
MITPress NewMath.cls LATEX Book Style Size: 7x9 February 16, 2022 6:11pm

16 Stochastic Planning and Lifted Inference

Roni Khardon, Scott Sanner

Abstract. Lifted probabilistic inference (Poole, 2003) and symbolic dynamic programming for
lifted stochastic planning (Boutilier et al, 2001) were introduced around the same time as algorith-
mic efforts to use abstraction in stochastic systems. Over the years, these ideas evolved into two
distinct lines of research, each supported by a rich literature. Lifted probabilistic inference focused
on efficient arithmetic operations on template-based graphical models under a finite domain assump-
tion while symbolic dynamic programming focused on supporting sequential decision-making in rich
quantified logical action models and on open domain reasoning. Given their common motivation but
different focal points, both lines of research have yielded highly complementary innovations. In this
chapter, we aim to help close the gap between these two research areas by providing an overview of
lifted stochastic planning from the perspective of probabilistic inference, showing strong connections
to other chapters in this book. This also allows us to define generalized lifted inference as a paradigm
that unifies these areas and elucidates open problems for future research that can benefit both lifted
inference and stochastic planning.

16.1 Introduction

In this chapter we illustrate that stochastic planning can be viewed as a specific form of
probabilistic inference and show that recent symbolic dynamic programming (SDP) algo-
rithms for the planning problem can be seen to perform “generalized lifted inference”, thus
making a strong connection to other chapters in this book. As we discuss below, although
the SDP formulation is more expressive in principle, work on SDP to date has largely fo-
cused on algorithmic aspects of reasoning in open domain models with rich quantified log-
ical structure whereas lifted inference has largely focused on aspects of efficient arithmetic
computations over finite domain (quantifier free) template-based models. The contribu-
tions in these areas are therefore largely along different dimensions. However, the intrinsic
relationships between these problems suggest a strong opportunity for cross-fertilization
where the true scope of generalized lifted inference can be achieved. This chapter intends
to highlight these relationships and lay out a paradigm for generalized lifted inference that
subsumes both fields and offers interesting opportunities for future research.

MITPress NewMath.cls LATEX Book Style Size: 7x9 February 16, 2022 6:11pm

2 Chapter 16 Stochastic Planning and Lifted Inference

Figure 16.1: A formal desciption of the BOXWORLD adapted from Boutilier et al. (2001).
We use a simple STRIPS-like Fikes and Nilsson (1971) add and delete list representation of
actions and, as a simple probabilistic extension in the spirit of PSTRIPS Pednault (1989),
we assign probabilities that an action successfully executes conditioned on various state
properties.

• Domain Object Types (i.e., sorts): Box, Truck, City = {paris, . . .}

• Relations (with parameter sorts):
BoxIn: BIn(Box,City), TruckIn: TIn(Truck,City), BoxOn: On(Box,Truck)

• Reward: if ∃B,BIn(B, paris) then 10 else 0

• Actions (with parameter sorts):

– load(Box : B,Truck : T,City : C):

∗ Success Probability: if (BIn(B,C) ∧ TIn(T,C)) then .9 else 0
∗ Add Effects on Success: {On(B,T)}
∗ Delete Effects on Success: {BIn(B,C)}

– unload(Box : B,Truck : T,City : C):

∗ Success Probability: if (On(B,T) ∧ TIn(T,C)) then .9 else 0
∗ Add Effects on Success: {BIn(B,C)}
∗ Delete Effects on Success: {On(B,T)}

– drive(Truck : T,City : C1,City : C2):

∗ Success Probability: if (TIn(T,C1)) then 1 else 0
∗ Add Effects on Success: {TIn(T,C2)}
∗ Delete Effects on Success: {TIn(T,C1)}

– noop

∗ Success Probability: 1
∗ Add Effects on Success: ∅
∗ Delete Effects on Success: ∅

To make the discussion concrete, let us introduce a running example for stochastic plan-
ning and the kind of generalized solutions that can be achieved. For illustrative purposes,
we borrow a planning domain from Boutilier et. al. Boutilier et al. (2001) that we refer to
as BOXWORLD. In this domain, outlined in Figure 17.1, there are several cities such as
london, paris etc., trucks truck1, truck2 etc., and boxes box1, box2 etc. The agent can load
a box onto a truck or unload it and can drive a truck from one city to another. When any
box has been delivered to a specific city, paris, the agent receives a positive reward. The
agent’s planning task is to find a policy for action selection that maximizes this reward over
some planning horizon.

MITPress NewMath.cls LATEX Book Style Size: 7x9 February 16, 2022 6:11pm

16.1 Introduction 3

Figure 16.2: A decision-list representation of the optimal policy and expected discounted
reward for the BOXWORLD problem. The optimal action parameters in the then conditions
correspond to the existential bindings that made the if conditions true.

if (∃B,BIn(B, paris)) then do noop (value = 100.00)
else if (∃B,T,TIn(T, paris) ∧ On(B,T)) then do unload(B,T, paris) (value = 89.0)
else if (∃B,C,T,On(B,T) ∧ TIn(T,C)) then do drive(T,C, paris) (value = 80.0)
else if (∃B,C,T,BIn(B,C) ∧ TIn(T,C)) then do load(B,T,C) (value = 72.0)
else if (∃B,C1,T,C2,BIn(B,C1) ∧ TIn(T,C2)) then do drive(T,C2,C1) (value = 64.7)
else do noop (value = 0.0)

Our objective in lifted stochastic planning is to obtain an abstract policy, for example,
like the one shown in Figure 17.2. In order to get some box to paris, the agent should drive
a truck to the city where the box is located, load the box on the truck, drive the truck to
paris, and finally unload the box in paris. This is essentially encoded in the symbolic value
function shown in Fig. 17.2, which was computed by discounting rewards t time steps into
the future by 0.9t.

Similar to this example, for some problems we can obtain a solution which is described
abstractly and is independent of the specific problem instance or even its size — for our
example problem the description of the solution does not depend on the number of cities,
trucks or boxes, or on knowledge of the particular location of any specific truck. Accord-
ingly, one might hope that computing such a solution can be done without knowledge of
these quantities and in time complexity independent of them. This is the computational
advantage of symbolic stochastic planning which we associate with lifted inference in this
chapter.

The next two subsections expand on the connection between planning and inference,
identify opportunities for lifted inference, and use these observations to define a new setup
which we call generalized lifted inference which abstracts some of the work in both areas
and provides new challenges for future work.

16.1.1 Stochastic Planning and Inference
Planning is the task of choosing what actions to take to achieve some goals or maximize
long-term reward. When the dynamics of the world are deterministic, that is, each action
has exactly one known outcome, then the problem can be solved through logical inference.
That is, inference rules can be used to deduce the outcome of individual actions given the
current state, and by combining inference steps one can prove that the goal is achieved.
In this manner a proof of goal achievement embeds a plan. This correspondence was at
the heart of McCarthy’s seminal paper (McCarthy, 1958) that introduced the topic of AI

MITPress NewMath.cls LATEX Book Style Size: 7x9 February 16, 2022 6:11pm

4 Chapter 16 Stochastic Planning and Lifted Inference

and viewed planning as symbolic logical inference. Since this formulation uses first-order
logic, or the closely related situation calculus, lifted logical inference can be used to solve
deterministic planning problems.

When the dynamics of the world are non-deterministic, this relationship is more com-
plex. In particular, in this chapter we focus on the stochastic planning problem where an
action can have multiple possible known outcomes that occur with known state-dependent
probabilities. Inference in this case must reason about probabilities over an exponential
number of state trajectories for some planning horizon. While lifted inference and plan-
ning may seem to be entirely different problems, analogies have been made between the
two fields in several forms (Attias, 2003; Toussaint and Storsky, 2006; Domshlak and Hoff-
mann, 2006; Lang and Toussaint, 2009; Furmston and Barber, 2010; Liu and Ihler, 2012;
Cheng et al., 2013; Lee et al., 2014, 2016; Issakkimuthu et al., 2015; van de Meent et al.,
2016). To make the connections concrete, consider a finite domain and the finite hori-
zon goal-oriented version of the BOXWORLD planning problem of Figure 17.1, e.g., two
boxes, three trucks, and four cities and a planning horizon of 10 steps where the goal is to
get some box in paris. In this case, the value of a state, V(S), corresponds to the probability
of achieving the goal, and goal achievement can be modeled as a specific form of inference
in a Bayesian network or influence diagram.

We start by considering the conformant planning problem where the intended solution
is an explicit sequence of actions. In this case, the sequence of actions is determined in
advance and action choice at the ith step does not depend on the actual state at the ith step.
For this formulation, one can build a Dynamic Bayesian Network (DBN) model where
each time slice represents the state at that time and action nodes affect the state at the next
time step, as in Figure 17.3(a). The edges in this diagram capture p(S ′|S , A), where S is
the current state, A is the current action and S ′ is the next state, and each of S , S ′, A is
represented by multiple nodes to show that they are given by a collection of predicates and
their values. Note that, since the world dynamics are known, the conditional probabilities
for all nodes in the graph are known. As a result, the goal-based planning problem where
a goal G must hold at the last step, can be modeled using standard inference. The value of
conformant planning is given by marginal MAP (where we seek a MAP value for some
variables but take expectation over the remaining variables) (Domshlak and Hoffmann,
2006; Lee et al., 2014, 2016; Cui et al., 2018):

Vconformant(S 0) = max
A0
, . . . ,max

AN−1
Pr(G|S 0, A0, . . . , AN−1)

= max
A0
, . . . ,max

AN−1

∑
S 1,S 2,...,S N

Pr(G, S 1, . . . , S N |S 0, A0, . . . , AN−1).

