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Abstract

We propose a novel concept of a Systemic Optimal Risk Transfer Equilibrium (SORTE), which

is inspired by the Bühlmann’s classical notion of an Equilibrium Risk Exchange. We provide

sufficient general assumptions that guarantee existence, uniqueness, and Pareto optimality of

such a SORTE. In both the Bühlmann and the SORTE definition, each agent is behaving ra-

tionally by maximizing his/her expected utility given a budget constraint. The two approaches

differ by the budget constraints. In Bühlmann’s definition the vector that assigns the budget

constraint is given a priori. On the contrary, in the SORTE approach, the vector that assigns

the budget constraint is endogenously determined by solving a systemic utility maximization.

SORTE gives priority to the systemic aspects of the problem, in order to optimize the overall

systemic performance, rather than to individual rationality.
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1 Introduction

We introduce the concept of Systemic Optimal Risk Transfer Equilibrium, denoted by SORTE, that

conjugates the classical Bühlmann’s notion of an equilibrium risk exchange with capital allocation

based on systemic expected utility optimization.
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The capital allocation and risk sharing equilibrium that we consider can be applied to many

contexts, such as: equilibrium among financial institutions, agents, or countries; insurance and

reinsurance markets; capital allocation among business units of a single firm; wealth allocation

among investors.

In this paper we will refer to a participant in these problems (financial institution or firms or

countries) as an agent; the class consisting of these N agents as the system; the individual risk

of the agents (or the random endowment or future profit and loss) as the risk vector X :=

(X1, ..., XN ); the amount Y := (Y 1, ..., Y N ) that can be exchanged among the agents as random

allocation. We will generically refer to a central regulator authority, or CCP, or executive manager

as a central bank (CB).

We now present the main concepts of our approach and leave the details and the mathematical

rigorous presentation to the next sections. In a one period framework, we consider N agents, each

one characterized by a concave, strictly monotone utility function un : R→ R and by the original

risk Xn ∈ L0(Ω,F , P ), for n = 1, ..., N . Here, (Ω,F , P ) is a probability space and L0(Ω,F , P ) is

the vector space of real valued F-measurable random variables. The sigma-algebra F represents

all possible measurable events at the final time T . E [·] denotes the expectation under P . Given

another probability measure Q, EQ [·] denotes the expectation under Q. For the sake of simplicity

and w.l.o.g., we are assuming zero interest rate. We will use the bold notation to denote vectors.

1. Bühlmann’s risk exchange equilibrium

We recall Bühlmann’s definition of a risk exchange equilibrium in a pure exchange economy

(or in a reinsurance market). The initial wealth of agent n is denoted by xn ∈ R and the

variable Xn represents the original risk of this agent. In this economy each agent is allowed

to exchange risk with the other agents. Each agent has to agree to receive (if positive)

or to provide (if negative) the amount Ỹ n(ω) at the final time in exchange of the amount

EQ[Ỹ n] paid (if positive) or received (if negative) at the initial time, where Q is some pricing

probability measure. Hence Ỹ n is a time T measurable random variable. In order that at

the final time this risk sharing procedure is indeed possible, the exchange variables Ỹ n have

to satisfy the clearing condition

N∑
n=1

Ỹ n = 0 P -a.s. .

As in Bühlmann [12] and [13], we say that a pair (ỸX, QX) is an risk exchange equilibrium

if:

(a) for each n, Ỹ nX maximizes: E
[
un(xn +Xn + Ỹ n − EQX

[Ỹ n])
]

among all variables Ỹ n;

(b)
∑N
n=1 Ỹ

n
X = 0 P−a.s. .

It is clear that only for some particular choice of the equilibrium pricing measure QX, the

optimal solutions Ỹ nX to the problems in (a) will also satisfy the condition in (b).

In addition it is evident that the clearing condition in (b) requires that all agents accept to

exchange the amount Ỹ nX(ω) at the final time T .
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Define

CR :=

{
Y ∈ (L0(Ω,F , P ))N |

N∑
n=1

Y n ∈ R

}
(1)

that is, CR is the set of random vectors such that the sum of the components is P -a.s. a

deterministic number.

Observe that with the change of notations Y n := xn+Ỹ n−EQX
[Ỹ n], we obtain variables with

EQX
[Y n] = xn for each n, and an optimal solution Y nX still belonging to CR and satisfying

N∑
n=1

Y nX =

N∑
n=1

xn P -a.s. . (2)

As can be easily checked

sup
Ỹ n

E
[
un(xn +Xn + Ỹ n − EQX

[Ỹ n])
]

= sup
Y n
{E [un(Xn + Y n)] | EQX

[Y n] ≤ xn} .

Hence the two above conditions in the definition of a risk exchange equilibrium may be

equivalently reformulated as

(a’) for each n, Y nX maximizes: E [un(Xn + Y n)] among all variables satisfying EQX
[Y n] ≤ xn;

(b’) YX ∈ CR and
∑N
n=1 Y

n
X =

∑N
n=1 x

n P -a.s.

We remark that here the quantity xn ∈ R is preassigned to each agent.

2. Systemic Optimal (deterministic) Allocation

To simplify the presentation, we now suppose that the initial wealth of each agent is already

absorbed in the notation Xn, so that Xn represents the initial wealth plus the original risk

of agent n. We assume that the system has at disposal a total amount of capital A ∈ R to

be used at a later time in case of necessity. This amount could have been assigned by the

Central Bank, or could have been the result of the previous trading in the system, or could

have been collected ad hoc by the agents. The amount A could represent an insurance pot or

a fund collected (as guarantee for future investments) in a community of homeowners. For

further interpretation of A, see also the related discussion in Section 5.2 of Biagini et al. [7].

In any case, we consider the quantity A as exogenously determined. This amount is allocated

among the agents in order to optimize the overall systemic satisfaction. If we denote with

an ∈ R the cash received (if positive) or provided (if negative) by agent n, then the time

T wealth at disposal of agent n will be (Xn + an). The optimal vector aX ∈RN could be

determined according to the following aggregate time-T criterion

sup

{
N∑
n=1

E [un(Xn + an)] | a ∈RN s.t.

N∑
n=1

an = A

}
. (3)

Note that each agent is not optimizing his own utility function. As the vector a ∈RN is

deterministic, it is known at time t = 0 and therefore the agents have to agree to provide or

receive money only at such initial time.

However, under the assumption that also at the final time the agents have confidence in the overall

reliability of the other agents, one can combine the two approaches outlined in Items 1 and 2 above
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to further increase the optimal total expected systemic utility and simultaneously guarantee that

each agent will optimize his/her own single expected utility, taking into consideration an aggregated

budget constraint assigned by the system. Of course an alternative assumption to trustworthiness

could be that the rules are enforced by the CB.

We denote with Ln ⊆ L0(Ω,F , P ) a space of admissible random variables and assume that Ln +

R =Ln. We will consider maps pn : Ln → R that represent the pricing or cost functionals, one for

each agent n. As we shall see, in some relevant cases, all agents will adopt the same functional

p1 = ... = pN , which will then be interpreted as the equilibrium pricing functional, as in Bühlmann’s

setting above, where pn(·) := EQ[·] for all n. However, we do not have to assume this a priori.

Instead we require that the maps pn satisfy for all n = 1, ..., N :

i) pn is monotone increasing;

ii) pn(0) = 0;

iii) pn(Y + c) = pn(Y ) + c for all c ∈ R and Y ∈ Ln.

Such assumptions in particular imply pn(c) = c for all constants c ∈ R. A relevant example of such

functionals are

pn(·) := EQn [·] , (4)

where Qn are probability measures for n = 1, ..., N . Another example could be pn = −ρn, for

convex risk measures ρn.

Now we will apply both approaches, outlined in Items 1 and 2 above, to describe the concept of a

Systemic Optimal Risk Transfer Equilibrium.

3. Systemic Optimal Risk Transfer Equilibrium.

As explained in Item 1, given some amount an assigned to agent n, this agent may buy Ỹ n

at the price pn(Ỹ n) in order to optimize

E
[
un(an +Xn + Ỹ n − pn(Ỹ n))

]
.

The pricing functionals pn, n = 1, ..., N have to be selected so that the optimal solution

verifies the clearing condition
N∑
n=1

Ỹ n = 0 P -a.s.

However, as in Item 2, an is not exogenously assigned to each agent, but only the total

amount A is at disposal of the whole system. Thus the optimal way to allocate A among the

agents is given by the solution (Ỹ nX , p
n
X, a

n
X) of the following problem:

sup
a∈RN

{
N∑
n=1

sup
Ỹ n

{
E
[
un(an +Xn + Ỹ n − pnX(Ỹ n))

]} ∣∣∣∣∣
N∑
n=1

an = A

}
, (5)

N∑
n=1

Ỹ nX = 0 P − a.s. . (6)

From (5) and (6) it easily follows that an optimal solution (Ỹ nX , p
n
X, a

n
X) fulfills

N∑
n=1

pnX(Ỹ nX) = 0. (7)
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Further, letting Y n := an+Ỹ n−pnX(Ỹ n), from the cash additivity of pnX we deduce pnX(Y n) =

an+pnX(Ỹ n)−pnX(Ỹ n) = an and
∑N
n=1 Y

n
X =

∑N
n=1 a

n+
∑N
n=1 Ỹ

n
X−
∑N
n=1 p

n
X(Ỹ nX) =

∑N
n=1 a

n

and, as before, the above optimization problem can be reformulated as

sup
a∈RN

{
N∑
n=1

sup
Y n
{E [un(Xn + Y n)] | pnX(Y n) ≤ an}

∣∣∣∣∣
N∑
n=1

an = A

}
, (8)

N∑
n=1

Y nX = A P − a.s. , (9)

where analogously to (7) we have that a solution (Y nX , p
n
X, a

n
X) satisfies

∑N
n=1 p

n
X(Y nX) = A,

by (8) and (9).

The two optimal values in (5) and (8) coincide. We see that while each agent is behaving

optimally according to his preferences, the budget constraint pnX(Y n) ≤ an are not a priori

assigned, but are endogenously determined through an aggregate optimization problem. The

optimal value anX determines the optimal risk allocation of each agent. It will turn out

that anX = pnX(Y nX). Obviously, the optimal value in (5) is greater than (or equal to) the

optimal value in (3), which can be economically translated into the statement that allowing

for exchanges also at terminal time increases the systemic performance.

In addition to the condition in (9), we introduce further possible constraints on the optimal

solution, by requiring that

YX ∈ B, (10)

where B ⊆ CR.

In the paper, see Section 3.4, we formalize the above discussion and show the existence of the

solution (Y nX , pnX, a
n
X) to (8), (9) and (10), which we call Systemic Optimal Risk Transfer Equilib-

rium (SORTE). We show that pnX can be chosen to be of the particular form pnX(·) := EQnX [·], for

a probability vector QX = (Q1
X, ..., Q

N
X). The crucial step, Theorem 4.5, is the proof of the dual

representation and the existence of the optimizer of the associated problem (29). The optimizer of

the dual formulation provides the optimal probability vector QX that determines the functional

pnX(·) := EQnX [·]. The characteristics of the optimal QX depend on the feasible allocation set B.

When no constraints are enforced, i.e., when B = CR, then all the components of QX turn out to be

equal. Hence we find that the implicit assumption of one single equilibrium pricing measure, made

in the Bühlmann’s framework, is in our theory a consequence of the particular selection B = CR,

but for general B this in not always the case. At this point it might be convenient for the reader to

have at hand the example of the exponential utility function that is described in Section 3.5 and

Section 5, where we obtain an explicit formulation of the optimal solution YX, of the equilibrium

pricing measure QX and of the optimal vector aX.

Remark 1.1. We emphasize that the existence of multiple equilibrium pricing measures QX =

(Q1
X, ..., Q

N
X) is a natural consequence of the presence of the - non trivial - constraints set B.

Indeed, even in the Bühlmann setting, if we add constraints, of a very simple nature, a single

equilibrium pricing measure might not exists any more. Consider the following extension of a

Bühlmann risk exchange equilibrium.
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Let B ⊆ CR be fixed. We say that a pair (ỸX, QX) is a constrained risk exchange equilibrium if:

(a2) for each n, Ỹ nX maximizes: E
[
un(xn +Xn + Ỹ n − EQX

[Ỹ n])
]

among all variables Ỹ n;

(b2) ỸX ∈ B and
∑N
n=1 Ỹ

n
X = 0 P−a.s. .

We show with the next example that such an equilibrium (with one single probability QX) does

not exist in general. The example we present is rather simple, yet instructive, since it shows that

the absence of the equilibrium arises not from technical assumptions, like integrability conditions,

but is rather a structural problem caused by the presence of additional constraints. Here we provide

the intuition for it. Suppose that two isolated systems of agents have, under suitable assumptions,

their own (unconstrained) equilibria, and that such two equilibria do not coincide. As shown in

the next example, we might then consider the two systems as one single larger system consisting

of two isolated clusters, expressing this latter property with the addition of constraints. Then it is

evident that an equilibrium (with a unique pricing measure) cannot exist for such unified system.

Example 1.2. In order to ignore all integrability issues, in this example we assume that Ω is a

finite set, endowed with the sigma algebra of all its subsets and the uniform probability measure.

Consider N = 4, un(x) := (1 − e−αnx), αn > 0, n = 1, . . . , 4, and some vectors x ∈ R4, and

X ∈ (L∞)4. Moreover take

B =
{
Y ∈ CR | Y 1 + Y 2 = 0, Y 3 + Y 4 = 0

}
.

Thus X and B model a single system of 4 agents which can exchange the risk only in a restricted

way (agent 1 with agent 2, and agent 3 with agent 4), so that in effect the system consists of two

isolated clusters of agents. Then a constrained risk exchange equilibrium in general does not exists.

By contradiction, suppose that (ỸX, QX) is a constrained risk exchange equilibrium. It is easy to

verify that ([Ỹ 1
X, Ỹ

2
X], QX) is a (unconstrained) risk exchange equilibrium with respect to [X1, X2]

and [x1, x2] (i.e. it satisfies (a) and (b) for N = 2). Similarly, ([Ỹ 3
X, Ỹ

4
X], QX) is a (unconstrained)

risk exchange equilibrium with respect to [X3, X4] and [x3, x4]. This implies using equation (2) in

Bühlmann [13] that

exp
(
η(X1 +X2)

)
E [exp (η(X1 +X2))]

=
dQX

dP
=

exp
(
θ(X3 +X4)

)
E [exp (θ(X3 +X4))]

, η =
1

α1
+

1

α2
, θ =

1

α3
+

1

α4
,

which clearly gives a contradiction, since X is arbitrary.

