is, roughly speaking, a generalization of requiring the existence of an
adjoint motive, but replacing the adjoint representation of the dual group by all representations at
once. However Conjecture B.1 is a little less precise about coefficient fields than the existence of an
adjoint motive as in Definition 4.2.1.
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— In the remaining case of PGL,, x PGL,41 over Q, we “double” everything.
First of all, factor II = ¥pqgL, X YpgL,,; as an external tensor product of
an automorphic representation on PGL, and an automorphic representation
on PGL,,1, as we may.

Now define a new automorphic representation on PGL,, x PGL,, 11

(7.2.3) v — {(2PGLn ) ¥ ¥pgL,,,, n€2Z,

Ypar, W (¥paL,,, - ¥), else
be the twist of II by the quadratic character v, i.e., we twist by % o det only
on the even-dimensional factor so that the resulting automorphic representation
remains on PGL.

Now, put
r=M1XIY
considered as an automorphic representation of (PGL,, x PGL, )% Observe
that the adjoint motive attached to II¥ is identified with the adjoint motive
attached to II; thus L, = Ly @ Ly.

Finally replace all the groups G, K, H, Uy, by a product of two copies: thus
G = (PGL,(R) x PGL,41(R))?, Hy, = GL,(R) x GL,(R) and so on.

We have proved in Theorem 6.11.1 that

L™ (3,m;p)

L) (1,7, Ad)’
where p is the representation of the dual group of G described in that theorem. Note
in particular that ¢y € \/@ In the (PGL,, x PGL,1)? case, the same result holds,
replacing (7.2.1) by (7.2.2), and now taking p to be the sum of two copies of the tensor
product representations of the two factors.

Now the L-functions defined above are Euler products over unramified places, to-
gether with an archimedean factor, and these agree with the corresponding motivic
L-function arising from the G-motive of . Moreover, for these motivic L-functions,
the factors at missing (ramified) places are rational and nonvanishing, by the as-
sumptions discussed in (2.1.13). So we can replace L") by the full L-function, which
we henceforth understand to be the motivic L-function obtained from the assumed
G-motive attached to 7

(7.2.4) left-hand side of (7.2.1) ~qx ¢t

L(3,7;p)
L(1,7,Ad)’
So let us look at the right-hand side of (7.2.1) or (7.2.2), according to which case
we are in. Lemma 2.2.2, applied with tr the trace weak polarization and p an arbitrary

(7.2.5) left-hand side of (7.2.1) ~qx cfcoo
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weak polarization on Ad m, implies

olg Hp((Ad" m)g, Q)
VOlA FlHdR(Ad ﬂ')
L*(0,7,Ad)
V¥ vol, FlHgr(Ad )’

where we also used, at the last step, the fact that volg F'Hgg(Ad* ) ~/ax
vol, F'Har(Ad 7), beause Ad 7 and Ad* 7 are abstractly isomorphic and volg F! is
independent, up to \/& , of the choice of weak polarization S (again, Lemma 2.2.2).
Using (7.1.7) and (7.2.4), we see that proving (7.2.1) or (7.2.2) is equivalent to
verifying

L(3,mp)  L*(0,m,Ad)
(7:26) “©L(1, 7, Ad) vol, FIHan(Ad7) - va.

The functional equation means that L*(0,7,Ad) = \/AAd%L(l m, Ad),

where Apg € Q* is the conductor of the adjoint L-function; so, substituting the
expression for c,, from Theorem 6.11.1, we must check

volumeg, H,(Ad* 7, Q(1)) ~qx L*(0, Ad)

Lo(3,mp) (Ak\ [ Ac L(3,m;p)
9. 2971 00 || 2971 ]
(7.2.7) L= (0,7, Ad) (A%,) A2, ) Vol (il < V9
~—_———— ?
7{ 7§

Now computing case-by-case (see Table 1 below):
(7.2.8) M ~ox (2m) 7T ~ox 1
where
n(n+1), if G=PGL, x PGL,1;
n(n+1), if G =Resg/q(PGL, X PGLy41);
o2n?, if G = Resg/q(SO2n X SO2n41);
2n(n +1), if G = Resg/q(SO2n41 X SO2p42).

(7.2.9) m =

Moreover (assuming Deligne’s conjecture [17], which is a special case of Beilinson’s
conjecture):

L(3,m;p) m

(7.2.10) vl (F Han (Ad 7)) e /Q- (2m)™,
with m the same integer as above. Equation (7.2.10) requires an argument, and is
in fact quite surprising: the numerator is related to the Rankin-Selberg L-function
and the denominator to the adjoint L-function, and so it is not apparent they should
cancel. This is the surprising cancelation that we have referred to in the introduction,
and we prove it in the next section.

The final assertion of Theorem 7.2.1 follows immediately from the corresponding
assertion in Theorem 6.11.1. O
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TABLE 1. Collates data about the various cases;
[yi(m +1 =) = fm(m + 1)(m + 2).
entry in the same row.

7,

repeatedly uses

“same” means “same as the other
sym” means “extend by symmetry.”

Goo | SO2n X SO2n41/c | SO2n4+1 X SO2n42/c
Heo | SO2n/c | SO2n41/c
(dx +rK) | 4n? 4 2n | 4n? + 6n + 2
(dv +rv) H 2n? ‘ 2n2 + 2n
A /A%, l (vm)Em | (Vm)2nt?
Ag o0 | 75 re@)’remreen) | I, De(2)?To(n +1)
Ao | 17! Tc(2i)Tc(n) | I, ()
DGoo/DY o ] Ic(2n)/T(n) =" | Po(n+1) =71
L(1/2,70,p) ~ax ~ax
—L1@n-1)@n)@nt+1)—n(n+1) = $@R)(@n+1)(2n+2) —n(nt1)
L*(0, moo, Ad) H ~ox W—%(n—l)n(n+1)+n2—3n ‘ ~ox 7r—%n(n+l)(2n+l)+n(n+l)
rimss |l ~ax T | g D
M 2n—2,0)%,...,(n,n —2), (2n,0),...,(n+1,n — 1),
(n—1,n—1)%sym (n,n)?, sym
N (2n —1,0), (2n — 2,1), (2n —1,0), (2n — 2,1),
.,(0,2n — 1) .,(0,2n — 1)
M®N (4n —3,0)%, (4n — 4,1)2 ..., (4n — 1,0)%, (4n — 2,1)2,. .,

(3n—1,n—2)n"1
(B3n—2,n—1)»t1 ..,
(2n —1,2n — 2)2", sym.

(3n,n —1)"
B3n—1,n)"t2 ...,
(2n,2n — 1)27+1 sym.

L(s,Resg/q M ® N)

(17 Po(s =i+ 1) -
I1},  To(s =i+ 1)')?

(T Tc(s —i+ 1)i .
[172, 1 Tals — i+ 1)i+1)?

Ad(M)

see text ‘

see text

Ad(N)

(2n —1,1—2n), (2n — 2,2 — 2n)!,
(2n — 3),3 — 2n)2,

((2n —4),—(2n - 4))?,
(1,-1)",(0,0)", sym)

same
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Goo | PGLy, X PGLnt1/c | (PGLn x PGLn41/R)?
Hoo | GLn/c | (GLn/R)?
(dr +7K) H 2n? +4n — 2 ‘ 2n2 + 2n
(du +rv) H n?+n ‘ n(n —1) + 2[n/2)
Ak /A2 H (/)22 ‘ w2n—2[n/2]
Ao | I,Te@)?Te+1) | (I, Tr@)*Tr(n+1)2
AH oo | (T, T () | [17, Tr(i))?
AG,00/ A% o Lo(n+1)/Te(1)? ~ 7l Pr(n+1)*/Tr(1)*
r2(n/2]—-n)
L(1/2, 70, p) H ~Qx s ) ‘ same
L*(0, oo, Ad) H ~Qx x= gn(nt1)(2nt1) ‘ same
L(1/2,750,p) —n(n+1
AT | ~qeammen same
M (n—1,0),(n—2,1), same
., (0,mn—1)
N H (n,0),(n—1,1),...,(0,n) ‘ same
M®N (2n —1,0), (2n — 2,1)2, same
., (nym —1)™, sym.
L(s,Resg/q M ® N) (Ca(s)ITa(s —1)2 same
L To(s—n+ 1))
(L(s, M ® N)L(s, M’ ® N)
for E = Q)
Ad(M) (n—1,1-n), .., same
(11 _1)n711 (01 0)n7175ym-
Ad(N) (n,—n)t,. .., same
(17 _1)n7 (07 O)TL»Sym
L(s, 11, Ad) (Hf Te(s+d)iti-i. same

HJ+1 FC $+2)5+2 z)2

ASTERISQUE 428



CHAPTER 8

HODGE LINEAR ALGEBRA
RELATED TO THE ICHINO-IKEDA CONJECTURE

In this section, we will prove most brutally (7.2.10) from the prior section. To
recapitulate, and unpack some notation, this asserts that, for an automorphic co-
homological representation II of G as in Theorem 7.2.1, we have (under Deligne’s

conjectures)
(8.0.1)
L(3.10) _
m’G - Son X Son+1/E or
m L *,H 2
vaen)" 2 m, G = PGL, x PGL,,41/E or
L(3.,Im)? L(3,11%)2

Vol (F Har (AdII)) vol, (FX Har (Ad my» G = PGL, x PGL,11/Q,

where m is in (7.2.9), p is a weak polarization on Ad(II) and, in the last equation, 1) is
a quadratic character as in §7.0.1, and IT? is as in (7.2.3). In all cases the L-function
above is now the Rankin-Selberg L-function.

This will follow (as explained below) from (8.3.5), (8.4.8), (8.6.2), (8.7.1) in the
four cases.

We note that Yoshida [83] has given an elegant “invariant-theoretic” framework for
doing computations of the type that we carry out here. However we will follow a fairly
direct approach, along the lines taken by M. Harris [24]. In any case the main point
is similar: the period invariants described in §8.2 behave quite well under functorial
operations. The ICM address of the second-named author [73, §9] contains a first
attempt to describe a more conceptual interpretation of these calculations.

8.1. Preliminaries

In all the cases, the group G is the product of two classical groups
G = RGSE/Q(Gl X Gg),

where E is either Q or a quadratic imaginary extension of Q, and G1, Gs are reductive
E-groups.
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There is a choice of whether we take GG; to be the larger or smaller group. In the
case of PGL,, x PGL,,41, we take G; = PGL,,, Gy = PGL,, ;. In the cases involving
SO, xS0O,,+1 we take G1 to be the even orthogonal group, G2 to be the odd orthogonal
group and E the imaginary quadratic field. Then we may factor II into automorphic
representations m; on G;:

II = (’/Tl X ’/T2).

We will often use the abbreviation j =n — 1 in the PGL,, x PGL, 11 cases.

First of all, let us describe how to construct a Q-motive whose L-function agrees
with the L-function appearing in (8.0.1). We are going to make use of the C-groups
to avoid various choices of twist that are necessary to present the same material with
L-groups. See the appendix, especially §A.2, for a summary of this theory.

The dual groups of the algebraic E-groups G; and G2 are classical groups, and
as such their C-groups have a “standard” representation: standard on the dual group
factor, and we fix the G,, factor so that the weight of the associated motive is given
by n — 1 in the PGL,, cases and k — 2 in the SOy, cases. The reader is referred to Ap-
pendix D for more detail on these standard representations, and for the computation
of the Hodge numbers of all the relevant motives. The archimedean L-factors in the
table can be deduced from the Hodge numbers by the recipe in [17, §5.3].

Conjecture B.1 of the appendix states that attached to 71, w2 are systems of motives
indexed by representations of the C-group; in particular, attached to the “standard
representations” just mentioned, we get motives M (for m1) and N (for m2).

