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Abstract

We propose a novel concept of a Systemic Optimal Risk Transfer Equilibrium (SORTE), which
is inspired by the Bithlmann’s classical notion of an Equilibrium Risk Exchange. We provide
sufficient general assumptions that guarantee existence, uniqueness, and Pareto optimality of
such a SORTE. In both the Bithlmann and the SORTE definition, each agent is behaving ra-
tionally by maximizing his/her expected utility given a budget constraint. The two approaches
differ by the budget constraints. In Bithlmann’s definition the vector that assigns the budget
constraint is given a priori. On the contrary, in the SORTE approach, the vector that assigns
the budget constraint is endogenously determined by solving a systemic utility maximization.
SORTE gives priority to the systemic aspects of the problem, in order to optimize the overall

systemic performance, rather than to individual rationality.
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1 Introduction

We introduce the concept of Systemic Optimal Risk Transfer Equilibrium, denoted by SORTE, that
conjugates the classical Biihlmann’s notion of an equilibrium risk exchange with capital allocation

based on systemic expected utility optimization.

*Department of Mathematics, University of Munich, Theresienstrale 39, 80333 Munich, Germany,
francesca.biagini@math.lmu.de.
fDipartimento di Matematica, Universitd degli Studi di Milano, Via Saldini 50, 20133 Milano, Italy,

alessandro.doldi@Qunimi.it.
fDepartment of Statistics & Applied Probability, University of California, Santa Barbara, CA 93106-3110,

fouque@pstat.ucsb.edu. Work supported by NSF grant DMS-1814091.
§Dipartimento di Matematica, Universitd degli Studi di Milano, Via Saldini 50, 20133 Milano, Italy,

marco.frittelli@unimi.it.
9IDepartment of Mathematics, University of Munich, TheresienstraBe 39, 80333 Munich, Germany,

meyerbr@math.lmu.de.



The capital allocation and risk sharing equilibrium that we consider can be applied to many
contexts, such as: equilibrium among financial institutions, agents, or countries; insurance and
reinsurance markets; capital allocation among business units of a single firm; wealth allocation
among investors.

In this paper we will refer to a participant in these problems (financial institution or firms or
countries) as an agent; the class consisting of these N agents as the system; the individual risk
of the agents (or the random endowment or future profit and loss) as the risk vector X :=
(X1 ..., XN); the amount Y := (Y'!1,...,Y¥) that can be exchanged among the agents as random
allocation. We will generically refer to a central regulator authority, or CCP, or executive manager
as a central bank (CB).

We now present the main concepts of our approach and leave the details and the mathematical
rigorous presentation to the next sections. In a one period framework, we consider N agents, each
one characterized by a concave, strictly monotone utility function u, : R — R and by the original
risk X" € L°(Q, F, P), for n = 1,..., N. Here, (Q, F, P) is a probability space and L°(Q, F, P) is
the vector space of real valued F-measurable random variables. The sigma-algebra F represents
all possible measurable events at the final time 7'. E[-] denotes the expectation under P. Given
another probability measure @, Eq [-] denotes the expectation under Q. For the sake of simplicity

and w.l.o.g., we are assuming zero interest rate. We will use the bold notation to denote vectors.

1. Biihlmann’s risk exchange equilibrium

We recall Bithlmann’s definition of a risk exchange equilibrium in a pure exchange economy
(or in a reinsurance market). The initial wealth of agent n is denoted by 2™ € R and the
variable X" represents the original risk of this agent. In this economy each agent is allowed
to exchange risk with the other agents. Each agent has to agree to receive (if positive)
or to provide (if negative) the amount Y™ (w) at the final time in exchange of the amount
Eq [Y"] paid (if positive) or received (if negative) at the initial time, where @ is some pricing
probability measure. Hence Y™ is a time T measurable random variable. In order that at
the final time this risk sharing procedure is indeed possible, the exchange variables Y™ have

to satisfy the clearing condition

Y"=0 P-a.s. .

M=

n=1

As in Biihlmann [12] and [13], we say that a pair (Yx, Qx) is an risk exchange equilibrium
if:

(a) for each n, f/{é maximizes: E {un(aj” + XY — Eox [f/"])} among all variables Y™;
b) SN Y =0 P-as. .

It is clear that only for some particular choice of the equilibrium pricing measure Qx, the

optimal solutions 37)’5 to the problems in (a) will also satisfy the condition in (b).

In addition it is evident that the clearing condition in (b) requires that all agents accept to

exchange the amount }7)2 (w) at the final time T.



Define
N
Cr = {Y e (LOQF PV DY Y e R} (1)
n=1
that is, Cr is the set of random vectors such that the sum of the components is P-a.s. a

deterministic number.

Observe that with the change of notations Y™ := 2"+ Y " — Eg, [Y™], we obtain variables with

Eqy [Y™] = 2™ for each n, and an optimal solution Yy still belonging to Cr and satisfying

N N
ZY{(L = Zx" P-a.s. . (2)
n=1 n=1

As can be easily checked

SUPE [u, (2" + X" + V" — Egy DN/"D} =sup{E [u, (X" +Y")] | Egx[Y"] < 2"}.
?TL Y’Vl

Hence the two above conditions in the definition of a risk exchange equilibrium may be
equivalently reformulated as

(a”) for each n, Yy maximizes: E [u,, (X" 4+ Y")] among all variables satisfying Fq, [Y"] < z™;

(b) Yx €Cr and NN vy = ny:l " P-as.

n=1

We remark that here the quantity ™ € R is preassigned to each agent.

2. Systemic Optimal (deterministic) Allocation

To simplify the presentation, we now suppose that the initial wealth of each agent is already
absorbed in the notation X™, so that X" represents the initial wealth plus the original risk
of agent n. We assume that the system has at disposal a total amount of capital A € R to
be used at a later time in case of necessity. This amount could have been assigned by the
Central Bank, or could have been the result of the previous trading in the system, or could
have been collected ad hoc by the agents. The amount A could represent an insurance pot or
a fund collected (as guarantee for future investments) in a community of homeowners. For
further interpretation of A, see also the related discussion in Section 5.2 of Biagini et al. [7].
In any case, we consider the quantity A as exogenously determined. This amount is allocated
among the agents in order to optimize the overall systemic satisfaction. If we denote with
a™ € R the cash received (if positive) or provided (if negative) by agent n, then the time
T wealth at disposal of agent n will be (X™ + a™). The optimal vector ax €R" could be

determined according to the following aggregate time-T criterion

sup {Z]E [un(X™ +a™)] | a €RY s.t. Za" = A} . (3)

n=1
Note that each agent is not optimizing his own utility function. As the vector a €R¥ is

deterministic, it is known at time ¢ = 0 and therefore the agents have to agree to provide or

receive money only at such initial time.

However, under the assumption that also at the final time the agents have confidence in the overall

reliability of the other agents, one can combine the two approaches outlined in Items 1 and 2 above



to further increase the optimal total expected systemic utility and simultaneously guarantee that
each agent will optimize his/her own single expected utility, taking into consideration an aggregated
budget constraint assigned by the system. Of course an alternative assumption to trustworthiness
could be that the rules are enforced by the CB.

We denote with £ C L°(Q, F, P) a space of admissible random variables and assume that £" +
R =L£". We will consider maps p™ : L — R that represent the pricing or cost functionals, one for
each agent n. As we shall see, in some relevant cases, all agents will adopt the same functional
p!t = ... = p", which will then be interpreted as the equilibrium pricing functional, as in Biithlmann’s
setting above, where p"(-) := Eg[] for all n. However, we do not have to assume this a priori.
Instead we require that the maps p™ satisfy for alln =1,..., N:

i) p™ is monotone increasing;

i) p"(0) = 0;

i) p"(Y +¢) =p"(Y)+cforallce Rand Y € L™

Such assumptions in particular imply p™(¢) = ¢ for all constants ¢ € R. A relevant example of such

functionals are

p"() = Eqnl], (4)
where Q" are probability measures for n = 1,..., N. Another example could be p™* = —p", for
convex risk measures p”.

Now we will apply both approaches, outlined in Items 1 and 2 above, to describe the concept of a

Systemic Optimal Risk Transfer Equilibrium.
3. Systemic Optimal Risk Transfer Equilibrium.
As explained in Item 1, given some amount a” assigned to agent n, this agent may buy yn
at the price p"(f/") in order to optimize
E [un(a” XY p”(ff”))] .

The pricing functionals p™, n = 1,..., N have to be selected so that the optimal solution

verifies the clearing condition

N ~

Y Y"=0 Pas.

n=1
However, as in Item 2, a™ is not exogenously assigned to each agent, but only the total
amount A is at disposal of the whole system. Thus the optimal way to allocate A among the
agents is given by the solution ()7)’2, P, a%) of the following problem:

N
ZanA}, (5)

sup {i sup {]E {un(a” + XY *pgc(?n))} }

acRN |, y» n=1

N ~

> Y{=0P-as.. (6)
n=1

From (5) and (6) it easily follows that an optimal solution (Y, pl, a%) fulfills

N
> rk(YR) =0. (7)



Further, letting Y™ := a”+Y" —p% (Y™), from the cash additivity of p% we deduce p% (Y™) =
a"+px (Y")—px(Y") =a"and 3 Yy =30y a"+> 0 Y =21 px(YX) = X, @
and, as before, the above optimization problem can be reformulated as

Soodd o

N
acR n=1

N
Y Y =AP-as., (9)

n=1

N
sup {Z sup {B fun (X + Y] [ px (Y") < 0™}

where analogously to (7) we have that a solution (Y3, p%,a%) satisfies 25:1 % (YR) = A,
by (8) and (9).

The two optimal values in (5) and (8) coincide. We see that while each agent is behaving
optimally according to his preferences, the budget constraint p% (Y™) < o™ are not a priori
assigned, but are endogenously determined through an aggregate optimization problem. The
optimal value a% determines the optimal risk allocation of each agent. It will turn out
that a% = p%(YyR). Obviously, the optimal value in (5) is greater than (or equal to) the
optimal value in (3), which can be economically translated into the statement that allowing

for exchanges also at terminal time increases the systemic performance.

In addition to the condition in (9), we introduce further possible constraints on the optimal
solution, by requiring that
Yx € B, (10)

where B C Cg.

In the paper, see Section 3.4, we formalize the above discussion and show the existence of the
solution (Y, p%, a%) to (8), (9) and (10), which we call Systemic Optimal Risk Transfer Equilib-
rium (SORTE). We show that p% can be chosen to be of the particular form p(-) := Eqy [], for
a probability vector Qx = (Q%, .-, Q%) The crucial step, Theorem 4.5, is the proof of the dual
representation and the existence of the optimizer of the associated problem (29). The optimizer of
the dual formulation provides the optimal probability vector Qx that determines the functional
px(-) := Egy[-]. The characteristics of the optimal Qx depend on the feasible allocation set B.
When no constraints are enforced, i.e., when B = Cg, then all the components of Qx turn out to be
equal. Hence we find that the implicit assumption of one single equilibrium pricing measure, made
in the Biihlmann’s framework, is in our theory a consequence of the particular selection B = Cg,
but for general B this in not always the case. At this point it might be convenient for the reader to
have at hand the example of the exponential utility function that is described in Section 3.5 and
Section 5, where we obtain an explicit formulation of the optimal solution Yx, of the equilibrium

pricing measure Qx and of the optimal vector ax.

