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Abstract 
 

Fused deposition modeling (FDM) is one of the widely used additive manufacturing (AM) processes but shares major 

shortcomings typical due to its layer-by-layer fabrication. These challenges (poor surface finishes, presence of pores, 

inconsistent mechanical properties, etc.) have been attributed to FDM input process parameters, machine parameters, 

and material properties. Deep learning, a type of machine learning algorithm has proven to help reveal complex and 

nonlinear input-output relationships without the need for the underlying physics. This research explores the power of 

multilayer perceptron deep learning algorithm to create a prediction model for critical input process parameters (layer 

thickness, extrusion temperature, build temperature, build orientation, and print speed) to predict three functional 

output parameters (dimension accuracy, porosity, and tensile strength) of FDM printed part. A fractional factorial 

design of experiment was performed and replicated three times per run (n=3). The number of neurons for the hidden 

layers, learning rate, and epoch were varied. The computational run time, loss function, and root mean square error 

(RMSE) were used to select the best prediction model for each FDM output parameter. The findings of this work are 

being extended to online monitoring and real-time control of the AM process enabling an AM digital twin. 
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1. Introduction 
Additive manufacturing is a bottom-up layer-by-layer manufacturing method [1] [2]. Fused deposition modeling 

(FDM) is classified as a type of material extrusion additive manufacturing according to the American Society for 

Testing and Materials (ASTM) [3]. FDM involves the heating of plastic material referred to as filament to its glass 

transition temperature where it could be forced out through the nozzle of the extruder. Printing is done according to 

the tessellated programmed profile after slicing the previously prepared computer-aided design (CAD). Fused 

deposition modeling is one of the most widely used additive manufacturing process based on its ease of use and its 

relative lower acquisition cost [4]. Both functional and non-functional parts have been printed with FDM although 

there are limitations to its applications [2].  

 

With industrial internet of things (IIoT) sensors, it is easier to capture data in different formats [5], [6]. Also, with 

the availability of high-performance computational servers and state-of-the-art machine learning algorithms, 

understanding of complex and dynamic processes such as the additive manufacturing have been a well-researched 

[7]. Machine learning has been used in different fields to understand the complexity and nonlinearity that exist in a 

system when sufficient data are provided [8], [9]. It serves as a black box for decoding the relationship between 

input parameters and outputs parameters without the need for understanding of the science around the phenomenon 

in the system domain. Machine learning has been applied in additive manufacturing to study how the output 

parameters are influenced by the input parameters combination sets [10].  

 

Deep learning is a type of machine learning that is patterned around the biological neurons of the human brain. Deep 

learning has also easily be applied in different areas of additive manufacturing processes [11]. The multilayer 

perceptron architecture is one of the deep learning algorithms, consisting of an input layer, one or more hidden layers, 

and an output layer. The number of neurons for the input layer corresponds to the number of considered input 

parameters. The number of hidden layers and number of neurons for each hidden layer depend on the complexity of 

the relationship between the input parameters and the output. In most cases, number of hidden layers are chosen based 

on experience or rule of thumb. The number of neurons for the output layer depends on the number of output 

parameters. Hyper-parameter tuning is an act of having an appropriate setting for the model parameters for efficient 



Ogunsanya and Desai 

and effective use of computation resources and obtaining the desired output. The fused deposition method can be 

affected by the slightest change in input process parameters. Thus, it is vital to predict the output parameters based on 

variations in the input parameters within the shortest time, computational resource usage, and the need for additive 

manufacturing hyperparameter tuning. 

 

2.  Background Research  
Most works found in the literature concentrate on predictive modeling in additive manufacturing process without 

investigating the hyperparameter tuning which is key if the model is to be incorporated in real-time for a digital twin. 

[12] used data-driven approach to predict surface roughness in fused deposition modeling using random forest. [13] 

used an ensemble learning algorithm to predict surface roughness using multiple sensors such as thermocouples, 

infrared temperature sensors, and accelerometer to measure both temperature and vibration data. Surface prediction 

was predicted in an additive manufacturing process using wired arc additive manufacturing [14]. [15] optimized both 

surface roughness and dimension accuracy in a Laser powder bed fusion (LPBF) using whale swarm optimization. 