Here a subtlety arises, similar to that discussed in §4.1: the morphisms from the
motivic Galois group to the C-group (from Conjecture B.1) are not necessarily defined
over Q. Thus, in general, we can construct the motives M, N only with Q-coefficients,
rather than with Q-coefficients. For the moment, however, we suppose they can be
realized with Q-coefficients, and write M and N for the motives with Q-coefficients
thus attached to m; and mo respectively. This italicized assumption is not necessary:
the argument can be adapted to the general case by using an auxiliary coefficient
field; for expositional ease we postpone this argument to Sec. 8.8.

Proceeding under the italicized assumption for the moment, then, we obtain Q-mo-
tives M and N defined over E, whose L-functions coincide with the L-functions of the
standard representations of m; and o, shifted by a factor of one-half of the weight of
the motive. By computing the determinant of the standard representations, we verify

(8.1.1) det(M) ~ Q(—n(n —1)/2) anddet(N) ~ Q(—n(n +1)/2)
in the PGL cases, and
(8.1.2) det(M) ~ Q(—2n(n—1))X (SOg2,) and det(N) ~ Q(—n(2n—1)) (SO2p41),

where x is the quadratic character of E that arises from the action on the Dynkin dia-
gram of SOg,. These equalities will be used to evaluate period determinants attached
to M and N.
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We will need to use the notion of restriction of scalars for motives, as defined in
[17, Example 0.1.1]. If we write

M = Resg/q(M ® N),
then we have an equality of L-functions:

(8.1.3) L(s+ %,H) = L(s+r,M) = L(s,M(r)),

where (since IT is unitarily normalized) the shift r — % equals half the weight of M.
Here

n, if @ = PGL, x PGLy4,
_Jn, if G = Resp/q(PGL, x PGL,41)
"TY2n-1, if G =Resg/q(SO2n X SO2m41)
2n, if G = Resg/q(SO2n41 X SO2,42).

In the case PGL,, x PGL,, 41 over Q it is also useful to note that
1
L(s + 5,r[w) = L(s +7,M¥) = L(s,M¥(r))

with IT¥ as in (7.2.3) and one can express MY either as M¥ ® N or M ® N¥; here, in
all cases, the superscript 1) on a motive means that we tensor by the one-dimensional
Artin motive corresponding to 9. In general twisting by 1) can change the determinant,
so that the twisted motive MY (or N¥) may only correspond to an automorphic form
on GL,, (or GL,,41) rather than PGL,, (or PGL,1); however this does not affect the
computations below, and because of MY @ N = M @ N¥ we can freely twist whichever
factor is most convenient for the computation.

We will freely use the ¢*, ¢, § periods of a motive defined over Q; these are defined
in §2.1.4.

To avoid very heavy notation, we shall write:

T = F* Hip(Resgyq Ad(M)),
In = F'Hgg (Resg,q Ad(N)).

These are Q-vector spaces. If the motives in question are equipped with a weak
polarization, we may compute the volumes of Zps,Zn according to this polarization,
as in §2.2.6. However, these volumes can be defined intrinsically, as in the proof of
Lemma 2.2.2. Thus if we write vol(Zys) without specifying a polarization, we mean
the class in C*/,/Q* defined as in that lemma.

Also, observe that the adjoint motives for M and MY are canonically identified,
so we do not need to distinguish between Zp; and Ly -

We note that the adjoint motive for II is identified with Resp,q Ad(M) @
Resg/q Ad(N), and so

(8.1.4) vol(F*H3% (AdTI)) = vol(Zas) vol(Zn),
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the equality being of complex numbers up to /QX. Moreover assuming Deligne’s
conjecture [17], which is a special case of Beilinson’s conjecture, for the motive M(r),
we have:
L(0,M
OM() _ o
ct(M(r))
Now combining (8.1.4), (8.1.3) and (8.1.5), we see that the sought after relation
(8.0.1) reduces to a relation between ¢t (M(r)), vol(Zas), vol(Zy ), namely
cF(M(r))°
B Sk APV A 273)™
Vol vol@y) ~v/ax (2
in the SO cases (with e = 1) or the PGL over E case (with e = 2), or in the remaining
case:

(8.1.5)

(8.1.6)

M) et M) (2mi)™
VOl(ﬁZM) VO](%N) vo](gZM) VOl(fZN) \/Qix ) .
We verify these statements case-by-case in (8.3.5), (8.4.8), (8.6.2), (8.7.1) below.

(8.1.7)

8.2. Period invariants of motives

Our proof of (8.1.6) and (8.1.7) will be to write both sides in terms of certain
elementary “period invariants”’ attached to the motives M and N. More precisely
we attach an invariant ), € C*/E* to the motive M, any integer p for which
FPHuRr(M)/FPT Hyg (M) is one-dimensional, and an embedding o : E — C. Such
period invariants have been previously considered by M. Harris [23].

Here is a general overview of the computations that go into the proofs. Firstly,
one has the period matrices for M, N and M ® N that relate the different ratio-
nal structures on the Betti and de Rham realizations of these motives. The Deligne
periods ¢t (M), ¢t (N) and ¢ (M ® N) are obtained as determinants of certain sub-
matrices, corresponding to eigenspaces for the action of complex conjugation cg on
the Betti side and certain pieces of the Hodge filtration on the de Rham side. On
the other hand, the de Rham realization of the motives that appear here have a
particularly simple Hodge filtration; in most cases, the graded pieces are just one-
dimensional. This allows us to define (as mentioned above) certain additional period
invariants ), cR), that measure the failure of cg to preserve the rational structure on
graded pieces of Hjp (M), respectively H3;(IN). The three ingredients that we use
then are:

1. The period matrix of M ® N is the tensor product of the period matrices of M
and N; from this one deduces a formula for ¢*(M ® N) in terms of ¢t (M),
c*(N) and the invariants Q,, R.

2. The realizations of the adjoint motives Ad(M) and Ad(NN) may be thought of as
subspaces of the realizations of M ® MY and N ® NV. Using this, the volumes
of Zpr and Z can also be computed in terms of @, and Rj,.
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3. Finally, the determinants of the period matrices of M and N can be computed
in terms of ¢*(M), @, and c*(N), R,. On the other hand, these determinants
are essentially powers of 27, so this yields an additional relation.

Putting these three ingredients together yields the desired Formulas (8.1.6) and
(8.1.7).

8.2.1. Bases. — Let M be a pure motive over Q of weight m and let V denote the
Q-Hodge structure Hy(Mc, Q). Let Vo = €D, VP™ 7P be the Hodge decomposition.
The Betti-de Rham comparison isomorphism yields a natural injective map

(8.2.1) VPmTP — FPHIR(M) ® C,
which induces an isomorphism
_ FPH}L (M)
2.2 pm-p . — ARV o,
(8.2.2) v FritH (M) ©

This isomorphism gives a Q-structure on VPP namely that coming from Iﬂ?ﬁi%
dR

In what follows, we often use the injective map (8.2.1) to identify VP™ P with a
subspace of FPHp (M) ® C.

Lemma. — Let w, be any element of VPP that is Q-rational for the Q-structure
defined above. Then cqr(wp) = wp. Equivalently, Foo(wp) = cB(wp) = wyp.

Proof. — The element w, corresponds via the isomorphism above to an element @,
in FPHT, (M) that is well defined up to elements of FPTH7; (M). Let us fix once
and for all such an @, so that

Np i=wp — @&p € FFPHE (M) ® C.
Then
CARWp — Wp = CarMp — Mp € FPHHTL (M) ® C
(since cqr preserves the Hodge filtration). Since cqr preserves the spaces VPP
and VP™~P injects into HJ4(M)/FPH HTL (M) ® C, we deduce that cqrw, = wp, as
claimed. 0

8.2.2. Motives over E. — Now suppose that M is a motive over E; for this subsection,
suppose that E is an imaginary quadratic field.

Let o denote the given embedding of F in C and & the complex conjugate of o. Then
the interaction between the Betti-de Rham comparison isomorphisms and complex
conjugation is described by the commutativity of the following diagram:

Hjp(M) ®p,e C —» Hy(My,c) © C =: V,

Cde lFoo'CB

Hip (M) ®p,s C—» Hg(Ms,c) ® C =: V.
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Here cqr is complex conjugation on the second factor, cg is complex conjugation on
the second factor, Fi, denotes the map on Hj induced by complex conjugation on the
underlying analytic spaces, and ¢, @5 denote the comparison isomorphisms. For @
any element in Hjp (M), we denote by ©° and @ the images of & under ¢, and ¢,
respectively.

Note that

Foo : VPL S VP cp i VP9 — VP and so Foocp : VT — VP

Now the map
o : FPHjr(M)® C — PV~
i2p
induces an isomorphism
FPH (M) -
8.2.3 —— AR @ Cx~ VPP
( ) Fp+1HékR(M) ® o ’

and likewise with o replaced by &.
Next, we discuss how restriction of scalars interacts with cohomology. If M is any
motive over FE, then

(82.4) Hag (Resp/q(M)) = Hig (M),
viewed as a Q-vector space, and
(8.2.5) H(Resg/q(M)) = Hp , (M) © H , (M),

(See [17, §0.5].)

8.2.3. Standard elements @,w. — We return to allowing E to be either Q or a
quadratic imaginary field.

Now, we will use the following notation. For the various M defined over E that we
will consider, let p be any integer such that dim F?/FP*! = 1 and p* the dual integer,
so that p 4+ p* equals the weight m of M.

We denote by

Wp € FPHjp(M)
any element that spans the one-dimensional quotient FPHJn(M)/FPTIH L (M).
For 0 : F — C an embedding we define

w? € Hp(M,, C)P"

the element corresponding to @, via the isomorphism (8.2.3). If £ = Q we will omit
the . Observe that

(8.2.6) Focp(wy) = wy.
Whenever w, and wy~ are defined, we define complex scalars Qg by the rule
1, p<p%
(8.2.7) ws =cp(wy) =Qpwp - 1= (-1)", p=p*
(=™, p>p
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Observe that
(8.2.8) Q3Q5. = (—1)™.

This invariant is compatible with complex conjugation:
Lemma 8.2.1. — Q3 = ()3.

Proof. — We have for p < p*

o o (826) & S 5y (8.2.6) m o
Fo(Qpuwp) ="wy and Fyo(@pwy) =" (=1)"wp.,
which together imply that 7). = (—1)™; now compare with (8.2.8). O

As a result, we will sometimes write

@pl* =05 - &5,
noting that the right-hand side doesn’t depend on o, and equals 1 if p = p*. In
particular, in the case when E = Q so that {7 = @7 we have ¢, = +1 in middle
dimension p = p*.

8.3. The case of PGL,, x PGL, 11 over Q

In this case (see Appendix D), the dimension of each graded piece of the Hodge
filtration, for both M and N, equals 1. Recall that we write j = n — 1 for the weight
of M. Therefore, let w;,@;, 0 < i < j be the standard elements attached to M, as in
§8.2.3, and ¢);, 0 < ¢ < j the associated quadratic period invariants, as in §8.2.3. The
corresponding elements attached to N will be denoted n;, fj;, R for 0 < i < j + 1.

We may form the dual bases @y € Hqr(M") = Hqr(M)" and wy € Hg(M",C) =
Hg(M,C)Y, defined as usual by the rule

(Day @) ) = Gap-
Then &) gives a basis for F~P?Har(M")/F'"?Har(M") and is associated to the

element wy € H~7~P"(M",C) under the isomorphism (8.2.2), but now for MV.
Defining period invariants ¢)¥ for MY using this basis, we get

Q=+,
Write wp g =wp, @wy , € HR(M ® MY,C) and @ g = @, ® ©)_, € H}g (M @ MY).

The subspace F'H3, (Ad(M)) has as a Q-basis the elements
(8.3.1) Opgy PHeg>j+1.

