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Abstract—In this paper, we propose a safe deep reinforcement
learning (SDRL) based method to solve the problem of opti-
mal operation of distribution networks (OODN). We formulate
OODN as a constrained Markov decision process (CMDP). The
objective is to achieve adaptive voltage regulation and energy cost
minimization considering the uncertainty of renewable resources
(RSs), nodal loads and energy prices. The control actions include
the number of in-operation units of the switchable capacitor
banks (SCBs), the tap position of the on-load tap-changers
(OLTCs) and voltage regulators (VRs), the active and reactive
power of distributed generators (DGs), and the charging and
discharging power of battery storage systems (BSSs). To optimize
the discrete and continuous actions simultaneously, a stochastic
policy built upon a joint distribution of mixed random variables is
designed and learned through a neural network approximator. To
guarantee that safety constraints are satisfied, constrained policy
optimization (CPO) is employed to train the neural network. The
proposed approach enables the agent to learn a cost-effective
operating strategy through exploring safe scheduling actions.
Compared to traditional deep reinforcement learning (DRL)
methods that allow agents to freely explore any behaviors during
training, the proposed approach is more practical to be applied
in a real system. Simulation results on a modified IEEE-34 node
system and a modified IEEE-123 node system demonstrate the
effectiveness of the proposed method.

Index Terms—Distribution systems, safe deep reinforcement
learning, constrained Markov decision process (MDP), mixed
discrete and continuous actions, data-driven decision making.

NOMENCLATURE

Abbreivations
OODN Optimal Operation of Distribution Networks
DG Distributed Generator
RS Renewable Sources
BSS Battery Storage System
SCB Switchable Capacitor Bank
VR Voltage Regulator
OLTC On-Load Tap Changer
MDP Markov Decision Process
CMDP Constrained Markov Decision Process
RL Reinforcement Learning
DRL Deep Reinforcement Learning
SDRL Safe Deep Reinforcement Learning
PPO Proximal Policy Optimization
DDPG Deep Deterministic Policy Gradient
SAC Soft Actor Critic
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CPO Constrained Policy Optimization
VVC Volt-Var Control
SP Stochastic Programming
RO Robust Optimization
MISOCP Mixed Integer Second-Order Cone Programming
Subscripts
i Index of node
ij Index of branch
t Index of time slot
c Index of discrete control actions
k Iteration of the CPO algorithm
ch Charging
dch Discharging
Superscripts
scb Switchable capacitor bank
vr Voltage regulator or on-load tap-changer
dg Distributed generator
bss Battery storage system
rs renewable resources
d power demand
s Substation
targ Target value
Sets
Ωt Set of time slots
Ωn Set of nodes
Ωb Set of branches
Variables
n Number of SCB units in operation
l Tap position of an OLTC/VR
P Active power (kW)
Q Reactive power (kVar)
S Apparent power (kVA)
E Energy stored in a BSS (kWh)
V Nodal voltage (p.u.)
I Branch current (p.u.)
R Electricity rate ($/kWh)
s State of the DN
a Action of the policy
r Reward
c Constraint
p Probability
θ Parameters of the policy network
ϕ Parameters of the value network
Constants
n Maximum number of SCB units
l Maximum number of regulation up/down steps
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P Maximum active power (kW)
S Maximum apparent power (kVA)
E Maximum energy stored in a BSS (kWh)
V Maximum nodal voltage (p.u.)
I Maximum branch current (p.u.)
V Minimum nodal voltage (p.u.)
E Minimum energy stored in a BSS (kWh)
pf Minimum power factor
δ KL-Divergence Limit
d Constraint tolerance
λ GAE parameter
γ Discount factor
ϱ Penalty coefficient
∆t Interval of one time step
T Number of steps

I. INTRODUCTION

D ISTRIBUTION networks were traditionally operated to
avoid loading and voltage limit violations for one-way

power flow [1]. The increasing penetration of distributed
resources violates this basic assumption and can disrupt the
operation of distribution networks. For instance, intermittent
RSs, such as photovoltaics and wind turbines, may cause swing
of voltages due to their rapid power variations [2]. DGs inject-
ing real power back upstream into the distribution networks
can cause voltage boosts [3] and interfere with conventional
Volt/VAR control (VVC) devices. This problem may become
worse if BSSs are installed and dispatched to charge and
discharge intermittently. Besides, unregulated charging power
of BSSs may increase the burden of distribution lines and
reduce the loading margin of distribution systems.

To coordinate VVC devices and distributed resources, ex-
tensive model-based methods have been proposed. For ex-
ample, a mixed-integer non-linear programming model and
an equivalent mixed integer quadratically constrained model
were proposed in [4] for voltage constraint management in
distribution networks. In [5], a mixed-integer second-order
cone programming (MISOCP) model was proposed to min-
imize the energy cost for radial distribution networks us-
ing branch power flow models. To consider uncertainty of
RSs, a two-stage stochastic programming (SP) model was
proposed in [6] to coordinate VVC devices and inverter-
interfaced RSs. However, SP-based methods generally assume
a known probability distribution of the uncertainty. To relax
the assumption, a two-stage robust optimization (RO) model
was proposed in [7] to minimize the worst-case network
loss. In [8], an extended two-stage RO model was developed
to minimize the day-ahead operational cost considering the
uncertainty of RSs generation and load demand. In [9], a
distributionally robust model predictive control method was
proposed to solve dynamic optimal power flow in a multi-
microgrid system. Although RO-based methods do not require
a known probability distribution of the uncertainty, they still
depend on an uncertainty set to characterize the uncertainties.
To construct the uncertainty set, a polyhedron or convex hull
model is typically required. In [10], a deep neural network
is employed to construct the uncertainty set from historical

data for distribution network reconfiguration (DNR). Along
this line, the authors in [11] developed a distributionally robust
model for three-phase unbalanced DNR based on distributional
ambiguity set.

Generally, model-based methods require an explicit phys-
ical model to formulate the distribution network, an accu-
rate statistical model to characterize the uncertainty, and an
efficient solver to obtain the optimal solution in a limited
time. Developing such a method relies on extensive domain
knowledge and human-effort on model selection, parameter
estimation, and algorithm design. Improper physical models or
inaccurate parameters may result in performance deterioration
or unrealistic solutions.