The optimal conformant plan is extracted using argmax instead of max in the equation.
The standard MDP formulation with a reward per time time step which is accumulated

can be handled similarly, by normalizing the cumulative reward and adding a binary node

16.1 Introduction 5

(a) (b)

Figure 16.3: Planning as inference: conditioning on start and goal state. (a) Conformant

planning – actions selected per time step without knowledge of the state. (b) An exponen-

tial size policy at each time step determines action selection. The transition depends on the

current state and policy’s actions for that state.

G whose probability of being true is a function of the normalized cumulative reward. Sev-

eral alternative formulations of planning as inference have been proposed by defining an

auxiliary distribution over finite trajectories which captures utility weighted probability

distribution over the trajectories (Toussaint and Storsky, 2006; Furmston and Barber, 2010;

Liu and Ihler, 2012; Cheng et al., 2013; van de Meent et al., 2016) and related formula-

tions have been used in reinforcement learning (Levine, 2018). While the details vary, the

common theme among these approaches is that the planning objective is equivalent to cal-

culating the partition function (or “probability of evidence”) in the resulting distribution.

This achieves the same effect as adding a node G that depends on the cumulative reward.

To simplify the discussion, we continue the presentation with the simple goal based for-

mulation.

The same problem can be viewed from a Bayesian perspective, treating actions as ran-

dom variables with an uninformative prior. In this case we can use

Pr(G|S 0, A0, . . . , AN−1) =
Pr(A0, . . . , AN−1|G, S 0)Pr(G|S 0)

Pr(A0, . . . , AN−1|S 0)
.

to observe that Attias (2003); Toussaint and Storsky (2006); Lang and Toussaint (2009)

argmaxA0
, . . . ,max

AN−1

Pr(G|S 0, A0, . . . , AN−1) = argmaxA0
, . . . ,max

AN−1

Pr(A0, . . . , AN−1|G, S 0)

and therefore one can alternatively maximize the probability conditioned on G.

However, linear plans, as the ones produced by the conformant setting, are not optimal

for probabilistic planning. In particular, if we are to optimize goal achievement then we

must allow the actions to depend on the state they are taken in. That is, the action in

the second step is taken with knowledge of the probabilistic outcome of the first action,

which is not known in advance. We can achieve this by duplicating action nodes, with a

copy for each possible value of the state variables, as illustrated in Figure 17.3(b). This

MITPress NewMath.cls LATEX Book Style Size: 7x9 February 16, 2022 6:11pm

6 Chapter 16 Stochastic Planning and Lifted Inference

represents a separate policy associated with each horizon depth which is required because
finite horizon problems have non-stationary optimal policies. In this case, state transitions
depend on the identity of the current state and the action variables associated with that
state. The corresponding inference problem can be written as follows:

V(S 0) = max
A0(S 0)

, . . . , max
AN−1(S N−1)

Pr(G|S 0, A0(S 0), . . . , AN−1(S N − 1)). (16.1)

However, the number of random variables in this formulation is prohibitively large since
we need the number of original action variables to be multiplied by the size of the state
space.

Alternatively, the same desideratum, optimizing actions with knowledge of the previous
state, can be achieved without duplicating variables in the equivalent formulation

V(S 0) = max
A0

∑
S 1

Pr(S 1|S 0, A0) max
A1

∑
S 2

Pr(S 2|S 1, A1) . . .

max
AN−2

∑
S N−1

Pr(S N−1|S N−2, AN−2) max
AN−1

∑
S N

Pr(S N |S N−1, AN−1)Pr(G|S n). (16.2)

In fact, this formulation is exactly the same as the finite horizon application of the value
iteration (VI) algorithm for (goal-based) Markov Decision Processes (MDP) which is the
standard formulation for sequential decision making in stochastic environments. The stan-
dard formulation abstracts this by setting

V0(S) = Pr(G|S)

Vk+1(S) = max
A

∑
S ′

Pr(S ′|S , A)Vk(S ′)︸ ︷︷ ︸
Q(S ,A)

. (16.3)

The optimal policy (at S 0) can be obtained as before by recording the argmax values. In
terms of probabilistic inference, the problem is no longer a marginal MAP problem because
summation and maximization steps are constrained in their interleaved order. But it can
be seen as a natural extension of such inference questions with several alternating blocks
of expectation and maximization. We are not aware of an explicit study of such problems
outside the planning context.

16.1.2 Stochastic Planning and Generalized Lifted Inference
Given that planning can be seen as an inference problem, one can try to apply ideas of lifted
inference to planning. Taking the motivating example from Figure 17.1, let us specialize
the reward to a ground atomic goal G equivalent to BIn(b∗, paris) for constants b∗ and
paris. Then we can query maxA Pr(BIn(b∗, paris)|s0, A) to compute V(S 0 = s0) where s0

is the concrete value of the current state.
Given that Figure 17.1 implies a complex relational specification of the transition prob-

abilities, lifted inference techniques are especially well-placed to attempt to exploit the

MITPress NewMath.cls LATEX Book Style Size: 7x9 February 16, 2022 6:11pm

16.1 Introduction 7

structure of this query to perform inference in aggregate and thus avoid redundant com-
putations. However, we emphasize that, even if lifted inference is used, this is a standard
query in the graphical model where evidence constrains the value of some nodes, and the
solution is a single number representing the corresponding probability (together with a
MAP assignment to variables).

However, Eq 17.3 suggests an explicit additional structure for the planning problem. In
particular, the intermediate expressions Vk(S) include the values (the probability of reach-
ing the goal in k steps) for all possible concrete values of S . Similarly, the final result
VN(S) includes the values for all possible start states. In addition, as in our running ex-
ample we can consider more abstract rewards. This suggests a first generalization of the
standard setup in lifted inference. Instead of asking about a ground goal Pr(BIn(b∗, paris))
and expecting a single number as a response, we can abstract the setup in two ways: first,
we can ask about more general conditions such as Pr(∃B,BIn(B, paris)) and second we can
expect to get a structured result that specifies the corresponding probability for every con-
crete state in the world. If we had two box instances b1, b2 and m truck instances t1, . . . , tm,
the answer for V1(S), i.e., the value for the goal based formulation with horizon one, might
take the form:

if (BIn(b1, paris) ∨ BIn(b2, paris))
then V1(S) = 10

else if ((TIn(t1, paris)∧On(b1, t1))∨. . .∨(TIn(tm, paris)∧On(b2, tm)))
then V1(S) = 9

else V1(S) = 0.

The significance of this is that the question can have a more general form and that the
answer solves many problems simultaneously, providing the response as a case analysis
depending on some properties of the state. We refer to this reasoning as inference with
generalized queries and answers. In this context, the goal of lifted inference will be to
calculate a structured form of the reply directly.

A second extension arises from the setup of generalized queries. The standard form for
lifted inference is to completely specify the domain in advance. This means providing the
number of objects and their properties, and that the response to the query is calculated only
for this specific domain instantiation. However, inspecting the solution in the previous
paragraph it is obvious that we can at least hope to do better. The same solution can be
described more compactly as

if (∃B,BIn(B, paris))
then V1(S) = 10

else if (∃B,∃T, (TIn(T, paris)∧On(B,T))
then V1(S) = 9

else V1(S) = 0.

MITPress NewMath.cls LATEX Book Style Size: 7x9 February 16, 2022 6:11pm

8 Chapter 16 Stochastic Planning and Lifted Inference

Arriving at such a solution requires us to allow open domain reasoning over all potential
objects (rather than grounding them, which is impossible in open domains), and to extend
ideas of lifted inference to exploit quantifiers and their structure. Following through with
this idea, we can arrive at a domain-size independent value function and policy as the one
shown in Figure 17.2. In this context, the goal of lifted inference will be to calculate
an abstracted form of the reply directly. We call this problem inference with generalized
models. As we describe in this chapter, SDP algorithms are able to perform this type of
inference.

The previous example had enough structure and a special query that allowed the solution
to be specified without any knowledge of the concrete problem instance. This property is
not always possible. For example, consider a setting where we get one unit of reward for
every box in paris:

∑
B:Box [if (BIn(B, paris)) then 1 else 0]. In addition, consider the case

where, after the agent takes their action, any box which is not on a truck disappears with
probability 0.2. In this case, we can still potentially calculate an abstract solution, but it
requires access to more complex properties of the state, and in some cases the domain size
(number of objects) in the state. For our example this gives:

Let n = (#B,BIn(B, paris))
if (∃B,∃T, (TIn(T, paris)∧On(B,T))

then V1(S) = n ∗ 8 + 7.2
else V1(S) = n ∗ 8.