Recall, from the proof of Lemma 2.2.2, that the square of vol F1 Hyr(Ad M) can
be computed via computing the image of a generator of det F'* Hyr (Ad M) under the
complex conjugation map to det(Har/F°Hgr). (See in particular (2.2.11)). In the
case at hand, a generator for det F1 Hyg is given by

/\ Wp,qg = /\ Wp,q»

p+g>j+1 p+g>j+1
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and its complex conjugate is given by

H DpQq /\ Wp*,q* = H DpQq /\ Wp=,g* »

p+q2j+1 pq2j+1 p+q=j+1 p+q2j+1
where the last equality is valid in the determinant of Hiz (Ad M)/F°Hgg. Therefore
(8.3.2) vol(Zar) ~ H Qr.
0<p<g

Likewise, for N, we get:
(8.3.3) vol(Zn) ~ /q= I .
0<p<j+1
Now M ® N has a unique critical point, namely s = j 4+ 1. We will now compute
square of the period
c"(MeN(+1)
in the case j = 2t is even; the case j odd is exactly similar.
We first note that since M is attached to a form on PGL,, F, acts on H* (M)
by +1. Let ed,...,e; be a Q-basis of Hg(M)t and e, ,,...,e; a Q-basis
of Hg(M)~; here 4+ and — refer to the F-eigenvalue. Then

AM By
Cy Dy

where Ay, By, Cyp and Dy are of sizes (¢+1) x (t4+1), (¢+1) x ¢, tx (t+1) and ¢ x ¢
respectively. Likewise let f(;", ..., i be a Q-basis of Hg(N)* and fix1r-- o forpr @
Q-basis of Hg(N)~. Then

(eg...ez_et__‘rl...e;t):(wo...wtht...th’_l)<

Ay By
Cn Dn

where Ay, By, Cy and Dy all have size (t+1) x (t+1). Note that the ith row of Cy,
(resp. of Dyy) is equal to §); (resp. —@);) times the ith row of Ay (resp. of Bu).
Likewise the ith row of Cy (resp. of Dy) is equal to (R; (resp. —<R;) times the ith

row of Ay (resp. of By).
Let us compute both ¢*(M ® N) in terms of ¢* (M) and ¢*(N). Since

Hp(M® N)" = (Hp(M)* ® Hg(N)") & (Hp(M)~ @ Hp(N)™)
and (with notation F* as in §2.1.4)

FrHR(MeN)= @ Q- w, @,
pt+g=>j+1

(fo i fr o Faen) = (M0 Mo Maers -+~ M) <

we get ¢ (M ® N) = det(X), where

<(e?‘ ® flj_)i,k (e ® fk_')i’,k’) = ((‘*’p ® Ng)p,g  (Wpr ® nq’)p’,q’) X
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and the indices i,k,7',k’,p,q range over 0 < 7 < t, 0 < k < ¢, 2t > ¢ >t + 1,
20+1>kK >t4+1,0<p <t 0<q¢g<tand (p,q) ranges over pairs such that p’ > ¢
or ¢ >t but p’ +¢' < 2t. Note that if p’ > ¢ then ¢’ <t and 0 < 2t —p’ < t. Likewise,
if¢g" >t thenp’ <tand 0 < 2t+1—¢' <t.Let A}, and B}, be the matrices obtained
from A and Bjs by deleting the last row. Using the relations wo;—p, = Q; 1F, (wp)
and 7ot11-g = (j?/q_lFoo (nq), we see that

coron = I ¢ 11 ﬂg'det<AM®AN BM®BN>

0<p<t 0<q<t Ay ® Ay —Bj; ® By

IT @t T R¢- det(An ® An) - det(—2Bj; ® By)

0<p<t 0<q¢<t
~oe ] & [T Re- det(An)'™ det(Ay)"+ det(Bj,) " det(By)'*
0<p<t 0<g<t
IT @ TI Re- (cF(M)e (M) - et (N) e ().
0<p<t 0<q<t
Now
Ay B A B
5(M):det<M M): H@J.det(iw Ai)
Cu Du)  o2ie, A, —Bi,
B
- T gea (B 0 )
0Zpet —2B3,
1 9 ct (e ().
0<p<t
Likewise,
(8.3.4) S(N) ~qx [ Re- e (N)em (N).
0<q<t

Thus, up to Q* factors, ¢t (M ® N) equals

t+1 t
IT & I] Re- (o) IT & (o) I Rt | et @v)
0<p<t 0<q<t 0<p<t 0<q<t
=5 *eN) - T @2t T Rt -t ().
0<p<t 0<q<t

We will also need the same result when we do not assume that F,, acts on H' (M)
as +1, for example if we replace M by M ® 1. A similar computation shows:

Proposition 8.3.1. — Suppose that x is a quadratic idele character for Q; write
sign(x) = £1 according to whether x is trivial or not on R*. Then

E(MX @ N) ~gx S(M)HSN)E - TT @t [ RE*- ().

0<p<t 0<q<t
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Let RT(M, N) be the ratio defined by:
cE(M ® N(j+1))?
vol(F1(Ad(M))) - vol(F1(Ad(N)))"
Since j +1 =2t + 1 is odd, we have
EM@N(j+1)) = (2mi)2UHDTank(MON) F (N[ @ N) = (27ri) 20D U+ F (M @ N).

RE*(M,N) :=

Therefore, the proposition above, together with the properties of period invariants
given in (8.2.8) and Lemma 8.2.8, and the evaluations (8.3.2) and (8.3.3) of the vol-
umes of the £ subspaces, give

RE(MY, N) ~gx (zm)(j+1)2(j+2)5(M¢)2t+25(N)2t . H Ry - OO (N2,
0<q<t
By (8.1.1) we have
§(M)? and 6(M¥)? € (2mi) 70U+ . (Q*)2 and (N)? € (2mi)~UTDUHD) . Q*
where the computation for §(M ") comes from [17, Proposition 6.5]. We now get from

(8.3.4) our desired result, namely, if ¢ has sign —1, then
(8.3.5) R*(M,N) - R*(M¥,N) ~qx (2m3)0FD0+2),

8.4. The case PGL,, x PGL, 1 over imaginary quadratic £

Again M has weight j and rank j + 1. Just as in the prior case, each graded step
of the Hodge filtration has dimension 1, both for M and for N.

Let &g, ...,&; be a E-basis for Hjy (M), chosen as in §8.2.3, and with associated
invariants ¢ as in §8.2.3. Just as at the start of §8.3, but now keeping track of
embeddings, we form wj € H(M,,C), and also the dual bases @, w,?, and put

Dpg =p ®@)_, € Hig(M @ M)
and similarly w, , € Hj (M, ® M)/, C).

We may compute the volume of £ in a very similar way to the previous discussion.

In the case at hand, a generator for det F'! Hyg is given by

/\ Wp,qg ANV =Dl g ~ /\ (w;’q,w;q) A (v _Dwg,q’ -V _Dwgq)’
p+q>j+1 p+q=j+1

where we used the isomorphism from (8.2.5) to go from left to right. The complex
conjugate of the above element is given by

IT 12| /A (same, replacing p,q by p*,q).

ptg>j+1 pt+qg>j+1

~Qx det(HdR/FlHdR)

Therefore,

(8.4.1) vol(Zyr) ~ o H 10,127

0<p<j
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There is an identical expression for the volume of Zp, simply replacing j by 5+ 1 and
Q by R.

For the remainder of this subsection, we fix an embedding o : E — C, and when
we write Q, R etc. we mean Q7, R, etc.

We shall now compute the Deligne periods ¢*(Resg,q(M ® N)). Instead of us-
ing the basis consisting of &7, we can work with the wf. Suppose that A is the
(j+1) x ( + 1) complex matrix defined by

(8.4.2) (eo---ej) = (wg -+ wi)- A.

Note that this depends on the choice of o, but we fixed one above.
Note that

Foocp-e; =Fxe; and Fycp-w) =wy.
Thus applying Fu.cg to (8.4.2), we get
(Faoto - Froeg) = (o ) - A
Likewise, let fo, ..., fj+1 denote a basis of Hp ,(IN) and let B be the (j +2) X (j +2)
complex matrix defined by

(8.4.3) (for - fj+1) =g - nj41) - B,
where (1o, ...,n;41) is a E-basis for Hjy (M). Note that
(8.4.4) @i =@ aj_ei and by =R b,

where we repeat that ¢; really means ¢)7, with the same choice of o as fixed above.
Now we need to compute the change of basis matrix X between the bases:

and
(846) (Qacﬂwﬁ)(wt@nt’), (‘Ptﬂwc?)(“ _Dwt®nt’)v 0§t+t/ <jJ

of the complex vector spaces
(Hp(Resp/q(M ® N)) ® C)* ~ Hjp(Resp/q(M ® N) @ C)/FT.
Note that
(bos o) (Wi @ ner) = (W @07, W) @),
while
(00:95) (V=D - wr @ ) = V=D(wy @, =i @)
Thus the entries in the (7,i')th column of X corresponding to the elements in (8.4.5)
and (8.4.6) are

at,ibtzvi/ +at,ibt/yi/

2
i(at,ibt/,i/ _at,ibt/,i’)
2v/—-D
Then 1
det(X) ~qx g det(Y)
2
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where Y is the matrix whose entries in the (,4’)th column corresponding to (t,t’) are

At * bt’,i At * bt’,i’
(8.4.4)
T “1p-1
At by Qr Rir @ty bjpi—vir

As (t,t") vary over all pairs such that t+¢' < j, the pairs (t*, (¢')*) := (j—¢t,j+1—-t')
vary over all pairs such that t* + (¢')* > j + 1. Thus

det(V)= | JI @ 'Ri']-det(2),

0<t+t'<j
where up to a permutation of the rows, the matrix Z is just A ® B. Then
1 ~(G+Dg=i .. gt
/DD B ey
‘Ro TR Ry - det(A)TH2 det(B)I T,

ci(ResE/Q(M ® N)) ~qx

Now we note that (8.1.1) implies that
J
(8.4.7) det(A)? ~qx (2mi) UV TT Q,,
=0

and in fact that ngo Qp is an element in E of norm 1.

Indeed det(M) is a Tate motive, as observed in (8.1.1); if we denote by Hqg (det M)q
a generator of the canonical Q-line inside its de Rham cohomology, arising from a
Q-rational differential form on G,,, we may write

Qo ANDLA---ANDj =X Hyr(det M)q
for some A € E* and computing periods we see that
det(A) ~gx A7H(2mi) IUTD/2,
On the other hand, we have wg Awy A -+ Aw; = &g A @y Neos N @;, and comparing

this element with its complex conjugate we find A = £X-[]7_, @; (for an explicit, but
unimportant, choice of sign). This relation determines A up to Q*, and we have

det(A)? ~gx (2m1) TUTINT2 v (2mi) TTUFD N2 N/,
which proves (8.4.7). Likewise, det(B)? ~qx (2m)~(+D+2) H;:(l) Ry *, where again

Hf;(l) C“/?/; l'is an element of E of norm 1.
We may thereby simplify the expression above to

c(Resg (M ® N))?- (2m1) I GHD GG+ (+2)
—j 27 +j —j—1 ¢ —j+1 j+1
NQX <QOJQ1 ]... j]>(‘$/0] jl)/lj ;_,’_1)
@ Q105107 X Ry PO IRy 7
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J Jj+1
~q [T 177 - TT 1Ra ™.
p=0 q=0
Using (8.4.1) and the relation
¢ (Resg (M @ N)(j + 1)) = (2mi) U1 drank Rese aMON) ot (Resy (M & )
— (2mi) Ut 0Dt (Res (M @ N),
we find at last

ct(Resg/q(M @ N)(j + 1))* N
vol(Zar)) vol(Z) var

(8.4.8) (2mi) DG+,

8.5. Polarizations

In the remaining orthogonal cases, the motives M and N over the imaginary
quadratic field E are equipped with (weak) polarizations, as follows from the dis-
cussion in the Appendix; these arise from the (orthogonal or symplectic) duality on
the standard representations used to define M and N.