To remove the dependency on an explicit model of the dis-
tribution network and of the uncertainty, model-free methods
based on reinforcement learning (RL) techniques have received
extensive attention in recent years. RL-based methods have
been successfully used in many power system applications,
such as reactive power control [12], [13], VVC [14], microgrid
energy management [15]–[17], demand response [18] etc. For
the OODN problem, some state-of-the-art methods have also
adopted deep RL (DRL) based approaches by taking advantage
of deep neural networks. For example, in [19], a two-timescale
voltage control scheme was proposed to maintain bus volt-
age in distribution networks, where the on-off commitment
of capacitor units was optimized by using deep-Q network
(DQN). In [20], a safe DRL algorithm was developed to
optimize the tap position of VRs and on/off switching of SCBS
based on soft actor critic (SAC). In [2], the multi-agent deep
deterministic policy optimization was adopted to solve the
voltage regulation problem by coordinating the reactive power
output of PV inverters. However, the VVC devices, such as
SCBs, OLTCs, and VRs, have not been considered. In [21], a
multi-agent DQN algorithm was developed to solve the VVC
problem by controlling the VVC devices and PV inverters. In
[22], a similar problem was solved by using a multi-agent trust
region policy optimization based approach.

Nevertheless, the model-free methods mentioned above did
not consider the co-optimization of conventional VVC devices
and the emerging DGs and BSSs. As we pointed out, dis-
pacthable DGs and BSSs can interfere with conventional VVC
devices and undermine the operation of distribution networks.
However, co-optimizion of VVC devices, dispatchable DGs,
and BSSs may pose several challenges to traditional RL
based methods. First, there are many inequality constraints in
the OODN problem, which can be tricky for reward-driven
RL methods. Second, there exist plenty of heterogeneous
devices that are controlled via discrete or continuous actions.
Third, distribution systems exhibit serious uncertainty and
nonlinearity, which is a major challenge to the representation
and learning ability of a completely model-free algorithm.

These challenges have motivated us to investigate a SDRL
solution to the OODN problem. Along this line, we formulate
the OODN problem in the framework of CMDP. In CMDP,
we can handle the reward and the constraints independently
and do not need to carefully design specific reward functions
for constraint violation. To effectively restrict the constraints
and maximize the reward, we explore the application of CPO,
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which is a successful SDRL algorithm [23]. It can train
complicated nonlinear policies for high-dimensional control
problems with constraints on states and actions. It can also
guarantee monotonic performance improvement and constraint
satisfaction. These advantages make CPO suitable for the
OODN problem. However, the OODN problem contains both
discrete and continuous actions, which makes it challenging to
directly apply the CPO algorithm. To deal with mixed discrete
and continuous actions, we develop a stochastic control policy
defined by a joint probabilistic distribution of discrete and
continuous random variables. The policy can output discrete
and continuous actions simultaneously by sampling from the
joint distribution.

In this paper, we focus on the problem of OODN under
uncertainty. We model the OODN problem as a CMDP
considering the uncertainty of RSs generation, nodal loads,
and prices of energy purchased from the utility. The objective
is to achieve adaptive voltage regulation and energy cost
minimization by coordinating SCBs, OLTCs, VRs, dispatch-
able DGs and BSSs. Compared to existing studies, the main
contributions of this work are summarized as follows:

• We propose a CMDP formulation for the OODN prob-
lem considering the coordinated control of traditional
VVC devices, i.e. SCBs, OLTCs, VRs, as well as the
dispatchable DGs and BSSs. Compared to the existing
model-free methods, the proposed formulation does not
need to design specific reward function or tune penalty
coefficients for constraint violation.

• We design a stochastic policy to handle mixed discrete
and continuous actions. This policy enables us to explore
a hybrid action space and generate discrete and contin-
uous actions simultaneously. Since actions are generated
by sampling from a joint distribution of mixed random
variables, the designed policy does not have a scalability
issue when the number of discrete actions increases.

• We employ the CPO algorithm to learn an optimal control
policy for the OODN problem. Different from traditional
DRL algorithms, the CPO algorithm can effectively han-
dle the operational constraints and guarantee monotonic
performance improvement and constraint satisfaction.

The rest of the paper is organized as follows. Section II
presents the CMDP formulation. Section III introduces the
CPO algorithm and the deisgned policy. In Section IV, case
studies are carried out and discussed. Section V draws the
conclusions.

II. CMDP FORMULATION OF THE OODN PROBLEM

In our formulation, the operational horizon of a distribution
network is divided into T time slots. We use the subscripts
t ∈ Ωt to index time intervals, i ∈ Ωn to index network
nodes, and ij ∈ Ωb to index branches, where Ωt, Ωn, and Ωb

represent the set of time intervals, the set of nodes, and the
set of branches, respectively.

Next, we introduce the characteristics of all controllable
devices in the distribution network. Then, the operational
limits and constraints of the distribution network are defined.
Finally, the OODN problem is formulated as a CMDP. It

is notable that in our formulation, the distribution network
is considered as a black box. This means that the network
topology, line parameters, and load fluctuation are unknown.
Control policies and scheduling decisions have to be learned
and made based on observations of system state.

A. Operational Characteristics of Controllable Devices

1) SCBs: The control variable of an SCB is the number of
units in operation. For the SCB at node i, the control variable
is denoted by nscb

i,t , which can take integer values in the range

0 ≤ nscb
i,t ≤ nscb

i , i ∈ Ωn, t ∈ Ωt, (1)

where nscb
i represents the maximum number of units of the

SCB. The total reactive power Qscb
i,t injected by the SCB is

dependent on the susceptance of each unit, the number of units
connected at the node, and the nodal voltage. A model of Qscb

i,t

can be found in [21]. In our study, we do not need an explicit
model of Qscb

i,t .
2) OLTCs and VRs: The control variable of an OLTC/VR

is the tap position. Commonly, an OLTC/VR can provide a
voltage regulation from –10% to +10% with 5 or 33 steps [3].
For the OLTC/VR connected to branch ij, the control variable
is denoted by lvr

ij,t, which can take integer values in the range

−lvr
ij ≤ lvr

ij,t ≤ l
vr
ij , ij ∈ Ωb, t ∈ Ωt, (2)

where l
vr
ij is the maximum number of the regulation up/down

steps of the OLTC/VR.
3) Dispatchable DGs: The control variables of a dispatch-

able DG are the active and reactive power outputs of the DG.
For the DG at node i, the active and reactive power outputs
are denoted by P dg

i,t and Qdg
i,t, respectively. It is assumed that

dispatchable DGs operate with a restricted power factor [5];
thus P dg

i,t and Qdg
i,t are constrained by:

0 ≤ P dg
i,t ≤ pf dg

i
· Sdg

i , i ∈ Ωn, t ∈ Ωt, (3)

pf dg
i
≤ cos(tan−1(Qdg

i,t/P
dg
i,t)) ≤ 1, i ∈ Ωn, t ∈ Ωt, (4)

where S
dg
i is the nominal capacity of the DG, and pf dg

i
is the

minimum power factor.
4) BSSs: The control variable of a BSS is the charging and

discharging power. For the BSS at node i, the control variable
is denoted by P bss

i,t , and a positive value of P bss
i,t represents the

BSS is charging, and a negative value represents discharging.
The value of P bss

i,t is restricted in the following range:

−P bss
i,dch ≤ P bss

i,t ≤ P
bss
i,ch, i ∈ Ωn, t ∈ Ωt. (5)

where P
bss
i,ch and P

bss
i,dch represent the maximum charging

power and maximum discharging power, respectively. Due to
the capacity limit of a energy storage, the energy Ebss

i,t stored
in the BSS at time interval t is constrained by

Ebss
i ≤ Ebss

i,t ≤ E
bss
i , i ∈ Ωn, t ∈ Ωt, (6)

where E
bss
i is the energy capacity of the BSS; Ebss

i denotes
the allowable minimum energy stored in the BSS.
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B. Limits and Constraints of the Distribution Networks

For the considered distribution network, we use the notation
Vi,t to represent the nodal voltage at node i, and Ii,t to
represent the current on branch ij. Also, we use P s

t and Qs
t

to denote the active and reactive power injected from the
substation, respectively.

The distribution network operates with the following limits:

(P s
t )

2
+ (Qs

t)
2 ≤ (S

s
)2, t ∈ Ωt. (7)

V i ≤ Vi,t ≤ V i, i ∈ Ωn, t ∈ Ωt, (8)

0 ≤ Iij,t ≤ Iij , ij ∈ Ωb, t ∈ Ωt, (9)

Eq. (7) constrains the complex power exchanged at the sub-
station between the distribution network and the upper level
grid. Eq. (8) restricts the nodal voltages to their upper and
lower limits. Eq. (9) defines the maximum branch currents.

C. CMDP Formulation

One major challenge in modeling the OODN problem is
how to handle the constraints. In most model-free methods,
constraints are modeled as a negative rewards in the framework
of Markov decision process (MDP) by using penalty methods.
However, as discussed in [24], it is difficult to determine a
good penalty coefficient to balance the constraint violation
and the reward. Besides, penalty methods usually cannot
guarantee that constraints are strictly satisfied even if a very
large penalty coefficient is used. To overcome this issue, we
propose a CMDP formulation for the OODN problem. In
the following subsections, the basic elements of the proposed
CMDP formulation are elaborated.

1) States: The system states at any time interval t are
defined as

st = (P1,t−T , . . . , P1,t−1, Q1,t−T , . . . , Q1,t−1, E
bss
1,t, . . . ,

Pi,t−T , . . . , Pi,t−1, Qi,t−T , . . . , Qi,t−1, E
bss
i,t , . . . ,

Rs
t−T , . . . , R

s
t−1), i ∈ Ωn, t ∈ Ωt, (10)

where Pi,t−T , . . . , Pi,t−1 denote the historical net active power
demand at node i over the past T slots; Qi,t−T , . . . , Qi,t−1

denote the historical net reactive power demand at node i over
the past T slots; Rs

t−T , . . . , R
s
t−1 denote the historical energy

prices over the past T slots. The net active and reactive power
demand at node i are calculated by

Pi,t = P d
i,t − P rs

i,t, Qi,t = Qd
i,t, i ∈ Ωn, t ∈ Ωt, (11)

where P rs
i,t represents the active power generated by the RS at

node i, P d
i,t denotes the active power demand at node t, and

Qd
i,t denotes the reactive power demand at node i. To suffi-

ciently utilize RSs, we assume that RSs are nondispatchable
sources operating with unity power factor [5].

2) Actions: The actions include the number of in-operation
units of the SCBS, the tap position of OLTCs/VRs, the active
and reactive power of DGs, and the charging/discharging
power of BSSs:

at = (nscb
1,t, l

vr
1,t, P

dg
1,t, Q

dg
1,t, P

bss
1,t , . . . ,

nscb
i,t , l

vr
i,t, P

dg
i,t, Q

dg
i,t, P

bss
i,t , . . . ), i ∈ Ωn, t ∈ Ωt.

(12)

3) Reward: The reward is the negative sum of the purchas-
ing costs of energy at the substation and the fuel costs of DGs

rt = −

(
Rs

tP
s
t∆t+

∑
i∈Ωn

[adg
i (P dg

i,t)
2 + bdg

i P dg
i,t + cdg

i ]∆t

)
,

(13)
where adg

i , bdg
i , and cdg

i are generation cost coefficients of the
DG at node i.