Here we have introduced a new notation for count expressions where, for example, (#B,

BIn(B, paris)) counts the number of boxes in Paris in the current state. To see this result
note that any existing box in Paris disappears 20% of the time and that a box on a truck is
successfully unloaded 90% of the time but remains and does not disappear only in 80% of
possible futures leading to the value 7.2. This is reminiscent of the type of expressions that
arise in existing lifted inference problems and solutions. Typical solutions to such problems
involve parameterized expressions over the domain (e.g., counting, summation, etc.), and
critically do not always require closed-domain reasoning (e.g., a priori knowledge of the
number of boxes). They are therefore suitable for inference with generalized models. Some
work on SDP has approached lifted inference for problems with this level of complexity,
including exogenous activities (the disappearing boxes) and additive rewards. But, as we
describe in more detail, the solutions for these cases are much less well understood and
developed.

To recap, our example illustrates that stochastic planning potentially enables abstract
solutions that might be amenable to lifted computations. SDP solutions for planning prob-
lems have focused on the computational advantages arising from these expressive gener-
alizations. At the same time, the focus in SDP algorithms has largely been on problems
where the solution is completely independent of domain size and does not require numer-
ical properties of the state. These algorithms have thus skirted some of the computational

MITPress NewMath.cls LATEX Book Style Size: 7x9 February 16, 2022 6:11pm

16.2 Preliminaries 9

issues that are typically tackled in lifted inference. It is the combination of these aspects, as
illustrated in the last example, which we call generalized lifted inference. As the discus-
sion suggests, generalized lifted inference is still very much an open problem. In addition
to providing a survey of existing SDP algorithms, the goal of this chapter is to highlight
the opportunities and challenges in this exciting area of research.

16.2 Preliminaries

This section provides a formal description of the representation language, the relational
planning problem, and the description of the running example in this context.

16.2.1 Relational Expressions and their Calculus of Operations
The computation of SDP algorithms is facilitated by a representation that enables compact
specification of functions over world states. Several such representations have been devised
and used. In this chapter we chose to abstract away some of those details and focus on a
simple language of relational expressions. This is closest to the GFODD representation
of Joshi et al. (2011, 2013), but it resembles the case notation of Boutilier et al. (2001);
Sanner and Boutilier (2009).

Syntax. We assume familiarity with basic concepts and notation in first-order logic (FOL)
(Lloyd, 1987; Russell and Norvig, 1995; Chang and Keisler, 1990). Relational expressions
are similar to expressions in FOL. They are defined relative to a relational signature, with a
finite set of predicates p1, p2, . . . , pn each with an associated arity (number of arguments),
a countable set of variables x1, x2, . . ., and a set of constants c1, c2, . . . , cm. We do not
allow function symbols other than constants (that is, functions with arity ≥ 1). A term is a
variable (often denoted in uppercase) or constant (often denoted in lowercase) and an atom
is either an equality between two terms or a predicate with an appropriate list of terms as
arguments. Intuitively, a term refers to an object in the world of interest and an atom is a
property which is either true or false.

We illustrate relational expressions informally by some examples. In FOL we can con-
sider open formulas that have unbound variables. For example, the atom color(X,Y) is such
a formula and its truth value depends on the assignment of X and Y to objects in the world.
To simplify the discussion, we assume for this example that arguments are typed (or sorted)
and X ranges over “objects” and Y over “colors”. We can then quantify over these variables
to get a sentence which will be evaluated to a truth value in any concrete possible world.
For example, we can write [∃Y,∀X, color(X,Y)] expressing the statement that there is a
color associated with all objects. Generalized expressions allow for more general open for-
mulas that evaluate to numerical values. For example, E1 = [if color(X,Y) then 1 else 0] is
similar to the previous logical expression but E2 = [if color(X,Y) then 0.3 else 0.5] returns
non-binary values.

MITPress NewMath.cls LATEX Book Style Size: 7x9 February 16, 2022 6:11pm

10 Chapter 16 Stochastic Planning and Lifted Inference

Quantifiers from logic are replaced with aggregation operators that combine numeri-
cal values and provide a generalization of the logical constructs. In particular, when the
open formula is restricted to values 0 and 1, the operators max and min simulate existen-
tial and universal quantification. Thus, [maxY ,minX , if color(X,Y) then 1 else 0] is equiv-
alent to the logical sentence [∃Y,∀X, color(X,Y)] given above. But we can allow for other
types of aggregations. For example, [maxY , sumX , if color(X,Y) then 1 else 0] evaluates
to the largest number of objects associated with one color, and the expression [sumX ,minY ,

if color(X,Y) then 0 else 1] evaluates to the number of objects that have no color associa-
tion. In this manner, a generalized expression represents a function from possible worlds
to numerical values and, as illustrated, can capture interesting properties of the state.

Relational expressions are also related to work in statistical relational learning (Richard-
son and Domingos, 2006; Raedt et al., 2007; Van den Broeck et al., 2011). For example,
if the open expression E2 given above captures probability of ground facts for the pred-
icate color() and the ground facts are mutually independent then [productX , productY , if
color(X,Y) then 0.3 else 0.5] captures the joint probability for all facts for color(). Of
course, the open formulas in logic can include more than one atom and similarly expres-
sions can be more involved.

In the following we will drop the cumbersome if-then-else notation and instead will
assume a simpler notation with a set of mutually exclusive conditions which we refer
to as cases. In particular, an expression includes a set of mutually exclusive open for-
mulas in FOL (without any quantifiers or aggregators) denoted c1, . . . , ck associated with
corresponding numerical values v1, . . . , vk. The list of cases refers to a finite set of vari-
ables X1, . . . , Xm. A generalized expression is given by a list of aggregation operators
and their variables and the list of cases [aggX1 , aggX2 , . . . , aggXm [c1 : v1, . . . , ck : vk]] so
that the last expression is canonically represented as [productX , productY , [color(X,Y) :
0.3;¬color(X,Y) : 0.5]].

Semantics. The semantics of expressions is defined inductively exactly as in first order
logic and we skip the formal definition. As usual, an expression is evaluated in an inter-
pretation also known as a possible world. In our context, an interpretation specifies (1)
a finite set of n domain elements also known as objects, (2) a mapping of constants to
domain elements, and (3) the truth values of all the predicates over tuples of domain el-
ements of appropriate size to match the arity of the predicate. Now, given an expression
B = (aggX , f (X)), an interpretation I, and a substitution ζ of variables in X to objects in I,
one can identify the case ci which is true for this substitution. Exactly one such case exists
since the cases are mutually exclusive and exhaustive. Therefore, the value associated with
ζ is vi. These values are then aggregated using the aggregation operators. For example,
consider again the expression [productX , productY , [color(X,Y) : 0.3;¬color(X,Y) : 0.5]]
and an interpretation I with objects a, b and where a is associated with colors black and

MITPress NewMath.cls LATEX Book Style Size: 7x9 February 16, 2022 6:11pm

16.2 Preliminaries 11

white and b is associated with color black. In this case we have exactly 4 substitutions
evaluating to 0.3, 0.3, 0.5, 0.3. Then the final value is 0.33 · 0.5.

Operations over expressions. Any binary operation op over real values can be generalized
to open and closed expressions in a natural way. If f1 and f2 are two closed expressions,
f1 op f2 represents the function which maps each interpretation w to f1(w) op f2(w). This
provides a definition but not an implementation of binary operations over expressions. For
implementation, the work in Joshi et al. (2011) showed that if the binary operation is safe,
i.e., it distributes with respect to all aggregation operators, then there is a simple algorithm
(the Apply procedure) implementing the binary operation over expressions. For example,
+ is safe w.r.t. max aggregation, and it is easy to see that (maxX f (X)) + (maxX g(X))
= maxX maxY f (X) + g(Y), and the open formula portion of the result can be calculated
directly from the open expressions f (X) and g(Y). Note that we need to standardize the
expressions apart, as in the renaming of g(X) to g(Y) for such operations. When f (x) and
g(y) are open relational expressions the result can be computed through a cross product of
the cases. For example,

[max
X
,min

Y
[color(X,Y) : 3;¬color(X,Y) : 5]] ⊕ [max

X
, [box(X) : 1;¬box(X) : 2]]

= [max
Z
,max

X
,min

Y
[color(X,Y) ∧ box(Z) : 4;¬color(X,Y) ∧ box(Z) : 6;

color(X,Y) ∧ ¬box(Z) : 5;¬color(X,Y) ∧ ¬box(Z) : 7]]

When the binary operation is not safe then this procedure fails, but in some cases, operation-
specific algorithms can be used for such combinations.1

As will become clear later, to implement SDP we need the binary operations ⊕, ⊗, max
and the aggregation includes max in addition to aggregation in the reward function. Since
⊕, ⊗, max are safe with respect to max,min aggregation one can provide a complete solu-
tion when the reward is restricted to have max,min aggregation. When this is not the case,
for example when using sum aggregation in the reward function, one requires a special
algorithm for the combination. Further details are provided in Joshi et al. (2011, 2013).