Observe, however, that in this example a constrained equilibrium exists if we allow for possibly

different pricing measures, namely if we may replace the measure QX with a vector QX. This

would amount to replacing (a2) with (a3) below, namely to require that:

(a3) for each n, Ỹ nX maximizes: E
[
un(xn +Xn + Ỹ n − EQnX [Ỹ n])

]
among all variables Ỹ n;

(b2) ỸX ∈ B and
∑N
n=1 Ỹ

n
X = 0 P−a.s. .

Then such an equilibrium exists. Indeed, by the results in Bühlmann [13], we can guarantee the

existence of the risk exchange equilibrium ([Ỹ 1
X, Ỹ

2
X], Q12

X ) with respect to [X1, X2] and [x1, x2],

and the risk exchange equilibrium ([Ỹ 3
X, Ỹ

4
X], Q34

X ) with respect to [X3, X4] and [x3, x4]. Then

([Ỹ 1
X, Ỹ

2
X, Ỹ

3
X, Ỹ

4
X], [Q12

X , Q
12
X , Q

34
X , Q

34
X ]) satisfies (a3) and (b2). The conclusion is that, even in

the Bühlmann case, the presence of constraints implies multiple equilibrium pricing

measures.

From the mathematical point of view, this fact is very easy to understand in our setup, described

in Assumption 3.10. More constraints implies a smaller set B0 of feasible vectors Ỹ ∈ B such that
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∑N
n=1 Ỹ

n
X = 0 and this in turn implies a larger polar set of B0 (which we will denote with Q, see

the definition in Section 4 item 4). The equilibrium exists only if we are allowed to pick the pricing

vector QX in this larger set Q, but the elements in Q don’t need to have all equal components.

Economically, multiple pricing measures may arise because the risk exchange mechanism may be

restricted to clusters of agents, as in this example, and agents from different clusters may well

adopt a different equilibrium pricing measure. For further details on clustering, see the Examples

3.17 and 4.20.

Bühlmann’s equilibrium (YX) satisfies two relevant properties: Pareto optimality (there are no

feasible allocation Y such that all agents are equal or better off - compared with YX - and at least

one of them is better off) and Individual Rationality (each agent is better off with Y nX than without

it). Any feasible allocation satisfying these two properties is called an optimal risk sharing rule,

see Barrieu and El Karoui [4] or Jouini et al. [30].

We show that a SORTE is unique (once the class of pricing functionals is restricted to those in

the form pn(·) = EQn [·]). We also prove Pareto optimality, see the Definition 3.1 and the exact

formulation in Theorem 4.17.

However, a SORTE lacks Individual Rationality. This is shown in the toy example of Section 5.2,

but it is also evident from the expression in equation (8). As already mentioned, each agent is

performing rationally, maximizing her expected utility, but under a budget constraint pnX(Y n) ≤
anX that is determined globally via an additional systemic maximization problem (supa∈RN {... |∑N
n=1 a

n = A}) that assigns priority to the systemic performance, rather than to each individual

agent. In the SORTE we replace individual rationality with such a systemic induced individual

rationality, which also shows the difference between the concepts of SORTE and of an optimal

risk sharing rule. We also point out that the participation in the risk sharing mechanism may

be appropriately mitigated or enforced by the use of adequate sets B, see e.g. Example 4.20 for

risk sharing restricted to subsystems. From the technical point of view, we will not rely on any

of the methods and results related to the notion of inf-convolution, which is a common tool to

prove existence of optimal risk sharing rules (see for example [4] or [30]) in the case of monetary

utility functions, as we do not require the utility functions to be cash additive. Our proofs are

based on the dual approach to (systemic) utility maximization. This is summarized in Section 4.1.

Furthermore, the exponential case is treated in detail in Section 5.

Remark 1.3. As customary in the literature on general equilibrium and risk sharing, we could have

considered, in place of (8) and (9), the more general problem

sup
a∈RN

{
N∑
n=1

sup
Y n
{E [γnun(Xn + Y n)] | pnX(Y n) ≤ an}

∣∣∣∣∣
N∑
n=1

an = A

}
, (11)

N∑
n=1

Y nX = A P − a.s. , (12)

where the positive weights γ = (γ1, ..., γN ) ∈ RN could have been selected exogenously, say by

a social planner. In such more general problems, equilibria will generally depend on the selected

weights. However, in this paper we are focused on existence, uniqueness and Pareto optimality of

the equilibrium and for this analysis we may restrict, without loss of generality, our attention to the
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utilitarian choice γ1 = ... = γN = 1, as we now explain. It is easy to check that given u1, . . . , uN

satisfying our assumptions (namely Assumption 3.10.(a)), the associated functions x 7→ uγn(x) :=

γnun(x), n = 1, . . . , N will satisfy the same Assumption 3.10.(a) and so (11) can be written as

sup
a∈RN

{
N∑
n=1

sup
Y n
{E [uγn(Xn + Y n)] | pnX(Y n) ≤ an}

∣∣∣∣∣
N∑
n=1

an = A

}
, (13)

Thus, technically speaking, the study of the existence, uniqueness and Pareto optimality of the

equilibrium in a non-utilitarian setup (γ 6= 1) boils down to the one in (8) and (9). Of course

it could be of interest to study the dependence of the optimal solution from the vector γ and to

analyze the stability properties of the equilibrium with respect to the utility functions. In Section

5.3 we address this problem for exponential utility functions, but the general case is left for future

investigation.

Review of literature: This paper originates from the systemic risk approach developed in Biagini

et al. [6] and [7]. In [7] the main focus was the analysis of the systemic risk measure

ρ(X) := inf
Y∈B⊂CR

{
N∑
n=1

Y n | E

[
N∑
n=1

un(Xn + Y n)

]
≥ B

}
, B ∈ R, (14)

which computes systemic risk as the minimal capital
∑N
n=1 Y

n ∈ R that secures the aggregated

system (E
[∑N

n=1 un(Xn + Y n)
]
≥ B) by injecting the random allocation Y n into the single insti-

tution Xn.

The notion of a SORTE is inspired by the following utility maximization problem, associated to

the risk minimization problem (14),

sup
Y∈B⊂CR

{
E

[
N∑
n=1

un(Xn + Y n)

]
|
N∑
n=1

Y n ≤ A

}
, A ∈ R, (15)

that was also introduced in [7]. Related papers on systemic risk measures are Feinstein et al. [23],

Acharya et al. [2], Armenti et al. [3], Chen et al. [17], Kromer et al. [32]. For an exhaustive

overview on the literature on systemic risk, see Hurd [29] and Fouque and Langsam [27].

For a review on Arrow-Debreu Equilibrium (see Debreu [20]; Mas Colell and Zame [34] for the

infinite dimensional case) we refer to Section 3.6 of Föllmer and Schied [26], which is close to our

setup. In the spirit of the Arrow-Debreu Equilibrium, Bühlmann [12] and [13] proved the existence

of risk exchange equilibria in a pure exchange economy. Such risk sharing equilibria had been

studied in different forms starting from the seminal papers of Borch [11], where Pareto-optimal

allocations were proved to be comonotonic for concave utility functions, and Bühlmann and Jewell

[14]. The differences with Bühlmann’s setup and our approach have been highlighted before in

detail.

In Barrieu and El Karoui [4] inf-convolution of convex risk measures has been introduced as a

fundamental tool for studying risk sharing. Existence of optimal risk sharing for law-determined

monetary utility functions is obtained in Jouini et al. [30] and then generalized to the case of

non-monotone risk measures by Acciaio [1] and Filipović and Svindland [25], to multivariate risks

by Carlier and Dana [15] and Carlier et al. [16], to cash-subadditive and quasi-convex measures by

Mastrogiacomo and Rosazza Gianin [35]. Further works on risk sharing are also Dana and Le Van
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[19], Heath and Ku [28], Tsanakas [39], Weber [40]. Risk sharing problems with quantile-based risk

measures are studied in Embrechts et al. [22] by explicit construction, and in [21] for heterogeneous

beliefs. In Filipović and Kupper [24] Capital and Risk Transfer is modelled as (deterministically

determined) redistribution of capital and risk by means of a finite set of non deterministic financial

instruments. Existence issues are studied and related concepts of equilibrium are introduced.

Recent further extensions have been obtained in Liebrich and Svindland [33].

2 Notations

Let (Ω,F , P ) be a probability space and consider the following set of probability vectors on (Ω,F)

PN :=
{
Q = (Q1, ..., QN ) | such that Qj � P for all j = 1, ..., N

}
.

For a vector of probability measures Q we write Q� P to denote Q1� P , . . . , QN � P . Similarly

for Q ∼ P . Set L0(Ω,F , P ;RN ) = (L0(P ))N . For Q ∈ P1 let L1(Q) :=L1(Ω,F , Q;R) be the

vector space of Q− integrable random variables and L∞(Q) := L∞(Ω,F , Q;R) be the space of Q−
essentially bounded random variables. Set L1

+(Q) =
{
Z ∈ L1(Q)

∣∣Z ≥ 0 Q− a.s.
}

and L∞+ (Q) =

{Z ∈ L∞(Q) | Z ≥ 0 Q− a.s.}. For Q ∈ PN let

L1(Q) :=L1(Q1)× ...×L1(QN ) , L1
+(Q) :=L1

+(Q1)× ...×L1
+(QN ) ,

L∞(Q) := L∞(Q1)× · · · × L∞(QN ) , L∞+ (Q) := L∞+ (Q1)× · · · × L∞+ (QN ).

For each j = 1, ..., N consider a vector subspace Lj with R ⊆ Lj ⊆ L0(Ω,F , P ;R) and set

L:=L1 × ...× LN⊆(L0(P ))N .

Consider now a subset Q ⊆ PN and assume that the pair (L,Q) satisfies that for every Q ∈ Q

L ⊆ L1(Q).

One could take as Lj , for example, L∞ or some Orlicz space. Our optimization problems will be

defined on the vector space L to be specified later.

For each n = 1, ..., N , let un : R→ R be concave and strictly increasing. Fix X = (X1, ..., XN ) ∈L.

For (Q, a, A) ∈ Q×RN×R define

UQ
n

n (an) : = sup {E [un(Xn + Y )] | Y ∈ Ln, EQn [Y ] ≤ an} , (16)

SQ(A) : = sup

{
N∑
n=1

UQ
n

n (an) | a ∈RN s.t.

N∑
n=1

an ≤ A

}
, (17)

ΠQ(A) : = sup

{
E

[
N∑
n=1

un(Xn + Y n)

]
| Y ∈ L,

N∑
n=1

EQn [Y n] ≤ A

}
. (18)

Obviously, such quantities depend also on X, but as X will be kept fixed throughout most of the

analysis, we may avoid to explicitly specify this dependence in the notations. As un is increasing

we can replace, in the definitions of UQ
n

n (an), SQ(A) and ΠQ(A) the inequality in the budget

constraint with an equality.
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When a vector Q ∈ Q is assigned, we can consider two problems. First, for each n, UQ
n

n (an) is the

optimal value of the classical one dimensional expected utility maximization problem with random

endowment Xn under the budget constraint EQn [Y ] ≤ an, determined by the real number an and

the valuation operator EQn [·] associated to Qn. Second, if we interpret the quantity
∑N
n=1 un(·)

as the aggregated utility of the system, then ΠQ(A) is the maximal expected utility of the whole

system X, among all Y ∈ L satisfying the overall budget constraint
∑N
n=1EQn [Y n] ≤ A. Notice

that in these problems the vector Y is not required to belong to CR, but only to the vector space

L. We will show in Lemma 4.11 the quite obvious equality SQ(A) = ΠQ(A).

3 On several notions of Equilibrium

3.1 Pareto Allocation

Definition 3.1. Given a set of feasible allocations V ⊆ L and a vector X ∈ L, Ŷ ∈ V is a Pareto

allocation for V if

Y ∈ V and E [un(Xn + Y n)] ≥ E
[
un(Xn + Ŷ n)

]
for all n (19)

imply E [un(Xn + Y n)] = E
[
un(Xn + Ŷ n)

]
for all n.

In general Pareto allocations are not unique and, not surprisingly, the following version of the First

Welfare Theorem holds true. Define the optimization problem

Π(V ) := sup
Y ∈V

N∑
n=1

E [un(Xn + Y n)] . (20)

Proposition 3.2. Whenever Ŷ ∈ V is the unique optimal solution of Π(V ), then it is a Pareto

allocation for V .

Proof. Let Ŷ be optimal for Π(V ), so that E
[∑N

n=1 un(Xn + Ŷ n)
]

= Π(V ). Suppose that there

exists Y such that (19) holds true. As Y ∈ V we have:

E

[
N∑
n=1

un(Xn + Ŷ n)

]
= Π(V ) ≥ E

[
N∑
n=1

un(Xn + Y n)

]
≥ E

[
N∑
n=1

un(Xn + Ŷ n)

]
,

by (19). Hence also Y is an optimal solution to Π(V ). Uniqueness of the optimal solution implies

Y = Ŷ.

3.2 Systemic utility maximization

The next definition is the utility maximization problem, in the case of a system of N agents.

Definition 3.3. Fix Q ∈ Q. The pair (YX,aX) ∈ L×RN is a Q−Optimal Allocation with

budget A ∈ R if

1) for each n, Y nX is optimal for UQ
n

n (anX),

2) aX is optimal for SQ(A),

3) YX ∈ L.

10



Note that in the above definition the vector Q ∈ Q is exogenously assigned. Given a total budget

A ∈ R, the vector aX ∈ RN maximizes the systemic utility
∑N
n=1 U

Qn

n (an) among all feasible

a ∈RN (
∑N
n=1 a

n ≤ A) and Y nX maximizes the single agent expected utility E [un(Xn + Y )] among

all feasible allocations Y ∈ Ln s.t. EQn [Y ] ≤ anX. Since Q ∈ Q is given, the budget constraint

EQn [Y ] ≤ anX is well defined for all Y ∈ L and we do not need additional conditions of the form

Y ∈ CR. A generalization of the classical single agent utility maximization yields the following

existence result.