4) Constraint: The constraint reflects the degree of con-
straint violations, which is defined by

ct = Cs
t+
∑
i∈Ωn

CV
i,t+

∑
ij∈Ωb

C I
ij,t+

∑
i∈Ωn

Cdg
i,t+

∑
i∈Ωn

Cbss
i,t . (14)

The first term Cs
t measures the violation of the substation

capacity constraint (7), which is calculated by:

Cs
t = max(0,

√
(P s

t )
2 + (Qs

t)
2/S

s − 1). (15)

The second term CV
i,t reflects the degree of violation of the

nodal voltage limits (8), which is calculated by:

CV
i,t = max(0, Vi,t − V i) + max(0, V i − Vi,t). (16)

The third term C I
ij,t reflects the degree of violation of branch

loading limits (9), which is calculated by:

C I
ij,t = max(0, Iij,t/Iij − 1). (17)

The fourth term Cdg
i,t assesses the violation of the power

factor constraint (4) , which is calculated by:

Cdg
i,t = max(0, pf dg

i
− cos(tan−1(Qdg

i,t/P
dg
i,t)). (18)

The fifth term Cbss
i,t measures the violation of the BSS

capacity constraint (6), which is calculated by:

Cbss
i,t = [max(0, Ebss

i,t −E
bss
i,t )+max(0, Ebss

i,t−Ebss
i,t )]/Ei. (19)

5) Objective: We define J(π) as the expected discounted
return from time step 0 to T , which is calculated by

J(π) = Eτ∼π

[
r0 + γr1 + · · ·+ γT−1rT ,

]
where γ ∈ [0, 1] is the discount factor, τ denotes a trajectory
(τ = (s0, a0, a1, ..., sT )), Eτ∼π[·] is the expected value of
the distribution over the trajectory τ , and τ ∼ π is short for
s0 ∼ µ, at ∼ π(·|st), st+1 ∼ p(·|st, at). The trajectory τ is
a random process, in which the initial state s0 follows the
distribution µ, denoted by s0 ∼ µ; the action at follows the
policy distribution π(·|st), denoted by at ∼ π(·|st); the next
state st+1 follows the state transition probability distribution
p(·|st, at), denoted by st+1 ∼ p(·|st, at). Since the CMDP
formulation is model-free, the initial state distribution µ and
the state transition probability distribution p(·|st, at) are un-
known.

In addition, we define JC(π) as the expected discounted
constraint violations (also denoted as C-return) from time step
0 to T , which is calculated by

JC(π) = Eτ∼π

[
c0 + γc1 + · · ·+ γT−1cT

]
.
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For OODN, we aim to minimize the total operating cost
over the horizon T without violating any safety constraints,
so the problem can be formulated as

max
π

J(π)

s.t. JC(π) ≤ d
(20)

where d > 0 is a tolerance parameter, which restricts the total
constraint violation JC(π) to a very small number.

III. SAFE DEEP REINFORCEMENT LEARNING SOLUTION

In this section, we introduce a SDRL based solution to solve
the CMDP. To handle the mixed discrete and continuous action
space, we design a stochastic policy based on a multivariate
joint distribution. Then, we adopt a neural network to learn the
distribution parameters and train the neural network by CPO.

A. Constrained Policy Optimization Algorithm

For MDP problems, local policy search are usually used to
find an optimal policy. Local policy search algorithms optimize
a policy by iteratively searching for an improved one in a
neighborhood of the most recent iterate πk to maximize J(π):

πk+1 = argmax
π∈Π

J(π)

s.t. D(π, πk) ≤ δ
(21)

where D is a distance measure and δ defines the size of the
neighborhood. A typical local policy search algorithm is trust
region policy optimization [25], which uses the average KL-
Divergence D̄KL(π||πk)[s] = Es∼ρπk

[DKL(π(·|s)||πk(·|s))]
to measure the searching area. Another one is the standard
policy gradient, which uses the l-2 measure D(π, πk) = ||θ−
θk||2 (policy π parameterized by θ) and maximizes a linearized
objective J(πk)+∇θJ(π)(θ−θk) in the neighborhood of πk.

For our CMDP problem, the searching area in each iteration
is additionally confined by the constraint:

JC(π) ≤ d. (22)

This makes local policy search algorithms difficult to imple-
ment because it requires evaluation of the constraint function
JC(π) to determine whether a proposed policy is feasible.

To address this problem, CPO uses surrogate functions that
are easy to evaluate from samples collected on πk to ap-
proximate the constraint and the objective [23]. The surrogate
functions are expressed by

J̃(π) = J(πk)+Es∼ρπk
a∼π

[Aπk(s, a)]−αk

√
D̄KL(π||πk) (23)

J̃C(π) = JC(πk) + Es∼ρπk
a∼π

[Aπk

C (s, a)] + βk

√
D̄KL(π||πk)

(24)
where αk = maxs |Ea∼π[A

πk(s, a)]| ·
√
2γ/(1 − γ), βk =

maxs |Ea∼π[A
πk

C (s, a)]|·
√
2γ/(1−γ), Aπk(s, a) = Qπ(s, a)−

V π(s) is the advantage function, and Aπk

C (s, a) = Qπ
C(s, a)−

V π
C (s) is the advantage functions with respect to the constraint.
According to [23], the surrogate functions satisfy the fol-

lowing properties:

J̃(π) ≤ J(π), J̃C(π) ≥ JC(π). (25)

This means that J̃ is a lower bound of the objective and J̃C(π)
is an upper bound of the constraint. If we replace the objective
and the constraint with their surrogates and update the policy
according to

πk+1 = argmax
π∈Π

J̃(π)

s.t. J̃C(π) ≤ d,
(26)

we can improve the worst-case performance and bound the
worst-case constraint violation. This means that the policy up-
date (26) can guarantee monotonic improvement in objective
performance and constraint satisfaction.

One difficulty in applying the policy update (26) is the
computation of the coefficients αk and βk because it involves
solving the optimization maxs |·|. To solve this problem, CPO
adopts a trust region constraint on the KL-Divergence instead
of penalizing it by αk and βk. Consequently, the policy update
(26) can be transformed into

πk+1 = argmax
π∈Π

Es∼ρπk
a∼π

[Aπk(s, a)]

s.t. JC(πk) + Es∼ρπk
a∼π

[Aπk

C (s, a)] ≤ d

D̄KL(π||πk) ≤ δ.

(27)

Since the policy π(a|s) is a function of s and a, we cannot
directly optimize π(a|s) using (27). Next, we will design a
neural network to approximate the policy and optimize the
neural network’s weights to improve the policy.