We will make use of these polarizations for our analysis, and thus we summarize
here some useful properties:

We denote by S the weak polarization on M, ie., S: M @ M — Q(—w), with w
the weight of M. As usual, we write
(8.5.1) Q= (2rvV-1)“S.

Thus the form @ is Q-valued on H{(M,,Q) (we shall denote this form by Q,,
and write S, = (27v/—1)""Q, on the same space) whereas the form S is E-val-
ued on Hj, (M). We denote by the same letter S the weak polarization on N.

These polarizations induce also polarizations on Ad(M),Ad(N), M ® N by trans-
port of structure, and also on the restriction of scalars from E to Q of any of these
motives; we will again denote these by the same letters, or by (e.g.,) SA4 if we want
to emphasize that we are working with the adjoint motive. We denote similarly (e.g.)

Ad GAd for the forms on the o-Betti realizations, just as above.

8.5.1. Polarizations and restriction of scalars. — For a moment, let X denote a po-
larized motive defined over E' and X := Resg/q X. Then X inherits a polarization
from X. The corresponding bilinear form ¢ on H};(X) is just the sum of the forms Q,
and Q5 on V, = Hp (X) and V; = Hp ;(X) respectively. On the de Rham realiza-
tion, the form is just the trace from E to Q of the E-valued form on H}p (X). Further,
the C-antilinear isomorphism Fy,cg from V, to V; identifies Q, and Q5 with com-
plex conjugates of each other. In particular, to compute the form on H}p (X), we may
embed H}p(X) in V, for instance (via ¢,) and take the trace (from C to R) of the
form Q.
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8.5.2. The adjoint motive: polarized case. — Next, some comments on the adjoint
motive. Let w be the weight of the polarized motive M.

Since Ad(M) C Hom(M, M) ~ M ® MV, and since MY ~ M (w) via the polariza-
tion, we may view Ad(M) as a sub-motive of M ® M (w). Now
(8.5.2)

Han(Ad(M)) € Han(M @ MY) = Han (M)®2 @ Han (Q(w)) "2 Han (M)®2.

In this way, we can regard n®7'’ as an element of Hqr (M @ MY) when 1,7’ € Hqr(M).
Under the above identification the form @aq induced on the adjoint corresponds
to (2my/—1)72wQ®?, whereas Saq corresponds to S®2.

Similarly, for o an embedding of E into C, we have

(8.5.3)  Hp(Ad(M),,C) C Hg(M, ® M), C)

(2.2.2)

= Hp(M,)®? ® Hp(Q(w), C) Hg(M,,C)%2.

Under this identification Qaq corresponds to Q®2, and Saq corresponds to

(2m/—1)2w 8®2,

8.5.3. — In what follows, we will compute the volume of Z; with respect to the
polarization, as described in §2.2.6.

In other words, we compute the volume on Q-vector space Zp; with reference to
the quadratic form obtained by pulling back the polarization under the map

Iy — Hp(Resg g Ad(M),R),
given by z — 1(z + 7).
If we regard the target above as Hf ,(Ad(M),R) & Hf ;(Ad M,R) the map is

given by %(cpa + @y, 05 + P5). Here ¢, is as in §8.2.2. In other words, the form
on s is given by

1 1 _
(z,y) = tre/r SEN(=(27 +27), 2 (¥ +99))

2 2
1 _
= 5(“0/1{ S22, y%) +tre/r S22, y7)).
8.5.4. Period invariants, revisited. — In this case, the previous discussion of period

invariants can be slightly simplified. In §8.2.3 we have introduced elements @, €
Har(M) for each integer p with dim F?/FP*! = 1. In the cases with a polarization
we can and will choose the elements @, to be self-dual, in that

(8.5.4) S(@p, @pe) = 1= Sy (w,wl) (p<p*)

p>%p
whenever both @,, @, are both chosen. (The second equality follows from the first.)
The same quantity then equals (—1)* for p > p*.
If p = p*, which only occurs in even weight w, we cannot guarantee (8.5.4); here
S (wg,ws) = 0(S(@p,@p)) lies in E* and its class mod (E*)? is independent of the
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choice of @,. Define therefore
(8.5.5) aqar(M) = S(@p, 0p).

If the weight j is odd, we set aqr(M) = 1. In all cases, this is an element of E* whose
square-class is independent of choices.

We may then evaluate the ()7 in terms of the polarization. It follows from (8.2.7)
that

0 - {Sc,(wg,w;:x R
" |o(aar(M)) TS (wy, wp), P ="
Note that Qg belongs to R* if p # p*; thus, when @, are normalized above, we have
Q7 = €7, and we may simply refer to ¢),. For p = p* we have Q7 € o(aqr(M))"IRX.
Finally, if &,, @, are both defined, we denote by
Opq € HIg(M ® MV),w;q € Hg((M ® M"),,C)

the image of @) ® @, and w, ® wgy, respectively, under the identifications of (8.5.2)
and (8.5.3), respectively.

8.6. SO5, x SO, 41 over E imaginary quadratic

Recall that M is the motive attached to automorphic form on SOs,, and N the
motive attached to the automorphic form on SO, 1, and we have fixed polarizations
in §8.5.

8.6.1. Computation of archimedean L-factors. — In this case, the Hodge numbers
for Ad M are somewhat irregular, so we will discuss the archimedean computation by

hand. We have
Loo(s,Respjq AdN) = (Tc(s +2n —1)'Te(s + 2n — 2)°
- Te(s+3)" Te(s + 2" Te(s + )"’ T (s)"
and
L% (0,Resg,q AdN) = (Pc(2n —1)'Tc(2n — 2)*
n— n— n2s n
- Te(3)" 'Te(2)" 'T'c(1)" Tg(0)
~Q 7r72[n-1+(n71)-(2+3)+-~-+1-(2n71+2n72)]
_ ﬂ72[n+2?:_11 i(2n—2i+2n—2i+1)]

_ 7T—2[Z?=1 i+4 70 i(n—i)] —§n(n=1)(n+1)—n(n+1)

=T

For Ad M, the Hodge numbers range from (2n—3, —(2n—3)) to (—(2n—3), (2n—3));
the multiplicities are given by

1,1,...,4t....,n—1,n—1,n,n,n,n—1,n—1,...,%¢,...,1,1,
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if n = 2t is even, and by
1,1,...,t,t+1,-1,n—1,n,n,n,n—1,n—1,...t+1,¢...,1,1,

if n = 2t +1 is odd. (Here the bar indicates that those terms are skipped.) In the first
case,

Loo(s,Respjq AdM) = (Tc(s +4t — 3)'Tc(s + 4t — 4)"

o To(s+2t+1) ' Ta(s 4 2t) 1

Te(s+ 2t — 1) g (s + 2t — 2)tH

~Te(s+ 3)2t—1Fc(s + 2)2t—1Fc(s + 1)2t2rc(8)2t
and

L% (0,Resp/q Ad M) = (Tc(4t — 3)'Tc(4t — 4)' - - Tc(2t + 1) T (2t)" !
To(2t — 1)t+1FC(2t _ 2)t+1 o Fc(3)2t—1rc(2)2t—1rc(1)2t)2 F*C(0)2t

~gx o226+ (26— 1) (243) 4o (041) (28 = 14-26—2)+ (6= 1) (26 +1420) -+ 1 (4t =344t —4)]
_ W—z[zf;—lli(4t—2i—1+4t—2i—2)+ ot 7T—2[42§;‘11i(2t—i)—2 2t

_ 71,72[42?:_11 i(n—i)—2 37 i) _ ﬂ,f%n(nfl)(n+1)+2n(n71).

Similarly, if n = 2t + 1, we have:
Loo(s,Respjq AdM) = (Tc(s + 4t — 1)'T'c(s + 4t — 2)*
o To(s+2t+3) ' Ta(s+ 2t +2) 1
Te(s+2t+1)'Tc(s + 2t) !
++-T(s +3)*Ta(s +2)*To(s + 1)+ Tg(s)2+
and
L%, (0,Resp/q AdM) = (Dc(4t — 1)'Tc(4t — 2)' - - - Tc(2t + 3)" 'Te(2t + 2)F
To(2t + 1) T (2t)H+! - 'FC(3)2th(2)2th(1)2t+1)2FE(0)2H1
~Q 7T—2[(2t+1)(0+1)+2t(2+3)+--»+(t+1)(2t)+t(2t+1)+(t—1)(2t+2+2t+3)+»--+1(4t—2+4t—1)]
_ 7r—2[zft=1i(4t—2i+4t—2i+1)+2fili] _ 7T—2[4Zf;1i(2t—i)+2 2]
:71_—2[425;11'(%4-1—1‘)—2 2t )
— 25 =) =230 _ = gn(r-D) (D) +2n(n-1)
which is the same expression as in the case n = 2¢.
Thus, in either case, we have:
(8.6.1) L*(0,me0, Ad) = L%, (0,Resg/q Ad M) L} (0, Resp/q Ad N)

~Qx w—%n(n—1)(n+1)+n2_3n
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8.6.2. Volume computation. — We first compute the volume term for Ad(N). As
in the PGL cases, all the graded pieces of the Hodge filtration for N are one-
dimensional. Let 7o, ..., 72n—1 be a basis of H}i(N), chosen as before; these define
invariants Ro,. . ., Ren—1 as well as a basis By = (7o, ..., N2n—1) of Hiz (N)®g,, C.
(As before, we fix an embedding o : E < C and when we write Q, R etc. we
mean @7, R°, etc.) To compute vol(F' Ad(N)), we first write down an explic-
itly a basis for Hjy Resg/q Ad(N) ® C. Here Ad(N) is the n(2n + 1)-dimen-
sional subobject of Hom (NN, N) consisting of the those endomorphisms L satisfying
Q(Lz,y) + Q(z, Ly) = 0, where @ is the symplectic form on N.

A basis for F™"H}z (Ad(N)) ®g,, C/F™"! is indexed by unordered pairs (i, j) such
that ¢ + j = m + (2n — 1) and is given by

men+n®n: i+tj=m+(2n-1)}
or more precisely the image of these elements under the identifications of (8.5.2).

If we replace Ad(N) by Resp/q(Ad(N)), then we also need to throw in v—D
times the basis vectors above. The union of the elements above with m > 1 is then
a C-basis for F*H}p (Resp,q Ad(N)) ® C. While it is not a Q-basis of the natural
rational structure on this space, it is a Q-basis of the corresponding graded for the

Hodge filtration, so to compute the volume we may as well work with this basis.
In a similar fashion to our previous computations, we get

n? n n— n n— 2
vol(Zn)? ~(qx)2 D™ - (Rin1Ron—a - R Rt - RERa)
and using RsRen_1-; = (—1), that
vol(Zn) ~a D%n2 . ﬁl;vay?/l—(Zn—Q) . 7;_21
We now turn to Ad(M). For ¢ = 0,...,n — 2,n,...2n — 2 pick elements
@; € FPH}z (M) according to the discussion of (8.2.3), obtaining invariants §;

as explained there.

For the two dimensional space F"H} /F m+1 there is no natural basis, so we just
pick any orthogonal basis {&;_;, &, _,} for the form S. Let By = {&;} U{@} 1,0, 1}
Let w; |, w,_, be the images of @, ,, @, respectively in H?~1"~1(M). Suppose

that
F _ + -
wp_1 = Quiw,_y +Qiaw, g,
p— _ + p—
Wy = Qarw, g + Oaow, ;.