Proposition 3.4. Under Assumption 3.10 (a) select Q = {Q} for some Q ∈ Qv (see (26)) with

Q ∼ P . Set L = L1(Q1)×· · ·×L1(QN ) and let X ∈MΦ (see (79)). Then a Q−Optimal Allocation

exists.

Proof. The proof can be obtained with the same arguments employed in Section 4.2 [7].

Let (YX,aX) ∈ L×RN be a Q−Optimal Allocation. Due to Lemma 4.11, ΠQ(A) = SQ(A) and

ΠQ(A) = SQ(A) = sup
a∈RN ,

∑N
n=1 a

n=A

N∑
n=1

sup
Y n∈Ln

{E [un(Xn + Y n)] | EQn [Y n] = an}

=

N∑
n=1

sup
Y n∈Ln

{E [un(Xn + Y n)] | EQn [Y n] = anX} ,

where we replaced the inequalities with equalities in the budget constraints, as un are monotone.

Hence the systemic utility maximization problem ΠQ(A) with overall budget constraint A reduces

to the sum of n single agent maximization problems, where, however, the budget constraint of each

agents is assigned by anX = EQn [Y nX ] and the vector aX maximizes the overall performance of the

system. We will also recover this feature in the notion of a SORTE, where the probability vector

Q will be endogenously determined, instead of being a priori assigned, as in this case.

3.3 Risk Exchange Equilibrium

We here formalize Bühlmann’s risk exchange equilibrium in a pure exchange economy, [12] and

[13], already mentioned in conditions (a’) and (b’), Item 1 of the Introduction. Let Q1 be the set

of vectors of probability measures having all components equal:

Q1 :=
{
Q ∈ PN | Q1 = ... = QN

}
.

To be consistent with Definition 3.3 we keep the same numbering for the corresponding conditions.

Definition 3.5. Fix A ∈ R, a ∈ RN such that
∑N
n=1 a

n = A. The pair (YX,QX) ∈ L×Q1 is a

risk exchange equilibrium (with budget A and allocation a ∈ RN) if:

1) for each n, Y nX is optimal for U
QnX
n (an),

3) YX ∈ CR,
∑N
n=1 Y

n
X = A P -a.s.

Theorem 3.6 (Bühlmann, [13]). For twice differentiable, concave, strictly increasing utilities

u1, . . . , un : R → R such that their risk aversions are positive Lipschitz and for L = (L∞(P ))N ,

Q = Q1 and X ∈ L, there exists a unique risk exchange equilibrium that is Pareto optimal.

Proof. See [13].
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In a risk exchange equilibrium with budget A, the vector a ∈ RN such that
∑N
n=1 a

n = A is

exogenously assigned, while both the optimal exchange variable YX and the equilibrium price

measure QX are endogenously determined. On the contrary, in a Q−Optimal Allocation the

pricing measure is assigned a priori, while the optimal allocation YX and optimal budget aX are

endogenously determined. We shall now introduce a notion which requires to endogenously recover

the triple (YX,QX,aX) from the systemic budget A.

3.4 Systemic Optimal Risk Transfer Equilibrium (SORTE)

The novel equilibrium concept presented in equations (8) (9) and (10) can now be formalized as

follows. To this end, recall from (1) the definition of CR and fix a convex cone

B ⊆ CR

of admissible allocations such that RN + B = B.

Definition 3.7 (SORTE). The triple (YX,QX,aX) ∈ L×Q×RN is a Systemic Optimal Risk

Transfer Equilibrium with budget A ∈ R if:

1) for each n, Y nX is optimal for U
QnX
n (anX),

2) aX is optimal for SQX(A),

3) YX ∈ B ⊆ CR and
∑N
n=1 Y

n
X = A P -a.s.

Remark 3.8. It follows from the monotonicity of each un that
∑N
n=1 a

n
X = A and EQnX [Y nX ] = anX.

Hence
N∑
n=1

EQnX [Y nX ] =

N∑
n=1

anX = A,

and
N∑
n=1

Y nX =

N∑
n=1

EQnX [Y nX ] P -a.s. (21)

The main aim of the paper is to provide sufficient general assumptions that guarantee existence

and uniqueness as well as good properties of a SORTE.

Remark 3.9. We will show the existence of a triple (YX,QX,aX) ∈ L×Q×RN verifying the three

conditions in Definition 3.7. Hence, we also obtain the existence of the SORTE in the formulations

given in (5), (6), (10) or in (8), (9), (10), for generic functional pn verifying the conditions (i), (ii)

and (iii) stated in the Introduction (see also Remark 4.3).

In the sequel we will work under the following Assumption 3.10.

Assumption 3.10.

(a) Utilities: u1, . . . , uN : R→ R are concave, strictly increasing differentiable functions with

lim
x→−∞

un(x)

x
= +∞ lim

x→+∞

un(x)

x
= 0, for any n ∈ {1, . . . , N}.

Moreover we assume that the following property holds: for any n ∈ {1, . . . , N} and Qn � P

E
[
vn

(
λ

dQn

dP

)]
< +∞ for some λ > 0 ⇐⇒ E

[
vn

(
λ

dQn

dP

)]
< +∞ for all λ > 0, (22)

where vn(y) := supx∈R {un(x)− xy} denotes the convex conjugate of un.
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(b) Constraints: B ⊆ CR is a convex cone, closed in probability, such that RN + B = B.

Remark 3.11. In particular, Assumptions 3.10 (b) implies that all constant vectors belong to B.

The condition (22) is related to the Reasonable Asymptotic Elasticity condition on utility functions,

which was introduced in [38]. This assumption, even though quite weak (see [8] Section 2.2), is

fundamental to guarantee the existence of the optimal solution to classical utility maximization

problems (see [8] and [38]).

Theorem 3.12. A Systemic Optimal Risk Transfer Equilibrium (YX,QX,aX) exists, with

Q1
X, . . . , Q

N
X equivalent to P .

Theorem 3.13. Under the additional Assumption that B is closed under truncation (Definition

4.13) the Systemic Optimal Risk Transfer Equilibrium is unique and is a Pareto optimal

allocation.

The formal statements and proofs are postponed to Section 4, Theorem 4.12 and Theorem 4.17.

Remark 3.14. A priori there are no reasons why a Q-optimal allocation YX in Definition 3.3 would

also satisfy the constraint
∑N
n=1 Y

n
X ∈ R. The existence of a SORTE is indeed the consequence of

the existence of a probability measure QX such that the QX-optimal allocation YX in Definition

3.3 satisfies also the additional risk transfer constraint
∑N
n=1 Y

n
X = A P -a.s. .

Remark 3.15. Without the additional feature expressed by 2) in the Definition 3.7, for all choices

of aX satisfying
∑N
n=1 a

n
X = A there exists an equilibrium (YX,QX) in the sense of Definition 3.5

(see Theorem 3.6). The uniqueness of a SORTE is then a consequence of the uniqueness of the

optimal solution in condition 2).

Remark 3.16. Depending on which one of the three objects (Y,Q,a) ∈ L×Q × RN we keep

a priori fixed, we get a different notion of equilibrium (see the various definitions above). The

characteristic features of the risk exchange equilibriums and of a SORTE, compared with the more

classical utility optimization problem in the systemic framework of Section 3.2, are the condition∑N
n=1 Y

n
X = A P -a.s. and the existence of the equilibrium pricing vector QX.

For both concepts of equilibrium (Definitions 3.5 and SORTE), each agent is behaving rationally

by maximizing his expected utility given a budget constraint. The two approaches differ by the

budget constraints. In Bühlmann’s definition the vector a ∈ RN that assigns the budget constraint

(EQnX [Y n] ≤ an) is prescribed a priori.On the contrary, in the SORTE approach, the vector a ∈ RN ,

with
∑N
n=1 an = A, that assigns the budget constraint EQnX [Y n] ≤ an is determined by optimizing

the problem in condition 2), hence by taking into account the optimal systemic utility SQX(A),

which is (by definition) larger than the systemic utility
∑N
n=1 U

QnX
n (an) in Bühlmann’s equilibrium.

The SORTE gives priority to the systemic aspects of the problem in order to optimize the overall

systemic performance. A toy example showing the difference between a Bühlmann’s equilibrium

and a SORTE is provided in Section 5.2.

Example 3.17. We now consider the example of a cluster of agents, already introduced in [7]. For

h ∈ {1, · · · , N} , let I := (Im)m=1,...,h be some partition of {1, · · · , N}. We introduce the following

family

B(I) =

{
Y ∈ L0(RN ) | ∃ d = (d1, · · · , dh) ∈ Rh :

∑
i∈Im

Y i = dm for m = 1, · · · , h

}
⊆ CR. (23)
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For a given I, the values (d1, · · · , dh) may change, but the elements in each of the h groups Im is

fixed by the partition I. It is then easily seen that B(I) is a linear space containing RN and closed

with respect to convergence in probability. We point out that the family B(I) admits two extreme

cases:

(i) the strongest restriction occurs when h = N, i.e., we consider exactly N groups, and in this

case B(I) = RN corresponds to no risk sharing;

(ii) on the opposite side, we have only one group h = 1 and B(I) = CR is the largest possible

class, corresponding to risk sharing among all agents in the system. This is the only case

considered in Bühlmann’s definition of equilibrium.

Remark 3.18. As already mentioned in the Introduction, one additional feature of a SORTE,

compared with the Bühlmann’s notion, is the possibility to require, in addition to
∑N
n=1 Y

n = A

that the optimal solution belongs to a pre-assigned set B of admissible allocations, satisfying

Assumption 3.10 (b). In particular, we allow for the selection of the sets B = RN or B = CR. The

characteristics of the optimal probability QX depend on the admissible set B. For B = CR, all the

components of QX turn out to be equal. We also know (see Lemma 4.21) that for B = B(I) all the

components QiX of QX are equal for all i ∈ Im, for each group Im. Additional examples of sets B
are provided in Section 4.5.

3.5 Explicit Formulas in the Exponential Case

We believe it is now instructive to anticipate the explicit solution to the SORTE problem in the

exponential case for B = CR. This is a particular case of a more general situation treated in detail

in Section 5.

Theorem 3.19. Take exponential utilities

un(x) := 1− exp(−αnx), n = 1, . . . , N for α1, . . . , αN > 0.

Then the SORTE for B = CR is given by
Ŷ k = −Xk + 1

αk

(
X
β

)
+ 1

αk

[
A
β + ln (αk)− ER [ln(α)]

]
k = 1, . . . , N

dQ̂k

dP =
exp
(
−Xβ

)
E
[
exp
(
−Xβ

)] =: dQ̂
dP k = 1, . . . , N

âk = EQ̂k [Ŷ k] k = 1, . . . , N

(24)

where β :=
∑N
n=1

1
αn

, X :=
∑N
n=1X

n, R(n) :=
1
αn∑N
k=1

1
αk

for n = 1, ...N , α := (α1, ..., αN ),

ER [ln(α)] =
∑N
n=1R(n) ln(αn).

4 Proof of Theorem 3.12 and Theorem 3.13

We need to introduce the following concepts and notations:
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1. The utility functions in Assumption 3.10 induce an Orlicz Space structure: see Appendix

A.1 for the details and the definitions of the functions Φ and Φ∗, the Orlicz space LΦ and

the Orlicz Heart MΦ. Here we just recall the following inclusions among the Banach Spaces

L∞(P) ⊆ MΦ ⊆ LΦ ⊆ L1(P) and that dQ
dP ∈ L

Φ∗
implies LΦ ⊆ L1(Q). From now on we

assume that X ∈MΦ.

2. For any A ∈ R we set

BA := B ∩ {Y ∈ (L0(P ))N |
N∑
n=1

Y n ≤ A P -a.s.}.

Observe that B0 ∩MΦ is a convex cone.

3. We introduce the following problem for X ∈ MΦ and for a vector of probability measures

Q� P, with dQ
dP ∈ L

φ∗
,

πQ(A) := sup

{
N∑
n=1

E [un (Xn + Y n)]

∣∣∣∣∣Y ∈MΦ,

N∑
n=1

EQn [Y n] ≤ A

}
. (25)

Notice that in ( 25) the vector Y is not required to belong to CR, but only to the vector

space MΦ. In order to show the existence of the optimal solution to the problem πQ(A), it

is necessary to enlarge the domain in (25).

4. Q is the set of vectors of probability measures defined by

Q :=

{
Q� P

∣∣∣∣∣
[

dQ1

dP
, . . . ,

dQN

dP

]
∈ LΦ∗

,

N∑
n=1

E
[
Y n

dQn

dP

]
≤ 0, ∀Y ∈ B0 ∩MΦ

}
.

Identifying Radon-Nikodym derivatives and measures in the natural way, Q turns out to be

the set of normalized (i.e. with componentwise expectations equal to 1), non negative vectors

in the polar of B0 ∩MΦ in the dual system (MΦ, LΦ∗
). In our N -dimensional systemic one-

period setting, the set Q plays the same crucial role as the set of martingale measures in

multiperiod stochastic securities markets.

5. We introduce the following convex subset of Q:

Qv := Q ∩

{[
dQ1

dP
, . . . ,

dQN

dP

]
∈ Lφ

∗

∣∣∣∣∣ dQn

dP
≥ 0 ∀n ∈ {1, . . . , N},

N∑
n=1

E
[
vn

(
dQn

dP

)]
< +∞

}
.

(26)

6. Set

L :=
⋂

Q∈Qv

L1(Q1)× · · · × L1(QN ), Q := Qv. (27)

Note that MΦ ⊆ L and that L has the product structure L = L1 × · · · × LN : let Projn denote

the projection on the n−th component, defined on Qv, and take the corresponding image Qn :=

Projn(Qv) (consisting of a family of probability measures, all absolutely continuous with respect

to P ). Set Ln :=
⋂
Q∈Qn L

1(Q). Then L = L1 × · · · × LN .
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We will consider the optimization problems (16), (17) and (18) with the particular choice of (L,Q)

in (27) and will show that, with such choice, πQ(A) = ΠQ(A). Observe that if all utilities are

bounded from above, the requirement
∑N
n=1 E

[
vn

(
dQn

dP

)]
< +∞ is redundant, but it becomes

important if we allow utilities to be unbounded.