Remark 1.1. We emphasize that the existence of multiple equilibrium pricing measures Qx =
(Q%, ..., QX) is a natural consequence of the presence of the - non trivial - constraints set B.
Indeed, even in the Biihlmann setting, if we add constraints, of a very simple nature, a single
equilibrium pricing measure might not exists any more. Consider the following extension of a

Biithlmann risk exchange equilibrium.



Let B C Cg be fixed. We say that a pair (?X, @x) is a constrained risk exchange equilibrium if:
(a2) for each n, Y maximizes: E |u,(z" + X" + Y™ — Egyx [57"])} among all variables Y™;

(b2) Yx € Band 30 Y =0 P—as. .

We show with the next example that such an equilibrium (with one single probability Qx) does
not exist in general. The example we present is rather simple, yet instructive, since it shows that
the absence of the equilibrium arises not from technical assumptions, like integrability conditions,
but is rather a structural problem caused by the presence of additional constraints. Here we provide
the intuition for it. Suppose that two isolated systems of agents have, under suitable assumptions,
their own (unconstrained) equilibria, and that such two equilibria do not coincide. As shown in
the next example, we might then consider the two systems as one single larger system consisting
of two isolated clusters, expressing this latter property with the addition of constraints. Then it is

evident that an equilibrium (with a unique pricing measure) cannot exist for such unified system.

Example 1.2. In order to ignore all integrability issues, in this example we assume that € is a
finite set, endowed with the sigma algebra of all its subsets and the uniform probability measure.
Consider N = 4, u,(z) := (1 —e %), o, > 0, n = 1,...,4, and some vectors x € R* and
X € (L>)*. Moreover take

B={YeCp|Y'+Y?=0,Y’+Y"'=0}.

Thus X and B model a single system of 4 agents which can exchange the risk only in a restricted
way (agent 1 with agent 2, and agent 3 with agent 4), so that in effect the system consists of two
isolated clusters of agents. Then a constrained risk exchange equilibrium in general does not exists.
By contradiction, suppose that (\N/X, @x) is a constrained risk exchange equilibrium. It is easy to
verify that ([Ys,Y2],Qx) is a (unconstrained) risk exchange equilibrium with respect to [X?*, X2]
and [z!, %] (i.e. it satisfies (a) and (b) for N = 2). Similarly, ([Y2, V4], Qx) is a (unconstrained)
risk exchange equilibrium with respect to [X?, X4] and [22, z*]. This implies using equation (2) in
Biithlmann [13] that

exp (W(Xl +X2)) - dQx _exp (9(X3 +X4)) B 1 1 . ) )
Elcp(n(X' +X°)] P  Elp@X+x ) " ar e’ as ar

which clearly gives a contradiction, since X is arbitrary.

Observe, however, that in this example a constrained equilibrium exists if we allow for possibly
different pricing measures, namely if we may replace the measure (Qx with a vector Qx. This
would amount to replacing (a2) with (a3) below, namely to require that:

(a3) for each n, }7£ maximizes: E {un(gj” + XMy — Eqy, [f/"])} among all variables Y

(b2) Yx € Band 3.0 Y =0 P—as. .

Then such an equilibrium exists. Indeed, by the results in Bithlmann [13], we can guarantee the
existence of the risk exchange equilibrium ([}7)%7)7)%], 12) with respect to [X1, X?] and [z!, 2?],
and the risk exchange equilibrium ([Y, V3], Q%) with respect to [X3, X*] and [23, 2%]. Then
(Y, Y2, Y3, V4], [Q12, Q12, @34, Q%) satisfies (a3) and (b2). The conclusion is that, even in
the Biithlmann case, the presence of constraints implies multiple equilibrium pricing
measures.

From the mathematical point of view, this fact is very easy to understand in our setup, described

in Assumption 3.10. More constraints implies a smaller set By of feasible vectors Y € B such that



ZnN:1 }7)’(‘ = 0 and this in turn implies a larger polar set of By (which we will denote with Q, see
the definition in Section 4 item 4). The equilibrium exists only if we are allowed to pick the pricing
vector Qx in this larger set Q, but the elements in Q don’t need to have all equal components.
Economically, multiple pricing measures may arise because the risk exchange mechanism may be
restricted to clusters of agents, as in this example, and agents from different clusters may well
adopt a different equilibrium pricing measure. For further details on clustering, see the Examples
3.17 and 4.20.

Biithlmann’s equilibrium (Yx) satisfies two relevant properties: Pareto optimality (there are no
feasible allocation Y such that all agents are equal or better off - compared with Yx - and at least
one of them is better off) and Individual Rationality (each agent is better off with Y3 than without
it). Any feasible allocation satisfying these two properties is called an optimal risk sharing rule,
see Barrieu and El Karoui [4] or Jouini et al. [30].

We show that a SORTE is unique (once the class of pricing functionals is restricted to those in
the form p"(-) = Egn[-]). We also prove Pareto optimality, see the Definition 3.1 and the exact
formulation in Theorem 4.17.

However, a SORTE lacks Individual Rationality. This is shown in the toy example of Section 5.2,
but it is also evident from the expression in equation (8). As already mentioned, each agent is
performing rationally, maximizing her expected utility, but under a budget constraint p% (¥Y™) <
a% that is determined globally via an additional systemic maximization problem (sup,cgn~{... |
Zf:;l a™ = A}) that assigns priority to the systemic performance, rather than to each individual
agent. In the SORTE we replace individual rationality with such a systemic induced individual
rationality, which also shows the difference between the concepts of SORTE and of an optimal
risk sharing rule. We also point out that the participation in the risk sharing mechanism may
be appropriately mitigated or enforced by the use of adequate sets B, see e.g. Example 4.20 for
risk sharing restricted to subsystems. From the technical point of view, we will not rely on any
of the methods and results related to the notion of inf-convolution, which is a common tool to
prove existence of optimal risk sharing rules (see for example [4] or [30]) in the case of monetary
utility functions, as we do not require the utility functions to be cash additive. Our proofs are
based on the dual approach to (systemic) utility maximization. This is summarized in Section 4.1.

Furthermore, the exponential case is treated in detail in Section 5.

Remark 1.3. As customary in the literature on general equilibrium and risk sharing, we could have

considered, in place of (8) and (9), the more general problem

N
up {Z sup {E [y, (X" 4 ¥7)] | 9% (V") < 0"}
acRN | ;2 Y

zN:a" :A}, (11)

n=1

N

ZYX":A P —as., (12)

n=1
where the positive weights v = (71, ...,7n) € RY could have been selected exogenously, say by
a social planner. In such more general problems, equilibria will generally depend on the selected
weights. However, in this paper we are focused on existence, uniqueness and Pareto optimality of

the equilibrium and for this analysis we may restrict, without loss of generality, our attention to the



utilitarian choice y; = ... = vy = 1, as we now explain. It is easy to check that given uq,...,uy
satisfying our assumptions (namely Assumption 3.10.(a)), the associated functions x — u](x) :=

Tnun(z), n=1,..., N will satisfy the same Assumption 3.10.(a) and so (11) can be written as

ﬁ: } (13)

Thus, technically speaking, the study of the existence, uniqueness and Pareto optimality of the

N
sup Zsup {Eul (X" +Y™)] | p%x(Y") <a™
acRN |, Y

equilibrium in a non-utilitarian setup (v # 1) boils down to the one in (8) and (9). Of course
it could be of interest to study the dependence of the optimal solution from the vector v and to
analyze the stability properties of the equilibrium with respect to the utility functions. In Section
5.3 we address this problem for exponential utility functions, but the general case is left for future

investigation.

Review of literature: This paper originates from the systemic risk approach developed in Biagini

et al. [6] and [7]. In [7] the main focus was the analysis of the systemic risk measure

N N
p(X) = YeiIBlvf:CR {ZY” |E lz Un(X™ +Y™)

n=1 n=1

zB},BeR, (14)

which computes systemic risk as the minimal capital 27]:[:1 Y™ € R that secures the aggregated
system (E |:ZnN:1 Up (X" + Y”)} > B) by injecting the random allocation Y™ into the single insti-
tution X".

The notion of a SORTE is inspired by the following utility maximization problem, associated to

the risk minimization problem (14),

N
> un (X" Y™

n=1

N

sup {E |ZY”§A}, AeR, (15)
YeBCCr —_
that was also introduced in [7]. Related papers on systemic risk measures are Feinstein et al. [23],
Acharya et al. [2], Armenti et al. [3], Chen et al. [17], Kromer et al. [32]. For an exhaustive
overview on the literature on systemic risk, see Hurd [29] and Fouque and Langsam [27].
For a review on Arrow-Debreu Equilibrium (see Debreu [20]; Mas Colell and Zame [34] for the
infinite dimensional case) we refer to Section 3.6 of Follmer and Schied [26], which is close to our
setup. In the spirit of the Arrow-Debreu Equilibrium, Bithlmann [12] and [13] proved the existence
of risk exchange equilibria in a pure exchange economy. Such risk sharing equilibria had been
studied in different forms starting from the seminal papers of Borch [11], where Pareto-optimal
allocations were proved to be comonotonic for concave utility functions, and Biithlmann and Jewell
[14]. The differences with Bithlmann’s setup and our approach have been highlighted before in
detail.
In Barrieu and El Karoui [4] inf-convolution of convex risk measures has been introduced as a
fundamental tool for studying risk sharing. Existence of optimal risk sharing for law-determined
monetary utility functions is obtained in Jouini et al. [30] and then generalized to the case of
non-monotone risk measures by Acciaio [1] and Filipovi¢ and Svindland [25], to multivariate risks
by Carlier and Dana [15] and Carlier et al. [16], to cash-subadditive and quasi-convex measures by

Mastrogiacomo and Rosazza Gianin [35]. Further works on risk sharing are also Dana and Le Van



[19], Heath and Ku [28], Tsanakas [39], Weber [40]. Risk sharing problems with quantile-based risk
measures are studied in Embrechts et al. [22] by explicit construction, and in [21] for heterogeneous
beliefs. In Filipovi¢ and Kupper [24] Capital and Risk Transfer is modelled as (deterministically
determined) redistribution of capital and risk by means of a finite set of non deterministic financial
instruments. Existence issues are studied and related concepts of equilibrium are introduced.

Recent further extensions have been obtained in Liebrich and Svindland [33].

2 Notations

Let (2, F, P) be a probability space and consider the following set of probability vectors on (€2, F)
PN = {Q= (Q,...,QN) | such that QY < P for all j =1, N}

For a vector of probability measures Q we write Q < P to denote Q'< P, ...,QN <« P. Similarly
for Q ~ P. Set L°(Q,F, P;RY) = (L°(P))N. For Q € P! let LY(Q) :=L*(Q, F,Q;R) be the
vector space of Q— integrable random variables and L*>(Q) := L% (£, F, @;R) be the space of Q—
essentially bounded random variables. Set L} (Q) = {Z € L'(Q) |Z >0 Q —as.} and LT(Q) =
{ZeL*®(Q)|Z>0Q—as.}. For Qe PV let

LY(Q) :=LY(Q") x .xL'(QY), Li(Q):=LL(Q") x ..xLL(Q™),

Lo(Q) = L¥(Q") x - x L®(QY),  L2(Q) = LF(Q") x --- x LF(QY).
For each j = 1,..., N consider a vector subspace £/ with R C £J C LY(Q, F, P;R) and set
L:=L' % ... x LNC(LY(P)N.
Consider now a subset 2 C PY and assume that the pair (£, 2) satisfies that for every Q € 2
L£LCLYQ).