Summary. Relational expressions are closest to the GFODD representation of Joshi et al.
(2011, 2013). Every case ci in a relational expression corresponds to a path or set of paths
in the GFODD, all of which reach the same leaf in the graphical representation of the
GFODD. GFODDs are potentially more compact than relational expressions since paths
share common subexpressions, which can lead to an exponential reduction in size. On
the other hand, GFODDs require special algorithms for their manipulation. Relational

1 For example, a product of expressions that include only product aggregations, which is not safe, can be ob-
tained by scaling the result with a number that depends on domain size, and [

∏
x1

∏
x2

∏
x3 f (x1, x2, x3)] ⊗

[
∏

y1

∏
y2 g(y1, y2)] is euqal to [

∏
x1

∏
x2

∏
x3 [f (x1, x2, x3) × g(x1, x2)1/n]] when the domain has n objects.

MITPress NewMath.cls LATEX Book Style Size: 7x9 February 16, 2022 6:11pm

12 Chapter 16 Stochastic Planning and Lifted Inference

expressions are also similar to the case notation of Boutilier et al. (2001); Sanner and
Boutilier (2009). However, in contrast with that representation, cases are not allowed to
include any quantifiers and instead quantifiers and general aggregators are globally applied
over the cases, as in standard quantified normal form in logic.

16.2.2 Relational MDPs
In this section we define MDPs, starting with the basic case with enumerated state and
action spaces, and then providing the relational representation.

MDP Preliminaries. We assume familiarity with basic notions of Markov Decision Pro-
cesses (MDPs) (Russell and Norvig, 2009; Puterman, 1994). Briefly, a MDP is a tuple
〈S , A, P,R, γ〉 given by a set of states S , set of actions A, transition probability Pr(S ′|S , A),
immediate reward function R(S) and discount factor γ < 1. The solution of a MDP is a
policy π that maximizes the expected discounted total reward obtained by following that
policy starting from any state. The Value Iteration algorithm (VI) informally introduced in
Eq 17.3, calculates the optimal value function by iteratively performing Bellman backups,
Vk+1 = T [Vk], defined for each state s ∈ S as,

Vk+1(s) = T [Vk](s)← max
a∈A
{R(s) + γ

∑
s′∈S

Pr(s′|s, a)Vk(s′)}. (16.4)

Unlike Eq 17.3, which was goal-oriented and had only a single reward at the terminal
horizon, here we allow the reward R(S) to accumulate at all time steps as typically allowed
in MDPs. If we iterate the update until convergence, we get the optimal infinite horizon
value function typically denoted by V∗ and optimal stationary policy π∗. For finite horizon
problems, which is the topic of this chapter, we simply stop the iterations at a specific k.
In general, the optimal policy for the finite horizon case is not stationary, that is, we might
make different choice in the same state depending on how close we are to the horizon.

Logical Notation for Relational MDPs (RMDPs). RMDPs are simply MDPs where the
states and actions are described in a function-free first order logical language. A state
corresponds to an interpretation over the corresponding logical signature, and actions are
transitions between such interpretations.

A relational planning problem is specified by providing the logical signature, the start
state, the transitions as controlled by actions, and the reward function. As mentioned above,
one of the advantages of relational SDP algorithms is that they are intended to produce an
abstracted form of the value function and policy that does not require specifying the start
state or even the number of objects n in the interpretation at planning time. This yields
policies that generalize across domain sizes. We therefore need to explain how one can
use logical notation to represent the transition model and reward function in a manner that
does not depend on domain size.

Two types of transition models have been considered in the literature:

MITPress NewMath.cls LATEX Book Style Size: 7x9 February 16, 2022 6:11pm

16.2 Preliminaries 13

• Endogenous Branching Transitions: In the basic form, state transitions have limited
stochastic branching due to a finite number of action outcomes. The agent has a set of
action types {A} each parametrized with a tuple of objects to yield an action template
A(X) and a concrete ground action A(x) (e.g. template unload(B,T) and concrete action
unload(box23, truck1)). Each agent action has a finite number of action variants A j(X)
(e.g., action success vs. action failure), and when the user performs A(X) in state s one
of the variants is chosen randomly using the state-dependent action choice distribution
Pr(A j(X)|A(X)). To simplify the presentation we follow Wang et al. (2008a); Joshi et al.
(2011) and require that Pr(A j(X)|A(X)) are given by open expressions, i.e., they have
no aggregations and cannot introduce new variables. For example, in BOXWORLD, the
agent action unload(B,T,C) has success outcome unloadS(B,T,C) and failure outcome
unloadF(B,T,C) with action outcome distribution as follows:

P(unloadS(B,T,C)|unload(B,T,C)) = [(On(B,T) ∧ TIn(T,C)) : .9;¬ : 0]

P(unloadF(B,T,C)|unload(B,T,C)) = [(On(B,T) ∧ TIn(T,C)) : .1;¬ : 1] (16.5)

where, to simplify the notation, the last case is shortened as ¬ to denote that it com-
plements previous cases. This provides the distribution over deterministic outcomes of
actions.

The deterministic action dynamics are specified by providing an open expression, captur-
ing successor state axioms (Reiter, 2001), for each variant A j(X) and predicate template
p′(Y). Following Wang et al. (2008a) we call these expressions TVDs, standing for truth
value diagrams. The corresponding TVD, T (A j(X), p′(Y)), is an open expression that
specifies the truth value of p′(Y) in the next state (following standard practice we use
prime to denote that the predicate refers to the next state) when A j(X) has been executed
in the current state. The arguments X and Y are intentionally different logical variables
as this allows us to specify the truth value of all instances of p′(Y) simultaneously. Sim-
ilar to the choice probabilities we follow Wang et al. (2008a); Joshi et al. (2011) and
assume that TVDs T (A j(X), p′(Y)) have no aggregations and cannot introduce new vari-
ables. This implies that the regression and product terms in the SDP algorithm of the
next section do not change the aggregation function, thereby enabling analysis of the
algorithm. Continuing our BOXWORLD example, we define the TVD for BIn′(B,C) for

MITPress NewMath.cls LATEX Book Style Size: 7x9 February 16, 2022 6:11pm

14 Chapter 16 Stochastic Planning and Lifted Inference

unloadS(B1,T1,C1) and unloadF(B1,T1,C1) as follows:

BIn′(B,C) ≡T (unloadS(B1,T1,C1),BIn′(B,C))

≡[(BIn(B,C)∨

((B1 = B) ∧ (C1 = C) ∧ On(B1,T1) ∧ TIn(T1,C1))) : 1;¬ : 0]

BIn′(B,C) ≡T (unloadF(B1,T1,C1),BIn′(B,C))

≡[BIn(B,C) : 1;¬ : 0] (16.6)

Note that each TVD has exactly two cases, one leading to the outcome 1 and the other
leading to the outcome 0. Our algorithm below will use these cases individually. Here we
remark that since the next state (primed) only depends on the previous state (unprimed),
we are effectively logically encoding the Markov assumption of MDPs.

• Exogenous Branching Transitions: The more complex form combines the endogenous
model with an exogenous stochastic process that affects ground atoms independently. As
a simple example in our BOXWORLD domain, we might imagine that with some small
probability, each box B in a city C (BIn(B,C)) may independently randomly disappear
(falsify BIn(B,C)) owing to issues with theft or improper routing — such an outcome is
independent of the agent’s own action. Another more complicated example could be an
inventory control problem where customer arrival at shops (and corresponding consump-
tion of goods) follows an independent stochastic model. Such exogenous transitions can
be formalized in a number of ways (Sanner, 2008; Sanner and Boutilier, 2007; Joshi
et al., 2013); we do not aim to commit to a particular representation in this chapter,
but rather to mention its possibility and the computational consequences of such general
representations.

Having completed our discussion of RMDP transitions, we now proceed to define the
reward R(S , A), which can be any function of the state and action, specified by a relational
expression. Our running example with existentially quantified reward is given by

[max
B

[BIn(B, paris) : 10;¬BIn(B, paris) : 0]] (16.7)

but we will also consider additive reward as in

[
∑

B

[BIn(B, paris) : 10;¬BIn(B, paris) : 0]]. (16.8)

16.3 Symbolic Dynamic Programming

The SDP algorithm is a symbolic implementation of the value iteration algorithm. The
algorithm repeatedly applies so-called decision-theoretic regression which is equivalent to
one iteration of the value iteration algorithm.

MITPress NewMath.cls LATEX Book Style Size: 7x9 February 16, 2022 6:11pm

16.3 Symbolic Dynamic Programming 15

As input to SDP we get closed relational expressions for Vk and R. In addition, assuming
that we are using the Endogenous Branching Transition model of the previous section,
we get open expressions for the probabilistic choice of actions Pr(A j(X)|A(X)) and for the
dynamics of deterministic action variants as TVDs. The corresponding expressions for the
running example are given respectively in Eq (17.7), Eq (17.5) and Eq (17.6).