We also require some additional definitions and notations:

a) B0 is the polar of the cone co(Qv) in the dual pairLΦ∗
1 × · · · × LΦ∗

N ,
⋂

Q∈Qv

L1(Q1)× · · · × L1(QN )

 ,

that is

B0 :=

Y ∈
⋂

Q∈Qv

L1(Q1)× · · · × L1(QN )

∣∣∣∣∣∣
N∑
n=1

EQn [Y n] ≤ 0, ∀Q ∈ Qv

 .

It is easy to verify that

B0 ∩MΦ ⊆ B0.

b) For any A ∈ R we define BA as the set

BA :=

Y ∈
⋂

Q∈Qv

L1(Q1)× · · · × L1(QN )

∣∣∣∣∣∣
N∑
n=1

EQn [Y n] ≤ A, ∀Q ∈ Qv


We will prove that BA is the correct enlargement of the domain BA ∩MΦ in order to obtain

the existence of the optimal solution of the primal problem.

c) {ei}i=1,...,N is the canonical base of RN .

Lemma 4.1. In the dual pair (MΦ, LΦ∗
), consider the polar (B0 ∩ MΦ)0 of B0 ∩ MΦ. Then

(B0 ∩MΦ)0 ∩ (L0
+)N is the cone generated by Q.

Proof. From the definition of B0 and the fact that B contains all constant vectors, we may conclude

that all vectors in RN of the form ei − ej belong to B0 ∩MΦ. Then for all Z ∈ (B0 ∩MΦ)0 and

for all i, j ∈ {1, . . . , N} we must have: E
[
Zi
]
− E

[
Zj
]
≤ 0. As a consequence, Z ∈ (B0 ∩MΦ)0

implies E
[
Z1
]

= · · · = E
[
ZN
]

and so

(B0 ∩MΦ)0 ∩ (L0
+)N = R+ · Q, (28)

where R+ := {b ∈ R, b ≥ 0}.

Lemma 4.2. Qev := {Q ∈ Qv s.t. Q ∼ P} 6= ∅.

Proof. The condition B ⊆ CR implies B0 ∩MΦ ⊆ (CR ∩MΦ ∩ {
∑N
n=1 Y

n ≤ 0}), so that the polars

satisfy the opposite inclusion: (CR∩MΦ∩{
∑N
n=1 Y

n ≤ 0})0 ⊆ (B0∩MΦ)0. Observe now that any

vector (Z, . . . , Z), for Z ∈ L∞+ , belongs to (CR∩MΦ∩{
∑N
n=1 Y

n ≤ 0})0. In particular, (B0∩MΦ)0

contains vectors in the form
(
ε+Z
1+ε , . . . ,

ε+Z
1+ε

)
with ε > 0 and Z ∈ L∞+ , E [Z] = 1. Each component

of such a vector has expectation equal to 1, belongs to L∞+ and satisfies ε+Z
1+ε ≥

ε
1+ε . All these

conditions imply that there exists a probability vector Q ∈Q such that dQ
dP > 0 P − a.s. with∑N

n=1 E
[
vn

(
dQn

dP

)]
<∞, hence Qev 6= ∅.
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4.1 Scheme of the proof

The proof of Theorem 3.12 is inspired by the classical duality theory in utility maximization, see

for example [18] and [31] and by the minimax approach developed in [5]. More precisely, our road

map will be the following:

1. First we show, in Remark 4.4, how we may reduce the problem to the case A = 0.

2. We consider

π(A) := sup

{
N∑
n=1

E [un (Xn + Y n)]

∣∣∣∣∣Y ∈MΦ ∩ B,
N∑
n=1

Y n ≤ A P -a.s.

}
. (29)

In Theorem 4.5 we specialize the duality, obtained in Theorem A.3 for a generic convex cone

C, for the maximization problem π(0) over the convex cone C =B0∩MΦ and prove: (i) the

existence of the optimizer Ŷ of π(0), which belongs to B0; (ii) the existence of the optimizer

Q̂ to the dual problem of π(0). Here we need all the assumptions on the utility functions

and on the set B and an auxiliary result stated in Theorem A.4 in Appendix.

3. Proposition 4.7 will show that also the elements in the closure of B∩MΦ satisfy the key

condition
∑N
n=1EQn [Y n] ≤

∑N
n=1 Y

n ∈ R for all Q ∈ Q.

4. Theorem A.3 is then again applied, to a different set C =
{

Y ∈MΦ |
∑N
n=1EQn [Y n] ≤ 0

}
,

to derive Proposition 4.9, which establishes the duality for πQ(0) and πQ(A) in case a fixed

probability vector Q is assigned.

5. The minimax duality:

π(A) = min
Q∈Qv

πQ(A) = πQ̂(A),

is then a simple consequence of the above results (see Corollary 4.10). This duality is the

key tool to prove the existence of a SORTE (see Theorem 4.12).

6. Uniqueness and Pareto optimality are then proved in Theorem 4.17.

Remark 4.3. Notice that in the definition of π(A) there is no reference to a probability vector Q.

However, the optimizer of the dual formulation of π(A) is a probability vector Q̂ (that will be the

equilibrium pricing vector in the SORTE). Even if in the equations (8), (9), (10) we do not a priori

require pricing functional of the form pn(·) = EQn [·], this particular linear expression naturally

appears from the dual formulation.

4.2 Minimax Approach

Remark 4.4. Only in this Remark, we need to change the notation a bit: we make the dependence

of our maximization problems on the initial point explicit. To this end we will write

πX(A) := sup


N∑
j=1

E
[
uj
(
Xj + Y j

)] ∣∣∣∣∣∣Y ∈ BA ∩MΦ

 ,
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πQ
X(A) := sup


N∑
j=1

E
[
uj
(
Xj + Y j

)] ∣∣∣∣∣∣Y ∈MΦ,

N∑
j=1

EQj
[
Y j
]
≤ A

 .

It is possible to reduce the maximization problem expressed by πX(A) (and similarly by πQX(A))

to the problem related to π·(0) (respectively, πQ· (0)) by using the following simple observation: for

any a0 ∈ RN with
∑N
j=1 a

j
0 = A consider

πX(A) = sup


N∑
j=1

E
[
uj
(
Xj + Y j

)]∣∣∣∣∣∣Y ∈ B ∩MΦ,

N∑
j=1

Y j ≤ A


= sup


N∑
j=1

E
[
uj

(
Xj + aj0 + (Y j − aj0)

)]∣∣∣∣∣∣Y ∈ B ∩MΦ,

N∑
j=1

(
Y j − aj0

)
≤ 0


= sup


N∑
j=1

E
[
uj

(
Xj + aj0 + Zj

)]∣∣∣∣∣∣Z ∈ B0 ∩MΦ

 ,

where last equality holds as we are assuming that RN +B = B. The last line represents the original

problem, but with A = 0 and a different initial point. This fact will be used in the conclusion of

the proof of Theorem 4.5.

In the following Theorem we follow a minimax procedure inspired by the technique adopted in [8].

Theorem 4.5. Under Assumption 3.10 we have

π(A) := sup
Y∈BA∩MΦ

N∑
j=1

E
[
uj
(
Xj + Y j

)]
= max

Y∈BA

N∑
j=1

E
[
uj
(
Xj + Y j

)]
(30)

= min
Q∈Q

min
λ∈R++

λ
 N∑
j=1

EQj
[
Xj
]

+A

+

N∑
j=1

E
[
vj

(
λ

dQj

dP

)] . (31)

The minimization problem in (31) admits a unique optimum (λ̂, Q̂) ∈ R++ ×Q with Q̂ ∼ P . The

maximization problem in (30) admits a unique optimum Ŷ ∈ BA, given by

Ŷ j = −Xj − v′j

(
λ̂

dQ̂j

dP

)
, j = 1, ..., N , (32)

which belongs to BA. In addition,

N∑
j=1

EQ̂j
[
Ŷ j
]

= A and

N∑
j=1

EQj
[
Ŷ j
]
≤ A ∀Q ∈ Qv. (33)

Proof. We first prove the result for the case A = 0.

STEP 1

We first show that

sup
B0∩MΦ

N∑
j=1

E
[
uj
(
Xj + Y j

)]
<

N∑
j=1

vj(0) =

N∑
j=1

uj(+∞) ∀X ∈ MΦ (34)

so that we will be able to apply Theorem A.3 with the choice C := B0 ∩MΦ. We distinguish two

possible cases:
∑N
j=1 uj(+∞) = +∞ or

∑N
j=1 uj(+∞) < +∞.
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For
∑N
j=1 uj(+∞) = +∞: observe that for any Q ∈ Qv (which is nonempty by Lemma 4.2) and

λ > 0 we have

N∑
j=1

E
[
uj
(
Xj + Y j

)]
≤

N∑
j=1

E
[
(Xj + Y j)

(
λ

dQj

dP

)]
+

N∑
j=1

E
[
vj

(
λ

dQj

dP

)]

≤
N∑
j=1

E
[
Xj

(
λ

dQj

dP

)]
+

N∑
j=1

E
[
vj

(
λ

dQj

dP

)]
.

We exploited above Fenchel’s Inequality and the definition of Qv. Observing that the last line does

not depend on Y and is finite, and using the well known relation vj(0) = uj(+∞), j = 1, . . . , N ,

we conclude that

sup
B0∩MΦ

N∑
j=1

E
[
uj
(
Xj + Y j

)]
< +∞ =

N∑
j=1

vj(0).

For
∑N
j=1 uj(+∞) < +∞: if the inequality in (34) were not strict, for any maximizing sequence

(Ym)m we would have, by monotone convergence, that

N∑
j=1

E [uj (+∞)]−
N∑
j=1

E
[
uj
(
Xj + Y jm

)]
= E

∣∣∣∣∣∣
N∑
j=1

(
uj(+∞)− uj(Xj + Y jm)

)∣∣∣∣∣∣
 −→

m
0.

Up to taking a subsequence we can assume the convergence is also almost sure. Since all the terms

in
∑N
j=1

(
uj(+∞)− uj(Xj + Y jm)

)
are non negative, we also see that uj(X

j + Y jm) →m uj(+∞)

almost surely for every j = 1, . . . , N . By strict monotonicity of the utilities, this would imply that,

for each j, Y jm →m +∞. This clearly contradicts the constraint Ym ∈ B0.

STEP 2

We will prove equations (30) and (31), with a supremum over BA in place of a maximum, since we

will show in later steps (STEP 4) that this supremum is in fact a maximum.

We observe that since B0 ∩MΦ ⊆ B0

sup
B0∩MΦ

N∑
j=1

E
[
uj
(
Xj + Y j

)]
≤ sup
B0

N∑
j=1

E
[
uj
(
Xj + Y j

)]
.

Moreover, by the Fenchel inequality

sup
B0

N∑
j=1

E
[
uj
(
Xj + Y j

)]
≤ inf
λ∈R+,Q∈Q

λ N∑
j=1

EQj
[
Xj
]

+

N∑
j=1

E
[
vj

(
λ

dQj

dP

)] .

Equations (30) and (31) follow from Theorem A.3 replacing there the convex cone C with B0∩MΦ

and using equation (28), which shows that (C0
1)+ = Q.

STEP 3

We prove that if λ̂ and Q̂ are optima in equation (31), then Ŷ j := −Xj − v′j
(
λ̂dQ̂j

dP

)
defines an

element in B0. Observe that λ̂ minimizes the function

R++ 3 γ 7→ ψ(γ) :=

N∑
j=1

(
γEQ̂j

[
Xj
]

+ E

[
vj

(
γ

dQ̂j

dP

)])
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which is real valued and convex. Also we have by Monotone Convergence Theorem and Lemma

A.2.1. that the right and left derivatives, which exist by convexity, satisfy

d±ψ

dγ
(γ) =

N∑
j=1

E

[
Xj dQ̂j

dP

]
+

N∑
j=1

E

[
v′j

(
γ

dQ̂j

dP

)
dQ̂j

dP

]
,

hence the function is differentiable. Since λ̂ is a minimum for ψ, this implies ψ′(λ̂) = 0, which can

be rephrased as
N∑
j=1

(
E

[
Xj dQ̂j

dP

]
+ E

[
v′j

(
λ̂

dQ̂j

dP

)
dQ̂j

dP

])
= 0, (35)

i.e.,
N∑
j=1

EQ̂j
[
Ŷ j
]

= 0. (36)

Now consider minimizing

Q 7→
N∑
j=1

(
λ̂EQj

[
Xj
]

+ E
[
vj

(
λ̂

dQj

dP

)])
for fixed λ̂ and Q varying in Qv. Let again Q̂, with η̂ := dQ̂

dP , be an optimum and consider another

Q ∈ Qv, with η := dQ
dP . By Assumption 3.10, the expression

∑N
j=1 E

[
vj

(
λdQj

dP

)]
is finite for all

choices of λ. Observe that by convexity and differentiability of vj we have

λ̂ηjv′j

(
λ̂η̂j
)
≤ λ̂η̂jv′j

(
λ̂η̂j
)

+ vj

(
λ̂ηj
)
− vj

(
λ̂η̂j
)
.

Hence by Lemma A.2.1. and Q̂,Q ∈ Qv we conclude that(
ηjv′j

(
λ̂η̂j
))+

∈ L1(P ). (37)

To prove that also the negative part is integrable, we take a convex combination of Q̂,Q ∈ Qv,
which still belongs to Qv. By optimality of η̂ the function

x 7→ ϕ(x) :=

N∑
j=1

(
λ̂E
[
Xj
(
(1− x)η̂j + xηj

)]
+ E

[
vj

(
λ̂
(
(1− x)η̂j + xηj

))])
, 0 ≤ x ≤ 1,

has a minimum at 0, thus the right derivative of ϕ at 0 must be non negative, so that:

N∑
j=1

d

dx

∣∣∣
0

(
(1− x)λ̂E

[
Xj η̂j

]
+ xλ̂E

[
Xjηj

])
≥ −

N∑
j=1

d

dx

∣∣∣
0
E
[
vj

(
(1− x)λ̂η̂j + xλ̂ηj

)]
. (38)

Define Hj(x) := vj

(
(1− x)λ̂η̂j + xλ̂ηj

)
and observe that as x ↓ 0 by convexity

0 ≤
(
− 1

x
(Hj(x)−Hj(0)) +Hj(1)−Hj(0)

)
↑
(
−λ̂v′j

(
λ̂η̂j
)
ηj + λ̂v′j

(
λ̂η̂j
)
η̂j +Hj(1)−Hj(0)

)
.