Three algorithms, adaptive neuro-fuzzy inference system (ANFIS), extreme learning machine (ELM), and support 

vector regression (SVR) were used to predict the surface roughness [16]. Also, genetic algorithm (GA) and particle 

swarm optimization (PSO) were used to optimize the predictive function. Gaussian process-based prediction was used 

for porosity prediction in an additive metallic manufacturing process using selective laser melting (SLM) [17]. Both 

convolutional Neural Network (CNN) and Residual-Recurrent Convolutional Neural Networks (Res-RCNN) using 

transfer learning were used on thermal images for porosity prediction in real-time [18]. [11] used long short-term-

based predictive model to predict tensile strength of printed parts using fused deposition modeling. The LSTM model 

outperformed both support vector regression and random forest. [19] used temperature history of the weld interface 

was used to predict the strength of printed parts using FDM. Different optimization techniques have been applied to 

hyperparameter tuning but two widely used techniques are random search [20] and Bayesian Optimization [21]. This 

research is focused on tuning with all hyperparameter combination. 

 

3.  Methodology  
In this research, critical input parameters for fused deposition modeling were selected based on a detailed literature 

review. The selected input parameters included (a) layer thickness, (b) build orientation, (c) build temperature, (d) 

extrusion temperature, and (e) print speed. Three prominent output parameters were chosen which include (a) 

dimensional accuracy, (b) porosity, and (c) tensile strength. For each factor, three levels were chosen to represent low, 

medium, and high. A fractional factorial design was conducted with 35−1 = 81 runs. Each run was replicated three 

times (n=3) with 243 total data points. Candidate data fields from the total dataset are shown in Table 1. Also, Figure 

1(a) shows the multilayer perceptron architecture used in this work and its exploration by varying the number of 

hidden layers, number of neurons in each hidden layer, other hyperparameters (e.g., learning rate and epoch). For each 

variation, both the root-mean square error (RMSE) value and computation run time were computed and used as output 

metrics to choose the best hyperparameter combination for each of the output parameters.  

 

Table 1: First five combinations run considering five (5) input parameters and three (3) 

 Input/process parameters Mean Output 

 

Layer 

thickness 

(𝑚𝑚) 

Build 

orientation

(𝑑𝑒𝑔𝑟𝑒𝑒)   

Build 

temperature 

(℃) 

Extrusion 

temperature 

(℃) 
Print speed 

(𝑚𝑚/𝑠) 

Dimensional 

accuracy 

(%) 
Porosity 

(%) 

Tensile 

Strength 

(𝑀𝑃𝑎) 

1 0.2 0 30 160 25 7 13 29 

2 0.2 0 30 180 50 4.5 9.5 33.5 

3 0.2 0 30 200 75 6.5 11 30.5 

4 0.2 0 60 160 50 7.5 13 29.5 

5 0.2 0 60 180 75 4 8.5 32.5 
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Figure 1: (a) Multilayer perceptron architecture with five input neurons at the input layers, varying number of hidden 

layers and number of neurons in each hidden layer, and one neuron for the output layer (b) Steps used on the fused 

deposition additive manufacturing data set (b) shows the steps to model the relationship between the critical input 

parameters and the output parameters. The input data were standardized between 0 and 1 to facilitate the multilayer 

perceptron learn faster which in turn aided faster convergence of the loss function for the given number of epochs. 

 

4. Results  
The learning status of each algorithm was evaluated based on changes to the hyperparameter. The predictive model is 

only considered if the status is “L”, that is, “Learning” as shown in Table 2, 3 and 4. Learning is defined when the 

model can learn through the training dataset at the set conditions of number of neurons for each hidden layer, learning 

rate, and epoch. If the status is “NL”, that is, “Not learning”, the predictive model is discarded. 

 

For a single hidden layer, as illustrated in Table 2, the learning rate plays a crucial role in the prediction for the output 

factor “dimensional accuracy.” Increasing the number of neurons from 3 to 5 or 8 or increasing the number of epochs 

beyond 5000 does not improve the RMSE although the runtime stands at 1.9 s for those combinations. From the 

learning status, the multilayer perceptron does not learn at a learning rate of 0.001 and below irrespective of other 

hyperparameters. For porosity and strength predictions, learning rate is key as their best RMSE values were at 0.0001 

while, LR = 0.00001 increased the runtime beyond 3.19 s and 5.37 s, respectively, at other chosen hyperparameters. 

 

For the model with two hidden layers (Table 3), considering dimension accuracy, a good combination of 

hyperparameters setting were obtained at learning rate of 0.0001, number of epochs at 5000, second hidden layer at 

3. The first hidden layer with 3 neurons had RMSE value of 1.89 with a runtime of 2.19 s but with 5 neurons, a better 

RMSE value (1.44) was obtained at an increased runtime to 2.36 s. With increased number of neurons to 8 in each 

hidden layer, no learning was recorded. Porosity prediction tends to improve with an increase in the number of neurons 

in the first hidden layer having second hidden layer with 3 neurons, learning rate at 0.0001, and number of epochs at 

5000. RMSE values as 3.59, 2.21, and 1.94 with runtime of 2.16, 2.41, and 2.40 s, respectively. For the strength 

prediction, learning rate is key as there was no learning at other learning rates except at 0.00001. The best RMSE 

value was obtained as 6.4 at most hyperparameter combinations. 