One could take as £7, for example, L> or some Orlicz space. OQur optimization problems will be
defined on the vector space L to be specified later.

For each n = 1,..., N, let u,, : R — R be concave and strictly increasing. Fix X = (X1!,..., X¥) L.
For (Q, a, A) € 2xRY xR define

U9 (a") : =sup{E[u (X" +Y)]|Y € L", Egn[Y] < a™}, (16)
N N
SQ(A) : =sup {Z UL (a") | a eRN sit. Za” < A} ) (17)
n=1 N n=1 N
A : =sup {]E S un(X"+YM| | Y EL DY Egn[Y"] < A} : (18)

Obviously, such quantities depend also on X, but as X will be kept fixed throughout most of the
analysis, we may avoid to explicitly specify this dependence in the notations. As u,, is increasing
we can replace, in the definitions of U2" (a”), SR(A) and MIR(A) the inequality in the budget

constraint with an equality.



When a vector Q € 2 is assigned, we can consider two problems. First, for each n, US (a™) is the
optimal value of the classical one dimensional expected utility maximization problem with random
endowment X" under the budget constraint Egn»[Y] < a”™, determined by the real number o™ and
the valuation operator Egn|[-] associated to Q™. Second, if we interpret the quantity ZnN:1 Un ()
as the aggregated utility of the system, then IIQ(A) is the maximal expected utility of the whole
system X, among all Y € L satisfying the overall budget constraint 25:1 Egn [Y"] < A. Notice
that in these problems the vector Y is not required to belong to Cg, but only to the vector space
L. We will show in Lemma 4.11 the quite obvious equality SQ(A) = [IR(A).

3 On several notions of Equilibrium

3.1 Pareto Allocation

Definition 3.1. Given a set of feasible allocations ¥ C L and a vector X € L, Y € ¥ is a Pareto
allocation for ¥ if

Ye?v and Eu (X" +Y")|>E |:U7,(Xn +Y™)| foralln (19)

imply E[u, (X" +Y™)]=E [un(X” + }7”)} for all n.
In general Pareto allocations are not unique and, not surprisingly, the following version of the First
Welfare Theorem holds true. Define the optimization problem

N

() = sup D E[un (X" +Y™). (20)
€V =1

Proposition 3.2. Whenever Y €V is the unique optimal solution of TI(Y'), then it is a Pareto

allocation for V.

Proof. Let Y be optimal for II(¥), so that E {Z 1 un (X7 + Y”)} = II(¥'). Suppose that there
exists Y such that (19) holds true. As'Y € ¥ we have:

N ~
E lz Un (X" +Y™)

n=1

N
Z (X" +Y™)

N
[Z (X" +Y™)

by (19). Hence also Y is an optimal solution to II(¥#"). Uniqueness of the optimal solution implies
Y-=Y. O

3.2 Systemic utility maximization

The next definition is the utility maximization problem, in the case of a system of N agents.

Definition 3.3. Fiz Q € 2. The pair (Yx,ax) € LxRY is a Q—Optimal Allocation with
budget A € R if

1) for each n, YR is optimal for US" (a%),

2) ax is optimal for SR(A),

3)Yx €L.

10



Note that in the above definition the vector Q € 2 is exogenously assigned. Given a total budget
A € R, the vector ax € RY maximizes the systemic utility ZnN:1 US" (a™) among all feasible
a eRY ( Zf:le a™ < A) and Yy maximizes the single agent expected utility E [u,(X™ +Y')] among
all feasible allocations Y € L" s.t. Egn[Y] < a%. Since Q € 2 is given, the budget constraint
Egn[Y] < a% is well defined for all Y € £ and we do not need additional conditions of the form
Y € Cr. A generalization of the classical single agent utility maximization yields the following

existence result.

Proposition 3.4. Under Assumption 3.10 (a) select 2 = {Q} for some Q € Q, (see (26)) with
Q~P. Set L=LY(QY) x---xLY(QN) and let X € M® (see (79)). Then a Q— Optimal Allocation

exists.
Proof. The proof can be obtained with the same arguments employed in Section 4.2 [7]. O

Let (Yx,ax) € LxRY be a Q—Optimal Allocation. Due to Lemma 4.11, [I®(A) = SQ(A) and

N
acRN, SN an=A,_ yrnegn
N
= Y sup {E[un(X"+Y")] | Ege[Y"] = a%},
n=1 yreLn

where we replaced the inequalities with equalities in the budget constraints, as u,, are monotone.
Hence the systemic utility maximization problem ITQ(A) with overall budget constraint A reduces
to the sum of n single agent maximization problems, where, however, the budget constraint of each
agents is assigned by a% = Egn[Yy] and the vector ax maximizes the overall performance of the
system. We will also recover this feature in the notion of a SORTE, where the probability vector

Q will be endogenously determined, instead of being a priori assigned, as in this case.

3.3 Risk Exchange Equilibrium

We here formalize Bithlmann’s risk exchange equilibrium in a pure exchange economy, [12] and
[13], already mentioned in conditions (a’) and (b’), Item 1 of the Introduction. Let Q' be the set

of vectors of probability measures having all components equal:
Q':={QePV|Q' =..=Q"}.
To be consistent with Definition 3.3 we keep the same numbering for the corresponding conditions.

Definition 3.5. Fiz A € R, a € RY such that 25:1 a" = A. The pair (Yx,Qx) € LxQ! is a
risk exchange equilibrium (with budget A and allocation a € RY) if:

1) for each n, Yy is optimal for UﬁQSL‘(a”),

3) Yx €Cr, Y0_ Y& = A P-as.

Theorem 3.6 (Bithlmann, [13]). For twice differentiable, concave, strictly increasing utilities
Uy .-y Uy : R — R such that their risk aversions are positive Lipschitz and for L = (L>(P))V,

2= Q' and X € L, there exists a unique risk exchange equilibrium that is Pareto optimal.

Proof. See [13]. O
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In a risk exchange equilibrium with budget A, the vector a € RY such that 25:1 a = A is
exogenously assigned, while both the optimal exchange variable Yx and the equilibrium price
measure @x are endogenously determined. On the contrary, in a Q—Optimal Allocation the
pricing measure is assigned a priori, while the optimal allocation Yx and optimal budget ax are
endogenously determined. We shall now introduce a notion which requires to endogenously recover

the triple (Yx, Qx,ax) from the systemic budget A.

3.4 Systemic Optimal Risk Transfer Equilibrium (SORTE)

The novel equilibrium concept presented in equations (8) (9) and (10) can now be formalized as

follows. To this end, recall from (1) the definition of Cg and fix a convex cone
B C Cr
of admissible allocations such that RY + B = B.

Definition 3.7 (SORTE). The triple (Yx, Qx,ax) € Lx2xRY is a Systemic Optimal Risk
Transfer Equilibrium with budget A € R if:

1) for each n, Yy is optimal for Uy ;‘(c&),

2) ax is optimal for S (A),

3)Yx € BCCr and 25:1 Y# = A P-a.s.

Remark 3.8. Tt follows from the monotonicity of each u,, that Y a% = A and Eqy [YR] = a%k.

Hence
N N
D Egu[YR] =) ak =4,
n=1 n=1
and
N N
> VR = Egy[YR] P-as. (21)
n=1 n=1

The main aim of the paper is to provide sufficient general assumptions that guarantee existence
and uniqueness as well as good properties of a SORTE.

Remark 3.9. We will show the existence of a triple (Yx, Qx,ax) € Lx2xRY verifying the three
conditions in Definition 3.7. Hence, we also obtain the existence of the SORTE in the formulations
given in (5), (6), (10) or in (8), (9), (10), for generic functional p™ verifying the conditions (i), (ii)
and (iil) stated in the Introduction (see also Remark 4.3).

In the sequel we will work under the following Assumption 3.10.

Assumption 3.10.
(a) Utilities: uy,...,un : R — R are concave, strictly increasing differentiable functions with

lim Ln(lﬁ) =400 lim L"(x)
T——00 x r——+00 X

=0, foranyne{l,...,N}.

Moreover we assume that the following property holds: for anyn € {1,...,N} and Q™ < P

dQn

E {vn (A(M)} < 400 for some A >0 <= E [vn (AdP

1P )} < +oo for all A >0, (22)

where vy, (y) := sup,cp {un(x) — xy} denotes the convex conjugate of uy.
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(b) Constraints: B C Cg is a convex cone, closed in probability, such that RN + B = B.

Remark 3.11. In particular, Assumptions 3.10 (b) implies that all constant vectors belong to B.
The condition (22) is related to the Reasonable Asymptotic Elasticity condition on utility functions,
which was introduced in [38]. This assumption, even though quite weak (see [8] Section 2.2), is
fundamental to guarantee the existence of the optimal solution to classical utility maximization
problems (see [8] and [38]).

Theorem 3.12. A Systemic Optimal Risk Transfer Equilibrium (Yx,Qx,ax) exists, with

Q% ..., Q¥ equivalent to P.

Theorem 3.13. Under the additional Assumption that B is closed under truncation (Definition
4.13) the Systemic Optimal Risk Transfer Equilibrium is unique and is a Pareto optimal

allocation.

The formal statements and proofs are postponed to Section 4, Theorem 4.12 and Theorem 4.17.

Remark 3.14. A priori there are no reasons why a Q-optimal allocation Yx in Definition 3.3 would
also satisfy the constraint ZnN:1 Yy € R. The existence of a SORTE is indeed the consequence of
the existence of a probability measure Qx such that the Qx-optimal allocation Yx in Definition

3.3 satisfies also the additional risk transfer constraint 25:1 Y =A P-a.s. .

Remark 3.15. Without the additional feature expressed by 2) in the Definition 3.7, for all choices
of ax satisfying 25:1 a% = A there exists an equilibrium (Yx, Qx) in the sense of Definition 3.5
(see Theorem 3.6). The uniqueness of a SORTE is then a consequence of the uniqueness of the

optimal solution in condition 2).

Remark 3.16. Depending on which one of the three objects (Y,Q,a) € Lx2 x RY we keep
a priori fixed, we get a different notion of equilibrium (see the various definitions above). The
characteristic features of the risk exchange equilibriums and of a SORTE, compared with the more
classical utility optimization problem in the systemic framework of Section 3.2, are the condition

21]:[:1 Y = A P-a.s. and the existence of the equilibrium pricing vector Qx.

For both concepts of equilibrium (Definitions 3.5 and SORTE), each agent is behaving rationally
by maximizing his expected utility given a budget constraint. The two approaches differ by the
budget constraints. In Biihlmann’s definition the vector a € RY that assigns the budget constraint
(Eqy [Y"] < ay) is prescribed a priori. On the contrary, in the SORTE approach, the vector a € RY,
with Zgzl an = A, that assigns the budget constraint Eqy [Y"] < a,, is determined by optimizing
the problem in condition 2), hence by taking into account the optimal systemic utility S@x(A),
which is (by definition) larger than the systemic utility ZnN:1 U9 (a™) in Bithlmann’s equilibrium.
The SORTE gives priority to the systemic aspects of the problem in order to optimize the overall
systemic performance. A toy example showing the difference between a Bithlmann’s equilibrium
and a SORTE is provided in Section 5.2.