B. Parameterized Policy for Discrete and Continuous Actions

In the OODN problem, SCBs, OLTCs, and VRs operate
in discrete steps whereas dispatchable DGs and BSSs operate
with continuous outputs. Therefore, the action space contains
both discrete and continuous control variables:

at = (nscb
i,t , l

vr
i,t︸ ︷︷ ︸

discrete

, P dg
i,t, Q

dg
i,t, P

bss
i,t︸ ︷︷ ︸

continuous

), ∀i ∈ Ωn. (28)

To deal with the mixed discrete and continuous action space,
we approximate the policy by using a joint distribution:

π(at|st) =∏
i∈Ωn

p(nscb
i,t |st)p(lvr

i,t|st)f(P
dg
i,t|st)f(Q

dg
i,t|st)f(P

bss
i,t |st), (29)

where p(·|st) is the probability mass function (PMF) of
a categorical distribution; f(·|st) is the probability density
function (PDF) of a normal distribution. Note that the actions
(nscb

i,t , l
vr
i,t, P

dg
i,t, Q

dg
i,t, P

bss
i,t ) are considered as random variables

and assumed to be independent from each other. In practice,
this assumption generally holds because all actions are exe-
cuted simultaneously at each time slot. The probability of each
action being executed is dependent on only the system state
st but not the observation of other actions.

For a discrete control variable x whose sample space has
C individually identified items, the probability of x taking on
the value c given st = s is

p(x = c|st = s) =
C∏

c=1

pc(s)
[x=c] (30)
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(a) Discrete action (b) Continuous action

(c) Feed-forward neural network.

Fig. 1. Designed policy network with mixed discrete and continuous actions.

where pc(s) represents the probability of seeing element c
given s, and [x = c] evaluates to 1 if x = c, 0 otherwise.

For a continuous control variable y, the conditional proba-
bility given st = s is

f(y|st = s) =
1

σ
√
2π

exp

(
− [y − µ(s)]2

2σ2

)
(31)

where µ(s) is the mean and σ is the standard deviation.
Combining (30) and (31), the probability of an action at given
st = s can be calculated by (29). Also, we can generate
discrete and continuous actions by sampling from the joint
distribution (29).

The problem now becomes how to optimally determine the
distribution parameters pc(s), µ(s) and σ such that the policy
π solves the CMDP. Since the distribution parameters pc(s)
and µ(s) depends on the state s, we use neural networks to
learn these distribution parameters.

For discrete control variables, we evaluate the probabilities
(p1(s), p2(s), . . . , pC(s)) by using a softmax function (Fig.
1(a):

pc(s) =
ezc

ez1 + ez2 + · · ·+ ezC
, ∀c ∈ {1, ..., C}, (32)

where z = [z1, . . . , zC ]
T is computed by

z = Wc · logits(s) + bc, (33)

where Wc and bc are trainable parameters.
For continuous control variables, we estimate the mean µ(s)

and the standard deviation σ by the model (Fig. 1(b):

µ(s) = Wn · logits(s) + bn,

σ = exp(rn),
(34)

where Wn, bn, and rn are trainable parameters. The notation
logits(s) represents the feature vector extracted from s by the
neural network (Fig. 1(c)).

C. Practical Implementation

Letting the vector θ denote all trainable parameters, we will
use θ to represent the parameterized policy π(at|st; θ). We
will replace the previous notations depending on π with the
function of θ, e.g. J(θ) := J(π), JC(θ) := JC(π), ρπ := ρθ
and D̄KL(π||πk) := D̄KL(θ||θk). The parameters θ are then
updated by solving the optimization problem (27).

To efficiently solve (27) in practice, we use a convex appro-
ximation of (27). Note that in a local neighborhood of θk, the
expected advantage functions can be well approximated by

Es∼ρθk
a∼θ

[
Aθk(s, a)

]
≈ Es∼ρθk

a∼θk

[Aθk(s, a)] + gT (θ − θk) (35)

Es∼ρθk
a∼θ

[Aθk
C (s, a)] ≈ Es∼ρθk

a∼θk

[Aθk
C (s, a)] + bT (θ − θk) (36)

where g is the gradient ∇θEs∼ρθk
,a∼θ[A

θk(s, a)]|θ=θk , and b

is the gradient∇θEs∼ρθk
,a∼θ[A

θk
C (s, a)]|θ=θk . Also, the policy

divergence can be well approximated by

D̄KL(θ||θk) =D̄KL(θk||θk) +∇θD̄KL(θ||θk)|θ=θk(θ − θk)+

1

2
(θ − θk)

TH(θ − θk) (37)

where H is the hessian ∇2
θθD̄KL(θ||θk)|θ=θk .

Since Es∼ρθk
,a∼θk [A

θk(s, a)] = Es∼ρθk
,a∼θk [A

θk
C (s, a)] =

D̄KL(θk||θk) = ∇θD̄KL(θ||θk)|θ=θk = 0, the problem (27)
is well approximated by

θk+1 = argmax
θ∈Θ

gT (θ − θk)

s.t. c+ bT (θ − θk) ≤ 0

1

2
(θ − θk)

TH(θ − θk) ≤ δ.

(38)

where g is the gradient ∇θEs∼ρθk
,a∼θ[A

θk(s, a)]|θ=θk , b is the
gradient ∇θEs∼ρθk

,a∼θ[A
θk
C (s, a)]|θ=θk , and c = JC(θk)− d.

The problem is convex and has a closed-form solution:

θk+1 = − 1

λ∗H
−1(g + ν∗b) (39)

where λ∗ and ν∗ are the optimal dual solutions.
In practice, we estimate the value of g, b, H , and c by using

their sampling means. For the advantage functions Aθk(s, a)
and Aθk

C (s, a), we use the generalized advantage estimation
(GAE) [26]:

Âθk(st = s, at = a) = ϵt + (γλ)ϵt+1 + · · ·+ (γλ)T−t+1ϵT−1

where ϵt = rt + γV πk(st+1)− V πk(st), (40)

Âθk
C (st = s, at = a) = ϵCt + (γλ)ϵCt+1 + · · ·+ (γλ)T−t+1ϵCT−1

where ϵCt = ct + γV πk

C (st+1)− V πk

C (st), (41)

where λ is the GAE parameter. The value functions V πk(st)
and V πk

C (st) are approximated by a neural network parame-
terized by ϕ, which is trained by minimizing a square-error
loss:

Lϕ =
∑
t

[
(V πk(st;ϕ)− V targ

t )2 + (V πk

C (st;ϕ)− V targ
C,t )

2
]
,

(42)
where V targ

t =
∑T−1

l=t γl−trl and V targ
C,t =

∑T−1
l=t γl−tcl.
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Fig. 2. Digraph of the overall training scheme. The saturation block limits
out-of-range actions to their upper or lower bounds.
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Fig. 3. Modified IEEE-34 node test feeder system [27].