The following SDP algorithm of Joshi et al. (2011) modifies the earlier SDP algorithm
of Boutilier et al. (2001) and implements Eq (17.4) using the following 4 steps:

i. Regression: The k step-to-go value function Vk is regressed over every deterministic
variant A j(X) of every action A(X) to produce Regr(Vk, A j(X)). Regression is concep-
tually similar to goal regression in deterministic planning. That is, we identify condi-
tions that need to occur before the action is taken in order to arrive at other conditions
(for example the goal) after the action. However, here we need to regress all the condi-
tions in the relational expression capturing the value function, so that we must regress
each case ci of Vk separately. This can be done efficiently by replacing every atom in
each ci by its corresponding positive or negated portion of the TVD without chang-
ing the aggregation function. Once this substitution is done, logical simplification (at
the propositional level) can be used to compress the cases by removing contradictory
cases and simplifying the formulas. Applying this to regress unloadS(B1,T1,C1) over
the reward function given by Eq (17.7) we get:

[max
B

[(BIn(B, paris)∨

((B1 = B) ∧ (C1 = paris) ∧ On(B1,T1) ∧ TIn(T1,C1))) : 10;¬ : 0]]

and regressing unloadF(B1,T1,C1) yields

[max
B

[BIn(B, paris) : 10;¬ : 0]]

This illustrates the utility of compiling the transition model into the TVDs which allow
for a simple implementation of deterministic regression.

ii. Add Action Variants: The Q-function QA(X)
k = R ⊕ [γ ⊗ ⊕ j(Pr(A j(X)) ⊗ Regr(Vk,

A j(X)))] for each action A(X) is generated by combining regressed diagrams using the
binary operations ⊕ and ⊗ over expressions. Recall that probability expressions do
not refer to additional variables. The multiplication can therefore be done directly on
the open formulas without changing the aggregation function. As argued by Wang
et al. (2008b), to guarantee correctness, both summation steps (⊕ j and R⊕ steps) must
standardize apart the functions before adding them.

MITPress NewMath.cls LATEX Book Style Size: 7x9 February 16, 2022 6:11pm

16 Chapter 16 Stochastic Planning and Lifted Inference

For our running example and assuming γ = 0.9, we would need to compute the fol-
lowing:

Qk
unload(B1,T1,C1)(S) =

R(S) ⊕ 0.9·

[(Regr(V0, unloadS(B1,T1,C1)) ⊗ P(unloadS(B1,T1,C1)|unload(B1,T1,C1)))⊕

(Regr(V0, unloadF(B1,T1,C1)) ⊗ P(unloadF(B1,T1,C1)|unload(B1,T1,C1)))].

We next illustrate some of these steps. The multiplication by probability expressions
can be done by cross product of cases and simplification. For unloadS this yields

[max
B

[((BIn(B, paris) ∨ ((B1 = B) ∧ (C1 = paris)))

∧ On(B1,T1) ∧ TIn(T1,C1)) : 9;¬ : 0]]

and for unloadF we get

[max
B

[BIn(B, paris) ∧ (On(B1,T1) ∧ TIn(T1,C1)) : 1;

BIn(B, paris) ∧ ¬(On(B1,T1) ∧ TIn(T1,C1)) : 10;

¬ : 0]].

Note that the values here are weighted by the probability of occurrence. For example
the first case in the last equation has value 1=10*0.1 because when the preconditions
of unload hold the variant unloadF occurs with 10% probability. The addition of the
last two equations requires standardizing them apart, performing the safe operation
through cross product of cases, and simplifying. Skipping intermediate steps, this
yields

[max
B

[BIn(B, paris) : 10;

¬BIn(B, paris) ∧ (B1 = B) ∧ (C1 = paris) ∧ On(B1,T1) ∧ TIn(T1,C1) : 9;

¬ : 0]].

Multiplying by the discount factor scales the numbers in the last equation by 0.9 and
finally standardizing apart and adding the reward and simplifying (again skipping in-
termediate steps) yields

Q0
unload(B1,T1,C1)(S) =

[max
B

[BIn(B, paris) : 19;

¬BIn(B, paris) ∧ (B1 = B) ∧ (C1 = paris) ∧ On(B1,T1) ∧ TIn(T1,C1) : 8.1;

¬ : 0]].

MITPress NewMath.cls LATEX Book Style Size: 7x9 February 16, 2022 6:11pm

16.3 Symbolic Dynamic Programming 17

Intuitively, this result states that after executing a concrete stochastic unload action
with arguments (B1,T1,C1), we achieve the highest value (10 plus a discounted 0.9*10)
if a box was already in Paris, the next highest value (10 occurring with probability 0.9
and discounted by 0.9) if unloading B1 from T1 in C1 = paris, and a value of zero oth-
erwise. The main source of efficiency (or lack thereof) of SDP is the ability to perform
such operations symbolically and simplify the result into a compact expression.

iii. Object Maximization: Note that up to this point in the algorithm the action argu-
ments are still considered to be concrete arbitrary objects, (B1,T1,C1) in our example.
However, we must make sure that in each of the (unspecified and possibly infinite set
of possible) states we choose the best concrete action for that state, by specifying the
appropriate action arguments. This is handled in the current step of the algorithm.
To achieve this, we maximize over the action parameters X of QA(X)

Vk
to produce QA

Vk

for each action A(X). This implicitly obtains the value achievable by the best ground
instantiation of A(X) in each state. This step is implemented by converting action
parameters X to variables, each associated with the max aggregation operator, and
appending these operators to the head of the aggregation function. Once this is done,
further logical simplification may be possible. This occurs in our running example
where existential quantification (over B1,C1) which is constrained by equality can be
removed, and the result is:

Qunload
0 (S) =

[max
T
,max

B
[BIn(B, paris) : 19;

¬BIn(B, paris) ∧ On(B,T) ∧ TIn(T, paris) : 8.1;

¬ : 0]].

iv. Maximize over Actions: The k+1st step-to-go value function Vk+1 = maxA QA
Vk

, is
generated by combining the expressions using the binary operation max.
Concretely, for our running example, this means we would compute:

V1(S) = max(Qunload
0 (S),max(Qload

0 (S),Qdrive
0 (S))).

While we have only shown Qunload
0 (S) above, we remark that the values achievable

in each state by Qunload
0 (S) dominate or equal the values achievable by Qload

0 (S) and
Qdrive

0 (S) in the same state. Practically this implies that after simplification we obtain
the following value function:

V1(S) = Qunload
0 (S) =

[max
T
,max

B
[BIn(B, paris) : 19;

¬BIn(B, paris) ∧ On(B,T) ∧ TIn(T, paris) : 8.1;

¬ : 0]].

MITPress NewMath.cls LATEX Book Style Size: 7x9 February 16, 2022 6:11pm

18 Chapter 16 Stochastic Planning and Lifted Inference

Critically for the objectives of lifted stochastic planning, we observe that the value
function derived by SDP is indeed lifted: it holds for any number of boxes, trucks and
cities.

SDP repeats these steps to the required depth, iteratively calculating Vk. For example,
Figure 17.2 illustrates V∞ for the BOXWORLD example, which was computed by termi-
nating the SDP loop once the value function converged.

The basic SDP algorithm is an exact calculation whenever the model can be specified
using the constraints above and the reward function can be specified with max and min
aggregation (Joshi et al., 2011). This is satisfied by classical models of stochastic planning.
As illustrated, in these cases, the SDP solution conforms to our definition of generalized
lifted inference.

Extending the Scope of SDP. The algorithm above cannot handle models with more com-
plex dynamics and rewards as motivated in the introduction. In particular, prior work has
considered two important properties that appear to be relevant in many domains. The first
is additive rewards, illustrated for example, in Eq 17.8. The second property is exogenous
branching transitions illustrated above by the disappearing blocks example. These repre-
sent two different challenges for the SDP algorithm. The first is that we must handle sum
aggregation in value functions, despite the fact that this means that some of the operations
are not safe and hence require a special implementation. The second is in modeling the
exogenous branching dynamics which requires getting around potential conflicts among
such events and between such events and agent actions. The introduction illustrated the
type of solution that can be expected in such a problem where counting expressions, that
measure the number of times certain conditions hold in a state, determine the value in that
state.

To date, exact abstract solutions for problems of this form have not been obtained. The
work of Sanner and Boutilier (2007) and Sanner (2008) (Ch. 6) considered additive re-
wards and has formalized an expressive family of models with exogenous events. This
work has shown that some specific challenging domains can be handled using several al-
gorithmic ideas, but did not provide a general algorithm that is applicable across problems
in this class. The work of Joshi et al. (2013) developed a model for “service domains”
which significantly constrains the type of exogenous branching. In their model, a transition
includes an agent step whose dynamics use endogenous branching, followed by “nature’s
step” where each object (e.g., a box) experiences a random exogenous action (potentially
disappearing). Given these assumptions, they provide a generally applicable approxima-
tion algorithm as follows. Their algorithm treats agent’s actions exactly as in SDP above.
To regress nature’s actions we follow the following three steps: (1) the summation vari-
ables are first ground using a Skolem constant c, then (2) a single exogenous event centered
at c is regressed using the same machinery, and finally (3) the Skolemization is reversed

MITPress NewMath.cls LATEX Book Style Size: 7x9 February 16, 2022 6:11pm

16.3 Symbolic Dynamic Programming 19

to yield another additive value function. The complete details are beyond the scope of this
chapter. The algorithm yields a solution that avoids counting formulas and is syntactically
close to the one given by the original algorithm. Since such formulas are necessary, the
result is an approximation but it was shown to be a conservative one in that it provides
a monotonic lower bound on the true value. Therefore, this algorithm conforms to our
definition of approximate generalized lifted inference.