Ezample 3.17. We now consider the example of a cluster of agents, already introduced in [7]. For
he{l,---,N},let I:= (I,,)m=1,... 5 be some partition of {1,--- , N}. We introduce the following
family

B(I)—{YELO(RNH 3d=(di, - ,dn) eR" : ZYi—dmform—l,---,h}QCR. (23)

1€ 1m
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For a given I, the values (di,--- ,dp) may change, but the elements in each of the h groups I, is
fixed by the partition I. It is then easily seen that BU is a linear space containing RY and closed
with respect to convergence in probability. We point out that the family B® admits two extreme

cases:

(i) the strongest restriction occurs when h = N i.e., we consider exactly N groups, and in this

case BO = RY corresponds to no risk sharing;

(ii) on the opposite side, we have only one group h = 1 and BWM = Cy is the largest possible
class, corresponding to risk sharing among all agents in the system. This is the only case

considered in Biihlmann’s definition of equilibrium.

Remark 3.18. As already mentioned in the Introduction, one additional feature of a SORTE,
compared with the Bithlmann’s notion, is the possibility to require, in addition to ij:l Yn=A
that the optimal solution belongs to a pre-assigned set B of admissible allocations, satisfying
Assumption 3.10 (b). In particular, we allow for the selection of the sets B = RY or B = Cg. The
characteristics of the optimal probability Qx depend on the admissible set B. For B = Cg, all the
components of Qx turn out to be equal. We also know (see Lemma 4.21) that for B = BD all the
components Q% of Qx are equal for all i € I,,,, for each group I,,,. Additional examples of sets B

are provided in Section 4.5.

3.5 Explicit Formulas in the Exponential Case

We believe it is now instructive to anticipate the explicit solution to the SORTE problem in the
exponential case for B = Cg. This is a particular case of a more general situation treated in detail

in Section 5.

Theorem 3.19. Take exponential utilities
Up(x) :=1—exp(—apz),n=1,....N for ai,...,an >0.

Then the SORTE for B = Cgr is given by

Preoxf L (3) + L[4+ In(a) - Baln@)]]  k=1,....N
agr _ _e»(-%) _ a0 _ 24
P = Bep(C3)] P k=1...,N (24)
a* = Egi[Y"] k=1,...,
where B = 22;1 i, X = Zfl\fﬂX", R(n) = SN forn = 1,..N, a := (ai,..,an),
=

4 Proof of Theorem 3.12 and Theorem 3.13

We need to introduce the following concepts and notations:
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. The utility functions in Assumption 3.10 induce an Orlicz Space structure: see Appendix
A.1 for the details and the definitions of the functions ® and ®*, the Orlicz space L® and
the Orlicz Heart M®. Here we just recall the following inclusions among the Banach Spaces
L>*(P) C M® C L? C L'(P) and that % € L® implies L® C L'(Q). From now on we
assume that X € M®.

. For any A € R we set

N
Ba:=Bn{Y e (L(P)N|> Y" <A P-as}.

n=1

Observe that Bo N M?® is a convex cone.

. We introduce the following problem for X € M® and for a vector of probability measures
Q < P, with §2 € L?",

N
7Q(A) == sup {ZE [un (X" 4+Y™)]

n=1

Y € M?, ZN: Egn [Y"] < A} : (25)

n=1
Notice that in ( 25) the vector Y is not required to belong to Cg, but only to the vector
space M®. In order to show the existence of the optimal solution to the problem 7Q(A), it

is necessary to enlarge the domain in (25).

. @ is the set of vectors of probability measures defined by

Q:{Q<<P

N
dQ' dQY ®* Q"
— ..., —=—|€L E |y <0,VY eBynM?®}.
{ AP’ dP ’ ; P | = 0

Identifying Radon-Nikodym derivatives and measures in the natural way, Q turns out to be
the set of normalized (i.e. with componentwise expectations equal to 1), non negative vectors
in the polar of By N M® in the dual system (M?, L®"). In our N-dimensional systemic one-
period setting, the set Q plays the same crucial role as the set of martingale measures in

multiperiod stochastic securities markets.

. We introduce the following convex subset of O:

Qv:Qﬂ{[dQl . W] eL?”

dp’" "7 dP

aQn N dQn
dQP ZOVnE{l,...,N},ZlE[vn<dQP)] <+oo}

. Set

L= ﬂ LYQY) x -+ x LY(QM), 2:=Q,. (27)
QcQ,

Note that M® C £ and that £ has the product structure £ = £ x --- x LV: let Proj,, denote

the projection on the n—th component, defined on Q,,, and take the corresponding image Q,, :=

Proj,,(Q,) (consisting of a family of probability measures, all absolutely continuous with respect
to P). Set L™ :=Ngeq, L'(Q). Then £ = L' x - x LN
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We will consider the optimization problems (16), (17) and (18) with the particular choice of (£, 2)
in (27) and will show that, with such choice, 7Q(A4) = IIQ(A). Observe that if all utilities are

bounded from above, the requirement Zi\;lE {vn (ddipn)] < +o0 is redundant, but it becomes

important if we allow utilities to be unbounded.

We also require some additional definitions and notations:

a) By is the polar of the cone co(Q,) in the dual pair

Lq:"l‘x...qu)}kV7 m Ll(Ql)X"'XLl(QN) ,
QeQ,

that is
o N
Bor=qYe [) LYQ) % xL'QY) | Y Eg:[¥"]<0,vQe Q,
QeQ, n=1
It is easy to verify that

BoNnM?® C By.
b) For any A € R we define B, as the set
N
Bi=qYe () LNQ") x - xLNQN) | Y Egn[Y"] < A,¥Qe€ Q,
Qeg, n=1

We will prove that By is the correct enlargement of the domain B4 N M® in order to obtain

the existence of the optimal solution of the primal problem.
¢) {ei};—; . is the canonical base of RY.

Lemma 4.1. In the dual pair (M® L®"), consider the polar (Bo N M®)° of By N M®. Then
(Bo N M®)° N (LY)N is the cone generated by Q.

Proof. From the definition of By and the fact that B contains all constant vectors, we may conclude
that all vectors in RY of the form e; — e; belong to By N M®. Then for all Z € (By N M?®)? and
for all 4,5 € {1,..., N} we must have: E[Z'] — E[Z7] < 0. As a consequence, Z € (By N M?%)°
implies E [Zl] =--.=K [ZN] and so

(BonM®)’ N (L)Y =Ry - Q, (28)
where Ry := {b € R,b > 0}. O
Lemma 4.2. Q% :={Q € Q, s.t. Q ~ P} # .

Proof. The condition B C Cg implies By " M® C (Ck N M®* N {Zﬁ:;l Y™ < 0}), so that the polars
satisfy the opposite inclusion: (Cr N M® N {Zgil Y™ <0})° C (BynM®)°. Observe now that any
vector (Z,. .., Z), for Z € L3, belongs to (Ce NM® N {1 y™ < 0})°. In particular, (BN M®)°

contains vectors in the form (Elif, e 611?) with e > 0 and Z € LY, E[Z] = 1. Each component
of such a vector has expectation equal to 1, belongs to L3 and satisfies 611? > 172 All these
conditions imply that there exists a probability vector Q €Q such that % > 0 P — a.s. with
211:[:1 E [vn (d(%f)} < 00, hence Qf # @. O
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4.1 Scheme of the proof

The proof of Theorem 3.12 is inspired by the classical duality theory in utility maximization, see
for example [18] and [31] and by the minimax approach developed in [5]. More precisely, our road

map will be the following:

1. First we show, in Remark 4.4, how we may reduce the problem to the case A = 0.

2. We consider

N N

m(A) := sup {ZE [un, (X" +Y™)]|Y € M® N B, Z Y"<A P—a.s.} . (29)
n=1 n=1

In Theorem 4.5 we specialize the duality, obtained in Theorem A.3 for a generic convex cone

C, for the maximization problem 7(0) over the convex cone C =ByNM® and prove: (i) the

existence of the optimizer Y of m(0), which belongs to By; (ii) the existence of the optimizer

Q to the dual problem of 7(0). Here we need all the assumptions on the utility functions

and on the set B and an auxiliary result stated in Theorem A.4 in Appendix.

3. Proposition 4.7 will show that also the elements in the closure of BNM® satisfy the key
condition Y20 Egn [Y"] <0 Y" € R for all Q € 2.

4. Theorem A.3 is then again applied, to a different set C = {Y € M? | Zivzl Egn [Y"] < O},
to derive Proposition 4.9, which establishes the duality for 7Q(0) and 7Q(A) in case a fixed
probability vector Q is assigned.

5. The minimax duality:

A) = min 7(A4) = 724
m(A) = min 7(A) = 7(A),
is then a simple consequence of the above results (see Corollary 4.10). This duality is the

key tool to prove the existence of a SORTE (see Theorem 4.12).

6. Uniqueness and Pareto optimality are then proved in Theorem 4.17.

Remark 4.3. Notice that in the definition of w(A) there is no reference to a probability vector Q.
However, the optimizer of the dual formulation of 7(A) is a probability vector Q (that will be the
equilibrium pricing vector in the SORTE). Even if in the equations (8), (9), (10) we do not a priori
require pricing functional of the form p"(-) = Egn[-], this particular linear expression naturally

appears from the dual formulation.

4.2 Minimax Approach

Remark 4.4. Only in this Remark, we need to change the notation a bit: we make the dependence

of our maximization problems on the initial point explicit. To this end we will write

N
7mx (A) := sup ZE[Uj(Xj+Yj)] YeBsnM?,

J=1
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N N
T (A) i=sup{ Y Efu; (X7 +Y9)] | Y e M®, > Eg [Y] <A
Jj=1 j=1
It is possible to reduce the maximization problem expressed by mx(A) (and similarly by ij((A))
to the problem related to m.(0) (respectively, 72(0)) by using the following simple observation: for
any ag € RY with Z;V=1 al = A consider

N
E [u; (X7 +Y7)]|[Y e BAM®,) VI <A
j=1

M=

mx(A) = sup

<.
Il
-

WE

= sup{ STE [uy (X7 4 af + (v —ao))}YeBﬁM‘bZ( —a}) <0

Jj=1

.
Il
-

WE

= sup E[Uj(Xj‘Fa%‘i_Zj):IZEB()mM@ ,

.
Il
-

where last equality holds as we are assuming that RY + B = B. The last line represents the original
problem, but with A = 0 and a different initial point. This fact will be used in the conclusion of
the proof of Theorem 4.5.

In the following Theorem we follow a minimax procedure inspired by the technique adopted in [8].