In our implementation, we adopt parallel actors to accelerate
the sampling process and improve exploration. In addition, to
avoid calculation of the inverse of Hessian in the update for-
mula (39), the conjugate gradient algorithm is used to directly
compute the Hessian-vector products H−1x. A backtracking
line search method is used to find optimal dual solutions λ∗

and ν∗ [25]. The pseudocode of the CPO-based methods for
the OODN problem is presented in Alg. 1.

Note that the continuous actions P dg
i,t and P bss

i,t are con-
strained by the upper and lower limits in (3) and (5). In our
study, we do not formulate these constraints in the CMDP.
Instead, we force an action to its feasible range if the action
violates the corresponding upper or lower constraint. To this
end, we assume that there is a signal saturation block installed
before the input of the distribution network environment (Fig.
2). Hence, any action leading to a violation of the upper or
lower constraints will be confined to the corresponding upper
or lower saturation value.

IV. CASE STUDIES

A. IEEE-34 Node System

In this subsection, we evaluate the performance of the pro-
posed learning method on a modified IEEE-34 node test feeder
system [27]. Fig. 3 shows the test system containing two VRs

Algorithm 1 CPO-based Learning Algorithm for OODN
1: Initialize network parameters θ0, ϕ0.
2: for k = 1, 2, . . . do
3: Initialize an empty set D
4: for n = 1, 2, . . . , N do in parallel
5: Sample an initial state s0 ∼ µ
6: for t = 0, 1, . . . , T − 1 do
7: Choose at ∼ π(·|st; θk) and do simulation
8: Observe st+1, rt, and ct
9: end for

10: Store the trajectory τ = (s0, a0, r0, c0, s1, . . . ) in D
11: end for
12: Use the sampled trajectories τ in D to calculate

{Âθk(s0, a0), . . . , Â
θk(sT , aT )} according to (40)

13: Use the sampled trajectories τ in D to calculate
{Âθk

C (s0, a0), . . . , Â
θk
C (sT , aT )} according to (41)

14: Use the sampled rewards (r0, . . . , rT ) in D to calculate
{V targ

0 , . . . , V targ
T } according to V targ

t =
∑T−1

l=t γl−trl
15: Use the samples (c0, . . . , cT ) in D to calculate

{V targ
C,0 , . . . , V

targ
C,T } according to V targ

C,t =
∑T−1

l=t γl−tcl
16: Estimate g, b, H and c using their sampling means
17: Update ϕk+1 ← ϕk − α∇ϕLϕ|ϕ=ϕk

using (42)
18: Update θk+1 by (39)
19: end for

with 33 tap positions (−16;−15; . . . ; 0;+1;+2; . . . ; +16) and
a regulation range of −10% to +10% (0.625% per tap); two
SCBs of 0.48 MVAR with four units (0.12 MVAR/unit) at
nodes 864 and 840; two dispatchable DGs with capacities
of 0.825 MVA and 0.625 MVA and a minimum power
factors of 0.8 at node 848 and 890, respectively; one BSS
at node 810 with a capacity of 2 MWh and a maximum
charging/discharging power of 0.5 MW; three photovoltaic
RSs with power peaks of 0.1 MW at nodes 822, 856, and
838, respectively; three wind RSs with power peaks of 0.1
MW at nodes 822, 826, and 838, respectively. The objective
is to minimize the total cost of energy purchased from the
substation and the dispatchable DGs. The capacity of the
substation is 2.5 MVA. The nodal voltages are bounded within
0.95 p.u. - 1.05 p.u. It is also assumed that the BSS has an
efficiency of ηbss

i,ch = ηbss
i,dch = 0.98, and an allowable minimum

energy of 0.2 MWh.
The electricity prices, load demand, and RSs generation

power are simulated by using the time-series data in California
Independent System Operator (CAISO) [28]. We downloaded
a 3 year period of data, from 2018 to 2020, and used the
first two years (2018-2019) of the data as the training set and
the last year (2020) as the test set. The load demand data are
scaled to a proper level according to the considered system.
Specifically, the load data are first normalized to unity and then
scaled up by multiplying a base power. The base power varies
from node to node, and the nodal load data of the standard
IEEE 34-node system [27] are used as the base power. The
data on the photovoltaic and wind RSs are processed using the
same method. The cost coefficients of the dispatchable DGs
are adg

1 = 100$/MWh2, bdg
1 = 72.4$/MWh, cdg

1 = 0.5$/h for
DG1; adg

2 = 100$/MWh2, bdg
2 = 51.6$/MWh, cdg

2 = 0.46$/h
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TABLE I
PARAMETER SETTINGS OF THE PROPOSED METHOD.

Parameter Value
Constraint tolerance (d) 1e-3

GAE parameter (λ) 0.95
Discount factor(γ) 0.995

KL-Divergence Limit (δ) 0.02
Stepsize of value network update (α) 3e-4
Number of steps in one episode(T ) 24

Number of total episodes 1M

TABLE II
AVERAGE TIME CONSUMPTION OF DIFFERENT METHODS ON TRAINING
AND ONLINE COMPUTATION (ONE-STEP) FOR IEEE-34 NODE SYSTEM.

Method DDPG PPO SAC∗ CPO MISOCP
Training (h) 15.82 12.2 56.7 15.29 -

Online Comp. (s) 0.0013 0.0012 0.0013 0.0013 280.1
∗SAC is implemented using Stable Baselines, which does not provide multi-

processing implementation.

for DG2. The scheduling horizon is T = 24h.
The parameter settings for the proposed method are given

in Table I. The policy network has three layers of 128 ReLU
neurons and the size of the logits is 64. The architecture of
the value network is the same as that of the policy network.
The network parameters θ and θv are orthogonally initialized.
The simulation is carried out on a workstation with an Intel
Core i7-7800X Processor 3.50GHz. The operation system is
Ubuntu 20.04.3 LTS. The code is written in Python 3.7.6 using
the deep learning package TensorFlow 2.2.0 [29], and DRL
packages OpenAI Gym [30] and Baselines-tf2 [31].