In our example, starting with the reward of Eq (17.8) we first replace the sum aggregation
with a scaled version of average aggregation (which is safe w.r.t. summation)

[n · avgB[BIn(B, paris) : 10;¬ : 0]]

and then ground it to get
[n · [BIn(c, paris) : 10;¬ : 0]].

The next step is to regress through the exogenous event at c. The problem where boxes dis-
appear with probability 0.2 can be cast as having two action variants where “disappearing-
block” succeeds with probability 0.2 and fails with probability 0.8. Regressing the success
variant we get the expression [0] (the zero function) and regressing the fail variant we get
[n · [BIn(c, paris) : 10;¬ : 0]]. Multiplying by the probabilities of the variants we get: [0]
and [n · [BIn(c, paris) : 8;¬ : 0]] and adding them (there are no variables to standardize
apart) we get

[n · [BIn(c, paris) : 8;¬ : 0]].

Finally lifting the last equation we get

[n · avgB[BIn(B, paris) : 8;¬BIn(B, paris) : 0]].

Next we follow with the standard steps of SDP for the agent’s action. The steps are anal-
ogous to the example of SDP given above. Considering the discussion in the introduction
(recall that in order to simplify the reasoning in this case we omitted discounting and
adding the reward) this algorithm produces

[n ·max
T
, avgB, [BIn(B, paris) : 8;

(¬BIn(B, paris) ∧ On(B,T) ∧ TIn(T, paris)) : 7.2;¬ : 0]],

which is identical to the exact expression given in the introduction. As already mentioned,
the result is not guaranteed to be exact in general. In addition, the maximization in step iv of
SDP requires some ad-hoc implementation because maximization is not safe with respect
to average aggregation.

It is clear from the above example that the main difficulty in extending SDP is due to the
interaction of the counting formulas arising from exogenous events and additive rewards
with the first-order aggregation structure inherent in the planning problem. Relational
expressions, their GFODD counterparts, and other representations that have been used to

MITPress NewMath.cls LATEX Book Style Size: 7x9 February 16, 2022 6:11pm

20 Chapter 16 Stochastic Planning and Lifted Inference

date are not able to combine these effectively. A representation that seamlessly supports
both relational expressions and operations on them along with counting expressions might
allow for more robust versions of generalized lifted inference to be realized.

16.4 Discussion and Related Work

As motivated in the introduction, SDP has explored probabilistic inference problems with
a specific form of alternating maximization and expectation blocks. The main computa-
tional advantage comes from lifting in the sense of lifted inference in standard first order
logic. Issues that arise from conditional summations over combinations random variables,
common in probabilistic lifted inference, have been touched upon but not extensively. In
cases where SDP has been shown to work it provides generalized lifted inference where
the complexity of the inference algorithm is completely independent of the domain size
(number of objects) in problem specification, and where the response to queries is either
independent of that size or can be specified parametrically. This is a desirable property
but to our knowledge it is not shared by most work on probabilistic lifted inference. The
most closely related work we are aware of is the notion of domain lifted inference (Van
den Broeck, 2011; Van den Broeck, 2013; Kazemi and Poole, 2016; Kazemi et al., 2016,
2017) also discussed in Chapter ??. Here, a model is compiled into an alternative form
parametrized by the domain D and where responses to queries can be obtained in poly-
nomial time as a function of D. The emphasis in that work is on being domain lifted
(i.e., being polynomial in domain size). Generalized lifted inference requires an algorithm
whose results can be computed once, in time independent of that size, and then reused to
evaluate the answer for specific domain sizes. This analogy also shows that SDP can be
seen as a compilation algorithm, compiling a domain model into a more accessible form
representing the value function, which can be queried efficiently. This connection provides
an interesting new perspective on both fields.

In this chapter we focused on one particular instance of SDP. Over the last 15 years
SDP has seen a significant amount of work expanding over the original algorithm by using
different representations, by using algorithms other than value iteration, and by extending
the models and algorithms to more complex settings. In addition, several “lifted” inductive
approaches that do not strictly fall within the probabilistic inference paradigm have been
developed. We review this work in the remainder of this section.

16.4.1 Deductive Lifted Stochastic Planning
As a precursor to its use in lifted stochastic planning, the term SDP originated in the propo-
sitional logical context (Boutilier et al., 1995, 1999) when it was realized that proposition-
ally structured MDP transitions (i.e., dynamic Bayesian networks (Dean and Kanazawa,
1989)) and rewards (e.g., trees that exploited context-specific independence (Boutilier
et al., 1996)) could be used to define highly compact factored MDPs; this work also real-

MITPress NewMath.cls LATEX Book Style Size: 7x9 February 16, 2022 6:11pm

16.4 Discussion and Related Work 21

ized that the factored MDP structure could be exploited for representational compactness
and computational efficiency by leveraging symbolic representations (e.g., trees) in dy-
namic programming. Two highly cited (and still used algorithms) in this area of work are
the SPUDD (Hoey et al., 1999) and APRICODD (St-Aubin et al., 2000) algorithms that
leveraged algebraic decision diagrams (ADDs) (Bahar et al., 1993) for, respectively, ex-
act and approximate solutions to factored MDPs. Recent work in this area (Lesner and
Zanuttini, 2011) shows how to perform propositional SDP directly with ground represen-
tations in PPDDL (Younes et al., 2005), and develops extensions for factored action spaces
(Raghavan et al., 2012, 2013).

Following the seminal introduction of lifted SDP (Boutilier et al., 2001), several early pa-
pers on SDP approached the problem with existential rewards with different representation
languages that enabled efficient implementations. This includes the First-order value iter-
ation (FOVIA) (Karabaev and Skvortsova, 2005; Hölldobler et al., 2006), the Relational
Bellman algorithm (ReBel) (Kersting et al., 2004), and the FODD based formulation of
(Wang et al., 2008a; Joshi and Khardon, 2008; Joshi et al., 2010).

Along this dimension two representations are closely related to the relational expres-
sion of this chapter. As mentioned above, relational expressions are an abstraction of
the GFODD representation (Joshi et al., 2011, 2013; Hescott and Khardon, 2015) which
captures expressions using a decision diagram formulation extending propositional ADDs
(Bahar et al., 1993). In particular, paths in the graphical representation of the DAG repre-
senting the GFODD correspond to the mutually exclusive conditions in expressions. The
aggregation in GFODDs and relational expressions provides significant expressive power
in modeling relational MDPs. The GFODD representation is more compact than rela-
tional expressions but requires more complex algorithms for its manipulation. The other
closely related representation is the case notation of Boutilier et al. (2001); Sanner and
Boutilier (2009). The case notation is similar to relational expressions in that we have
a set of conditions (these are mostly in a form that is mutually exclusive but not always
so) but the main difference is that quantification is done within each case separately, and
the notion of aggregation is not fully developed. First-order algebraic decision diagrams
(FOADDs) (Sanner, 2008; Sanner and Boutilier, 2009) are related to the case notation in
that they require closed formulas within diagram nodes, i.e., the quantifiers are included
within the graphical representation of the expression. The use of quantifiers inside cases
and nodes allows for an easy incorporation of off the shelf theorem provers for simplifica-
tion. Both FOADD and GFODD were used to extend SDP to capture additive rewards and
exogenous events as already discussed in the previous section. While the representations
(relational expression and GFODDs vs. case notation and FOADD) have similar expres-
sive power, the difference in aggregation makes for different algorithmic properties that are
hard to compare in general. However, the modular treatment of aggregation in GFODDs

MITPress NewMath.cls LATEX Book Style Size: 7x9 February 16, 2022 6:11pm

22 Chapter 16 Stochastic Planning and Lifted Inference

and the generic form of operations over them makes them the most flexible alternative to
date for directly manipulating the aggregated case representation used in this chapter.

The idea of SDP has also been extended in terms of the choice of planning algorithm,
as well as to the case of partially observable MDPs. Case notation and FOADDs have
been used to implement approximate linear programming (Sanner and Boutilier, 2005,
2009) and approximate policy iteration via linear programming (Sanner and Boutilier,
2006) and FODDs have been used to implement relational policy iteration (Wang and
Khardon, 2007). GFODDs have also been used for open world reasoning and applied in
a robotic context (Joshi et al., 2012). The work of Wang and Khardon (2010) and Sanner
and Kersting (2010) explore SDP solutions, with GFODDs and case notation respectively,
to relational partially observable MDPs (POMDPs) where the problem is conceptually
and algorithmically much more complex. Related work in POMDPs has not explicitly
addressed SDP, but rather has implicitly addressed lifted solutions through the identifi-
cation of (and abstraction over) symmetries in applications of dynamic programming for
POMDPs (Doshi and Roy, 2008; Kang and Kim, 2012).