Let By denote the basis {wo,...,Wn_2,w |, W, |,Wn,.--,Wan_2} of
Hir(M)®g,, C. As before Ad(M) is the n(2n — 1)-dimensional sub-object
of Hom(M, M) consisting of the those endomorphisms L satisfying

Q(Lz,y) + Q(z, Ly) =0,

where @ is the symmetric form on M.
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A basis for F™H}; (Ad(M)) ®,, C/F™! is indexed by unordered pairs (w;,w;),
wi,w; € B, such that i + j = m + (2n — 2) with ¢ # j and is given by
{wiwj —w;Quw;: i+j=m+ (2n—2)}
again with reference to the isomorphism (8.5.2).
We will compute (volZys)? as the determinant of the Gram matrix of the form

described in §8.5.3. The only tricky part is the contribution of terms involving wf_l

Let

+ + +
TT =W, QW W ®w, g,

where j lies in the range n < j < 2n — 2. Consider the 4 x 4-matrix X of inner
products (z,y) where z,y run over the elements z¥, /—Dz*. Set

Q-F:SU(WI—DWI—I)? Q- = So(wy_1,wy_1)
and
A +iB = S, (w! wp_1,w,_1), A,BeR.

Note for example that, using (8.5.2)

(z%,V-Dz%) = % (tr SAd(gt /—Dzt) +tr S{}d(mﬂ\/ﬁﬁ)) -0,

while 1
(zF,27) = 3 (tr SA (gt 7)) 4 tr S24(2t —)> = 2AQ);
and
(xt,V/=Dz7) = % (tr S§Ad(gt /=Dz7) + tr S (zT, \/—Dm‘)) = 2\/5BQJ-.
Then
O A 0 VDB
A _ —v DB
det(X) = (20;)* - det Q vD 0
0 —VDB D@, DA
VDB 0 DA DQ_
— (20,)* DX(Q:Q- — A* — BY)".
Note that
Q+0_ — A% —B? = det(T) = A - det(E),
where
I':= <AQ+'B Aé— ZB) A= Sy (wi_y,wn_1)Se (Wo_1swn_y), Ei= <§11 gm).
—1 - 21 Q22

We remark that det(T) lies in R*, 2= = I and A lies in E*, hence
det(T")? = AA € Q*.
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Combining the above computation with a routine computation of the contribution
from terms not involving w™ |, we find

vol(zM)2 ~(Qx)? Dn -n ( gz:i@z Q2Q1) - det(T 2(n71)7
and using ©;Qa,—2—; = 1, that
vol(Zar) ~Q Qo—(Qn—2)Ql—(2n—4) . .Q;z NG ~det(E)”_1,

Let {eq,...,ean—1} and {fo,..., fon—1} be Q-bases for HgyU(M) and Hp (N)
respectively. Then ¢t (Resg,q(M ® N)) is the determinant of the change of basis
matrix between

{ei ® fi + Foo(ei ® fir)}, 0<i,i’ <2n—1,

and

{(po, p5)w @0}, {(Po, p5)V—Dw @ n},
where w € By N FUHR (M), n € By N FY Hig(N),0 < t +t' < 2n — 2. We find as
in the previous section that
—2n? —(2n— n—
¢*(Resg/q M ® N) ~qx V=D g5 720,02
R RT AT L R det(E) " - det(A ® B),
where A and B are the period matrices given by
(eoer---eam—1)=cBm A, (fofi - fam-1)=cBn-B

Computing the Gram matrices of the bases e; and 33, with respect to the polarization
and taking determinants, we may compute det(A) and det(B):

det(A)% ~gx AT (2mi) 72D det(B)? ~vgx (2mi) 20D,
S0
det(A ® B) = det(A)*" det(B)?" ~qx A™™(2mi) 2" (473,

Finally the center is the point s = 2n — 1 and

*((Resgjq M @ N)(2n — 1)) = ¥ (Resg q M ® N) - (2mi)* 271,

Putting all of the above together yields:
ct((Resg/q M ® N)(2n — 1))
vol(Zar) vol(Zy)

(8.6.2)

8.7. SO2,41 X SOg,42 over E imaginary quadratic

Recall that here N is associated with SOsg,4; and M with SOg,12. We will
be brief for all the computations are very similar to the prior section, e.g.,
the term L*(0,AdN) is the same as in the previous section, while the formula
for L*(0, Ad(M)) is obtained by replacing n by n+ 1 in the formula from the previous
section.
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The volume computations are also similar: we have
vol(F' Resg/q(Ad N)) ~gx D™ - R 2" Ry "2 . Ri2,,
Vol(F' Resg /q(Ad M)) ~gx Q5207 "2 .02, - A™ - det(2)",
where A, Z are defined similarly.
c*(Resg/q M ® N) ~qx V—D s M Il
R RT TV L R - det(B) " - det(A ® B),

where A and B are the period matrices as before. Now, computing with Gram matrices
as before shows

det(A)2 ~Qx AL, (27T7:)72n(2n+2), det(B)2 ~ax (27”-)7271(27;71),

—2n(n+1)

SO
det(A ® B) = det(A)* det(B)*" 2 ~gx AT (2mi) nEntDn—1)

The center is the point s = 2n and
ci((ResE/Q M@ N)(2n)) = cT(Resg/q M ® N) - (27Ti)4"2(2"+2).
Putting all of the above together yields:
ct((Resg/q M ® N)(2n))

~ A x S\ 2n(n41) | n‘
vol(Zpr) vol(Zy) qx (2m) vD

(8.7.1)

8.8. Motives with coefficients

We return to the issue mentioned on page 88, namely, the morphism from the
motivic Galois group to the C-group of G; or G2 might not be defined over Q. In
this remark we outline a modification of the argument above that accounts for this
possibility. We will explain this in the case G = Resg,q SO(2n) x SO(2n + 1) for an
imaginary quadratic E, the other cases being similar. The reader is referred to [17]
Sec. 2 for a survey of motives with coefficients and for the formulation of Deligne’s
conjecture in that setting, which we use below.

Choose a large enough number field K over which the é\i—motives attached to my, o
are defined, i.e., so that the associated morphisms from the motivic Galois group to
the C-group of G; are defined over K.

We get motives attached to m; and 7y over E with coefficients in K, denoted My
and N respectively. Attached to IT one has the motive Mg = Resg/q(Mx ® Nk).
Then

L(2n—1,Mg) € (K®C), c"(Mg(2n-1)) € (K ® C)*/K*,
where all the tensor products are taken over Q; Deligne’s conjecture states that
L(QTL - 1, MK)

(8.8.1) o (Mr @)

eK— (K®C).
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Let Ad Mk and Ad Nk be defined as above as sub-motives of Mg ® Mk (2n — 2)
and of Nx ® Nk (2n — 1) respectively; by the general formalism of the appendix, these
are equipped with polarizations (in the category of motives with K-coefficients). )
Then we can define the volumes

volZar,volZy € (K@ C)* /K™,
generalizing in the obvious way the definition in (1.4.2), and
vol Fch(l)R Ad MK = VOlﬁZM VOIEZN.

Moreover the computations in Sec. 8.6 can be easily modified to show that the fol-
lowing variant of (8.6.2) remains valid:

ct (Mg (2n — 1)) -
(8.8.2) Vol F Han Ad My - (270)27 € V(K ®Q)*.

(One uses that the K-action on Hg(Mg) and Hg(Mg) commutes with the action
of C* and Wr respectively.)
Now we have an equality

1
(8.8.3) L(§,H) = L(2n — 1,Mk)
(Rankin-Selberg L-function on the left) which in fact shows that the RHS lies in
(Q®C) — (K®C).
Finally, we note that there is a natural functor
Motives with Q-coefficients — Motives with K-coefficients,
denoted X — X and we have the relation

where AdII is the conjectural adjoint motive with Q-coefficients attached to II. The
proof of Lemma 2.2.2 shows that the square of the volume volg F' Hyr(AdII) (for
any weak polarization S on AdII), is (up to Q*) independent of the choice of S.
Moreover,

(8.8.4) volg F* Hyr (AdTI) = volg F! Hyr (Ad M)

where the LHS lies in C*/Q*, the RHS in (K ® C)*/K* and the equality
must be viewed as saying the LHS maps to the RHS under the natural map
C*/Q* — (K ® C)*/K*. Putting everything together (i.e., (8.8.1), (8.8.2), (8.8.3)
and (8.8.4)) gives

L(3,1)
S C)n K *7

volg F1Hyg (AdII) - (27i)%"* QeC) (K®Q)

in particular, the square of the left-hand side lies in (Q ® C)N (K ® Q) = Q, as

desired.

(8.8.5)

1. It is plausible that this fails in some PGL cases, but there our proofs never used polarizations
and with minor modifications one proceeds without them.
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CHAPTER 9

A CASE WITH 6 =3

In this section we offer what is perhaps the most interesting evidence for our
conjecture, in a case where Y(K) is a 9-manifold. Namely, we verify some of the
numerical predictions in a cohomological degree that is neither minimal nor maximal.
These are degrees in which we cannot even produce explicit cycles!

What we check is the following: our conjecture relating H? to H*, H°, H holds, “up
to rotation” (see Theorem 9.1.1 for the precise statement). That theorem is phrased
as conditional on Beilinson’s conjectures, but what we actually do is unconditional:
we compute many numerical invariants of the lattices H*, and we only need Beilin-
son’s conjectures to compare these computations with our conjecture. We also verify
Prediction 1.4.3 unconditionally (at least up to some factors in \/@ ). It would be
interesting to analyze the square classes that appear in our argument, in order to
eliminate these factors of \/QX.

A critical input into our result is the work of M. Lipnowski [42], who combines the
ideas of equivariant analytic torsion with base change.

9.1. Notation and assumptions

— Let F be an imaginary quadratic field (we will regard it as embedded in C) and
E D F a cyclic extension of degree 3; let o be a generator for the Galois group
of E/F, so that

Gal(E/F) = (¢) = {1,0,0%}.

We will assume E/F to be unramified, but this is only so we can apply the
work of [42] in the simplest form; the reader can easily verify that the same
idea would apply for E/F unramified at primes above 3, for example, using the
refined theorems later in [42].

— Choose a non-split quaternion algebra D over F', and let G be the (algebraic)
group (underlying) D*/F*. Let Gg be the base change of G to E; and let

G = Gg(E ® C) = PGLy(C) x PGLy(C) x PGL,(C)

be the archimedean group at co associated to Gg.
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— We denote by ag,m) or ar for short the (one-dimensional) complex vec-
tor space attached to the real group Gg(R) (see §3). Similarly we define
ag,(R) = og for short, a three-dimensional complex vector space. Note that we
may naturally identify

b
ag ~ agp,
where ¥ is the set of embeddings F — C extending the given embedding of F'.

— Let m be an infinite-dimensional automorphic representation for Gg, cohomo-
logical at oo, and let II be the base-change of 7 to Gg.

— We suppose that 7 is trivial at each ramified place for D, and with conduc-
tor p/(®) at each prime p that is unramified for D. Put n = I1, pf®) . (If one
allows the case where E/F is ramified, we should additionally assume that n is
relatively prime to the discriminant of E/F.)

— Let Kr be the level structure for Gr of “level I'g(n).” By this we mean
Kr =[], Ky, the product over all finite places v, where

(a) If v is ramified for D, then take K, = C}, F;/F; where Up, C D, is the
maximal order.

(b) If v is unramified for D, fix an isomorphism D, ~ PGLy(F,); then K, is
given by the preimage of the matrices (¢ Y) € PGLy(0,) where the valu-
ation of ¢ is at least f(v).

We define similarly K to be the level structure for G “of level T'y(n - O),”
where we choose the isomorphisms in (b) in such a way that Kg is o-invariant.

— Let
(9.1.1) Y =Y(Kg), Y =Y(Kr)

be the corresponding arithmetic manifolds for Gg and Gy, respectively; thus
Y is nine-dimensional and Y is three-dimensional. Moreover there is a natural
Gal(E/F) = (o)-action on Y (arising from the o-action on G g, which preserves
the level structure). The inclusion G < G gives rise to amap Y — Y of Y
into the o-fixed subspace on Y.

We equip Y with the Riemannian metric arising from the standard Rieman-
nian metric on hyperbolic 3-space H?, and we equip ¥ with the Riemannian
metric arising from the standard Riemannian metric on H? x H3 x H3.