1) Training Performance: The proposed method (CPO)
is compared with several the state-of-the-art DRL-based
approaches, including deep deterministic policy gradient
(DDPG) [32], proximal policy optimization (PPO) [33], and
soft actor critic (SAC) [34]. Since DDPG and SAC can only
handle continuous actions, we round the control decisions
to the nearest integer. For PPO, the mixed joint distribution
policy proposed in our method is adopted to handle discrete
and continuous actions. For these methods to confine the
constraints, a penalty term is added to the reward, e.g.

rt := rt + ϱ · ct (43)

where ϱ is the penalty coefficient, which is set to 500. We
run each method for 5 times with different random seeds. The
average time consumption of different methods on training and
online computation (one-step) is presented in Table II.

Fig. 4 compares the training performance of the proposed
CPO and the state-of-the-arts DRL methods over 5 indepen-
dent runs with different random seeds. From Fig. 4(a) we
can observe that the constraint value of CPO (the purple line)
decreases quickly to a level at 1e− 3, which is an acceptable
tolerance defined in the parameter d. After that, the constraint
value remains at this level whereas the reward starts to increase
steadily, as shown in Fig. 4(b). This means that CPO learned a
safe operation strategy for the distribution network in the first
place, and then consistently improved it without undermining
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Fig. 4. Comparison of average performance over 5 runs on the modified
IEEE-34 node system using different learning algorithms during the training
process: a) constraint value, and b) return.

the safety of the operation. This makes the proposed method
more practical than the other DRL based approaches. As we
can observe from Fig. 4(a), DDPG and PPO failed to learn a
safe operation strategy because of the large constraint value.
Besides, even though SAC outperforms DDPG and PPO by
restricting the constraint to a very small level, mostly below
1e − 2, the performance is not uniformly convergent on the
entire training episodes. Also, as shown in Fig. 4(b), the reward
of SAC does not improve much during the training process.
This may result from the reason that the constraint is over-
penalized.

2) Test Performance: After training, the well-trained model
is tested on the test set. To verify the optimality of the proposed
approach, we compare it with a model-based method, wherein
the OODN problem is formulated as a mixed integer second-
order cone programming (MISOCP) using DistFlow model
[35]. We follow the method in [5] to build the MISOCP
model. We assume that all uncertainties can be accurately
predicted in the MISOCP formulation. To solve the MISOCP
model, the optimization toolbox PySCIPOpt [36] is used. Fig.



9

0 100 101 102

Constraint Violation

DDPG

PPO

SAC

CPO

M
et

ho
d

0 10 1

 

PPO

SAC

CPO
 

(a) Constraint

0 50 100 150 200 250 300 350
Day

0k

100k

200k

300k

400k

500k

Cu
m

ul
at

iv
e 

Co
st

 ($
)

DDPG
PPO
SAC
CPO
MISOCP

(b) cumulative cost

Fig. 5. Performance of different algorithms for IEEE 34 node system on the
test dataset (366 testing days): a) distribution of constraint violation, and b)
cumulative cost.

5 compares the testing results obtained by the proposed and the
benchmark methods. In the comparison, the constraint value
is calculated by

∑T−1
t=0 ct and operational cost is calculated

by −
∑T−1

t=0 rt. As shown in this figure, CPO outperforms
the state-of-the-art DRL methods by achieving the lowest
cost and the least constraint violation. Specifically, in Fig.
5(a) we can observe that for the CPO algorithm, there are
only a few cases of constraint violation on the whole-year
testing data. It is worth noting that it is impossible to 100%
guarantee the safety of hourly-ahead operation in any situation
due to the existence of uncertainty. However, CPO can learn
to safely operate the distribution system in most situations
and guarantee near-constraint satisfaction. Although PPO and
SAC can also confine the constraint violations to some extend,
the performance varies largely one different days. Fig. 5(b)
shows the cumulative operational cost on the 366 testing days.
The total operating costs for DDGP, PPO, SAC, and CPO are
$373.95K, $292.01K, $503.21K, and $252.06K, respectively.
Compared to DDGP, PPO, and SAC, CPO reduces the cost
by 32.5%, 13.6%, and 99.6%, respectively. It is notable that

although DDPG obtains a lower cost than SAC, it causes
serious violations of the operating constraints, which makes
it impossible to implement in real distribution networks. The
total operating cost of MISOCP is $224.30K. Compared to
CPO, the MISOCP method only reduces the operating cost
by 11.01% even though it uses perfect forecast information of
the uncertainty. It is worth mentioning that the performance
of MISOCP is ideal and cannot be achieved in practice. These
results verify the effectiveness of the proposed CPO-based
method against uncertainty in the operation of distribution
networks.

Fig. 6 shows the operating results obtained by CPO on 3
consecutive days in the test dataset. It can be observed from
this figure that the BSS, the DGS as well as the VVC devices
are properly scheduled in an efficient and cost-effective man-
ner and the operating constraints of the distribution system are
strictly satisfied. For instance, in Fig. 6 (c) we can see that, the
BSS is scheduled to charge at low-price hours to store energy
and discharge to supply power load at high-price hours. In Fig.
6 (d)-(e) we can observe that, the DGs are dispatched to reduce
power generation when the price of electricity decrease and
increase generation otherwise. Besides, the minimum power
factors of the DGs are strictly constrained to be above 0.8. In
Fig. 6 (f)-(h), the SCBs and VRs are controlled to confine
the maximum and minimum nodal voltages to be within
[0.95, 1.05] to avoid under/over-voltage problems.