Theorem 4.5. Under Assumption 3.10 we have

A) = su E U Xj—i—Y] = ma E U; Xj—i—YJ 30
m(4) YGBAI?U\/I Z J )] YeB),i\Jz:1 ] )} (30)
N ‘ N Q)

— i : [xd i
glelrgl)\rerﬁéi A ;EQ] [(X7]+ A +JZ::1E {vj ()\ ap )} . (31)

The minimization problem in (31) admits a unique optimum (:\\, Q) e Ry X Q with Q ~ P. The

maximization problem in (30) admits a unique optimum Y € Ba, given by

o~ - dQ .
Y =-X7 — =1,...N 32
U < dP > ) .] 3 3 ’ ( )
which belongs to B4. In addition,
3 B, [Yﬂ} =A and Y Egqi {YJ} <A vQeQ,. (33)
i=1 j=1

Proof. We first prove the result for the case A = 0.
STEP 1
We first show that

N N

N
sup ZE uj (X7 +Y7)] < Zvj(O):Zuj(Jroo) VX e M?® (34)
BoNM® j=1 j=1

so that we will be able to apply Theorem A.3 with the choice C := By N M®. We distinguish two
possible cases: Z;V:1 uj(400) = +00 or Z;vzl uj(400) < +o0.
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For Z; 1 uj(400) = +o0: observe that for any Q € Q, (which is nonempty by Lemma 4.2) and
A > 0 we have

Sotuw ) = S o oo ()] S (42)]
< ol ()] el (2]

We exploited above Fenchel’s Inequality and the definition of Q,. Observing that the last line does
not depend on Y and is finite, and using the well known relation v;(0) = u;j(4+00),5 =1,..., N,
we conclude that
sup ZJE uj (X7 4+Y7)] < +oo= ZUJ
BonM?® j=1
For Z 1 Uj(400) < +o0: if the inequality in (34) were not strict, for any maximizing sequence

(Yn)m we would have, by monotone convergence, that

N N N
> Efuj (+00)] = > Eu; (X/ +Vy)] =E Z uj(+00) — u; (X7 +Y3))[| — 0.

m
J=1 Jj=1

Up to taking a subsequence we can assume the convergence is also almost sure. Since all the terms
in Zjvzl (uj(400) — uj(X? +Y2)) are non negative, we also see that u;(X7 + YJ) —,, u;j(400)
almost surely for every j = 1,..., N. By strict monotonicity of the utilities, this would imply that,
for each j, Y, —,, +0o. This clearly contradicts the constraint Y, € By.

STEP 2

We will prove equations (30) and (31), with a supremum over B4 in place of a maximum, since we
will show in later steps (STEP 4) that this supremum is in fact a maximum.

We observe that since By N M® C By

N

sup ZE uJ Xj—i—YJ) <supZIE uj Xj—l—Yj)]
Bof‘lM‘pj 1 Bo j=1

Moreover, by the Fenchel inequality

N

ol , J
e o< (15 - Sl (42
Equations (30) and (31) follow from Theorem A.3 replacing there the convex cone C with By N M®
and using equation (28), which shows that (C?)™ = Q.

STEP 3

We prove that if X and Q are optima in equation (31), then Y= —XI - vl ()\(11 ) defines an

(%)

element in By. Observe that A minimizes the function

N

Rip 270 9(y) = Z <’YEAJ' [X7] +E

j=1
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which is real valued and convex. Also we have by Monotone Convergence Theorem and Lemma

A.2.1. that the right and left derivatives, which exist by convexity, satisfy
diw dQ’\ @’
-3k R e (45 ) 42

hence the function is differentiable. Since A is a minimum for 1), this implies v’ (X) = 0, which can

XJ

be rephrased as

Z ( +E (AdQJ> f}% ) =0, (35)
ie., N N
Z;E@j [YJ} ~0. (36)

Now consider minimizing
N
~ A dQJ
avs 35 (30 (01 15 s (V2]

for fixed A and Q varying in Q,. Let again Q, with 77 := %, be an optimum and consider another
Q € Q,, with n := g—%. By Assumption 3.10, the expression Z;yzl E [vj ()\dd%)} is finite for all

choices of A. Observe that by convexity and differentiability of v; we have
Xr]jv; (:\\7’7\]) < :\\ﬁjv; (:\\7/7\7) +v; (Xr}j) — v <//\\773> )
Hence by Lemma A.2.1. and Q, Q € Q, we conclude that
(niv; (Xﬁj))+ c L'(P). (37)
To prove that also the negative part is integrable, we take a convex combination of Q, Qe 9,,

which still belongs to Q,,. By optimality of 77 the function
N

x = p(z) = Z (XE (X7 (1 —2)§ +zr7)] +E [vj (X((l — ) + an? ))]) ,0<2 <1,
j=1

has a minimum at 0, thus the right derivative of ¢ at 0 must be non negative, so that:

N4 N o Noq S

Z ?‘ (1= 2)3E [X77] + 23E [x7n/] ) = 7; £’OE oy (=23 +2dp )] (39)
Define H;(x) := v, ((1 - l‘):\\’ﬁj + x:\\nJ) and observe that as z | 0 by convexity

1 N o N
0< (—x (H; () — H,(0)) + H; (1) - Hj<0>) (=30 (37 ) w4+ X (X)) # + H, (1) = H;(0))
(39)
Write now explicitly equation (38) in terms of incremental ratios and add and subtract the real

number E [Z;VZI (H;(1) - H](O))} to get

N o1 N o N o N -
lim < [((1 — 2)AE [X/7] + 2AE [Xinﬂ]) Y [Xjﬁj]} +E[H;(1) - Hj(O)]> (40)

x]0 — X
> lim sz (& |- (1) - 00 + 1,0) - 1,0)] ). (41)
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The first limit is trivial. Observe that by (39) and Monotone Convergence Theorem we also may

compute the second limit and then deduce:

> (R [X7 (P —#)] +E[H,(1) - H;(0)])
j=1

> ZN:E [—XU; (Xﬁj) W+ W (Xﬁj) 7 H (1) — H]-(())}

and therefore
N N
too > ZA}E[XJ(n — ) E[Z( ACTEEDY: (An)nf)]
N = _ .
= E [2_; <>\ (v; ()\ﬁﬂ) 773) - (v; ()@J) 77]) h\ (/\1’7\]) )

~ . ) ~ N\
Since Z;\Ll v ()\ﬁj) 7’ € L*(P) by Lemma A.2.1, and Zjvzl (1)3 ()\ﬁj) nj) € L(P) by equation
(37), we deduce that Zjvzl (v; (Xﬁﬂ) nj)i € L'(P) so that

0< (v; (Xﬁj) nﬂ‘)_ < i (v; (Xﬁj) nﬂ’)_ e L'(P).

j=1
We conclude that v} (Xﬁ]) 17’ defines a vector in L'(P) x --- x L'(P), hence
Y e L@ x - x LHQY) YQe Q.. (42)

Moreover equation (38) can be rewritten as:

0< XN:XE (X7 (i —7)] +2N:XE o () (7 =) ] (43)

j=1 j=1

Now rearrange the terms in (43)

0<— g: ( (X7 +E[§</\77) })+2A’:X(]E[Xjnj}JrE[U;(Xﬁj)ﬂj])

and use (35):

This proves that
> Eqi [V7] <0 vaeq, (44)

and then Y € Bo.
STEP 4 (Optimality of Y)
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Under our standing Assumption 3.10 it is well known that u(—v'(y)) = v(y) — yv'(y), Vy > 0. As

a consequence we get by direct substitution

o ~d0J dO7 dO7 dOi
w4992 (4 (Adi)) -3 () (155

dQJ
dP i\ Nap

Use now the expression in (35) to substitute in the first RHS term:

and

EN:E[W (x/+77)] =X ZE

Jj=1

N oY
I3 E [ (Aigj)

Jj=1

N

iE[uj(XjJr}?j)} Z XJJrZEle((jS;)

The optimality of Y follows then by optimality of (X, Q) in (31).

Using now our findings in STEP 2 together with optimality of ?, the proof of equation (30) is now
complete.

STEP 5 (Y € By)

By Lemma 4.2 there exists a Q € Qf := {Q € Q, s.t. Q ~ P} and from (42) we know that
v (A%) € LY(Q7), A > 0. Also, for every j =1,..., N, v}(0+) = —o0, so that Q’ (% = 0) =
0. As Q ~ P, this in turn implies P (% = 0) = 0, for every j = 1,...,N. Hence Q ~ P.
Theorem A.4 now can be applied to K := (By N M%) and Q¢ to get

N
() do(BonM®)—LL(Q) =SZe (| L'(Q) st. > Eq [Z/] <0VQe Q5. (45)
QeQs QeQg Jj=1
As Y € By and By is included in the RHS of (45), we deduce that Y belongs to the LHS of (45).
Now by equation (36) we see that Y satisfies Zjvzl E [f/] dd%} =0, and this implies that:

Y eclg (BonM®), (46)

the L1(Q1) x - - - x LY(Q)-(norm) closure of By N M®. In particular Y is a Q (hence P)- a.s. limit
of elements in By which is closed in probability P, so that Y e Bo.

STEP 6

The conditions in (33) are proved in (36) and (44). We conclude with uniqueness. By the strict
convexity of the utilities and the convexity of By, it is evident that the maximization problem given
by supz- Zjvzl E [uj (Xj + Yj)] admits at most one optimum. Now clearly if (X, Q) and (X CNQ) are
optima for the minimax expression (31), they both give rise to two optima Y, Y as in the previous

steps. Uniqueness of the solution for the primal problem implies Y = Y. Under Assumption

3.10.(a) the functions v}, ..., v} are injective and therefore we conclude that Xi—g = Xi—g. Taking
expectations we get A = A and then (A, Q) = (A, Q).
Conclusion

The more general case A # 0 can be obtained using Remark 4.4. We just sketch one step of the

proof, as the other steps follows similarly. Using ag as in Remark 4.4, in STEP 3 we see that

N : N
N ~ ATl - )

22



which yields that Y € Ba. O

Remark 4.6. Notice that Y € BN M?® implies that Z € By, where Z is defined by Z7 := Y7 —
2?0 YF for any x € RN such that Z;V:;L 27 = 1. To see this, recall that we are assuming that
RY 4+ B=B. As Z;\le Y7 € R, then Z € B and, since also trivially integrability is preserved and
Z;-V:l ZJ =0, we conclude that Z € By.

Proposition 4.7. For allY €¢ BN M?® and Q € Q
N _ N
> Egi [Y] <) v (47)
j=1 j=1

Moreover, denoting by clq (B N M‘I)) the LY (QY) x - - - x LY(Q™N)-norm closure of BNM?®, inequality
(47) holds for all Y € clq (B N M‘I’) and Q € Q, Q ~ P. In particular, (47) holds for Q ~ P and
Y € le (BO N M‘I’) defined in Theorem 4.5.

Proof. Take Y € BN M® and argue as in Remark 4.6, with the notation introduced there. By the
definition of the polar, Zjvzl E[Zigl] <0 for all p € (BN M?®)°, and in particular for all Q € Q

(X Kle)
k
o(2)

As to the second claim, take a sequence (k, ), in BN M® converging both Q-almost surely (hence

N

N Q7 Q7 N
0 E;E {Zﬂdp} :;]E {dep} —;E

N N
= B [Y7] -3 v
j=1 j=1

P-a.s.) and in norm to Y and apply (47) to k,, to get

N N P-a.s. N N
S Eg Y] =1im Y Egi [K] < liminf [ >k | T2 v (48)
i=1 j=1 j=1 =1

Remark 4.8. In particular (47) shows that VQ € Q
N N
YeBNM® | Y/ <Ay C{YeM®|) Eqg [Y/]<A

j=1 j=1

and therefore 7(A) < 7Q(A).