— We suppose that
(9.1.2) dim H3 _ (Y,C) = 1.

cusp
Here the notation “cusp” should be understood as meaning the contribution of
all infinite-dimensional automorphic representations to cohomology.

(9.1.2) implies firstly that dim H},, (Y

cusp(Y> C) = 1, because of base change, and

secondly that Y,Y have only one connected component (which is equivalent to
asking that the class numbers of E and F' are odd). It also implies that 7 is the
only nontrivial automorphic representation which contributes to the cohomology
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of Y, and similarly II is the only nontrivial automorphic representation which
contributes to the cohomology of Y.

~ Let Ly be the coadjoint motivic cohomology H, (Ad*TI, Q(1)) as in (7.1.2); let
L ® C — ag be the Beilinson regulator, as in (7.1.3). We define similarly L,
with its regulator map L, ® C — ap. There is a natural action of (o) ~ Z/3Z
on Ly, and an identification

(9.1.3) L, 5 L8,

Before we give the statement of the theorem, let us comment a little on the assump-
tions. Although we do not have any numerical examples, we expect that situations like
the above should be very easy to find given an effective ability to compute H3(Y, C)
numerically. In particular, it is very common (see discussion in [3]) that the cuspi-
dal cohomology of Y is one-dimensional. When that is so, we would expect that the
cuspidal contribution to H(Y, C) also is one-dimensional, comprising solely the base-
change forms—in situations with ¢ > 0, cuspidal cohomology in characteristic zero
that does not arise via a lift from another group is considered to be very rare (see,
e.g., [55] for a sample numerical investigation).

Before we formulate the theorem, note that Gal(E/F), and thus the real group
algebra R[Gal(E/F)], acts on H*(Y(K),C). By a rotation in the group algebra
R[Gal(E/F)] ~ R x C we mean an element of the form (1, z) where |z| = 1.

Theorem 9.1.1. — With the assumptions above, Prediction 1.4.8 (more precisely Equa-
tion (1.4.16)) holds up to \/Q*.

Moreover, assume Beilinson’s conjectures, as formulated in Conjecture 2.1.1 and
extended to pure motives in §2.1.11, and the existence of a 2-dimensional motive
associated to m (so also II). Let afy, and so also Lf;, act on H*(Y(K),C)n by means
of the action constructed in §3.

Then there are rotations r; € R|Gal(E/F)], for 1 <i < 3, such that

(9.1.4) H3(Y(K),Q)u - /\ Ly = r H*T (Y (K), Q).

In other words, the main Conjecture 1.2.1 holds, up to replacing Q by Q and up
to a rotation in R[Gal(E/F)]. (In fact, Q can be replaced by an extension of the
form Q(v/a,b**) for a,b € Q*, and r3 can be taken trivial.)

Here the tempered cohomology contributes in degrees 3 to 6. The groups H* and H®
are “inaccessible”, because it appears to be very difficult to directly construct rational
cohomology classes of this degree. Our method of proof is in fact quite indirect, going
through analytic torsion.

We need some setup first on metrized lattices (§9.2) and then on Reidemeister
torsion (§9.3). This setup will allow us to check that Prediction 1.4.3 holds in §9.5.
The full theorem above will follow from a more detailed analysis, which we carry out
in the remainder of the section. This final analysis uses many of the results of this
paper: it uses the results of Theorem 7.2.1 both over F' and over F, the compatibility
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with Poincaré duality (Proposition 5.5.1), and the study of analytic torsion over F
and over E (both usual and o-equivariant).

9.2. Volumes and functoriality

Some brief remarks about the behavior of volumes under functoriality: Let V' be a
Q-vector space equipped with a metric, i.e., V®R is equipped with an inner product.
We define its volume as in (1.4.2). Then

k
V* := Hom(V, Q), Sym"V, /\ %

all obtain metrics; similarly, if V, W are Q-vector spaces with metrics, then V @ W
inherits a metric. .
We have a natural metrized isomorphism A"V ~ ( A V) ® (det V'), where we

wrote det(V) = A"V v

Fix an isomorphism f : (V ® R, metric) — (R", Euclidean inner product). If we
write f(V) = Qg for some g € GL,(R), we have vol(V) = det(g). Using this it is
easy to check the following identities:

(9.2.1) vol(V; ® V) = (vol Vl)dim V2 (yol V2)dim Vi

(9.2.2) vol(V*) = vol(V) ™1, ] (vol /\ VYED =1 (dimV > 2),

(]
where all equalities are in R*/QX.
If ¢ is an automorphism of V' with prime order, then we denote by V7 the fixed
point space; we denote by V, the quotient V/V?. It will be convenient to abridge

vol? (V) := vol(V?),

the volume of the o-invariants with respect to the induced metric.

Finally, it will be convenient to make the following notation: If V; are a collection
of Q-vector spaces with metrics, indexed by the integers, and only finitely many V;
are nonzero, we denote by

(9.2.3) vol V. = [ (vol ;)"

the alternating product of the volumes. We will often apply this notation when V; is
the ith cohomology group of a Riemannian manifold, equipped with the metric that
arises from its identification with harmonic forms.

9.3. Analytic torsion and equivariant analytic torsion. The theorems of Moscovici-
Stanton and Lipnowski

As a reference on this topic see [15] (for the general case) and [43] (for the equiv-
ariant case); see also [47, 5, 4]. We briefly summarize the important points.
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Let M be a compact Riemannian manifold, ¢ an automorphism of M of prime
order p, G = (o) the group generated by o. Note that the fixed point set M is
automatically a smooth submanifold. @ We shall suppose that dim(M) and dim(M?)
are both odd. We may find a G-stable triangulation of M, by [30], and it may be
assumed to be regular (see [12, Chapter III]).

If W is a real vector space, let det(WW) be the line (= one-dimensional real vector
space) given by /\dim(W) W. If W has a Euclidean metric, then det(W/) has a metric
too; this normalizes an element of det(W) up to sign, the element of norm 1. If
W, is a finite complex of real vector spaces, define det W, = @), (det W)Y a
one-dimensional real vector space. (Here, L~! denotes the dual of L, if L is one-
dimensional.) There is a natural isomorphism det W, ~ det H*(W,), where we regard
the cohomology as a complex of vector spaces with zero differential.

In particular, writing C*(M,R) for the cochain complex of M with respect to the
fixed triangulation, we get an isomorphism

(9.3.1) det C*(M,R) ~ det H* (M, R).

Equip the chain complex C, (M, R) with the metric where the characteristic functions
of cells form an orthonormal basis; give C*(M,R) the dual metric. Equip the coho-
mology H*(M,R) with the metric that arises from its identifications with harmonic
forms (here, harmonic forms are endowed with the L? inner product). These metrics
induce metrics on the one-dimensional vector spaces det C*(M, R) and det H*(M,R)
respectively.

We define the Reidemeister torsion of M (with reference to the given triangulation)
by comparing these metrics, using the identification (9.3.1):

(9.3.2) RT(M) - || - - = || - -

Evaluate the resulting equality on an element ¢ € det C*(M, Q); then ||c||c~ is easily
seen to lie in Q*, whereas |[c[|g+ ~qx vol H*(M,Q), where the right-hand side is
defined as an alternating product as in (9.2.3). Therefore,

(9.3.3) RT(M) ~ vol H*(M, Q).

We also need an equivariant version of the same discussion. The complex of invari-
ants C*(M,R)? has cohomology identified with H*(M,R)?; we get
(9.3.4) det C* (M, R)? ~ det H* (M, R)°.
These too have metrics, induced from C*(M,R) and H*(M,R); we define the “invari-
ant part” RT?(M) of the Reidemeister torsion via the same rule (9.3.2), now applied
to (9.3.4). An orthogonal basis for C.(M, Q)7 is obtained by taking all o-invariant

cells, and the o-orbits of cells that are not invariant; we have a similar (dual) basis
for C*(M, Q). The elements of the resulting basis are orthogonal, and their lengths

1. To see that, note that one can assume the metric to be invariant by averaging under G, and
then the exponential map in the neighborhood of a fixed point provides a linear chart for M near
that point.
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are either 1 or ,/p, where p is the order of o. Writing £; for the number of j-di-
mensional simplices that are not invariant, we see vol C7 (M, Q)° ~ p%i/2. However,
modulo 2, > ¢; = > (—1)7e; = x(M) — x(M?). Both Euler characteristics are zero
(we are dealing with odd-dimensional manifolds). Proceeding as above, we get

RT? (M) ~ vol H*(M, Q)°.

The main theorem of [15] is an equality between RT and an analytic invariant, the
analytic torsion; the main theorem of [43] is a corresponding equality for RT?. We do
not need to recall these results in full here.

All that is important for us are the following two statements, in the case when
M =Y from (9.1.1), and o is given by the action of a generator of Gal(E/F) on Y:

(9.3.5) RT(Y) =1
(9.3.6) RT(Y) = RT(Y)?.

These statements are proved by studying the analytic torsion. The proof of (9.3.5)
is exactly as in [46] or [66] (the stated theorems there do not cover the current case,
but the proof applies in exactly the same way). The idea is, roughly speaking, that
the product decomposition of the universal cover of Y means that every Laplacian
eigenvalue occurs in several cohomological degrees, leading to a mass cancelation in
the analytic torsion.

As for (9.3.6), this key relationship is due to Lipnowski [42, §0.2, “Sample Theo-
rem”]. Lipnowski’s results are deduced from the theory of base change: the analytic
torsion counterparts of RT(Y') and RT?(Y") are defined in terms of a regularized trace
of log A, acting on Y, and possibly twisted by a power of o; however the theory of
base change precisely allows one to relate this to corresponding computations on Y. (%)

9.4. Volumes of cohomology groups for Y and Y

We gather some preliminary results related to the volumes of groups H’ (Y, Q) and
H’(Y,Q), measured as always with respect to the metric induced by the L2-norm on
harmonic forms.

We have
(9.4.1) vol H(Y, Q) = vol H4(Y, Q) - vol H (Y, Q) triv,

2. Here are some notes regarding the translation of Lipnowski’s theorem to the form above:
Lipnowski works in a situation with a Galois group (o) of order p and shows that 7, = 7P. Here
7 is exactly RT(Y), for suitable choices of data, but 7, takes some translation: its logarithm is
the logarithmic determinant of the de Rham Laplacian on Y twisted by o. One obtains the same
logarithmic determinant if we twist by o for any 1 < i < p—1. Add up over 1 < 3 < p—1 and
apply the main theorem of [43] to the representation of (o) which is the difference of the regular
representation and p copies of the trivial representation. We find RT(Y") TP = RT? (Y)P; therefore,
RTY (Y)3

RT(Y) = 72 = 76. To conclude we apply (9.3.5).

in our case with p = 3, we find
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(equality in R*/Q*) by virtue of our assumption that the only cohomological auto-
morphic representations at level K are the trivial representation and II: the splitting
H' = H{ ® H},, is both orthogonal and defined over Q. Poincaré duality induces a

metric isomorphism H*(Y, Q) ~ H* (Y, Q)*, where i +i* = 9, and thus
vol H(Y, Q) - vol H* (Y, Q) ~ 1
and the same result holds for the trivial and II parts individually. We have similar
results for the o-invariant volumes, and also a similar equality for Y
vol H'(Y, Q) = vol H. (Y, Q) - vol H (Y, Q) tuiv
We now compute the various volume terms related to the trivial representation.
Observe that

. 1,i€{0,9}
. i~ ].,Z € {0,3}, . i .
dim H*(Y, Q)triv = 0 el and dim H*(Y, Q)triv = 4 3,4 € {3,6};
else
’ ’ 0, else.