Finally, the work of Cui et al. (2019, 2018) develops a solution for MDPs and Marginal
MAP problems by combining a symbolic variant of lifted belief propagation, as discussed
in Chapter??, with gradient based search.

16.4.2 Inductive Lifted Stochastic Planning
Inductive methods can be seen to be orthogonal to the inference algorithms in that they
mostly do not require a model and do not reason about that model. However, the overall
objective of producing lifted value functions and policies is shared with the previously
discussed deductive approaches. We therefore review these here for completeness. As we
discuss, it is also possible to combine the inductive and deductive approaches in several
ways.

The basic inductive approaches learn a policy directly from a teacher, sometimes known
as behavioral cloning. The work of Khardon (1999b,a); Yoon et al. (2002) provided learn-
ing algorithms for relational policies with theoretical and empirical evidence for their suc-
cess. Relational policies and value functions were also explored in reinforcement learning.
This was done with pure reinforcement learning using relational regression trees to learn
a Q-function (Dzeroski et al., 2001), combining this with supervised guidance (Driessens
and Dzeroski, 2002), or using Gaussian processes and graph kernels over relational struc-
tures to learn a Q-function (Gartner et al., 2006). A more recent approach uses functional
gradient boosting with lifted regression trees to learn lifted policy structure in a policy
gradient algorithm (Kersting and Driessens, 2008).

Finally, several approaches combine inductive and deductive elements. The work of
Gretton and Thiebaux (2004) combines inductive logic programming with first-order decision-
theoretic regression, by first using deductive methods (decision theoretic regression) to
generate candidate policy structure, and then learning using this structure as features. The

MITPress NewMath.cls LATEX Book Style Size: 7x9 February 16, 2022 6:11pm

16.5 Conclusions 23

work of Yoon et al. (2006) shows how one can implement relational approximate policy
iteration where policy improvement steps are performed by learning the intended policy
from generated trajectories instead of direct calculation. Although these approaches are
partially deductive they do not share the common theme of this chapter relating planning
and inference in relational contexts.

16.5 Conclusions

This chapter provides a review of SDP methods, that perform abstract reasoning for stochas-
tic planning, from the viewpoint of probabilistic inference. We have illustrated how the
planning problem and the inference problem are related. Specifically, finite horizon op-
timization in MDPs is related to an inference problem with alternating maximization and
expectation blocks and is therefore more complex than marginal MAP queries that have
been studied in the literature. This analogy is valid both at the propositional and rela-
tional levels and it suggests a new line of challenges for inference problems in discrete
domains.We have also identified the opportunity for generalized lifted inference, where
the algorithm and its solution are agnostic of the domain instance and its size and are ef-
ficient regardless of this size. We have shown that under some conditions SDP algorithms
provide generalized lifted inference. In more complex models, especially ones with addi-
tive rewards and exogenous events, SDP algorithms are yet to mature into an effective and
widely applicable inference scheme. On the other hand, the challenges faced in such prob-
lems are exactly the ones typically seen in standard lifted inference problems. Therefore,
exploring generalized lifted inference more abstractly has the potential to lead to advances
in both areas.

Acknowledgments

This work was partly supported by NSF grants 0964457, 1616280 and 2002393. The work
was partly done while RK was at Tufts University and SS was at Oregon State University.

MITPress NewMath.cls LATEX Book Style Size: 7x9 February 16, 2022 6:11pm

24 Chapter 16 Stochastic Planning and Lifted Inference

MITPress NewMath.cls LATEX Book Style Size: 7x9 February 16, 2022 6:11pm

Bibliography

Attias, H. (2003). Planning by probabilistic inference. In Proceedings of the Ninth International
Workshop on Artificial Intelligence and Statistics, AISTATS 2003, Key West, Florida, USA, January
3-6, 2003. 4, 5

Bahar, R. I., Frohm, E., Gaona, C., Hachtel, G., Macii, E., Pardo, A., and Somenzi, F. (1993).
Algebraic Decision Diagrams and their applications. In IEEE /ACM International Conference on
CAD, 428–432. 21

Boutilier, C., Dean, T., and Hanks, S. (1995). Planning under uncertainty: Structural assumptions
and computational leverage. In Third European Workshop on Planning. Assisi, Italy. 20

Boutilier, C., Dean, T., and Hanks, S. (1999). Decision-theoretic planning: Structural assumptions
and computational leverage. Journal of Artificial Intelligence Research (JAIR), 11:1–94. 20

Boutilier, C., Friedman, N., Goldszmidt, M., and Koller, D. (1996). Context-specific independence in
Bayesian networks. In Proceedings of the 12th Conference on Uncertainty in Artificial Intelligence
(UAI), 115–123. 20

Boutilier, C., Reiter, R., and Price, B. (2001). Symbolic dynamic programming for first-order MDPs.
In International Joint Conference on Artificial Intelligence (IJCAI-01), 690–697. Seattle. 3, 2, 9, 12,
15, 21

Chang, C. and Keisler, J. (1990). Model Theory. Elsevier, Amsterdam, Holland. 9

Cheng, Q., Liu, Q., Chen, F., and Ihler, A. T. (2013). Variational planning for graph-based mdps.
2976–2984. 4, 5

Cui, H., Keller, T., and Khardon, R. (2019). Stochastic planning with lifted symbolic trajectory
optimization. In ICAPS. 22

Cui, H., Marinescu, R., and Khardon, R. (2018). From stochastic planning to marginal MAP. In
NIPS, 3085–3095. 4, 22

Dean, T. and Kanazawa, K. (1989). A Model for Reasoning about Persistence and Causation. Com-
putational Intelligence, 5:142–150. 20

Domshlak, C. and Hoffmann, J. (2006). Fast probabilistic planning through weighted model count-
ing. In Proceedings of the International Conference on Automated Planning and Scheduling. 4

Doshi, F. and Roy, N. (2008). The permutable POMDP: Fast solutions to POMDPs for preference
elicitation. In Proceedings of the Seventh International Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2008). Estoril, Portugal. 22

MITPress NewMath.cls LATEX Book Style Size: 7x9 February 16, 2022 6:11pm

26 Bibliography

Driessens, K. and Dzeroski, S. (2002). Integrating experimentation and guidance in relational rein-
forcement learning. In International Conference on Machine Learning (ICML), 115–122. 22

Dzeroski, S., DeRaedt, L., and Driessens, K. (2001). Relational reinforcement learning. Machine
Learning Journal (MLJ), 43:7–52. 22

Fikes, R. E. and Nilsson, N. J. (1971). STRIPS: A new approach to the application of theorem
proving to problem solving. AI Journal, 2:189–208. 3, 2

Furmston, T. and Barber, D. (2010). Variational methods for reinforcement learning. In Proceedings
of the International Conference on Artificial Intelligence and Statistics, AISTATS, 241–248. 4, 5

Gartner, T., Driessens, K., and Ramon, J. (2006). Graph kernels and gaussian processes for relational
reinforcement learning. Machine Learning Journal (MLJ), 64:91–119. 22

Gretton, C. and Thiebaux, S. (2004). Exploiting first-order regression in inductive policy selection.
In Uncertainty in Artificial Intelligence (UAI-04), 217–225. Banff, Canada. 22

Hescott, B. and Khardon, R. (2015). The complexity of reasoning with FODD and GFODD. Artificial
Intelligence. 21

Hoey, J., St-Aubin, R., Hu, A., and Boutilier, C. (1999). SPUDD: Stochastic planning using decision
diagrams. In Uncertainty in Artificial Intelligence (UAI-99), 279–288. Stockholm. 21

Hölldobler, S., Karabaev, E., and Skvortsova, O. (2006). FluCaP: A heuristic search planner for
first-order mdps. Journal of Artificial Intelligence Research (JAIR), 27:419–439. 21

Issakkimuthu, M., Fern, A., Khardon, R., Tadepalli, P., and Xue, S. (2015). Hindsight optimization
for probabilistic planning with factored actions. In ICAPS. 4

Joshi, S., Kersting, K., and Khardon, R. (2010). Self-taught decision theoretic planning with first
order decision diagrams. In Proc. of ICAPS, 89–96. 21

Joshi, S., Kersting, K., and Khardon, R. (2011). Decision theoretic planning with generalized first
order decision diagrams. AIJ, 175:2198–2222. 9, 11, 13, 15, 18, 21

Joshi, S. and Khardon, R. (2008). Stochastic planning with first order decision diagrams. In Proc. of
ICAPS, 156–163. 21

Joshi, S., Khardon, R., Raghavan, A., Tadepalli, P., and Fern, A. (2013). Solving relational MDPs
with exogenous events and additive rewards. In ECML. 9, 11, 14, 18, 21

Joshi, S., Schermerhorn, P. W., Khardon, R., and Scheutz, M. (2012). Abstract planning for reactive
robots. In ICRA, 4379–4384. 22

Kang, B. K. and Kim, K. (2012). Exploiting symmetries for single- and multi-agent partially observ-
able stochastic domains. Artif. Intell., 182-183:32–57. 22