(39)

Write now explicitly equation (38) in terms of incremental ratios and add and subtract the real

number E
[∑N

j=1 (Hj(1)−Hj(0))
]

to get

lim
x↓0

N∑
j=1

(
1

x

[(
(1− x)λ̂E

[
Xj η̂j

]
+ xλ̂E

[
Xjηj

])
− λ̂E

[
Xj η̂j

]]
+ E [Hj(1)−Hj(0)]

)
(40)

≥ lim
x↓0

N∑
j=1

(
E
[
− 1

x
(Hj(x)−Hj(0)) +Hj(1)−Hj(0)

])
. (41)

20



The first limit is trivial. Observe that by (39) and Monotone Convergence Theorem we also may

compute the second limit and then deduce:

N∑
j=1

(
λ̂E
[
Xj
(
ηj − η̂j

)]
+ E [Hj(1)−Hj(0)]

)

≥
N∑
j=1

E
[
−λ̂v′j

(
λ̂η̂j
)
ηj + λ̂v′j

(
λ̂η̂j
)
η̂j +Hj(1)−Hj(0)

]
and therefore

+∞ >

N∑
j=1

λ̂E
[
Xj
(
ηj − η̂j

)]
≥ E

 N∑
j=1

(
−λ̂v′j

(
λ̂η̂j
)
ηj + λ̂v′j

(
λ̂η̂j
)
η̂j
)

= E

 N∑
j=1

(
λ̂
(
v′j

(
λ̂η̂j
)
ηj
)−
− λ̂

(
v′j

(
λ̂η̂j
)
ηj
)+

+ λ̂v′j

(
λ̂η̂j
)
η̂j
) .

Since
∑N
j=1 v

′
j

(
λ̂η̂j
)
η̂j ∈ L1(P ) by Lemma A.2.1, and

∑N
j=1

(
v′j

(
λ̂η̂j
)
ηj
)+

∈ L1(P ) by equation

(37), we deduce that
∑N
j=1

(
v′j

(
λ̂η̂j
)
ηj
)−
∈ L1(P ) so that

0 ≤
(
v′j

(
λ̂η̂j
)
ηj
)−
≤

N∑
j=1

(
v′j

(
λ̂η̂j
)
ηj
)−
∈ L1(P ).

We conclude that v′j

(
λ̂η̂j
)
ηj defines a vector in L1(P )× · · · × L1(P ), hence

Ŷ ∈ L1(Q1)× · · · × L1(QN ) ∀Q ∈ Qv. (42)

Moreover equation (38) can be rewritten as:

0 ≤
N∑
j=1

λ̂E
[
Xj
(
ηj − η̂j

)]
+

N∑
j=1

λ̂E
[
v′j

(
λ̂η̂j
) (
ηj − η̂j

)]
. (43)

Now rearrange the terms in (43)

0 ≤ −
N∑
j=1

λ̂
(
E
[
Xj η̂j

]
+ E

[
v′j

(
λ̂η̂j
)
η̂j
])

+

N∑
j=1

λ̂
(
E
[
Xjηj

]
+ E

[
v′j

(
λ̂η̂j
)
ηj
])

and use (35):

0 ≤ 0−
N∑
j=1

λ̂
(
E
[(
−Xj − v′j

(
λ̂η̂j
))

ηj
])

= −λ̂
N∑
j=1

E
[
Ŷ j

dQj

dP

]
.

This proves that
N∑
j=1

EQj
[
Ŷ j
]
≤ 0 ∀Q ∈ Qv (44)

and then Ŷ ∈ B0.

STEP 4 (Optimality of Ŷ)
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Under our standing Assumption 3.10 it is well known that u(−v′(y)) = v(y)− yv′(y), ∀y ≥ 0. As

a consequence we get by direct substitution

uj(X
j + Ŷ j) = uj

(
−v′j

(
λ̂

dQ̂j

dP

))
= −λ̂dQ̂j

dP
v′j

(
λ̂

dQ̂j

dP

)
+ vj

(
λ̂

dQ̂j

dP

)
and

N∑
j=1

E
[
uj

(
Xj + Ŷ j

)]
= λ̂

− N∑
j=1

E

[
dQ̂j

dP
v′j

(
λ̂

dQ̂j

dP

)]+

N∑
j=1

E

[
vj

(
λ̂

dQ̂j

dP

)]
.

Use now the expression in (35) to substitute in the first RHS term:

N∑
j=1

E
[
uj

(
Xj + Ŷ j

)]
= λ̂

N∑
j=1

EQ̂j [X
j ] +

N∑
j=1

E

[
vj

(
λ̂

dQ̂j

dP

)]
.

The optimality of Ŷ follows then by optimality of (λ̂, Q̂) in (31).

Using now our findings in STEP 2 together with optimality of Ŷ, the proof of equation (30) is now

complete.

STEP 5 (Ŷ ∈ B0)

By Lemma 4.2 there exists a Q ∈ Qev := {Q ∈ Qv s.t. Q ∼ P} and from (42) we know that

v′j

(
λdQ̂j

dP

)
∈ L1(Qj), λ > 0. Also, for every j = 1, . . . , N, v′j(0+) = −∞, so that Qj

(
dQ̂j

dP = 0
)

=

0. As Q ∼ P , this in turn implies P
(

dQ̂j

dP = 0
)

= 0, for every j = 1, . . . , N . Hence Q̂ ∼ P .

Theorem A.4 now can be applied to K := (B0 ∩MΦ) and Qev to get

⋂
Q∈Qev

clQ
(
(B0 ∩MΦ)− L1

+ (Q)
)

=

Z ∈
⋂

Q∈Qev

L1 (Q) s.t.

N∑
j=1

EQj
[
Zj
]
≤ 0 ∀Q ∈ Qev

 . (45)

As Ŷ ∈ B0 and B0 is included in the RHS of (45), we deduce that Ŷ belongs to the LHS of (45).

Now by equation (36) we see that Ŷ satisfies
∑N
j=1 E

[
Ŷ j dQ̂j

dP

]
= 0, and this implies that:

Ŷ ∈ clQ̂
(
B0 ∩MΦ

)
, (46)

the L1(Q̂1)×· · ·×L1(Q̂1)-(norm) closure of B0 ∩MΦ. In particular Ŷ is a Q̂ (hence P )- a.s. limit

of elements in B0 which is closed in probability P , so that Ŷ ∈ B0.

STEP 6

The conditions in (33) are proved in (36) and (44). We conclude with uniqueness. By the strict

convexity of the utilities and the convexity of B0, it is evident that the maximization problem given

by supB0

∑N
j=1 E

[
uj
(
Xj + Y j

)]
admits at most one optimum. Now clearly if (λ̂, Q̂) and (λ̃, Q̃) are

optima for the minimax expression (31), they both give rise to two optima Ŷ, Ỹ as in the previous

steps. Uniqueness of the solution for the primal problem implies Ŷ = Ỹ. Under Assumption

3.10.(a) the functions v′1, . . . , v
′
N are injective and therefore we conclude that λ̂dQ̂

dP = λ̃dQ̃
dP . Taking

expectations we get λ̂ = λ̃ and then (λ̂, Q̂) = (λ̃, Q̃).

Conclusion

The more general case A 6= 0 can be obtained using Remark 4.4. We just sketch one step of the

proof, as the other steps follows similarly. Using a0 as in Remark 4.4, in STEP 3 we see that

0 ≤ −λ̂
N∑
j=1

E
[
Ŷ j

dQj

dP

]
+ λ̂

N∑
j=1

aj0
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which yields that Ŷ ∈ BA.

Remark 4.6. Notice that Y ∈ B ∩MΦ implies that Z ∈ B0, where Z is defined by Zj := Y j −
xj
∑N
k=1 Y

k for any x ∈ RN such that
∑N
j=1 x

j = 1. To see this, recall that we are assuming that

RN + B = B. As
∑N
j=1 Y

j ∈ R, then Z ∈ B and, since also trivially integrability is preserved and∑N
j=1 Z

j = 0, we conclude that Z ∈ B0.

Proposition 4.7. For all Y ∈ B ∩MΦ and Q ∈ Q

N∑
j=1

EQj
[
Y j
]
≤

N∑
j=1

Y j . (47)

Moreover, denoting by clQ
(
B ∩MΦ

)
the L1(Q1)×· · ·×L1(QN )-norm closure of B∩MΦ, inequality

(47) holds for all Y ∈ clQ
(
B ∩MΦ

)
and Q ∈ Q, Q ∼ P. In particular, (47) holds for Q̂ ∼ P and

Ŷ ∈ clQ̂
(
B0 ∩MΦ

)
defined in Theorem 4.5.

Proof. Take Y ∈ B ∩MΦ and argue as in Remark 4.6, with the notation introduced there. By the

definition of the polar,
∑N
j=1 E

[
Zjϕj

]
≤ 0 for all ϕ ∈ (B ∩MΦ)0, and in particular for all Q ∈ Q

0 ≥
N∑
j=1

E
[
Zj

dQj

dP

]
=

N∑
j=1

E
[
Y j

dQj

dP

]
−

N∑
j=1

E

[
xj

(
N∑
k=1

Y k

)
dQj

dP

]
=

N∑
j=1

EQj
[
Y j
]
−

N∑
j=1

Y j .

As to the second claim, take a sequence (kn)n in B ∩MΦ converging both Q-almost surely (hence

P -a.s.) and in norm to Y and apply (47) to kn to get

N∑
j=1

EQj
[
Y j
]

= lim
n

N∑
j=1

EQj
[
kjn
] P -a.s.
≤ lim inf

n

 N∑
j=1

kjn

 P -a.s.
=

N∑
j=1

Y j . (48)

Remark 4.8. In particular (47) shows that ∀Q ∈ QY ∈ B ∩MΦ |
N∑
j=1

Y j ≤ A

 ⊆
Y ∈MΦ |

N∑
j=1

EQj
[
Y j
]
≤ A


and therefore π(A) ≤ πQ(A).

4.3 Utility Maximization with a fixed probability measure

The following represents a counterpart to Theorem 4.5, once a measure is fixed a priori.

Proposition 4.9. Fix Q ∈ Qv. If πQ(A) < +∞, then

πQ(A) = ΠQ(A) = sup


N∑
j=1

E
[
uj
(
Xj + Y j

)] ∣∣∣∣∣∣Y ∈ L1(Q),

N∑
j=1

EQj
[
Y j
]
≤ A

 (49)

= min
λ∈R+

λ
 N∑
j=1

EQj
[
Xj
]

+A

+

N∑
j=1

E
[
vj

(
λ

dQj

dP

)] .
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If additionally any of the two expressions is strictly less than
∑N
j=1 uj(+∞), then

πQ(A) = min
λ∈R++

λ
 N∑
j=1

EQj
[
Xj
]

+A

+

N∑
j=1

E
[
vj

(
λ

dQj

dP

)] . (50)

Proof. Again, we prove the case A = 0 since Remark 4.4 can be used to obtain the general case

A 6= 0. From MΦ ⊆ L ⊆ L1(Q) we obtain:

πQ(0) := sup


N∑
j=1

E
[
uj
(
Xj + Y j

)] ∣∣∣∣∣∣Y ∈MΦ,

N∑
j=1

EQj
[
Y j
]
≤ 0

 ≤ ΠQ(0)

≤ sup


N∑
j=1

E
[
uj
(
Xj + Y j

)] ∣∣∣∣∣∣Y ∈ L1(Q),

N∑
j=1

EQj
[
Y j
]
≤ 0


≤ min
λ∈R+

λ N∑
j=1

EQj
[
Xj
]

+

N∑
j=1

E
[
vj

(
λ

dQj

dP

)] (51)

by the Fenchel inequality. Define the convex cone

C :=

Y ∈MΦ |
N∑
j=1

EQj
[
Y j
]
≤ 0

 .

The hypotheses on C of Theorem A.3 hold true and inequality (51) shows that πQ(0) < +∞ for

all X ∈ MΦ. The finite dimensional cone
{
λ
[

dQ1

dP , . . . ,
dQN

dP

]
, λ ≥ 0

}
⊆ LΦ∗

is closed, and then

by the Bipolar Theorem C0 =
{
λ
[

dQ1

dP , . . . ,
dQN

dP

]
, λ ≥ 0

}
. Hence the set (C0

1)+ in the statement

of Theorem A.3 is exactly
{[

dQ1

dP , . . . ,
dQN

dP

]}
and Theorem A.3 proves that πQ(0) is equal to the

RHS of (51). We can similarly argue to prove (50).

To conclude, we provide the minimax duality between the maximization problems with and without

a fixed measure

Corollary 4.10. The following holds:

π(A) = min
Q∈Qv

πQ(A) = πQ̂(A) < +∞ ,

where Q̂ is the minimax measure from Theorem 4.5.

Proof. It is an immediate consequence of Theorem 4.5 and Proposition 4.9.

Lemma 4.11. For all Q ∈ Q we have ΠQ(A) = SQ(A) and, if Q̂ is the minimax measure from

Theorem 4.5, then

π(A) = πQ̂(A) = ΠQ̂(A) = SQ̂(A). (52)
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Proof. Let Y ∈ L, Q ∈ Q, an := EQn [Y n] and Zn := Y n − an. As L+ RN = L, Zn ∈ Ln and

ΠQ(A) = sup
Y∈L

{
E

[
N∑
n=1

un(Xn + Y n)

]
|
N∑
n=1

EQn [Y n] = A

}

= sup
a∈RN , Z∈L

{
E

[
N∑
n=1

un(Xn + Zn + an)

]
| EQn [Zn] = 0,

N∑
n=1

an = A

}

= sup
a∈RN ,

∑N
n=1 a

n=A

{
sup

Z∈L : EQn [Zn]=0

N∑
n=1

E [un(Xn + Zn + an)]

}

= sup
a∈RN ,

∑N
n=1 a

n=A

N∑
n=1

sup
Zn∈Ln

{E [un(Xn + Zn + an)] | EQn [Zn] = 0}

= sup
a∈RN ,

∑N
n=1 a

n=A

N∑
n=1

sup
Y n∈Ln

{E [un(Xn + Y n)] | EQn [Y n] = an}

= sup
a∈RN

∑N
n=1 a

n=A

N∑
n=1

UQ
n

n (an) = SQ(A) .