Explicitly speaking, harmonic representatives for H3(Y, R)i.iy are obtained from the
pullbacks 7*v under the coordinate projections

(9.4.2) Hx Hx H— H,

here H is the hyperbolic 3-space, and v the (Riemannian) volume form on it. Moreover,
cup product gives an isomorphism

3
NE2 (Y, Q)uiv ~ H(Y,Q) = H(Y, Q)uriv-

Lemma 9.4.1. — We have
(9.4.3) vol H*(Y, Q) triv ~ 1.

Proof. — It is enough to show that
(9.4.4) vol(H?(Y, Q)triv) VOl(H? (Y, Q)triv) ~ 1,
because then Poincaré duality gives vol(H®(Y, Q)triv) vol(H°(Y, Q)triv) ~ 1, and that
gives the lemma. To verify (9.4.4), take an orthonormal basis w;,ws,ws for harmonic
3-forms spanning H3(Y, R)iv. The norm of each one at every point of Y (K) (where
the norm is that induced by the Riemannian structure) equals 1/4/vol(Y), where we
measure the volume of Y with respect to the Riemannian measure.

The volume of H3(Y, Q) equals (up to Q*, as usual) equals

det(w;,wj) 1 = \/\W~

Jy w1 Awa Aws o Jy w1 Awa Aws

The first equation is just the Definition (1.4.3), where the denominator adjusts for the
fact that the w; are not a Q-basis, and, at the last step, we used that w1 A ws A ws is
a multiple of the volume form, and its norm at each point is vol(Y)~3/2.
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On the other hand, the volume of H?(Y, Q) equals the L?-norm of Vo(lv(c;) with
d(vol) the Riemannian volume form, i.e., vol(Y)~'/2. That proves (9.4.4). O

Lemma 9.4.2. — We have
(9.4.5) vol” H*(Y, Q)uriv ~ vol(Y)?.

As above, the volume of Y is measured with respect to the Riemannian structure—
equivalently, with respect to v.
Proof. — Notation as in (9.4.2), a generator w3 for H3(Y, Q)7 is given as %
To verify this, recall that we have a map Y — Y (it is possible that this map is not
surjective but it doesn’t matter). Each 7}v pulls back to v on Y, and in particular
integrates to vol(Y'). Therefore [;-ws = 3, so ws really does belong to H3(Y, Q). The

L?-norm of wj is given by ,/3 - V;’IO(IJ)Z Therefore, the left hand side of (9.4.5) is

vol(Y) vol(Y)
vol(Y)1/2 vol(Y)1/2
—_— ——

3 6

~ vol(Y)/2. vol(Y)'/2 = vol(Y)2,
—— N—

9
where, on the left, we noted in braces the cohomological degree that is giving rise to

each term (one uses Poincaré duality for 6,9, and recall that these terms are raised
to the power (—1)%, (—1)? respectively). O

9.5. Proof of Prediction 1.4.3

In what follows we abbreviate
Hi == H"Y,Q)n

for the II-summand of cohomology.

Combining (9.3.3), (9.3.5), (9.4.1), (9.4.3) and Poincaré duality we get
(9.5.1) vol Hyy € v/Q* - vol H,
where the v/ QX comes from the fact that we took the square root of an equality that
held up to Q*. Next, we have
(9.5.2) vol? Hj; ~ (vol H%)?

since from RT? (V) 036 RT(Y)? we get

(9.5.3)  vol” H(Y, Q) - vol® H*(Y, Q)triv ~ (vol H*(Y,Q)-vol H*(Y, Q)triv)2 ,

but Lemma 9.4.2, and the simple fact that vol H*(Y, Q)tsiy = vol(Y), implies that
the contribution of the trivial representation on left and right cancel.
Expanding (9.5.2), noting that H3 is o-fixed, and using Poincaré duality, we see

vol” Hp 2 1 4
vol HE volH! ) ~’
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that is to say
vol” Hi (volH})®

!
vol H3 = V4,

for some ¢’ € Q*. This indeed verifies Prediction 1.4.3 up to /QX*.

(9.5.4)

9.6. Computation of vol H and vol H}

In this case we know (1.4.8) both over E and F:

(9.6.1) vol(H)? - vol(L};) ~ /a1,
(9.6.2) vol(H2)? - vol(LE) ~ /g2
for ¢; € Q*.

The computation of the periods of cohomological forms on inner forms of GL(2) in
minimal cohomological degree, in terms of associated L-functions, was in essence done
by Waldspurger [79, 78], and (9.6.1), (9.6.2) can be deduced from this computation,
together with a computation along the lines of §8 relating these L-functions to Ly
and L.

However, we will now briefly outline how to deduce (9.6.1) and (9.6.2) directly from
some mild variants of Theorem 7.2.1, because that theorem already has done all the
appropriate normalizations and Hodge—linear algebra needed to get the result in the
desired form. We will focus on (9.6.2); all steps of the proof of Theorem 7.2.1, and the
variant we will need below, go through with F replaced by F or indeed any CM field,
and that will give (9.6.1). Besides this issue of working over E rather than F', the
reason we need “variants” of Theorem 7.2.1 is to provide enough flexibility to ensure
that the L-values occuring are not zero. One pleasant feature of the current case is
that the hypotheses of §6.10 are all known here.

‘We apply Theorem 7.2.1 with:

— G the form of SO(3) defined by the reduced norm on the trace-free part of D;
in particular G(F) = D*/F*.

- H C G the SO(2)—~subgr0up defined by a subfield F' C D, quadratic over F, i.e.,
we have H(F) = F*/F™*.

- Th(i cycle Z(U) will be twisted, as in §7.0.1, by a quadratic idele class character ¥
of F, trivial on F'.

The twist mentioned was not used in Theorem 7.2.1, but all steps of the proof go
through. The only change is in the nonvanishing criterion in the last paragraph: one
must replace the Rankin-Selberg L-function by its ¢-twist.

It is possible, by Theorem [80, Theorem 4, page 288| and a local argument, given
below, to choose such F, 1 in such a fashion that:

(a) L(},BCEr @) # 0, and
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(b) for v a place of F' which remains inert in F, the local e-factor é‘v(BC?W ® )
equals —1 when D is ramified and otherwise 1.

In both cases BCE means base change (global or local) from F' to F. According to the
last paragraph of Theorem 7.2.1, together with the work of Tunnell-Saito [71, 56, 51]
relating invariant linear forms to e-factors, conditions (a) and (b) imply that the v/Q
ambiguity in Theorem 7.2.1 is actually nonzero, giving (9.6.2).

Finally, we describe the local argument alluded to above. We will find a pair of
distinct quadratic idele class characters xi1,x2 of F', and then construct 13',1/1 from
them, so that there is an equality of L-functions L(F,v) = L(F, x1)L(F, x2). (Thus,
if x; corresponds to the quadratic extension F(v/d;), we take F = F(v/dyds), and v
to correspond to the quadratic extension F(v/dy,/dz) over F).

Let T be the set of ramified places for D. Let S be the set of all places not in T'
where 7 is ramified, together with the archimedean places. Let R be the remaining
places. Our requirements (a) and (b) then translate to:

(a) L(3,mx x1)L(3,m x x2) # 0, and

-lLveT.

() ey(m X x1)e0(m X x2)X1X2(=1) = {1 veSI[R.

Let us recall (see e.g., the summary in [71, §1]) that for &k a local field and o a rep-
resentation of PGLa(k), the local epsilon factor e(o,1),1/2) = (o) is independent of
additive character . Moreover, if ¢ is a principal series, induced from the character «
of k*, we have £(0) = a(—1); if o is the Steinberg representation we have e(o) = —1,
and for the unramified quadratic twist of the Steinberg representation have (o) = 1.

If x is a quadratic idele class character of F' that is unramified at 7" and trivial
at S, the global root number of the y-twist satisfies

0 T [ = I o).

e(m)
veT vER veT
—_——
=Hves ur X (=1)=1

In other words, twisting by such a 5y changes the global root number by a factor (—1)¢,

where t is the number of places in T" where x is nontrivial.

Choose x; and x3 of this type such that x; and xo are “opposed” at each place
of T (i.e., one is trivial and one is the nontrivial quadratic unramified character), and
such that x; and yo are both trivial at each place of S. Then

-1, veT,
1, wveS]IR.
The global root numbers of m x x;(i = 1,2) are both given by e(r) - (—1)*, where

t is the number of nontrivial places in T for x; or x2 (they have the same parity).
Choosing t appropriately we arrange that (7 x x1) = (7 X x2) = 1.

(9.6.3) Eo(m X x1)eu(m X x2)X1X2(=1) = {
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Waldspurger’s result implies that we may now find twists x7, x5 of x1, X2, coinciding
with X1, x2 at all places of T[] S, such that L(%,ﬂ' x xi) # 0. The condition (9.6.3)
continues to hold for the x}, so we have achieved (a)’ and (b)’ as required.

9.7. Proof of the remainder of Theorem 9.11

We must verify (9.1.4) for 1 < ¢ < 3. Let us compute volumes of everything in
sight in terms of the volumes of Ly and L.
First of all,

9.7.1) vol(H3 @ Lz)? U2V vol(H2)8 - vol (L) 2 PV vol(H2)? XY vol(HE)2.
Also we have (since HJ is o-fixed):
(9.7.2) vol” (H3 @ L)? = vol® (L)? vol(H2)? 5% vol(L)2 vol(H3)?
6.2) (vol H3)? (9.5,
(9.7.3) o2 (WOLHR) 030 (oo ray?,

(vol H1)

We can now deduce the conclusions of the theorem. First of all,

3
Hiy - \ Ly = va HE.
Both sides above are one dimensional Q-vector spaces, so that this can be checked by
comparing volumes, for which we use (9.6.1), Poincaré duality, and the fact that the
volume of A\® L} and Lj; coincide (see (1.4.4)). That proves (9.1.4) fori =3 . Fori =1
we use the following lemma, applied with L; the image of HY ® L} in H*(Y,R)m,
and Ly := Hf.

Lemma. — Let VR be a three-dimensional real vector space with metric, equipped with
an isometric action of (o) ~ Z/3Z, with dim Vi§ = 1. Suppose V1,Vo C Vr are two
different Q-structures, both stable under o. If

(9.7.4) vol(V1) = vol(Vz), vol?(Vy) = vol? (V2),
then we have
Vi ® Q(Vb) = a(V, ® Q(VD))

for a rotation o € R[o]* and some positive b € Q*.

Proof. — We have an isomorphism Q[o] ~ Q ® Q[¢3] and correspondingly we may
split orthogonally
Vi=V7 @ Vi)o.

Since V{7, Vi have the same volume, they are equal. On the other hand, (V1), ® R =
(Va)s ® R, and these spaces are both isometric to R[(s] equipped with the standard
quadratic form |z + iy|?> = z2 + y2. The images of V7,V in R[(3] must be of the
form «; - Q[¢3] for some a € R[(3]* ~ C*; since the volumes of these spaces coincide
in R*/Q* we get a1 |?> = blag|? for some b € Q*. Therefore Vi ® Q(vb), Vo ® Q(Vb)
differ by a rotation as claimed. O
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In our case we do not have the exact equality of volumes as in (9.7.4), but only
equality up to certain factors in \/@ . Correspondingly, we get L1 = aLs only after
first extending scalars to a field of the form Q(y/a1, b*/#). This implies the case i = 1
in the theorem.

Finally, the case of i = 2 of the theorem follows from Poincaré duality: take
h,h' € HE and a € A’ L4, a’ € L}. Then Lemma 5.5.1 implies

(h-a,h -ad'y=(h-ad,h') € Q- /71,
where (—,—) is the Poincaré duality pairing on H*(Y,R), and we used (9.6.1)
at the last step. Therefore, the three-dimensional vector spaces Hf - L ® Q and
H3 - /\2 L} ® Q are dual to one another under the Poincaré duality pairing. Since

the former space is a rotation of Hl‘-lI ® Q, as explained above, we deduce that the
latter space is a rotation of Hf; ® Q. This concludes the proof of the theorem.
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APPENDIX

THE MOTIVE OF A COHOMOLOGICAL
AUTOMORPHIC REPRESENTATION

In this appendix, for lack of a sufficiently general reference, we shall formulate the
precise conjectures relating cohomological automorphic representations to motives.