4.3 Utility Maximization with a fixed probability measure
The following represents a counterpart to Theorem 4.5, once a measure is fixed a priori.
Proposition 4.9. Fiz Q € Q,. If 7Q(A) < +oo, then

N

IQ(A) =supq ¥ E[u; (X/ +Y7)]|Y € LY(Q), ZEQJ- [Vi]<As (49)

j=1

T9(A)

N . N 40
= grelﬁg}r A ZEQj [XJ]—FA +;E[vj<)\dp>]

Jj=1
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If additionally any of the two expressions is strictly less than Z;\le uj(4+00), then

7Q(A) = min ZEQJ (X7]+A +Z1E[v] (A)} . (50)

Proof. Again, we prove the case A = 0 since Remark 4.4 can be used to obtain the general case
A #0. From M® C £ C L'(Q) we obtain:

N
72(0) :=sup ¢ Y E[u; (X7 +Y7)] | Y € M®, Y Eq, [Y/] <0 <TI?(0)
< sup ZE[uj (X7 +Y7)] YeLl(Q),ZEQj [vi] <o

N

_ N dQy
< gIel]gi )\;EQJ' [X7] +;]E |:Uj (/\dPﬂ (51)

by the Fenchel inequality. Define the convex cone

N
C=3YeM®|> Eqg [Y'] <0
j=1

The hypotheses on C of Theorem A.3 hold true and inequality (51) shows that 7Q(0) < +oo for

all X € M®. The finite dimensional cone {)\ [‘2%1 R ﬁ} A > O} C L* is closed, and then

by the Bipolar Theorem C° = {)\ [ddcf,l s ﬁ} A > O} Hence the set (C?)T in the statement

of Theorem A.3 is exactly { [%, e %} } and Theorem A.3 proves that 72(0) is equal to the
RHS of (51). We can similarly argue to prove (50). O

To conclude, we provide the minimax duality between the maximization problems with and without

a fixed measure

Corollary 4.10. The following holds:

min 72(A) = 12(A) < +oo,
QeQ,

m(A)

where Q is the minimax measure from Theorem 4.5.
Proof. 1t is an immediate consequence of Theorem 4.5 and Proposition 4.9. O

Lemma 4.11. For all Q € 2 we have [IR(A) = SQ(A) and, if Q is the minimaz measure from
Theorem 4.5, then
m(A) = 1Q(A) = IY(A) = S(A). (52)
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Proof. Let Y € £, Q € 2, a" := Egn[Y"] and Z" :=Y" —a". As L+ RN =L, Z" € L™ and
N
> Egn[y™] :A}
n=1
N
| Egn[Z2"]=0,) a" = A}

n=1

N
sup 22: A(XT Y™

%A) = sup{

N
Z (X" + 2" +a")

= sup
acRN, ZeLl —

N
= sup { sup ZE [un (X" + 2" + an)]}

ZeL : Egn [Z7]=

acRm, 2] (o= 0p=1
- oS s (Bl (X" + 27+ )] | Eerl27] =0}
acRN,| 25:1 a"=A -1 zZreLn
N
= sip > sup {E[un (X" +Y")] | Egu[Y"] = a"}
acRN, SN gn=4,— YneLn
N
= sup > U (a") = 5%4A).

a€RN 3T an=A T

The first equality in (52) follows from Corollary 4.10 and the second one from (49). O

4.4 Main results

Theorem 4.12. Take 2 = Q, and set L = (qco, L' (Q). Under Assumption 3.10, for any
X € M?® and any A € R a SORTE exists, namely (?, Q) €BAxQ, defined in Theorem 4.5 and

a"=Eg, V"], n=1,..,N, (53)
satisfy:
1. Y™ is an optimum for Uf?”(an), for eachn e {1,...,N},
2. a 1is an optimum for SQ(A),
3. YeBand YN V" =A P-as.

Proof.
1): We prove that UY" (@") = E [ (X” + ?”)] < Up(+00), foralln =1,..., N, thus showing
that Y™ is an optimum for UQ (@™). As Yn e £n for all n = 1,..., N, then by definition of
U,?n (a™) we obtain:

sup {E[un (X" + 2)]|Z € £7, Eg[7] <@} = U2 @) 2 B [un (X" +77)] .

If, for some index, the last inequality were strict we would obtain the contradiction
@A) = 7(4) TSR [u, (X7 4 7)] < ST UL (@) < 5%4) =7Q(4),  (5)
n=1 n=1

where we used (52) in the first and last equality.
In particular then E [un (X” + }A/")} < up(400), for all n = 1,..., N . Indeed, if the latter were
equal to u, (+00), then u,, would attain its maximum over a compact subset of R, which is not the

case.
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2): From (33) we know that A = ZnNzlE@n Y] =2 Gn. From (52) we have

n=1
SQ(A) = m(A) Thime 45 ZN:E [un (X” + ?")} = ZN: U2" @) < s2A).

3): We already know that Y €B4:= BN {Y € (LO(P))" | 22[21 Y™ < A}. From Proposition 4.7

we deduce

N N
A= Z:IE@”[?"} < Z_:l?” < A

O

We now turn our attention to uniqueness and Pareto optimality, but we will need an additional

property and an auxiliary result.

Definition 4.13 (Def. 4.18 in [7]). We say that B C (L°(P))Y is closed under truncation if for
each Y € B there exists my € N and cy = (c3-,...,clY) € RY such that 25:1 = SN yn =

n=1

cy € R and for all m > my

Ym = YI{QN {lyn|<m}} + CYI{UN {|]y"|>m}} € B. (55)

n=1 n=1

Remark 4.14. We stress the fact that all the sets introduced in Example 3.17 satisfy closedness

under truncation.

Lemma 4.15. Let B be closed under truncation. Then for every A € R
BiNLCBya.

Proof. Fix any Q € Q, and argue as in Proposition 4.20 in [7]: let Y € Ba N L C LY(Q)
and consider Y, for m € N as defined in (55), where w.l.o.g. we assume my = 1. Note that
25:1 Y =cy(= 25:1 Y™ < A) for all m € N. By boundedness of Y,, and (55), we have
Y,, € BN M® for all m € N. Further, Y,, -+ Y P-as. for m — oo , and thus, since
Y| < max{|Y],|cy|} € L(Q) for all m € N, also Y,, = Y in L!(Q) for m — oo by dominated
convergence.

Now, if Q ~ P we can directly apply Proposition 4.7 to get that 25:1 Egn[Y"] < ZnN:1 Yyn < A
If we only have Q <« P we can see that (48) still holds, with the particular choice of (Y, ) in

place of (kn)n, because the construction of Y,, is made P-almost surely. O
Define
N N
II(A) := sup {E D un(X"+YM| | YeELNB Y Y gA}. (56)
n=1 n=1

Lemma 4.16. Let B be closed under truncation. If@ s the minimax measure from Theorem 4.5,
then
m(A) =TI(A) = 79(A4) = I(A) = SR(A). (57)

Proof. Tt is clear that since B4 N M® C B4 N L we have 7m(A) < II(A) just by definitions (29) and
(56). Now observe that by Lemma 4.15 we have B4 N L C Ba, so that I1(A4) < e (A). The chain
of equalities then follows by Lemma 4.11. O
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Theorem 4.17. Let B be closed under truncation. Under the same assumptions of Theorem 4.12,
for any X € M® and A € R the SORTE is unique and is a Pareto optimal allocation for both the
sets

N

Z LY < A} (58)

“I/{YGEQB

N
ZY” §AP—a.s.} and VYV = {YEE

n=1

Proof. Use Proposition 4.9 and Corollary 4.10 to get that for any Q € Q

MR(A) = 79(A) > n(A). (59)

Let (?, Q,E) be a SORTE and (3?, Q, a) be the one from Theorem 4.12.
By 1) and 2) in the definition of SORTE, together with Lemma 4.11, we sce that Y is an optimum
for TIR(A) = SQ(A). Also, Y € B4 N By by Lemma 4.15. We can conclude by equation (30) that

Cor.4.10

A) > iv: E [ (X7 +77)| =110(4) L7 794 S ra),

which tells us that 7(A) = 72(4) = 2N | E [u (X” v ?")} .
By Theorem 4.5, we also have 7(A) = Zf:] 1E { (X" + Y”)} Then Y,Y € B4 (Lemma 4.15)
and II(A) = 7(A4) (Lemma 4.16) imply that both Y, Y are optima for II(A). By strict concavity
of the utilities uq,...,un, II(A) has at most one optimum. From this, together with uniqueness
of the minimax measure (see Theorem 4.5), we get (Y, Q) = (Y, Q). We infer from equation (53)
and Remark 3.8 that also a = a.

To prove the Pareto optimality observe that Theorem 4.5 proves that Y € BAC L is the unique
optimum for TI(A) (see Lemma 4.16) and so it is also the unique optimum for HQ(A). Pareto
optimality then follows from Proposition 3.2, noticing that II(¥#') for the two sets in (58) are II(A)
and 119 (A) respectively. O

4.5 Dependence of the SORTE on X and on B

We see from the proof of Theorem 4.12 that the triple defining the SORTE (obviously) depends
on the choice of A. We now focus on the study of how such triple depends on X. To this end, we

first specialize to the case B = Cg.

Proposition 4.18. Under the hypotheses of Theorem 4.12 and for B = Cgr, the variables % and
X+ Y are o(X' + -+ XN) (essentially) measurable.

Proof. By Theorem 4.12 and Theorem 4.17 we have that (:\\, Q) is an optimum of the RHS of
equation (31). Notice that in this specific case Y := e;14 —ejl4 € BN M?® for all i,j and
all measurable sets A € F. Let Q € Q. Then from (47) Ziv:l(EQn [Y"] —Y™) < 0 and so
QU(A)—14—QI(A) +14 <0, ie, Q(A) — Q(A) <0. Similarly taking Y := —e;14 + ej14 € B,
we get Q7(A) — Q'(A) < 0. Hence all the components of vectors in Q are equal. Let G :=
o(X'+ -4+ XN). Then for any A € R, and any Q = [Q, ..., Q] € Q we have:

A(iEQn[XmA)&E[%(Addgl)} <(ZX”> +A)+ZE[UR(AS§§)}

n=1 n=1
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5

where in the last inequality we exploited the tower property and Jensen inequality, as vq,...,vn

(53) 320l +4) + o [e [ (452)]e])

(Srfos[iBl) ) - (o[58

n=1

are convex. Notice now that E [ ‘g] defines again a probability measure (on the whole F, the
initial sigma algebra) and that this measure still belongs to Q since all its components are equal.
As a consequence, the minimum in equation (31) can be equivalently taken over A € R, (as
before) and Q € QN (L°(, G, P))N. The claim for Y follows from (32). O

It is interesting to notice that this dependence on the componentwise sum of X also holds in the

case of Bithlmann’s equilibrium (see [13] page 16 and [11]).

Remark 4.19. In the case a cluster of agents, see the Example 3.17, the above result can be clearly
generalized: the i-th component of the vector Q, for i belonging to the m-th group, only depends
on the sum of those components of X whose corresponding indexes belong to the m-th group itself.
It is also worth mentioning that if we took B® = RN, we would see that each component of (/:2
and of Y is a measurable function of the corresponding component of X. This is reasonable since,
in this case, at the final time each agent would be only allowed to share and exchange risk with

herself/himself and the systemic features of the model we are considering would be lost.

We provide now some additional examples, to the ones in Example 3.17, of possible feasible sets

B and study the dependence of the probability measures from B.

Ezample 4.20. Consider a measurable partition Aq,..., Ax of Q and a collection of partitions
I',...,IK of {1,..., N} as in Example 3.17. Take the associated clusterings B, ..., B) defined
as in (23). Then the set

K
B:= (Z B<I”>1Ai> N Cr (60)
=1

satisfies Assumptions 3.10 and is closed under truncation, as it can be checked directly.

The set in (60) can be seen as a scenario-dependent clustering. A particular simple case of (60) is
the following. For a measurable set A; € F take Ay = Q\ A;. Then set Crla, + RM14, is of the
form (60) and consists of all the Y € (L°)" such that (i) there exists a real number o € R with
Zﬁ[:l Y™ =0 P—as. on Ay, (ii) there exists a vector b € RY such that Y = b P—a.s. on Ay and
(iii) o = 320, b (recall that Y € Cg by (60)).