 

For three hidden layers (Table 4), although there were much RMSE improvements but resulted in extreme high 

runtime. For instance, for dimension accuracy prediction, a RMSE of value of 1.26 was obtained at a learning rate of 

0.00001 and at 25000 epochs with all hidden layers having 3 neurons. This took about 42 seconds. All superior results  

occurred with both learning rate of 0.00001 and 25000 epoch. Though, an improved RMSE value of 1.73 was 

obtained compared to one and two hidden layers was obtained with all hidden layer having 3 neurons, 0.0001 

learning rate and 5000 epochs but at 3.36 seconds which is relatively higher. 

 

As seen from the above discussed results, a balance is to be achieved while selecting settings for learning rate, number 

of hidden layers, number of neurons per layer, and number of epochs. Higher prediction accuracies need to be balanced 

with computational time for the predictive models. This is critical when applying the multilayer perceptron and related 

deep learning models for real-time implementations in manufacturing processes such as fused deposition based 

additive manufacturing. It was also revealed that higher number of hidden layers, or number of neurons and epochs 

may not always lead to “effective learning” and higher prediction accuracies. This can occur due to overfitting of 

model parameters to datasets. Thus, a judicious selection of hyperparameters is warranted and sensitivity analysis 

needs to be conducted for deep learning machine learning models based on the configuration of the process under 

consideration.  

 

 

(b) (a) 
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Table 2: RMSE and runtime values with 1 hidden layer and varying number of neurons, learning rate, and epoch 

 

  Hidden 

Layer 

Learning 

Rate 

   Dimension Accuracy 

Output 

             

   Porosity Output  Strength Output 

  H1 LR Epoch  RMSE Runtime Status RMSE Runtime Status  RMSE Runtime Status 

0 3 0.001 5000  6.37 0.553 NL 10.13 0.531 NL  33 0.636 NL 

1 3 0.0001 5000  1.96 1.327 L 3.19 1.301 L  5.37 1.479 L 

2 3 0.00001 5000   1.9 2.070 L 3.24 2.076 L  5.39 2.258 L 

3 3 0.001 15000  6.37 3.863 NL 10.13 3.941 NL  33 4.076 NL 

4 3 0.0001 15000  1.97 5.661 L 3.19 5.848 L  5.37 5.897 L 

5 3 0.00001 15000  1.92 7.462 L 3.21 7.741 L  5.38 7.714 L 

6 3 0.001 25000  6.37 10.335 NL 10.13 10.825 NL  33 10.532 NL 

7 3 0.0001 25000  1.97 13.223 L 3.19 13.826 L  5.37 13.488 L 

8 3 0.00001 25000  1.92 16.170 L 3.19 16.703 L  5.37 16.289 L 

9 5 0.001 5000  6.37 0.609 NL 10.13 0.608 NL  33 0.593 NL 

10 5 0.0001 5000  1.96 1.410 L 3.19 1.426 L  5.37 1.368 L 

11 5 0.00001 5000   1.9 2.239 L 3.24 2.219 L  5.39 2.146 L 

12 5 0.001 15000  6.37 4.111 NL 10.13 4.162 NL  33 4.135 NL 

13 5 0.0001 15000  1.97 5.985 L 3.19 6.089 L  5.37 5.986 L 

14 5 0.00001 15000  1.92 7.893 L 3.21 8.015 L  5.37 7.895 L 

15 5 0.001 25000  6.37 10.882 NL 10.13 11.009 NL  33 10.946 NL 

16 5 0.0001 25000  1.97 13.992 L 2.15 14.163 L  5.37 13.932 L 

17 5 0.00001 25000  1.92 17.027 L 3.19 17.158 L  5.37 16.990 L 

18 8 0.001 5000  6.37 0.646 NL 10.13 0.610 NL  33 0.621 NL 

19 8 0.0001 5000  1.97 1.478 L 3.19 1.500 L  5.37 1.436 L 

20 8 0.00001 5000   1.9 2.387 L 3.25 2.333 L  5.39 2.258 L 

21 8 0.001 15000  6.37 4.398 NL 10.13 4.309 NL  33 4.269 NL 

22 8 0.0001 15000  1.97 6.392 L 3.19 6.329 L  5.37 6.247 L 

23 8 0.00001 15000  1.92 8.435 L 3.21 8.312 L  5.38 8.265 L 

24 8 0.001 25000  6.37 11.546 NL 10.13 11.508 NL  33 11.388 NL 

25 8 0.0001 25000  1.97 14.680 L 3.19 14.714 L  5.37 14.549 L 

26 8 0.00001 25000   1.92 17.841 L 3.2 17.904 L   5.37 17.671 L 

 