A. The notion of a G-motive

A.1. The motivic Galois group. — Let F' be a number field. Assuming standard con-
jectures, the category oMp of Grothendieck motives over F' (with Q-coefficients) is a
neutral Tannakian category, with fiber functor sending the motive M to the Betti co-
homology of M, := M x,, C for an embedding v : F < C. (See §2.1.9). Fixing such v
gives a motivic Galois group (the automorphisms of this fiber functor), denoted Gysot-
It is a pro-algebraic group over Q; it depends on the choice of v, but we will suppress
this dependence in our notation.

For any object M of cMp, we let G s denote the algebraic group over Q defined
similarly but with oF replaced by the smallest Tannakian subcategory containing M.
Then Gy is of finite type and
(Al) GMot = linGM

M
The natural map

PM,e - I'r — GL(H;(MU, QZ)) = GL(HE(MU) ® QZ)

factors through Gp(Qe). Conjecturally the image of this map is Zariski dense
in Gpr(Qe) [63] §3.27 (sic), and we will assume this in our discussion.
The groups Gj; and Get Sit in exact sequences:

1—>G(J)\4—>GM—>FM—>1
and
1 — GRioy = Guiot — T'r — 1,
where GY; and GY;_, denotes the identity components of G and Gppot respectively.

The group I'r = Gal(F/F) may be viewed as the Tannakian group associated with
the Tannakian category of Artin motives over F.
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The Galois representations pyr¢ : I'r — Gar(Qy) yields, in the inverse limit, a map

(A.2) pe: Tr — Grot(Qe)
with the property that the composite map I'r — Gurot(Qe) — T'r is the identity.

A.2. The group “G. — We will use the C-group defined in [13], see in particular
Proposition 5.3.3 therein. Let G = (G x G,,)/(X), where X is the order 2 element de-
fined by (X¥5(—1),—1), and X5 is the co-character of T C G corresponding to the sum
of all positive roots for G. This has the property that the cocharacter z — (X5(z), )
from G,, — G x G,,, admits a square root when projected to é’; this square root will
be denoted by w:

(A.3) @ : Gy — G,

so that we may informally write w(z) = (v/z,X5(v/x)).
We define the C-group as the semidirect product

CG:éXJFF,

where ' acts on G in the natural way and on G, trivially. The action of I'r on G
factors through a finite quotient of I'z-. We understand G to be a pro-algebraic group
defined over Q.

Note that, parallel to the structure of Gyot noted above, there is an exact sequence

1—>é—>CG—>FF—>1.

Just as for G itself, the complex algebraic groups é, €@ can be descended to
algebraic groups é, ©@G over Z, using the split Chevalley model of é; thus their
R-points make sense for any ring R and, by a slight abuse of notation, we will allow
ourselves to write G(R), G(R) for these R-points. We also write Gz, °Gg for the
corresponding R-algebraic groups.

A.3. G-motives. — A G-motive X (over F) will by definition be a homomorphism
(A.4) ix 1 Gyog — “Gg

commuting with the projections to I'r ,and whose projection to G,,/{*1} ~ G,,
gives the representation associated to the Tate motive Q(—1).

Here the subscripts refer to base extensions of these algebraic groups to Q. The
morphisms between G-motives X,Y will be understood to be the elements of G(Q)
conjugating tx to ty; in particular, the isomorphism class of X depends only on the
é(a)—conjugacy class of ¢tx.

Then X defines a functor (also denoted X) from finite-dimensional ¢G-represen-
tations over Q to the category of motives over F with coefficients in Q. In fact, this
functor is a more intrinsic presentation of a @—motive, because, after all, the motivic
Galois group depends on a choice of fiber functor to begin with.

Composing tx with py (see (A.2)) gives a map

px. i Tr 25 Guiot(Qr) = Gy, g(Qr ® Q) 25 “Gg(Qr © Q).
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Thus we get a representation px x : Tr — “Gg(Q,) for each prime X of Q above £,

with the property that the composite of this map with the projection “G — I'p is
the identity.

Lemma A.1 (The Galois representation determines the motive). — If px  and py,) are
conjugate under G(QA) for some A, then also X,Y are isomorphic—i.e., tx, Ly define
the same G(Q)-conjugacy class of maps.

Proof. — 1f px » and py, are conjugate, then tx and ty, considered as maps of Q,,-al-
gebraic groups, are conjugate on a Zariski-dense subset of the source (by our assump-
tion that the image of I'r in Gumot(Qe) is dense). Thus tx and iy are conjugate
over Q,. But then they are also conjugate over Q. O

If (p,V,) is a CG-representation over Q, we write X , for the associated motive,
i.e., the motive with Q coefficients associated to the composite p o tx. There is a
tautological isomorphism

(A.5) Hp(X, x, C,Q) ~V,.

B. The G motive attached to a cohomological automorphic representation

Now let F' = Q; we will formulate the precise connections between cohomological
automorphic representation for G, and G-motives.

It is convenient to start with a character x : H — Q of the cohomological Hecke
algebra for Y(K), as in §1.1 but allowing Q values. Attached to each embedding
X : Q — C there is a near-equivalence class of cohomological automorphic represen-
tation IT* whose Hecke eigenvalues coincide with \ o x.

Attached to x there should be a compatible system of Galois representations to ©G
in the following sense: For each nonarchimedean place A of Q we should have [13,
Conjecture 5.3.4] attached a distinguished conjugacy class of maps

(B.1) px s Gal(Q/Q) — “G(Q,) A nonarchimedean;

which matches with X o x under the Satake correspondence, (see loc. cit. for details).
The basic conjecture concerning the existence of motives (cf. the discussion at the
end of [40, §2]) is then the following:

Conjecture B.1. — Given a cohomology class as above, there ezists a G-motive X
over Q, with the property that for each nonarchimedean \ the Galois representation p)
attached to the cohomology class is isomorphic to the Galois representation px » aris-
ing from X.

C. Descent of the coefficient field for a G-motive

In §B we have formulated the conjectures over Q. However if the Hecke character x
takes values in a subfield E C Q it is of course preferable to work over E. In the
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current section, we outline how to do this, i.e., how to descend the coefficient field of
a G-motive, at the cost of replacing G by an inner form.

C.1. Twisting a Galois representation. — Let us first recall how to “apply a Galois
automorphism to a representation.”

Suppose that H is an algebraic group over Q, and ¢ is an automorphism of Q.
We can define the o-twist H?: if H is defined by various equations f; = 0, then H?
is defined by the equations f7 = 0, and so on; if H is defined over Q there is a
canonical isomorphism H ~ H°. Also ¢ induces a bijection H(Q) — H°(Q) denoted
by h — h°.

In particular, given a homomorphism 7 : H — H’ of Q-algebraic groups, we obtain
a twisted morphism 7% : H° — (H')?, with the property that 77 (h°) = w(h)°.

C.2. Descent of coefficients for a motive. — Let X be a G-motive. For o € Gal(Q/Q),
we can form a new motive X by the rule
Lxo = (Lx)a.

Informally, X ¢ applies o to the coefficients of the system of motives defined by X.

Now let E be a finite extension of Q, and suppose that X ~ X for all
o € Gal(Q/E). In particular, there exists an element g, € G(Q) with the property
that

Ad(ge)tx = txe.

Explicitly, this means that for g € Gyt (Q) we have Ad(gs)tx(g%) = tx(g)?, so that
the image of G0t (Q) is fixed under z — Ad(g;1)z°.

The element g, is determined up to Q-points of Z(1x ), the centralizer of vx inside
é@‘ In particular, if the centralizer of 1x coincides with the center of (0;6, the rule
o — g, defines a cocycle; its cohomology class lies in

H'(Gal(Q/E), G(Q) modulo center) = H'(E, G modulo center),

where we use the usual notation for Galois cohomology on the right.

This cocycle can be used to descend Ga, GG and CGQ to Q-forms G,, G, ¢G.,
described as the fixed points of z — Ad(g;!)z° on the respective (pro)-groups. We
may then descend ¢x to a morphism
(C.1) tx : GrMot — G, (morphism of E-groups) .

Composition with the adjoint representation of G, should then yield the adjoint
motive described in Definition 4.2.1.

D. Standard representations of the C-group for PGL and SO

According to our prior discussion, a cohomological form for G gives rise to a G-mo-
tive with Q coefficients; in particular, a representation of G gives rise to a usual
motive with Q coefficients. The Hodge weights of the resulting motive are given by
the eigenvalues of the weight cocharacter (A.3).
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In the remainder of this section, we specify a standard representation of the C-group
in the cases of interest, namely, G = PGL,, and G = SO,,. We will compute the
Hodge numbers both for this motive (denoted M) and for the motive associated to
the adjoint representation of “G (denoted Ad M). We work over an arbitrary number
field F'; in the text, F' will sometimes be an imaginary quadratic extension of Q.

- G =PGL,,G = SL, xG,,/((-1)"*1d,,, —1).

Here

(D.1) w(z) = (Sym" ™! Va),

NG

1/vz|’
and we define the standard representation of G to be the tensor product of
the character  — z"~! on G,,, with the standard representation of SL,,. This

extends to G, by extending trivially on I'p.
Thus the Hodge numbers of M are
(n—1,0),(n—2,1)...,(1,n—2),(0,n—1)
each with multiplicity one, and the Hodge numbers of Ad M are
(n—1,—(n—1))", (n—2,—(n—2))%...,(1,-1)""* (0,0},
(-1, D)™t (=(n—2),n—2)% (—=(n—1),n —1)*

where we wrote the multiplicities as superscripts.

~ G =803,,G =S50, x Gp/(Id,, —1).

Here

2n—2 lﬁ

w(z) = (Sym 1/ VE @Id17ﬁ> )

where Id; is the identity matrix in one dimension, and we define the standard
representation of G to be the tensor product of the standard representation
on SO,,, and the character z — z2"~2 on G,,,. This extends to ©G: first extend
it to Oz, xG,, /(1, —1), and then use the map “G — Os,, xG,,, /(1, —1) extending
the inclusion of G; here the map I'r — O3, should induce the natural action
of I'r on SO, = G by pinned automorphisms.
Thus the Hodge numbers of M are

(2n—2,001,(2n—=3,1)%,...,(n—1,n—1)2,...,(1,2n — 3)},(0,2n — 2)*

and the Hodge numbers of Ad(M) (which is of rank n(2n — 1)) range from
(2n —3,—(2n — 3)) to (—(2n — 3), (2n — 3)) and admit a pattern that depends
on the parity of n. If n = 2¢, the multiplicities are given by

1,1,...,tt...,n—1,n—1,n,n,n,n—1,n—1,...,%¢,...,1,1,
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where the bar above (¢,t) indicates that those terms are skipped. If n = 2t + 1,
then the multiplicities are

1,1,...,¢t,t+1,-1,n—-—1,n,n,n,n—1,n—1,...t+1,¢...,1,1,

where again the bar has the same interpretation as before.

~ G =804,11,G = Sp(2n) x G,,/(~1d,, —1).

Here w is given by

w(z) = (Sym?"~

1 [ﬁ J7)

1/\/5] ’
and we define the standard representation of G to be the tensor product of the

standard representation of Sp(2n) and the character z — x2"~! on G,,. This
extends to G, by extending trivially on I'p.

The Hodge numbers of M are
(2n —1,0),(2n —2,1),...,(1,2n — 2),(0,2n — 1),

each with multiplicity one. The Hodge numbers of Ad(M) (which is of
rank n(2n + 1)) range from (2n — 1,—(2n — 1)) to (—(2n — 1),(2n — 1)) and
have multiplicities

1,1,2,2,...,n—1,n—1,nnnn—1n—-1,...,2,2,1,1.
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