Let us motivate Example 4.20 with the following practical example. Suppose for each bank i a
regulator establishes an excessive exposure threshold D?. If the position of bank i falls below such
threshold, we can think that it is too dangerous for the system to let that bank take part to the
risk exchange. As a consequence, in the clustering example, on the event {X* < D'} we can
require the bank to be left alone. Also the symmetric situation can be considered: a bank j whose
position is too good, say exceeding a value A7, will not be willing to share risk with all others,
thus entering the game only as isolated individual or as a member of the groups of “safer” banks.
Both these requirements, and many others (say considering random thresholds) can be modelled

with the constraints introduced in Example 4.20.
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It is interesting to notice that, as in Example 3.17, assuming a constraint set of the form given in

Example 4.20 forces a particular behavior on the probability vectors in Q,.

Lemma 4.21. Let B be as in Example 4.20 and let Q €Q,,. Fiz any i € {1,...,K} and any
group 1. of the partition I* = (I!)),,. Then all the components @7, j € 1!
{FNA; FeF}

agree on F|a, :=

m’

Proof. We think it is more illuminating to prove the statement in a simplified case, rather than
providing a fully formal proof (which would require unnecessairly complicated notation). This is
"without loss of generality” in the sense that it is clear how to generalize the method. To this
end, let us consider the case K = 2 (i.e. Az = Af) and B .= Cg, B¥) := RN, For any F € F
and 4,7 € {1,..., N} we can take Y := (1p(e; —€j)) 1a, + 014, to obtain Y € Cgla, + RN 1,4,,
Z;V:l Y7 = 0. By definition of Q, we get for any Q € Q, that Q*(ANF) — Q(ANF) <0, and
interchanging ¢, j yields Q*(ANF) = Q' (ANF) forany i,j=1...,N, F e F. O

5 Exponential Case
We now specialize our analysis to the exponential setup, where
up(x) :=1—exp(—apz),n=1,...,.N for ai,...,an >0. (61)

This allows us to provide explicit formulas for a wide range of constraint sets B (namely, all those
introduced in Example 3.17) and so the stability properties of SORTE, with respect to a different

weighting of utilities, will be evident.

5.1 Explicit formulas

We consider a set of constraints of the form B = B as given in Example 3.17. Given X € M®
and m € {1,...,h}, we set:

1 Al N
T SE NS S N T SR
n€ly, n:1 nelny,
1

1 N
R(n) : = ]\?‘7"1, n=1,..N, a:=(ai,..,ay), Er[ln(a Z n)In(ay,).
D k=1 an el
Theorem 5.1. Tuke uy,...,uy as given by (61) and B = BWY as in Example 3.17. For L and 2
defined in Theorem /.12, the SORTE 1is given by

Yk = _Xxk 4 aik (Ym — dm(X)> + o%k [% +1In(ag) — Eg [ln(a)]] kel,

108 _ _ew(=32) _ agr
A Ha(3m] TP bt (62)
= Eg.[Y*] k=1,...,N

where



Proof. The utilities in (61) satisfy Assumption 3.10 (a) and B satisfies Asssumption 3.10 (b) and
closedness under truncation, hence Theorems 4.12 and 4.17 guarantee existence and uniqueness.
Recall that from this choice of B we have that for each Q € Q,, all the components of Q are equal
in each index subset I,,,.
It is easy to check that

vn(/\y):ﬁlni—i-iylny—aiy—i—l. (63)

Substitute now y = dQ € Q, in the above expressions and take expectations to get

aQr Q™. [dQ" AA A
E{vn<)\dp>}:¢n()+]E{dpln<dp>}7¢5n()\):anlnan—an+l. (64)

Let K ()\, dP) be the functional to be optimized in (31). Set

N 1 1 N
€= Z;;nln <an> d(N) = Z:lqﬁn()\):A§+ﬁ>\ln)\—)\ﬂ+N.

Then from (64) we deduce

K( dQ) A(iEQn X"+A>+¢ ZNjO? [dQ" (ddg)]. (65)

n=1 n=1
Set N R N
1 dQ" "
= 7E — A E" Xn .
: ;a P (dP) + +¥ o X" (66)

From (65) and (66)

aQ\
K()\,dp> =M+ A(E+BIn(A) - B) + N

The associated first order condition obtained differentiating in A yields the unique solution

3= exp (_ﬂ*f>

g
which can be substituted in K ( Q) yielding
~ dQ A
KN —]|==-X N. 67
( '3 P) B+ (67)
We now guess that the vector of measures Q defined via (62) is optimal and compute the associated
p: N
n dQ” aQr dQJ
sz X7 +A+Z—]E P ( ) A+Z]E
dQﬂ dQ’ 1
Zﬂ] <exp< >> +Zﬂj m|-
ar X;
E[exp (=5))
Hence

u:A—jz:ﬁjln (2o (_);)D (69)
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and substituting (67) in the explicit formula for A we get

~dQ) 1 " X;
K<)\’dP> —fBexp 3 A+§+;len(ﬂil[exp(—ﬁ;>}) + N.

Using equation (32) we define, for the measure given in (62),

VE=—xk o (Xjﬁ) k=1,...,N.

By (63) (with A = 1) we obtain, for k € I, vj,(y) =

:iln <1)_1(Xm+‘4+r“> —1ln(E [exp (_an)Eqéﬁs)
Qg (675 Qg 67n B «

1 1 1 (X A+§> 1
—In(—) - — 7"+ 7= ) + —dn(X).
Ak <ak) ak(ﬁm 6 QL ( )
}’}k':_Xk_,'_l(Xm A+E

1 1
ax \Bn T B dm(X))‘oafm(ouf)'

A simple computation yields Y € M®, > kel Y* € R and 22;1 Y™ = A, sothat Y € B4 N M?®
Moreover

oxp (- (x4 £ 7)) e (e (2 (B2 1 2260 00) - L (1))
Loy (_;(:) exp (—A;f) exp (4 (X))
— ;m exp (—A+£) oxXp éﬁﬁjln (E {eXp <_)5(JJ)D

As a consequence

N h = A
_Zaiexp —; A+§+Zﬁjln (E [exp (—?)})) —l—NEqéﬁg)K(/)\\,m) (70)
n=1 " J=1

which implies

To sum up we have



N ~
Thm.(4.5) . dQ ~ dQ
E[u, (X" +Y" = K{N—|)<K|\N—=].
peii B v M i i (3 ) ( P

QeQ,
Consequently Y is the (unique) optimum for the optimization problem in LHS of (30), and (X, Q)
is the (unique) optimum to the minimization problem in (31).
Moreover, setting a” := E@n [17"]7 n =1,...,N, the SORTE (which, as already argued, exists

and is unique) is given by (?, Q,ﬁ). O
Remark 5.2. We observe that in the terminal part of the proof above we also got an explicit formula

for the maximum systemic utility:

N ~
Thm.(4.5) ~ dQ

sup Elu, (X" +Y" = K|\ — 72

YeBaNM® ngl fun ) dP (72)

where K (X, %) is given in (70).

5.2 A toy Example

In the following two examples we compare a Bithlmann’s Equilibrium with a SORTE in the simplest

case where X = 0 := (0,...,0) and A = 0. In the formula below we use the well known fact:

sup {E [un (V)] | EglY)] < 2} = 1 — e=ons=H(@P)
YELl(Q)

where H(Q, P) = E[% ln(%)] is the relative entropy, for Q < P.

Ezample 5.3 (Bithlmann’s equilibrium solution). As X := 0 then Xy = Zgzl XF = 0 and
therefore the optimal probability measure Qx defined in Biihlmann is:
dQx e FXN

P - [6_%?]\7} =1, (73)

i.e. Qx = P. Take a=0 = (0,...,0). We compute
US%(0) = UL (0) == sup {E [un (0 + V)] | Ep[Y] <0} =1 — e 0"HEP) — 9 _1 -0,
as H(P,P) =0, so that

N
> Ur0)=o.

As a consequence, and as u,(0) = 0, the optimal solution for each single n is obviously Yy = 0.
Conclusion: The Biihlmann’s equilibrium solution associated to X := 0 (and A = 0) is the couple
(Yx,Qx) = (0, P). Here the vector a is taken a priori to be equal to (0, ...,0).

Ezample 5.4 (SORTE). From Theorem 5.1 with X := 0 and A = 0 we obtain for the SORTE that:

the optimal probability measure Q coincides again with P; the optimal Y is:

77 — L lin(an) — Ex [In(a)]] == a". (74)

(677
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Recalling that Q is in fact a minimax measure for the optimization problem 7 (0) (see the proof
of Theorem 4.12), we can say that

(70),(72)

SP(0) = 5%(A) et 1 (0) N—Be 8 (75)

Notice that if the o, are equal for all n, then S¥(0) = 0, but in general
SP(0) =N —Be™ 5 > 0.

Indeed, by Jensen inequality:

N 1

e F = Brlln(@] < Bple@] = Epla] = > 77];%; _N

el k=1 on B
From (74) we deduce that the «, are equal for all n if and only if @ = 0 for all n, but in general
a™ may differ from 0. As yn = a™, the same holds also for the optimal solution Y. When a" < 0
a violation of Individual Rationality occurs.
Conclusion: The SORTE solution associated to X := 0 (and A = 0) is the triplet (?, P,a) where
Y =4 is assigned in equation (74).
The above comparison shows that a SORTE is not a Biihlmann equilibrium, even when X := 0
and A = 0. When the «,, are all equal, then the Bithlmann and the SORTE solution coincide, as

all agents are assumed to have the same risk aversion.

Remark 5.5. In this example, notice that we may control the risk sharing components Y™ of agent
n in the SORTE by:

Y"| < [In(tmax) — In(omin)] -

min
Suppose that amin < amax and consider the expression for Y" =G" in (74). If &j = umin then the
corresponding Y7 < 0 is in absolute value relatively large (divide by auin), while if a = @max the

corresponding Y% > 0 is in absolute value relatively small (divide by cmax)-

5.3 Dependence on weights and stability

We now provide a detailed study of the dependence on weights, as introduced in Remark 1.3, in the
exponential case. Given v, € (0,40c0), n = 1,...,N and uy,...,uy satisfying Assumption 3.10
(a), we recall that v (x) := ypun(z), n =1,..., N and we denote by v} (-) their convex conjugates.
These functions u) satisfy Assumption 3.10 (a).

In our exponential setup and under closedness under truncation, a different weighting only results
in a translation of both allocations at initial and terminal time of a SORTE, without affecting the

optimal measure:

Proposition 5.6. Consider ui,...,un as gien in (61) and take the associated uj,...,u} as
above. Suppose B satisfies Assumption 3.10 (b) and is closed under truncation. Call (?, Q,ﬁ) the

unique SORTE associated to uq,...,un, and similarly define (?vv Qw ﬁy) as the unique SORTE

associated to uy,...,u);. Then

}ak:}/}k—i—gk(’y) k=1,...,N

dQr _ qo*
5 = 55 k=1,...,N
at =a* + gi(y) k=1,...,N
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N
1 Zn:l é In (fy%) 1
gk (7y) := — ~ — —1In

1
T O Xk

Proof. For a general set B, we here provide only a sketch of the proof. Using the formulas for

1
V&

) = o () = Brfin()) k=1,

v1,...,UN, after some computations one can write explicitly the minimax expression (31). Then
use the gradient formula (32) to deduce (76). A more direct proof, that works only for sets B in
the form described in Example 3.17, is based on the observation that
5 1
un(x) = Wnun(x) =Yn — Tn exp(—anx) =Tn —€XpP | —Qn |T — ; ln(lyn) :
n
Hence, (?7, vi &Y) can be obtained by a straightforward computation from the solution (XA’, Q, 5) ,

which is explicitly given in Theorem 5.1, using X" — ai In(y,), n=1,..., N in place of X O

A Appendix

A.1 Orlicz Spaces and Utility Functions

We consider the utility maximization problem defined on Orlicz spaces, see [36] for further details
on Orlicz spaces. This presents several advantages. From a mathematical point of view, it is a
more general setting than L°°, but at the same time it simplifies the analysis, since the topology
is order continuous and there are no singular elements in the dual space. Furthermore, it has been
shown in [9] that the Orlicz setting is the natural one to embed utility maximization problems, as

the natural integrability condition E[u(X)] > —oo is implied by E[¢p(X)] < +o0.