The first equality in (52) follows from Corollary 4.10 and the second one from (49).

4.4 Main results

Theorem 4.12. Take Q = Qv and set L =
⋂

Q∈Qv L
1(Q). Under Assumption 3.10, for any

X ∈MΦ and any A ∈ R a SORTE exists, namely (Ŷ, Q̂) ∈BA×Qv defined in Theorem 4.5 and

ân := EQ̂n [Ŷ n], n = 1, . . . , N, (53)

satisfy:

1. Ŷ n is an optimum for U Q̂
n

n (ân), for each n ∈ {1, . . . , N},

2. â is an optimum for SQ̂(A),

3. Ŷ ∈ B and
∑N
n=1 Ŷ

n = A P -a.s.

Proof.

1): We prove that U Q̂
n

n (ân) = E
[
un

(
Xn + Ŷ n

)]
< un(+∞), for all n = 1, . . . , N , thus showing

that Ŷ n is an optimum for U Q̂
n

n (ân). As Ŷ n ∈ Ln for all n = 1, . . . , N , then by definition of

U Q̂
n

n (ân) we obtain:

sup
{
E [un(Xn + Z)]

∣∣∣Z ∈ Ln, EQ̂n [Z] ≤ ân
}

=: U Q̂
n

n (ân) ≥ E
[
un

(
Xn + Ŷ n

)]
.

If, for some index, the last inequality were strict we would obtain the contradiction

πQ̂(A) = π(A)
Thm. 4.5

=

N∑
n=1

E
[
un

(
Xn + Ŷ n

)]
<

N∑
n=1

U Q̂
n

n (ân) ≤ SQ̂(A) = πQ̂(A) , (54)

where we used (52) in the first and last equality.

In particular then E
[
un

(
Xn + Ŷ n

)]
< un(+∞), for all n = 1, . . . , N . Indeed, if the latter were

equal to un(+∞), then un would attain its maximum over a compact subset of R, which is not the

case.
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2): From (33) we know that A =
∑N
n=1EQ̂n [Ŷ n] =

∑N
n=1 â

n. From (52) we have

SQ̂(A) = π(A)
Thm. 4.5

=

N∑
n=1

E
[
un

(
Xn + Ŷ n

)]
=

N∑
n=1

U Q̂
n

n (ân) ≤ SQ̂(A).

3): We already know that Ŷ ∈BA:= B ∩ {Y ∈ (L0(P ))N |
∑N
n=1 Y

n ≤ A}. From Proposition 4.7

we deduce

A =

N∑
n=1

EQ̂n [Ŷ n] ≤
N∑
n=1

Ŷ n ≤ A.

We now turn our attention to uniqueness and Pareto optimality, but we will need an additional

property and an auxiliary result.

Definition 4.13 (Def. 4.18 in [7]). We say that B ⊆ (L0(P ))N is closed under truncation if for

each Y ∈ B there exists mY ∈ N and cY = (c1Y , ..., c
N
Y ) ∈ RN such that

∑N
n=1 c

n
Y =

∑N
n=1 Y

n :=

cY ∈ R and for all m ≥ mY

Ym := YI{∩Nn=1{|Y n|<m}} + cY I{∪Nn=1{|Y n|≥m}} ∈ B. (55)

Remark 4.14. We stress the fact that all the sets introduced in Example 3.17 satisfy closedness

under truncation.

Lemma 4.15. Let B be closed under truncation. Then for every A ∈ R

BA ∩ L ⊆ BA.

Proof. Fix any Q ∈ Qv and argue as in Proposition 4.20 in [7]: let Y ∈ BA ∩ L ⊆ L1(Q)

and consider Ym for m ∈ N as defined in (55), where w.l.o.g. we assume mY = 1. Note that∑N
n=1 Y

n
m = cY (=

∑N
n=1 Y

n ≤ A) for all m ∈ N. By boundedness of Ym and (55), we have

Ym ∈ B ∩ MΦ for all m ∈ N. Further, Ym → Y P -a.s. for m → ∞ , and thus, since

|Ym| ≤ max{|Y|, |cY |} ∈ L1(Q) for all m ∈ N, also Ym → Y in L1(Q) for m→∞ by dominated

convergence.

Now, if Q ∼ P we can directly apply Proposition 4.7 to get that
∑N
n=1EQn [Y n] ≤

∑N
n=1 Y

n ≤ A.

If we only have Q � P we can see that (48) still holds, with the particular choice of (Ym)m in

place of (kn)n, because the construction of Ym is made P -almost surely.

Define

Π(A) := sup

{
E

[
N∑
n=1

un(Xn + Y n)

]
| Y ∈ L ∩ B,

N∑
n=1

Y n ≤ A

}
. (56)

Lemma 4.16. Let B be closed under truncation. If Q̂ is the minimax measure from Theorem 4.5,

then

π(A) = Π(A) = πQ̂(A) = ΠQ̂(A) = SQ̂(A). (57)

Proof. It is clear that since BA ∩MΦ ⊆ BA ∩L we have π(A) ≤ Π(A) just by definitions (29) and

(56). Now observe that by Lemma 4.15 we have BA ∩ L ⊆ BA, so that Π(A) ≤ ΠQ̂(A). The chain

of equalities then follows by Lemma 4.11.
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Theorem 4.17. Let B be closed under truncation. Under the same assumptions of Theorem 4.12,

for any X ∈MΦ and A ∈ R the SORTE is unique and is a Pareto optimal allocation for both the

sets

V =

{
Y ∈ L ∩ B

∣∣∣∣∣
N∑
n=1

Y n ≤ A P -a.s.

}
and V =

{
Y ∈ L

∣∣∣∣∣
N∑
n=1

EQ̂n [Y n] ≤ A

}
. (58)

Proof. Use Proposition 4.9 and Corollary 4.10 to get that for any Q ∈ Qv

ΠQ(A) = πQ(A) ≥ π(A). (59)

Let (Ỹ, Q̃, ã) be a SORTE and (Ŷ, Q̂, â) be the one from Theorem 4.12.

By 1) and 2) in the definition of SORTE, together with Lemma 4.11, we see that Ỹ is an optimum

for ΠQ̃(A) = SQ̃(A). Also, Ỹ ∈ BA ∩ BA by Lemma 4.15. We can conclude by equation (30) that

π(A) ≥
N∑
n=1

E
[
un

(
Xn + Ỹ n

)]
= ΠQ̃(A)

eq.(49)
= πQ̃(A)

Cor.4.10
≥ π(A),

which tells us that π(A) = πQ̃(A) =
∑N
n=1 E

[
un

(
Xn + Ỹ n

)]
.

By Theorem 4.5, we also have π(A) =
∑N
n=1 E

[
un

(
Xn + Ŷ n

)]
. Then Ŷ, Ỹ ∈ BA (Lemma 4.15)

and Π(A) = π(A) (Lemma 4.16) imply that both Ŷ, Ỹ are optima for Π(A). By strict concavity

of the utilities u1, . . . , uN , Π(A) has at most one optimum. From this, together with uniqueness

of the minimax measure (see Theorem 4.5), we get (Ỹ, Q̃) = (Ŷ, Q̂). We infer from equation (53)

and Remark 3.8 that also ã = â.

To prove the Pareto optimality observe that Theorem 4.5 proves that Ŷ ∈ BA⊆ L is the unique

optimum for Π(A) (see Lemma 4.16) and so it is also the unique optimum for ΠQ̂(A). Pareto

optimality then follows from Proposition 3.2, noticing that Π(V ) for the two sets in (58) are Π(A)

and ΠQ̂(A) respectively.

4.5 Dependence of the SORTE on X and on B

We see from the proof of Theorem 4.12 that the triple defining the SORTE (obviously) depends

on the choice of A. We now focus on the study of how such triple depends on X. To this end, we

first specialize to the case B = CR.

Proposition 4.18. Under the hypotheses of Theorem 4.12 and for B = CR, the variables dQ̂
dP and

X + Ŷ are σ(X1 + · · ·+XN ) (essentially) measurable.

Proof. By Theorem 4.12 and Theorem 4.17 we have that (λ̂, Q̂) is an optimum of the RHS of

equation (31). Notice that in this specific case Y := ei1A − ej1A ∈ B ∩ MΦ for all i, j and

all measurable sets A ∈ F . Let Q ∈ Q. Then from (47)
∑N
n=1(EQn [Y n] − Y n) ≤ 0 and so

Qi(A)− 1A −Qj(A) + 1A ≤ 0, i.e., Qi(A)−Qj(A) ≤ 0. Similarly taking Y := −ei1A + ej1A ∈ B,

we get Qj(A) − Qi(A) ≤ 0. Hence all the components of vectors in Q are equal. Let G :=

σ(X1 + · · ·+XN ). Then for any λ ∈ R++ and any Q = [Q, . . . , Q] ∈ Q we have:

λ

(
N∑
n=1

EQn [Xn] +A

)
+

N∑
n=1

E
[
vn

(
λ

dQn

dP

)]
= λ

(
E

[(
N∑
n=1

Xn

)
dQ

dP

]
+A

)
+

N∑
n=1

E
[
vn

(
λ

dQ

dP

)]
=
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λ

(
E

[(
N∑
n=1

Xn

)
E
[

dQ

dP

∣∣∣∣G]
]

+A

)
+

N∑
n=1

E
[
E
[
vn

(
λ

dQ

dP

)∣∣∣∣G]] ≥
λ

(
N∑
n=1

E
[
XnE

[
dQ

dP

∣∣∣∣G]]+A

)
+

N∑
n=1

E
[
vn

(
λE
[

dQ

dP

∣∣∣∣G])] ,
where in the last inequality we exploited the tower property and Jensen inequality, as v1, . . . , vN

are convex. Notice now that E
[

dQ
dP

∣∣∣G] defines again a probability measure (on the whole F , the

initial sigma algebra) and that this measure still belongs to Q since all its components are equal.

As a consequence, the minimum in equation (31) can be equivalently taken over λ ∈ R++ (as

before) and Q ∈ Q ∩
(
L0(Ω,G, P )

)N
. The claim for Ŷ follows from (32).

It is interesting to notice that this dependence on the componentwise sum of X also holds in the

case of Bühlmann’s equilibrium (see [13] page 16 and [11]).

Remark 4.19. In the case a cluster of agents, see the Example 3.17, the above result can be clearly

generalized: the i-th component of the vector Q̂, for i belonging to the m-th group, only depends

on the sum of those components of X whose corresponding indexes belong to the m-th group itself.

It is also worth mentioning that if we took B(I) = RN , we would see that each component of Q̂

and of Ŷ is a measurable function of the corresponding component of X. This is reasonable since,

in this case, at the final time each agent would be only allowed to share and exchange risk with

herself/himself and the systemic features of the model we are considering would be lost.

We provide now some additional examples, to the ones in Example 3.17, of possible feasible sets

B and study the dependence of the probability measures from B.

Example 4.20. Consider a measurable partition A1, . . . , AK of Ω and a collection of partitions

I1, . . . , IK of {1, . . . , N} as in Example 3.17. Take the associated clusterings B(I1), . . . ,B(IK) defined

as in (23). Then the set

B :=

(
K∑
i=1

B(Ii)1Ai

)
∩ CR (60)

satisfies Assumptions 3.10 and is closed under truncation, as it can be checked directly.

The set in (60) can be seen as a scenario-dependent clustering. A particular simple case of (60) is

the following. For a measurable set A1 ∈ F take A2 = Ω \ A1. Then set CR1A1 + RN1A2 is of the

form (60) and consists of all the Y ∈ (L0)N such that (i) there exists a real number σ ∈ R with∑N
n=1 Y

n = σ P−a.s. on A1, (ii) there exists a vector b ∈ RN such that Y = b P−a.s. on A2 and

(iii) σ =
∑N
n=1 b

n (recall that Y ∈ CR by (60)).

Let us motivate Example 4.20 with the following practical example. Suppose for each bank i a

regulator establishes an excessive exposure threshold Di. If the position of bank i falls below such

threshold, we can think that it is too dangerous for the system to let that bank take part to the

risk exchange. As a consequence, in the clustering example, on the event {Xi ≤ Di} we can

require the bank to be left alone. Also the symmetric situation can be considered: a bank j whose

position is too good, say exceeding a value Aj , will not be willing to share risk with all others,

thus entering the game only as isolated individual or as a member of the groups of “safer” banks.

Both these requirements, and many others (say considering random thresholds) can be modelled

with the constraints introduced in Example 4.20.
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It is interesting to notice that, as in Example 3.17, assuming a constraint set of the form given in

Example 4.20 forces a particular behavior on the probability vectors in Qv.

Lemma 4.21. Let B be as in Example 4.20 and let Q ∈Qv. Fix any i ∈ {1, ...,K} and any

group Iim of the partition Ii = (Iim)m. Then all the components Qj, j ∈ Iim, agree on F|Ai :=

{F ∩Ai, F ∈ F}.

Proof. We think it is more illuminating to prove the statement in a simplified case, rather than

providing a fully formal proof (which would require unnecessairly complicated notation). This is

”without loss of generality” in the sense that it is clear how to generalize the method. To this

end, let us consider the case K = 2 (i.e. A2 = Ac1) and B(I1) := CR, B(I2) := RN . For any F ∈ F
and i, j ∈ {1, . . . , N} we can take Y := (1F (ei − ej)) 1A1

+ 01A2
to obtain Y ∈ CR1A1

+ RN1A2
,∑N

j=1 Y
j = 0. By definition of Qv we get for any Q ∈ Qv that Qi(A ∩ F ) −Qj(A ∩ F ) ≤ 0, and

interchanging i, j yields Qi(A ∩ F ) = Qj(A ∩ F ) for any i, j = 1 . . . , N , F ∈ F .