Table 3: RMSE and runtime values with 2 hidden layers and varying number of neurons, learning rate, and epoch 

 

  Hidden 

Layer 

Learning 

Rate 

   Dimension Accuracy 

Output 

                

    Porosity Output  Strength Output 

  H1 H2 LR Epoch  RMSE Runtime Status  RMSE Runtime Status  RMSE Runtime Status 

0 3 3 0.001 5000  6.51 0.991 NL  10.99 0.979 NL  32.91 1.035 NL 

1 3 3 0.0001 5000  1.89 2.192 L  3.59 2.165 L  7 2.213 NL 

2 3 3 0.00001 5000  1.94 3.360 L  3.51 3.358 L  6.41 3.418 L 

3 3 3 0.001 15000  2.08 6.417 NL  10.99 6.498 NL  32.91 6.459 NL 

4 3 3 0.0001 15000  1.89 9.625 L  2.52 9.612 L  7 9.568 NL 

... ... ... ... ...  ... ... ...  ... ... ...  ... ... ... 

76 8 8 0.0001 15000  6.51 11.277 NL  10.99 11.308 NL  32.91 11.011 NL 
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77 8 8 0.00001 15000  6.51 14.848 NL  10.99 15.029 NL  6.4 14.651 L 

78 8 8 0.001 25000  6.51 20.511 NL  10.99 20.822 NL  32.91 20.453 NL 

79 8 8 0.0001 25000  6.51 26.181 NL  10.99 26.536 NL  32.91 26.332 NL 

80 8 8 0.00001 25000  6.51 31.902 NL  10.99 32.283 NL  6.4 32.039 L 

 

Table 4: RMSE and runtime values with 3 hidden layers and varying number of neurons, learning rate, and epoch 

 

  Hidden 

Layers 

Learning 

Rate 

   Dimension Accuracy 

Output 

               

    Porosity Output  Strength Output 

  H1 H2 H3 LR Epoch  RMSE Runtime Status  RMSE Runtime Status  RMSE Runtime Status 

 0 3 3 3 0.001 5000  6.17 1.539 NL  11.35 1.491 NL  32.41 1.496 NL 

1 3 3 3 0.0001 5000  1.73 3.359 L  3.46 3.191 NL  32.41 3.151 NL 

2 3 3 3 0.00001 5000  1.7 5.050 L  3.52 5.030 L  5.91 4.905 L 

3 3 3 3 0.001 15000  6.17 9.701 NL  11.35 9.639 NL  32.41 9.560 NL 

4 3 3 3 0.0001 15000  1.28 14.337 L  3.46 14.214 NL  32.41 14.138 NL 

... ... ... ... ... ...  ... ... ...  ... ... ...  ... ... ... 

238 8 8 8 0.0001 15000  6.17 17.561 NL  11.35 17.687 NL  32.41 17.417 NL 

239 8 8 8 0.00001 15000  6.17 23.289 NL  11.35 23.361 NL  32.41 23.064 NL 

240 8 8 8 0.001 25000  6.17 32.234 NL  11.35 32.445 NL  32.41 32.059 NL 

241 8 8 8 0.0001 25000  6.17 41.221 NL  11.35 41.401 NL  32.41 41.273 NL 

242 8 8 8 0.00001 25000   6.17 50.195 NL   11.35 50.477 NL   32.41 50.337 NL 

 

6. Conclusions  
Hyperparameter tuning of additive manufacturing process was researched using fused deposition modeling as an 

illustrative case. Five critical FDM input process parameters were used to obtain three output parameter values via 

fractional factorial experiments. The dataset obtained were used to train the chosen multilayer perceptron deep 

learning algorithm. For each hyperparameter tuning, a predictive model was obtained. Also, both RMSE and runtime 

values were used to evaluate optimal set of hyperparameters for the chosen FDM output parameters (e.g., dimension 

accuracy, porosity, and strength). From our findings, no learning occurs at a learning rate of 0.001 irrespective of other 

chosen hyperparameters.  Dimension accuracy improved from a RMSE of 1.90 to 1.73 with an increase in the number 

of hidden layers from 1 to 3 although the runtime increased marginally. Porosity improved from a RMSE value of 

3.19 to 1.28 with an increase in the number of hidden layers from 1 to 3 but not with learning rate beyond 0.0001. 

Thus, a balance is to be attained between choice of hyperparameter settings between model prediction accuracy and 

computational time for it to be useful for real-time implementation. This research serves as a foundation for our future 

work in building an effective digital twin of FDM based additive manufacturing processes. 
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