Let v : R — R be a concave and increasing function satisfying lim,_,_ = +o00. Consider

o(z) := —u(—|z|) + v(0). Then ¢ : R — [0, +00) is a strict Young function, i.e., it is finite valued,
even and convex on R with ¢(0) = 0 and lim,—, 4 @ = +00. The Orlicz space L? and Orlicz

Heart M? are respectively defined by

L? = {X € L°(R) | E[¢(aX)] < +oo for some o > 0}, (76)
M?:={X € L°(R) | E[¢p(aX)] < +oo for all & > 0}, (77)

and they are Banach spaces when endowed with the Luxemburg norm. The topological dual of

M? is the Orlicz space L?", where the convex conjugate ¢* of ¢, defined by

¢*(y) :=sup{zy — ¢(2)}, y € R,
xeR

is also a strict Young function. Note that
Elu(X)] > —oco if E[p(X)] < 0. (78)

Remark A.1. Tt is well known that L>(P;R) C M? C L? C L'(P;R). In addition, from the
Fenchel inequality zy < ¢(z) + ¢*(y) we obtain

(alXD) (ﬁg) < ¢(a]X]) + ¢* (Aj@
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for some probability measure ) < P, and we immediately deduce that e L?" implies L? C
LY(Q;R).

Given the utility functions u,--- ,uy : R — R, satisfying the above conditions, with associated
Young functions ¢q, -, ¢n, we define
M® =M% x .. x MY, L*:=L% x...x LV, (79)

A.2 Auxiliary results

Lemma A.2. Let v : [0,+00) = RU{+0o0} be a convex function, and suppose that its restriction
o (0,4+00) is real valued and differentiable. Let Q < P be a given probability measure with
v (/\%) € LY(P) for all A\ > 0. Then

1. v is defined on (0, +00) and real valued there and extendable to [0, +00) by taking lim, o v'(x) €

RU {—oc}. Also, 2y ’(AdQ) € LY(P) for all A > 0.

2. If g is such that g + % € LY(P), then v (g%) e L'(P).

3. If v/(0+) = —o0, v/(400) = 400 and v is strictly convex F(v) :=E [jgv’ (’yd—g)] is a well
defined bijection between (0,400) and R.

Proof. Lemma 2 of [8]. O
The following dual representation holds:

Theorem A.3. Let u;...,u, : R — R be strictly increasing and concave functions. Let C C M®
be a convex cone such that for every i,j = 1,...,N, e; —e; € C. Denote by C° the polar of the
cone C in the dual pair (M®,L®")
N
C'=qZecL® st. Y E[Y/Z]<0VYeC
j=1

Set
C)={ZecC st E[Z2']|=--=E[Z"] =1}, ()t :={ZeC) st Z) >0 forall j}
and suppose that

N
p [ D E[u; (X7 +Y7)] | <+oo VX € M®.
c =

YE
Then
N ; ; ; N dQJ
o (el o)) = o (33 [0 GE] e (V)]

If any of the two expressions above is strictly smaller than Z;\Ll uj(400), then
N

sup (Y E[u; (X7 +Y7)] | =  min f:l { ]+§:E[%< dQJ)]

0)+
vee \ i A€RL 1, Qe(CY) =
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Proof.
Observe first that X — p(X) := —supycc (Z;vzl E [u; (X7 + Yj)D is a non increasing, finite
valued, convex functional on the Fréchet lattice M®. Only convexity is non-evident: to show it,

consider X,Z € M® and Y, W € C. For any 0 < A < 1, we have by concavity

ASE [y (6 4 V9] £ (1~ NS E [y (2 4 W)

j=1 j=1

N
D R [uy (AXT +YT) + (1= ) (27 + W))]

IN

N
= E[u; (AX7 + (1 =227 + (A\Y7 + (1 = \OW))] < —p(AX + (1 = N)Z)

<.

as AY + (1 = A)W € C. Thus taking suprema over Y, W € C we get
AM=p(X)) + (1 = A)(=p(2Z)) £ —p(AX + (1 = N)Z).

Now the Extended Namioka-Klee Theorem (see [10] Theorem A.3) can be applied and we obtain

N
P00 = e, | LB O] —a(@) )
where
N . .
a(Z) = sup |30 Bp [X9(-27)] - p(X)

N
= Ep [XI(-2Z7 E [u; (X7 +Y/
o, | 2B 2]+ g ; s (X7 +37)]

N

=sup | sup ZEP Xj ZJ
vec \ xem® \ (53

uJ XJ + YJ)]

H'MZ

N—

N
= sup ZEH» Y/(Z7)] + sup Z (Wi (=27)] +

YeC =1 WeM?® \ ;5

E [u; (W7)] . (80)

e

Observe now that —U(z) := ZN

J=1
function whose Fenchel transform is

—uj(27) for z € RN defines a continuous, convex, proper

(=U)"(w) := sup ((z,w) = (=U(2))) = sup ((z,w) +U(z)) = sup (U(z) - (2, -w)) = Zvj(—wj)

zERN zERN zERN
Now we apply Corollary on page 534 of [37] with L = M®, L* = L®"| F(x) = —U(x) to see that
N . . N . N .
sup ZEP [W](—ZJ)] + ZIE [uj (WJ)} = FEp Zvj(Z])
WeM® \ ;5 j=1 i
and replacing this in (80) we get:
a(Z) = sup E]p [Y7Z7] + Ep v;(Z7)

Now observe that there are two possibilities:
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e cither Z € C°, and in this case a(Z) = Ep [Z;\Ll vj(Zj)] since 0 € C

e or a(Z) = 400, since vy, ...,vy are bounded from below.
Hence
N N
— su E [u; (X7 4+ Y7 =  max XI(~Z9)] - a(Z
sup g [ ( )] g P [X7(-2)] - o(2)
N N
= - Ep [X7Z7] + E (77
o2, |~ | 2 B OB+ B D 0(2)
7j=1 J=1
N N
- _ 3 J73 (73
o in, ZE (X727 + Ep ZU](Z I D)
j=1 Jj=1
Moreover, since for every i,j =1,..., N e; —e; € C we can argue as in Lemma 4.1 to deduce that

CON(LY)N =Ry - (C))T. Replacing this in the expression (81) we get

Sup Z]E uj (X7 +Y7)] :Aemn‘gg(co )\ZE[X] dP] +ZE[ ( )}

YeC J=1

To prove the last claim, observe that if the optimum A in the right hand side was 0, we would have

N N N
sup | D Efu; (X7 +Y)] ) =3 0;(0) =) uy(+00),
Ye€ \ ;=1 =1 =1
j= J J
which contradicts our hypotheses. O

Theorem A.4. Let uy, ..., uy satisfy Assumption 3.10. Let K C M® be a convex cone such that
foralli,je{l,...,N} e; — ej € K and suppose that Q5 # (), where
dQ’ N , .
Qi =9Q~ P\—GL‘I’ E{vj (dp)] <+00,Y Eq [K] <0 Vke K p CL*.
j=1
Then denoting by clq(. ..) the closure in L* (Q") x---x L* (QN) with respect to the norm 1Xlq =

] 1 HX HLl(QJ‘) we have

N
() cq(K-LL(Q)={We (] L'(Q)|> Eq [W/]<0vQe Qf
QeQs QeQg j=1

Proof. We modify the procedure in [8] Theorem 4. The inclusion (LHS C RHS) can be checked
directly. As to the opposite one (RHS C LHS), suppose we had a k € RHS and a Q € Q¢ with
k ¢ clq (K — LY (Q)), that is k ¢ LHS. We stress that by construction

N
D Eqi [K] <0 vQe Q5. (82)

Jj=1

In the dual system
(LYQ), L*(Q))
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the set clq (K — L} (Q)) is convex and o (L'(Q), L>°(Q))-closed by compatibility of the latter
topology with the norm topology. Thus we can use Hahn-Banach Separation Theorem to get a
class € € L>(Q) with

N ; N .
~ QY ~ . dQI
0= sup E {fJWJ } < E {5%7 } . (83)
We(K—11(Q)) ; ar ; dp

We now work componentwise. First observe that

[—17 €0-LT(Q CK-LL(Q),

EJ<0]] 1

so that EJ >0 @QI-a.s. for every j = 1,..., N. Hence Ej(f% >0 P-as. forevery j=1,...,N.

Moreover, since for all ¢,j € {1,..., N} e; — e; € K, we have
adQ'] _ g favd@”
E[ dP]_ —E{ﬁ | (84)

It follows that for every j=1,..., N
~ dQJ
plé
(642 . ) -
since if this were not the case all the terms in equation (84) would be null, which would yield

51% =...= EW% =0, a contradiction with (83).

Hence the vector _ _
d@q _ I 5deY
dpP E [gj %612; ] dpP

is well defined and identifies a vector of probability measures [Q1,...,QY]. We trivially have that

d x
J P, L<I>
Q< q P €
and by equation (83), together with (84)

N ‘de‘|
sup E E (Wi =L E
e = l apP Z

WeK

ki 31 dQ] . (85)

I—I

We observe that if we could prove Q; € Qf, we would get a contradiction with (82). However this

needs not to be true, since we cannot guarantee Q1,..., QY ~ P.
As Q € Q¢, we have Q ~ P, and for Q; above we have Q; < Q, ggk € L>®(QF) = L>=(P). Take
A € (0,1] and define Q) via

dQk dQ* dQf

= A (1= A=

dpP A dpP +(1=A) dpP

We now prove that Qy € QF. It is easy to check that
dQy dQy
0<A< —22 < (1—N)—F + A,
<A< aor = ( )ko +

k
so that Lemma A.2.2. with g = ¢F := jgﬁ, together with E [vk (ddg)} < +ooVk=1,...,N
(Q € Q¢ by construction), yields

k a0k k
E{v (;ﬁ)] —E[vk <;Lg’)€\(116123>} :]E{vk (g“ﬁ)} < +4oo, Vke{l,...,N}, A€ (0,1].
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Moreover Q € Q¢ and A > 0 imply Q5 ~ P for all k = 1,..., N. This, together with equation
(85), yields

N
Y E
Jj=1

We can conclude that Qy € QF, VA € (0, 1]. At the same time

.dQ§
Wjﬁ <0 VW e K,VXe(0,1].

N _ ,
dQ -dQ)’ dQ dQ? | Ea.(85)
J%A >\ — Jj_* J_*1 1 Jj__%1
Z]E g AZE[k dP} ZE’“ oo 2E P ’
j=1 Jj=1
which gives a contradiction with Equation (82). We conclude that RHS C LHS. O
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