5 Exponential Case

We now specialize our analysis to the exponential setup, where

un(x) := 1− exp(−αnx), n = 1, . . . , N for α1, . . . , αN > 0. (61)

This allows us to provide explicit formulas for a wide range of constraint sets B (namely, all those

introduced in Example 3.17) and so the stability properties of SORTE, with respect to a different

weighting of utilities, will be evident.

5.1 Explicit formulas

We consider a set of constraints of the form B = B(I) as given in Example 3.17. Given X ∈ MΦ

and m ∈ {1, . . . , h}, we set:

βm : =
∑
n∈Im

1

αn
β :=

N∑
n=1

1

αn
Xm :=

∑
n∈Im

Xn,

R(n) : =
1
αn∑N
k=1

1
αk

, n = 1, ...N , α := (α1, ..., αN ), ER [ln(α)] =

N∑
n=1

R(n) ln(αn).

Theorem 5.1. Take u1, . . . , uN as given by (61) and B = B(I) as in Example 3.17. For L and Q

defined in Theorem 4.12, the SORTE is given by
Ŷ k = −Xk + 1

αk

(
Xm
βm
− dm(X)

)
+ 1

αk

[
A
β + ln (αk)− ER [ln(α)]

]
k ∈ Im

dQ̂k

dP =
exp
(
−Xmβm

)
E
[
exp
(
−Xmβm

)] =: dQ̂m

dP k ∈ Im

âk = EQ̂k [Ŷ k] k = 1, . . . , N

(62)

where

dm(X) :=

 h∑
j=1

βj
β

ln

(
E
[
exp

(
−Xj

βj

)])− ln

(
E
[
exp

(
−Xm

βm

)])
.
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Proof. The utilities in (61) satisfy Assumption 3.10 (a) and B satisfies Asssumption 3.10 (b) and

closedness under truncation, hence Theorems 4.12 and 4.17 guarantee existence and uniqueness.

Recall that from this choice of B we have that for each Q ∈ Qv, all the components of Q are equal

in each index subset Im.

It is easy to check that

vn(λy) =
λy

αn
ln

λ

αn
+

λ

αn
y ln y − λ

αn
y + 1 . (63)

Substitute now y = dQn

dP ∈ Qv in the above expressions and take expectations to get

E
[
vn

(
λ

dQn

dP

)]
= φn(λ) +

λ

αn
E
[

dQn

dP
ln

(
dQn

dP

)]
, φn(λ) =

λ

αn
ln

λ

αn
− λ

αn
+ 1 . (64)

Let K
(
λ, dQ

dP

)
be the functional to be optimized in (31). Set

ξ :=

N∑
n=1

1

αn
ln

(
1

αn

)
, φ(λ) =

N∑
n=1

φn(λ) = λξ + βλ lnλ− λβ +N.

Then from (64) we deduce

K

(
λ,

dQ

dP

)
= λ

(
N∑
n=1

EQn [Xn] +A

)
+ φ(λ) +

N∑
n=1

λ

αn
E
[

dQn

dP
ln

(
dQn

dP

)]
. (65)

Set

µ :=

N∑
n=1

1

αn
E

[
dQ̂n

dP
ln

(
dQ̂n

dP

)]
+A+

N∑
n=1

EQ̂n [Xn]. (66)

From (65) and (66)

K

(
λ,

dQ̂

dP

)
= λµ+ λ (ξ + β ln(λ)− β) +N .

The associated first order condition obtained differentiating in λ yields the unique solution

λ̂ = exp

(
−µ+ ξ

β

)
which can be substituted in K

(
·, dQ̂

dP

)
yielding

K

(
λ̂,

dQ̂

dP

)
= −λ̂β +N . (67)

We now guess that the vector of measures Q̂ defined via (62) is optimal and compute the associated

µ:

µ =

N∑
n=1

EQ̂n [Xn] +A+

N∑
n=1

1

αn
E

[
dQ̂n

dP
ln

(
dQ̂n

dP

)]
= A+

h∑
j=1

E

[(
Xj

) dQ̂j

dP

]
+

h∑
j=1

βjE

[
dQ̂j

dP
ln

(
exp

(
−Xj

βj

))]
+

h∑
j=1

βjE

dQ̂j

dP
ln

 1

E
[
exp

(
−Xjβj

)]
 .

Hence

µ = A−
h∑
j=1

βj ln

(
E
[
exp

(
−Xj

βj

)])
(68)
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and substituting (67) in the explicit formula for λ̂ we get

K

(
λ̂,

dQ̂

dP

)
= −β exp

− 1

β

A+ ξ +

h∑
j=1

βj ln

(
E
[
exp

(
−Xj

βj

)])+N . (69)

Using equation (32) we define, for the measure given in (62),

Ŷ k = −Xk − v′n

(
λ̂

dQ̂

dP

)
k = 1, . . . , N .

By (63) (with λ = 1) we obtain, for k ∈ Im, v′k(y) = 1
αk

ln
(
y
αk

)
and

v′k

(
λ̂

dQ̂

dP

)
=

1

αk
ln

(
1

αk

)
+

1

αk
ln

exp
(
−Xmβm −

A+µ
β

)
E
[
exp

(
−Xmβm

)]


=
1

αk
ln

(
1

αk

)
− 1

αk

(
Xm

βm
+
A+ µ

β

)
− 1

αk
ln

(
E
[
exp

(
−Xm

βm

)])
Eq.(68)

=

1

αk
ln

(
1

αk

)
− 1

αk

(
Xm

βm
+
A+ ξ

β

)
+

1

αk
dm(X) .

Hence for k ∈ Im we have

Ŷ k = −Xk +
1

αk

(
Xm

βm
+
A+ ξ

β
− dm(X)

)
− 1

αk
ln

(
1

αk

)
.

A simple computation yields Ŷ ∈MΦ,
∑
k∈Im Y

k ∈ R and
∑N
n=1 Ŷ

n = A, so that Ŷ ∈ BA ∩MΦ.

Moreover

exp
(
−
(
Xk + Ŷ k

))
= exp

(
−αk

(
1

αk

(
Xm

βm
+
A+ ξ

β
− dm(X)

)
− 1

αk
ln

(
1

αk

)))

=
1

αk
exp

(
−Xm

βm

)
exp

(
−A+ ξ

β

)
exp (dm(X))

=
1

αk

exp
(
−Xmβm

)
E
[
exp

(
−Xmβm

)] exp

(
−A+ ξ

β

)
exp

 h∑
j=1

βj
β

ln

(
E
[
exp

(
−Xj

βj

)]) .

As a consequence
N∑
n=1

E
[
1− exp

(
−αn

(
Xn + Ŷ n

))]

= −
N∑
n=1

1

αn
exp

− 1

β

A+ ξ +

h∑
j=1

βj ln

(
E
[
exp

(
−Xj

βj

)])+N
Eq.(69)

= K

(
λ̂,

dQ̂

dP

)
(70)

which implies
N∑
n=1

E
[
un

(
Xn + Ŷ n

)]
= K

(
λ̂,

dQ̂

dP

)
. (71)

To sum up we have

K

(
λ̂,

dQ̂

dP

)
Eq.(71)

=

N∑
n=1

E
[
un

(
Xn + Ŷ n

)] Ŷ∈BA∩MΦ

≤
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sup
Y∈BA∩MΦ

N∑
n=1

E [un(Xn + Y n)]
Thm.(4.5)

= min
λ>0

Q∈Qv

K

(
λ,

dQ

dP

)
≤ K

(
λ̂,

dQ̂

dP

)
.

Consequently Ŷ is the (unique) optimum for the optimization problem in LHS of (30), and (λ̂, Q̂)

is the (unique) optimum to the minimization problem in (31).

Moreover, setting ân := EQ̂n [Ŷ n], n = 1, . . . , N, the SORTE (which, as already argued, exists

and is unique) is given by
(
Ŷ, Q̂, â

)
.

Remark 5.2. We observe that in the terminal part of the proof above we also got an explicit formula

for the maximum systemic utility:

sup
Y∈BA∩MΦ

N∑
n=1

E [un(Xn + Y n)]
Thm.(4.5)

= K

(
λ̂,

dQ̂

dP

)
(72)

where K
(
λ̂, dQ̂

dP

)
is given in (70).

5.2 A toy Example

In the following two examples we compare a Bühlmann’s Equilibrium with a SORTE in the simplest

case where X = 0 := (0, ..., 0) and A = 0. In the formula below we use the well known fact:

sup
Y ∈L1(Q)

{E [un(Y )] | EQ[Y ] ≤ x} = 1− e−αnx−H(Q,P ) ,

where H(Q,P ) = E[dQdP ln(dQdP )] is the relative entropy, for Q� P .

Example 5.3 (Bühlmann’s equilibrium solution). As X := 0 then XN =
∑N
k=1X

k = 0 and

therefore the optimal probability measure QX defined in Bühlmann is:

dQX

dP
:=

e−
1
βXN

E
[
e−

1
βXN

] = 1, (73)

i.e. QX = P. Take a = 0 = (0, ..., 0). We compute

UQX
n (0) = UPn (0) := sup {E [un(0 + Y )] | EP [Y ] ≤ 0} = 1− e−αn0−H(P,P ) = 1− 1 = 0 ,

as H(P, P ) = 0, so that
N∑
n=1

UPn (0) = 0.

As a consequence, and as un(0) = 0, the optimal solution for each single n is obviously Y nX = 0.

Conclusion: The Bühlmann’s equilibrium solution associated to X := 0 (and A = 0) is the couple

(YX,QX) = (0, P ). Here the vector a is taken a priori to be equal to (0, ..., 0).

Example 5.4 (SORTE). From Theorem 5.1 with X := 0 and A = 0 we obtain for the SORTE that:

the optimal probability measure Q̂ coincides again with P ; the optimal Ŷ is:

Ŷ n =
1

αn
[ln(αn)− ER [ln(α)]] := ân. (74)
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Recalling that Q̂ is in fact a minimax measure for the optimization problem π0(0) (see the proof

of Theorem 4.12), we can say that

SP (0) = SQ̂(A)
Lemma.4.16

= π0(0)
(70),(72)

= N − βe−
ξ
β (75)

Notice that if the αn are equal for all n, then SP (0) = 0, but in general

SP (0) = N − βe−
ξ
β ≥ 0.

Indeed, by Jensen inequality:

e−
ξ
β = eER[ln(α)] ≤ ER[eln(α)] = ER[α] :=

N∑
n=1

1
αn
αn∑N

k=1
1
αk

=
N

β
.

From (74) we deduce that the αn are equal for all n if and only if ân = 0 for all n, but in general

ân may differ from 0. As Ŷ n = ân, the same holds also for the optimal solution Ŷ . When ân < 0

a violation of Individual Rationality occurs.

Conclusion: The SORTE solution associated to X := 0 (and A = 0) is the triplet (Ŷ, P, â) where

Ŷ = â is assigned in equation (74).

The above comparison shows that a SORTE is not a Bühlmann equilibrium, even when X := 0

and A = 0. When the αn are all equal, then the Bühlmann and the SORTE solution coincide, as

all agents are assumed to have the same risk aversion.

Remark 5.5. In this example, notice that we may control the risk sharing components Y n of agent

n in the SORTE by:

|Y n| ≤ 1

αmin
[ln(αmax)− ln(αmin)] .

Suppose that αmin < αmax and consider the expression for Ŷ n = ân in (74). If αj = αmin then the

corresponding Ŷ j < 0 is in absolute value relatively large (divide by αmin), while if αk = αmax the

corresponding Ŷ k > 0 is in absolute value relatively small (divide by αmax).

5.3 Dependence on weights and stability

We now provide a detailed study of the dependence on weights, as introduced in Remark 1.3, in the

exponential case. Given γn ∈ (0,+∞), n = 1, . . . , N and u1, . . . , uN satisfying Assumption 3.10

(a), we recall that uγn(x) := γnun(x), n = 1, . . . , N and we denote by vγn(·) their convex conjugates.

These functions uγn satisfy Assumption 3.10 (a).

In our exponential setup and under closedness under truncation, a different weighting only results

in a translation of both allocations at initial and terminal time of a SORTE, without affecting the

optimal measure:

Proposition 5.6. Consider u1, . . . , uN as given in (61) and take the associated uγ1 , . . . , u
γ
N as

above. Suppose B satisfies Assumption 3.10 (b) and is closed under truncation. Call
(
Ŷ, Q̂, â

)
the

unique SORTE associated to u1, . . . , uN , and similarly define
(
Ŷγ , Q̂γ , âγ

)
as the unique SORTE

associated to uγ1 , . . . , u
γ
N . Then

Ŷ kγ = Ŷ k + gk(γ) k = 1, . . . , N

dQ̂kγ
dP = dQ̂k

dP k = 1, . . . , N

âkγ = âk + gk(γ) k = 1, . . . , N
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where

gk(γ) :=
1

αk

∑N
n=1

1
αn

ln
(

1
γn

)
∑N
n=1

1
αn

− 1

αk
ln

(
1

γk

)
=

1

αk
(ln(γn)− ER[ln(γ)]) k = 1, . . . , N .

Proof. For a general set B, we here provide only a sketch of the proof. Using the formulas for

v1, . . . , vN , after some computations one can write explicitly the minimax expression (31). Then

use the gradient formula (32) to deduce (76). A more direct proof, that works only for sets B in

the form described in Example 3.17, is based on the observation that

uγn(x) := γnun(x) = γn − γn exp(−αnx) = γn − exp

(
−αn

[
x− 1

αn
ln(γn)

])
.

Hence,
(
Ŷγ , Q̂γ , âγ

)
can be obtained by a straightforward computation from the solution

(
Ŷ, Q̂, â

)
,

which is explicitly given in Theorem 5.1, using Xn − 1
αn

ln(γn), n = 1, . . . , N in place of X.

A Appendix

A.1 Orlicz Spaces and Utility Functions

We consider the utility maximization problem defined on Orlicz spaces, see [36] for further details

on Orlicz spaces. This presents several advantages. From a mathematical point of view, it is a

more general setting than L∞, but at the same time it simplifies the analysis, since the topology

is order continuous and there are no singular elements in the dual space. Furthermore, it has been

shown in [9] that the Orlicz setting is the natural one to embed utility maximization problems, as

the natural integrability condition E[u(X)] > −∞ is implied by E[φ(X)] < +∞.