Karabaev, E. and Skvortsova, O. (2005). A heuristic search algorithm for solving first-order MDPs.
In Uncertainty in Artificial Intelligence (UAI-05), 292–299. Edinburgh, Scotland. 21

Kazemi, S. M., Kimmig, A., Broeck, G. V. d., and Poole, D. (2017). Domain recursion for lifted
inference with existential quantifiers. In Workshop on Statistical Relational Artificial Intelligence
(StaRAI). 20

Kazemi, S. M., Kimmig, A., Van den Broeck, G., and Poole, D. (2016). New liftable classes for first-
order probabilistic inference. In Advances in Neural Information Processing Systems, 3117–3125.
20

MITPress NewMath.cls LATEX Book Style Size: 7x9 February 16, 2022 6:11pm

Bibliography 27

Kazemi, S. M. and Poole, D. (2016). Knowledge compilation for lifted probabilistic inference:
Compiling to a low-level language. In Principles of Knowledge Representation and Reasoning (KR).
20

Kersting, K. and Driessens, K. (2008). Non–parametric policy gradients: A unified treatment of
propositional and relational domains. In ICML. 22

Kersting, K., van Otterlo, M., and de Raedt, L. (2004). Bellman goes relational. In International
Conference on Machine Learning (ICML-04), 465–472. ACM Press. 21

Khardon, R. (1999a). Learning action strategies for planning domains. Artificial Intelligence, 113(1-
2):125–148. 22

Khardon, R. (1999b). Learning to take actions. Machine Learning, 35:57–90. 22

Lang, M. and Toussaint, M. (2009). Approximate inference for planning in stochastic relational
worlds. In Proc. International Conference on Machine Learning. 4, 5

Lee, J., Marinescau, R., and Dechter, R. (2014). Applying marginal map search to probabilistic
conformant planning. In Fourth International Workshop on Statistical Relational AI (StarAI). 4

Lee, J., Marinescau, R., and Dechter, R. (2016). Applying search based probabilistic inference algo-
rithms to probabilistic conformant planning: Preliminary results. In Proceedings of the International
Symposium on Artificial Intelligence and Mathematics (ISAIM). 4

Lesner, B. and Zanuttini, B. (2011). Efficient policy construction for mdps represented in proba-
bilistic pddl. In Bacchus, F., Domshlak, C., Edelkamp, S., and Helmert, M. (eds.), ICAPS. AAAI.
21

Levine, S. (2018). Reinforcement learning and control as probabilistic inference: Tutorial and review.
5

Liu, Q. and Ihler, A. T. (2012). Belief propagation for structured decision making. In Proceedings
of the Conference on Uncertainty in Artificial Intelligence (UAI), 523–532. 4, 5

Lloyd, J. (1987). Foundations of Logic Programming. Springer Verlag. Second Edition. 9

McCarthy, J. (1958). Programs with common sense. In Proceedings of the Symposium on the
Mechanization of Thought Processes, volume 1, 77–84. National Physical Laboratory. Reprinted
in R. Brachman and H. Levesque (Eds.), Readings in Knowledge Representation, 1985, Morgan
Kaufmann, Los Altos, CA. 3

Pednault, E. P. D. (1989). ADL: Exploring the middle ground between STRIPS and the situation
calculus. In KR, 324–332. 3, 2

Puterman, M. L. (1994). Markov Decision Processes: Discrete Stochastic Dynamic Programming.
Wiley, New York. 12

Raedt, L. D., Kimmig, A., and Toivonen, H. (2007). Problog: A probabilistic prolog and its applica-
tion in link discovery. 2462–2467. 10

Raghavan, A., Joshi, S., Fern, A., Tadepalli, P., and Khardon, R. (2012). Planning in factored action
spaces with symbolic dynamic programming. In AAAI. 21

Raghavan, A., Khardon, R., Fern, A., and Tadepalli, P. (2013). Symbolic opportunistic policy itera-
tion for factored-action mdps. 2499–2507. 21

Reiter, R. (2001). Knowledge in Action: Logical Foundations for Specifying and Implementing
Dynamical Systems. MIT Press. 13

MITPress NewMath.cls LATEX Book Style Size: 7x9 February 16, 2022 6:11pm

28 Bibliography

Richardson, M. and Domingos, P. (2006). Markov logic networks. Machine Learning, 62(1–2):107–
136. 10

Russell, S. and Norvig, P. (1995). Artificial Intelligence: a modern approach. Prentice Hall. 9

Russell, S. and Norvig, P. (2009). Artificial Intelligence: a modern approach. Prentice Hall. 3rd
Edition. 12

Sanner, S. (2008). First-order Decision-theoretic Planning in Structured Relational Environments.
Ph.D. thesis, University of Toronto, Toronto, ON, Canada. 14, 18, 21

Sanner, S. and Boutilier, C. (2005). Approximate linear programming for first-order MDPs. In
Uncertainty in Artificial Intelligence (UAI-05), 509–517. Edinburgh, Scotland. 22

Sanner, S. and Boutilier, C. (2006). Practical linear evaluation techniques for first-order MDPs. In
Uncertainty in Artificial Intelligence (UAI-06). Boston, Mass. 22

Sanner, S. and Boutilier, C. (2007). Approximate solution techniques for factored first-order mdps.
In Proceedings of the Seventeenth International Conference on Automated Planning and Scheduling,
ICAPS 2007, 288–295. 14, 18

Sanner, S. and Boutilier, C. (2009). Practical solution techniques for first-order MDPs. Artif. Intell.,
173:748–488. 9, 12, 21, 22

Sanner, S. and Kersting, K. (2010). Symbolic dynamic programming for first-order POMDPs. In
Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2010, Atlanta,
Georgia, USA, July 11-15, 2010. 22

St-Aubin, R., Hoey, J., and Boutilier, C. (2000). APRICODD: Approximate policy construction
using decision diagrams. In Advances in Neural Information Processing 13 (NIPS-00), 1089–1095.
Denver. 21

Toussaint, M. and Storsky, A. (2006). Probabilistic inference for solving discrete and continuous sta
te Markov decision processes. In Proc. International Conference on Machine Learning. 4, 5

van de Meent, J., Paige, B., Tolpin, D., and Wood, F. (2016). Black-box policy search with prob-
abilistic programs. In Proceedings of the International Conference on Artificial Intelligence and
Statistics, AISTATS, 1195–1204. 4, 5

Van den Broeck, G. (2011). On the completeness of first-order knowledge compilation for lifted
probabilistic inference. In Proceedings of the 24th Annual Conference on Advances in Neural Infor-
mation Processing Systems(NIPS), 1386–1394. 20

Van den Broeck, G. (2013). Lifted Inference and Learning in Statistical Relational Models. Ph.D.
thesis, KU Leuven. 20

Van den Broeck, G., Taghipour, N., Meert, W., Davis, J., and De Raedt, L. (2011). Lifted probabilistic
inference by first-order knowledge compilation. 2178–2185. AAAI Press. 10

Wang, C., Joshi, S., and Khardon, R. (2008a). First order decision diagrams for relational MDPs.
Journal of Artificial Intelligence Research (JAIR), 31:431–472. 13, 21

Wang, C., Joshi, S., and Khardon, R. (2008b). First order decision diagrams for relational mdps.
JAIR, 31:431–472. 15

Wang, C. and Khardon, R. (2007). Policy iteration for relational MDPs. In Uncertainty in Artificial
Intelligence (UAI-07). Vancouver, Canada. 22

MITPress NewMath.cls LATEX Book Style Size: 7x9 February 16, 2022 6:11pm

Bibliography 29

Wang, C. and Khardon, R. (2010). Relational partially observable MDPs. In Proceedings of the
Twenty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2010, Atlanta, Georgia, USA, July
11-15, 2010. 22

Yoon, S., Fern, A., and Givan, R. (2002). Inductive policy selection for first-order Markov decision
processes. In Uncertainty in Artificial Intelligence (UAI-02), 569–576. Edmonton. 22

Yoon, S., Fern, A., and Givan, R. (2006). Approximate policy iteration with a policy language bias:
Learning to solve relational Markov decision processes. Journal of Artificial Intelligence Research
(JAIR), 25:85–118. 23

Younes, H. L. S., Littman, M. L., Weissman, D., and Asmuth, J. (2005). The first probabilistic
track of the international planning competition. Journal of Artificial Intelligence Research (JAIR),
24:851–887. 21

	List of Figures
	List of Tables
	Contributors
	Preface
	17 Stochastic Planning and Lifted Inference
	Roni Khardon, Scott Sanner
	17.1 Introduction
	17.1.1 Stochastic Planning and Inference
	17.1.2 Stochastic Planning and Generalized Lifted Inference

	17.2 Preliminaries
	17.2.1 Relational Expressions and their Calculus of Operations
	17.2.2 Relational MDPs

	17.3 Symbolic Dynamic Programming
	17.4 Discussion and Related Work
	17.4.1 Deductive Lifted Stochastic Planning
	17.4.2 Inductive Lifted Stochastic Planning

	17.5 Conclusions

	Bibliography
	Index