B. IEEE-123 Node System

In this subsection, we evaluate the performance of the
proposed method on a modified IEEE-123 node system [37].
Fig. 7 shows the system containing two OLTCs with 5 tap
positions (−2;−1; 0;+1;+2) and a regulation range of −10%
to +10% (2.5% per tap); two VRs with 33 tap positions
(−16;−15; . . . ; 0;+1;+2; . . . ; +16) and a regulation range of
−10% to +10% (0.625% per tap); two SCBs of 1.2 MVAR
with four units (0.3 MVAR/unit) at nodes 108 and 76; three
dispatchable DGs with capacities of 0.825 MVA, 0.625 MVA,
and 0.625 MVA and a minimum power factors of 0.8 at node
24, 94, and 114, respectively; two BSSs both with a capacity
of 2 MWh and a maximum charging/discharging power of 0.5
MW at nodes 20 and 56, respectively; five photovoltaic RSs
with power peaks of 0.1 MW at nodes 22, 250, 41, 450, and
39, respectively; five wind RSs with power peaks of 0.1 MW
at nodes 4, 59, 46, 75, and 83, respectively. The capacity of the
substation is 5 MVA. The nodal voltages are bounded within
0.95 p.u. - 1.05 p.u. It is also assumed that the BSS has an
efficiency of ηbss

i,ch = ηbss
i,dch = 0.98, and an allowable minimum

energy of 0.2 MWh. The cost coefficients of the dispatchable
DGs are adg

1 = 100$/MWh2, bdg
1 = 72.4$/MWh, cdg

1 = 0.5$/h
for DG1; adg

2 = adg
3 = 100$/MWh2, bdg

2 = bdg
3 = 51.6$/MWh,

cdg
2 = cdg

3 = 0.46$/h for DG2 and DG3.
For the CPO algorithm, we use the same parameter settings

as presented in Table I. The training and test datasets are the
same as those used in the IEEE-34 node system. The policy
and value network have three layers of 256 ReLU neurons
and the size of the logits is 128. The simulation is conducted
on the same workstation as the one used in IEEE-34 node
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IEEE-123 node system using different learning algorithms during the training
process: a) constraint value, and b) return.

system. The average time consumption of different methods
on training and online computation (one-step) is presented in
Table III.

1) Training Performance: Fig. 8 compares the training
performance of CPO and other DRL methods over 5 inde-
pendent runs with different random seeds. From Fig. 8(a)
we can observe that CPO successfully learned a safe policy
to restrict the constraint value to 1e − 3 in less than 20k
episodes. However, the benchmark DRL methods, especially
DDPG and PPO, failed to do so and led to large constraint
violations. In addition, from Fig. 8 (b) we can observe that
DDPG and CPO obtain higher returns during the training than
PPO and SAC do. Compared to DDPG, however, CPO can
learn to improve policy without violating operating constraints,
which makes it more practical to be trained in real distribution
networks. Combining the training performance in Fig. 4 we
can conclude, CPO is more stable and effective in learning a
good policy through safe exploration than the state-of-the-art
DRL algorithms.
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TABLE III
AVERAGE TIME CONSUMPTION OF DIFFERENT METHODS ON TRAINING

AND ONLINE COMPUTATION (ONE-STEP) FOR IEEE-123 NODE SYSTEM.

Method DDPG PPO SAC∗ CPO MISOCP
Training (h) 32.67 24.75 236.5 31.38 -

Online Comp.(s) 0.0028 0.0027 0.0028 0.0028 1182.1
∗SAC is implemented using Stable Baselines, which does not provide

multi-processing implementation.

2) Test Performance: Fig. 9 compares the testing results of
CPO and the benchmark methods on IEEE-123 node system.
In the comparison we can observe that CPO outperforms the
other DRL methods in terms of operating cost reduction and
constraint satisfaction. As shown in Fig. 9 (a), CPO results
in almost no constraint violation except a few testing days.
DDPG and PPO, however, causes serious constraint violation
on most of the testing days and is infeasible to implement
in practice. Besides, although SAC shows comparable perfor-
mance to CPO in handling constraints, it lead too very high
operating costs as shown in Fig. 9 (b). The total operating
cost for DDGP, PPO, SAC, and CPO are $520.09K, $773.85K,
$930.59K, and $498.33K, respectively. Compared to DDGP,
PPO, and SAC, CPO reduces the operational cost by 4.1%,
35.6%, and 46.4%, respectively. Besides, the total operating
cost of MISOCP is $434.87K, which is only 12.7% lower than
that of CPO.

Fig. 10 shows the operating results of CPO on 3 consec-
utive testing days on the IEEE-123 node system. It can be
observed from the subfigures that although there are many
heterogeneous controllable devices, the learned policy can still
efficiently coordinate these devices to safely and economically
operate the distribution system. Specifically, in Fig. 10 (c)-(d),
the BSS1 and BSS2 are scheduled to charge at off-peak hours
and then discharge at peak hours. In Fig. 10 (e)-(g), the DGs
are also appropriately operated to satisfy the minimum power
factor requirement (above 0.8) and economically dispatched
based on the price of electricity. Furthermore, in Fig. 10 (h)-(j)
we can observe that, the SCBs and VRs/OLTCs are properly
controlled to compensate reactive power and regulate nodal
voltages within the range [0.95, 1.05].

V. CONCLUSION

In this paper, we proposed a SDRL approach based on CPO
for the OODN problem. The proposed approach enables an
agent to learn a cost-effective operating strategy through safely
exploring scheduling actions. Compared to traditional DRL
methods, the proposed approach is more practical to be trained
in a real distribution system. Besides, the proposed approach
is suitable for training complex policies with a mixed discrete
and continuous action space. The proposed approach is totally
data-driven and does not rely on any physical model, statistical
model, or mathematical programming optimizer. The learned
policy is based on neural networks and can directly generate
scheduling decision to minimize the operational cost and
confine operating constraints simultaneously. Simulation stud-
ies on IEEE-34 and IEEE-123 bus systems using real-world
power system data demonstrate that the proposed approach can
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Fig. 9. Performance of different algorithms for IEEE 123 node system on
the test dataset (366 testing days): a) distribution of constraint violation, and
b) cumulative cost.

successfully learn an effective policy to operate distribution
networks in a safe and cost-efficient way. Comparison results
verify the superiority of the proposed method over the state-
of-the-art DRL approaches in terms of constraint satisfaction
and cost reduction.
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