Let u : R → R be a concave and increasing function satisfying limx→−∞
u(x)
x = +∞. Consider

φ(x) := −u(−|x|) + u(0). Then φ : R→ [0,+∞) is a strict Young function, i.e., it is finite valued,

even and convex on R with φ(0) = 0 and limx→+∞
φ(x)
x = +∞. The Orlicz space Lφ and Orlicz

Heart Mφ are respectively defined by

Lφ :=
{
X ∈ L0(R) | E[φ(αX)] < +∞ for some α > 0

}
, (76)

Mφ :=
{
X ∈ L0(R) | E[φ(αX)] < +∞ for all α > 0

}
, (77)

and they are Banach spaces when endowed with the Luxemburg norm. The topological dual of

Mφ is the Orlicz space Lφ
∗
, where the convex conjugate φ∗ of φ, defined by

φ∗(y) := sup
x∈R
{xy − φ(x)} , y ∈ R,

is also a strict Young function. Note that

E[u(X)] > −∞ if E[φ(X)] < +∞. (78)

Remark A.1. It is well known that L∞(P ;R) ⊆ Mφ ⊆ Lφ ⊆ L1(P ;R). In addition, from the

Fenchel inequality xy ≤ φ(x) + φ∗(y) we obtain

(α|X|)
(
λ
dQ

dP

)
≤ φ(α|X|) + φ∗

(
λ
dQ

dP

)
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for some probability measure Q � P , and we immediately deduce that dQ
dP ∈ L

φ∗
implies Lφ ⊆

L1(Q;R).

Given the utility functions u1, · · · , uN : R → R, satisfying the above conditions, with associated

Young functions φ1, · · · , φN , we define

MΦ := Mφ1 × · · · ×MφN , LΦ := Lφ1 × · · · × LφN . (79)

A.2 Auxiliary results

Lemma A.2. Let v : [0,+∞)→ R ∪ {+∞} be a convex function, and suppose that its restriction

to (0,+∞) is real valued and differentiable. Let Q � P be a given probability measure with

v
(
λdQ

dP

)
∈ L1(P ) for all λ > 0. Then

1. v′ is defined on (0,+∞) and real valued there and extendable to [0,+∞) by taking limx→0 v
′(x) ∈

R ∪ {−∞}. Also, dQ
dP v

′
(
λdQ

dP

)
∈ L1(P ) for all λ > 0.

2. If g is such that g + 1
g ∈ L

∞
+ (P ), then v

(
g dQ

dP

)
∈ L1(P ).

3. If v′(0+) = −∞, v′(+∞) = +∞ and v is strictly convex F (γ) := E
[

dQ
dP v

′
(
γ dQ

dP

)]
is a well

defined bijection between (0,+∞) and R.

Proof. Lemma 2 of [8].

The following dual representation holds:

Theorem A.3. Let u1 . . . , un : R→ R be strictly increasing and concave functions. Let C ⊆ MΦ

be a convex cone such that for every i, j = 1, . . . , N, ei − ej ∈ C. Denote by C0 the polar of the

cone C in the dual pair (MΦ, LΦ∗
)

C0 :=

Z ∈ LΦ∗
s.t.

N∑
j=1

E
[
Y jZj

]
≤ 0 ∀Y ∈ C

 .

Set

C0
1 :=

{
Z ∈ C0 s.t. E

[
Z1
]

= · · · = E
[
ZN
]

= 1
}

, (C0
1)+ :=

{
Z ∈ C0

1 s.t. Zj ≥ 0 for all j
}

and suppose that

sup
Y∈C

 N∑
j=1

E
[
uj
(
Xj + Y j

)] < +∞ ∀X ∈MΦ.

Then

sup
Y∈C

 N∑
j=1

E
[
uj
(
Xj + Y j

)] = min
λ∈R+,Q∈(C0

1)+

λ N∑
j=1

E
[
Xj dQj

dP

]
+

N∑
j=1

E
[
vj

(
λ

dQj

dP

)] .

If any of the two expressions above is strictly smaller than
∑N
j=1 uj(+∞), then

sup
Y∈C

 N∑
j=1

E
[
uj
(
Xj + Y j

)] = min
λ∈R++,Q∈(C0

1)+

λ N∑
j=1

E
[
Xj dQj

dP

]
+

N∑
j=1

E
[
vj

(
λ

dQj

dP

)] .
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Proof.

Observe first that X 7→ ρ(X) := − supY∈C

(∑N
j=1 E

[
uj
(
Xj + Y j

)])
is a non increasing, finite

valued, convex functional on the Fréchet lattice MΦ. Only convexity is non-evident: to show it,

consider X,Z ∈MΦ and Y,W ∈ C. For any 0 ≤ λ ≤ 1, we have by concavity

λ

N∑
j=1

E
[
uj
(
Xj + Y j

)]
+ (1− λ)

N∑
j=1

E
[
uj
(
Zj +W j

)]
≤

N∑
j=1

E
[
uj
(
λ(Xj + Y j) + (1− λ)(Zj +W j)

)]
=

N∑
j=1

E
[
uj
(
λXj + (1− λ)Zj +

(
λY j + (1− λ)W j

))]
≤ −ρ(λX + (1− λ)Z)

as λY + (1− λ)W ∈ C. Thus taking suprema over Y,W ∈ C we get

λ(−ρ(X)) + (1− λ)(−ρ(Z)) ≤ −ρ(λX + (1− λ)Z).

Now the Extended Namioka-Klee Theorem (see [10] Theorem A.3) can be applied and we obtain

ρ(X) = max
0≤Z∈LΦ∗

 N∑
j=1

EP
[
Xj(−Zj)

]
− α(Z)

 ,

where

α(Z) := sup
X∈MΦ

 N∑
j=1

EP
[
Xj(−Zj)

]
− ρ(X)


= sup

X∈MΦ

 N∑
j=1

EP
[
Xj(−Zj)

]
+ sup

Y∈C

 N∑
j=1

E
[
uj
(
Xj + Y j

)]
= sup

Y∈C

 sup
X∈MΦ

 N∑
j=1

EP
[
Xj(−Zj)

]
+

 N∑
j=1

E
[
uj
(
Xj + Y j

)]
= sup

Y∈C

 N∑
j=1

EP
[
Y j(Zj)

]
+ sup

W∈MΦ

 N∑
j=1

EP
[
W j(−Zj)

]
+

 N∑
j=1

E
[
uj
(
W j
)] . (80)

Observe now that −U(z) :=
∑N
j=1−uj(zj) for z ∈ RN defines a continuous, convex, proper

function whose Fenchel transform is

(−U)∗(w) := sup
z∈RN

(〈z,w〉 − (−U(z))) = sup
z∈RN

(〈z,w〉+ U(z)) = sup
z∈RN

(U(z)− 〈z,−w〉) =

N∑
j=1

vj(−wj).

Now we apply Corollary on page 534 of [37] with L = MΦ, L∗ = LΦ∗
, F (x) = −U(x) to see that

sup
W∈MΦ

 N∑
j=1

EP
[
W j(−Zj)

]
+

N∑
j=1

E
[
uj
(
W j
)] = EP

 N∑
j=1

vj(Z
j)


and replacing this in (80) we get:

α(Z) = sup
Y∈C

 N∑
j=1

EP
[
Y jZj

]
+ EP

 N∑
j=1

vj(Z
j)

 .

Now observe that there are two possibilities:
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• either Z ∈ C0, and in this case α(Z) = EP

[∑N
j=1 vj(Z

j)
]

since 0 ∈ C

• or α(Z) = +∞, since v1, . . . , vN are bounded from below.

Hence

− sup
Y∈C

 N∑
j=1

E
[
uj
(
Xj + Y j

)] = max
0≤Z∈LΦ∗

 N∑
j=1

EP
[
Xj(−Zj)

]
− α(Z)


= max

0≤Z∈C0

−
 N∑
j=1

EP
[
XjZj

]
+ EP

 N∑
j=1

vj(Z
j)


= − min

0≤Z∈C0

 N∑
j=1

EP
[
XjZj

]
+ EP

 N∑
j=1

vj(Z
j)

 . (81)

Moreover, since for every i, j = 1, . . . , N ei − ej ∈ C we can argue as in Lemma 4.1 to deduce that

C0 ∩ (L0
+)N = R+ · (C0

1)+. Replacing this in the expression (81) we get

sup
Y∈C

 N∑
j=1

E
[
uj
(
Xj + Y j

)] = min
λ∈R+,Q∈(C0

1)+

λ N∑
j=1

E
[
Xj dQj

dP

]
+

N∑
j=1

E
[
vj

(
λ

dQj

dP

)] .

To prove the last claim, observe that if the optimum λ in the right hand side was 0, we would have

sup
Y∈C

 N∑
j=1

E
[
uj
(
Xj + Y j

)] =

N∑
j=1

vj (0) =

N∑
j=1

uj(+∞),

which contradicts our hypotheses.

Theorem A.4. Let u1, . . . , uN satisfy Assumption 3.10. Let K ⊆MΦ be a convex cone such that

for all i, j ∈ {1, . . . , N} ei − ej ∈ K and suppose that Qev 6= ∅, where

Qev :=

Q ∼ P | dQj

dP
∈ LΦ∗

j ,E
[
vj

(
dQj

dP

)]
< +∞,

N∑
j=1

EQj
[
kj
]
≤ 0 ∀k ∈ K

 ⊆ LΦ∗
.

Then denoting by clQ(. . . ) the closure in L1
(
Q1
)
×· · ·×L1

(
QN
)

with respect to the norm ‖X‖Q :=∑N
j=1

∥∥Xj
∥∥
L1(Qj)

we have

⋂
Q∈Qev

clQ
(
K − L1

+ (Q)
)

=

W ∈
⋂

Q∈Qev

L1 (Q) |
N∑
j=1

EQj
[
W j
]
≤ 0 ∀Q ∈ Qev

 .

Proof. We modify the procedure in [8] Theorem 4. The inclusion (LHS ⊆ RHS) can be checked

directly. As to the opposite one (RHS ⊆ LHS), suppose we had a k ∈ RHS and a Q ∈ Qev with

k /∈ clQ
(
K − L1

+ (Q)
)
, that is k /∈ LHS. We stress that by construction

N∑
j=1

EQj
[
kj
]
≤ 0 ∀Q ∈ Qev . (82)

In the dual system (
L1(Q), L∞(Q)

)
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the set clQ
(
K − L1

+ (Q)
)

is convex and σ
(
L1(Q), L∞(Q)

)
-closed by compatibility of the latter

topology with the norm topology. Thus we can use Hahn-Banach Separation Theorem to get a

class ξ̂ ∈ L∞(Q) with

0 = sup
W∈(K−L1

+(Q))

 N∑
j=1

E
[
ξ̂jW j dQj

dP

] <

N∑
j=1

E
[
ξ̂jkj

dQj

dP

]
. (83)

We now work componentwise. First observe that

[−1ξ̂j<0]Nj=1 ∈ 0− L∞+ (Q) ⊆ K − L1
+ (Q) ,

so that ξ̂j ≥ 0 Qj-a.s. for every j = 1, . . . , N . Hence ξ̂j dQj

dP ≥ 0 P -a.s. for every j = 1, . . . , N .

Moreover, since for all i, j ∈ {1, . . . , N} ei − ej ∈ K, we have

E
[
ξ̂1 dQ1

dP

]
= · · · = E

[
ξ̂N

dQN

dP

]
. (84)

It follows that for every j = 1, . . . , N

P

(
ξ̂j

dQj

dP
> 0

)
> 0

since if this were not the case all the terms in equation (84) would be null, which would yield

ξ̂1 dQ1

dP = · · · = ξ̂N dQN

dP = 0, a contradiction with (83).

Hence the vector
dQj1
dP

:=
1

E
[
ξ̂j dQj

dP

] ξ̂j dQj

dP

is well defined and identifies a vector of probability measures [Q1
1, . . . , Q

N
1 ]. We trivially have that

Qj1 � P,
dQj1
dP
∈ LΦ∗

j ,

and by equation (83), together with (84)

sup
W∈K

 N∑
j=1

E

[
W j dQj1

dP

] ≤ 0 <

N∑
j=1

E

[
kj

dQj1
dP

]
. (85)

We observe that if we could prove Q1 ∈ Qev, we would get a contradiction with (82). However this

needs not to be true, since we cannot guarantee Q1
1, . . . , Q

N
1 ∼ P .

As Q ∈ Qev, we have Q ∼ P , and for Q1 above we have Q1 � Q,
dQk1
dQk
∈ L∞(Qk) = L∞(P ). Take

λ ∈ (0, 1] and define Qλ via
dQkλ
dP

:= λ
dQk

dP
+ (1− λ)

dQk1
dP

.

We now prove that Qλ ∈ Qev. It is easy to check that

0 < λ ≤ dQkλ
dQk

≤ (1− λ)
dQk1
dQk

+ λ ,

so that Lemma A.2.2. with g = gk :=
dQkλ
dQk

, together with E
[
vk

(
dQk

dP

)]
< +∞∀ k = 1, . . . , N

(Q ∈ Qev by construction), yields

E
[
vk

(
dQkλ
dP

)]
= E

[
vk

(
dQkλ
dQk

dQk

dP

)]
= E

[
vk

(
gk

dQk

dP

)]
< +∞, ∀ k ∈ {1, . . . , N}, λ ∈ (0, 1] .
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Moreover Q ∈ Qev and λ > 0 imply Qk
λ ∼ P for all k = 1, . . . , N . This, together with equation

(85), yields
N∑
j=1

E

[
W j dQjλ

dP

]
≤ 0 ∀W ∈ K,∀λ ∈ (0, 1] .

We can conclude that Qλ ∈ Qev, ∀λ ∈ (0, 1]. At the same time

N∑
j=1

E

[
kj

dQjλ
dP

]
= λ

N∑
j=1

E
[
kj

dQj

dP

]
+ (1− λ)

N∑
j=1

E

[
kj

dQj1
dP

]
−−−→
λ→0

N∑
j=1

E

[
kj

dQj1
dP

]
Eq.(85)
> 0 ,

which gives a contradiction with Equation (82). We conclude that RHS ⊆ LHS.
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