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Abstract

Fused deposition modeling (FDM) is one of the widely used additive manufacturing (AM) processes but shares major
shortcomings typical due to its layer-by-layer fabrication. These challenges (poor surface finishes, presence of pores,
inconsistent mechanical properties, etc.) have been attributed to FDM input process parameters, machine parameters,
and material properties. Deep learning, a type of machine learning algorithm has proven to help reveal complex and
nonlinear input-output relationships without the need for the underlying physics. This research explores the power of
multilayer perceptron deep learning algorithm to create a prediction model for critical input process parameters (layer
thickness, extrusion temperature, build temperature, build orientation, and print speed) to predict three functional
output parameters (dimension accuracy, porosity, and tensile strength) of FDM printed part. A fractional factorial
design of experiment was performed and replicated three times per run (n=3). The number of neurons for the hidden
layers, learning rate, and epoch were varied. The computational run time, loss function, and root mean square error
(RMSE) were used to select the best prediction model for each FDM output parameter. The findings of this work are
being extended to online monitoring and real-time control of the AM process enabling an AM digital twin.
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1. Introduction

Additive manufacturing is a bottom-up layer-by-layer manufacturing method [1] [2]. Fused deposition modeling
(FDM) is classified as a type of material extrusion additive manufacturing according to the American Society for
Testing and Materials (ASTM) [3]. FDM involves the heating of plastic material referred to as filament to its glass
transition temperature where it could be forced out through the nozzle of the extruder. Printing is done according to
the tessellated programmed profile after slicing the previously prepared computer-aided design (CAD). Fused
deposition modeling is one of the most widely used additive manufacturing process based on its ease of use and its
relative lower acquisition cost [4]. Both functional and non-functional parts have been printed with FDM although
there are limitations to its applications [2].

With industrial internet of things (IIoT) sensors, it is easier to capture data in different formats [5], [6]. Also, with
the availability of high-performance computational servers and state-of-the-art machine learning algorithms,
understanding of complex and dynamic processes such as the additive manufacturing have been a well-researched
[7]. Machine learning has been used in different fields to understand the complexity and nonlinearity that exist in a
system when sufficient data are provided [8], [9]. It serves as a black box for decoding the relationship between
input parameters and outputs parameters without the need for understanding of the science around the phenomenon
in the system domain. Machine learning has been applied in additive manufacturing to study how the output
parameters are influenced by the input parameters combination sets [10].

Deep learning is a type of machine learning that is patterned around the biological neurons of the human brain. Deep
learning has also easily be applied in different areas of additive manufacturing processes [11]. The multilayer
perceptron architecture is one of the deep learning algorithms, consisting of an input layer, one or more hidden layers,
and an output layer. The number of neurons for the input layer corresponds to the number of considered input
parameters. The number of hidden layers and number of neurons for each hidden layer depend on the complexity of
the relationship between the input parameters and the output. In most cases, number of hidden layers are chosen based
on experience or rule of thumb. The number of neurons for the output layer depends on the number of output
parameters. Hyper-parameter tuning is an act of having an appropriate setting for the model parameters for efficient



Ogunsanya and Desai

and effective use of computation resources and obtaining the desired output. The fused deposition method can be
affected by the slightest change in input process parameters. Thus, it is vital to predict the output parameters based on
variations in the input parameters within the shortest time, computational resource usage, and the need for additive
manufacturing hyperparameter tuning.

2. Background Research

Most works found in the literature concentrate on predictive modeling in additive manufacturing process without
investigating the hyperparameter tuning which is key if the model is to be incorporated in real-time for a digital twin.
[12] used data-driven approach to predict surface roughness in fused deposition modeling using random forest. [13]
used an ensemble learning algorithm to predict surface roughness using multiple sensors such as thermocouples,
infrared temperature sensors, and accelerometer to measure both temperature and vibration data. Surface prediction
was predicted in an additive manufacturing process using wired arc additive manufacturing [14]. [15] optimized both
surface roughness and dimension accuracy in a Laser powder bed fusion (LPBF) using whale swarm optimization.
Three algorithms, adaptive neuro-fuzzy inference system (ANFIS), extreme learning machine (ELM), and support
vector regression (SVR) were used to predict the surface roughness [16]. Also, genetic algorithm (GA) and particle
swarm optimization (PSO) were used to optimize the predictive function. Gaussian process-based prediction was used
for porosity prediction in an additive metallic manufacturing process using selective laser melting (SLM) [17]. Both
convolutional Neural Network (CNN) and Residual-Recurrent Convolutional Neural Networks (Res-RCNN) using
transfer learning were used on thermal images for porosity prediction in real-time [18]. [11] used long short-term-
based predictive model to predict tensile strength of printed parts using fused deposition modeling. The LSTM model
outperformed both support vector regression and random forest. [19] used temperature history of the weld interface
was used to predict the strength of printed parts using FDM. Different optimization techniques have been applied to
hyperparameter tuning but two widely used techniques are random search [20] and Bayesian Optimization [21]. This
research is focused on tuning with all hyperparameter combination.

3. Methodology

In this research, critical input parameters for fused deposition modeling were selected based on a detailed literature
review. The selected input parameters included (a) layer thickness, (b) build orientation, (c) build temperature, (d)
extrusion temperature, and (e) print speed. Three prominent output parameters were chosen which include (a)
dimensional accuracy, (b) porosity, and (c) tensile strength. For each factor, three levels were chosen to represent low,
medium, and high. A fractional factorial design was conducted with 35~ = 81 runs. Each run was replicated three
times (n=3) with 243 total data points. Candidate data fields from the total dataset are shown in Table 1. Also, Figure
1(a) shows the multilayer perceptron architecture used in this work and its exploration by varying the number of
hidden layers, number of neurons in each hidden layer, other hyperparameters (e.g., learning rate and epoch). For each
variation, both the root-mean square error (RMSE) value and computation run time were computed and used as output
metrics to choose the best hyperparameter combination for each of the output parameters.

Table 1: First five combinations run considering five (5) input parameters and three (3)
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Figure 1: (a) Multilayer perceptron architecture with five input neurons at the input layers, varying number of hidden
layers and number of neurons in each hidden layer, and one neuron for the output layer (b) Steps used on the fused
deposition additive manufacturing data set (b) shows the steps to model the relationship between the critical input
parameters and the output parameters. The input data were standardized between 0 and 1 to facilitate the multilayer
perceptron learn faster which in turn aided faster convergence of the loss function for the given number of epochs.

4. Results

The learning status of each algorithm was evaluated based on changes to the hyperparameter. The predictive model is
only considered if the status is “L”, that is, “Learning” as shown in Table 2, 3 and 4. Learning is defined when the
model can learn through the training dataset at the set conditions of number of neurons for each hidden layer, learning
rate, and epoch. If the status is “NL”, that is, “Not learning”, the predictive model is discarded.

For a single hidden layer, as illustrated in Table 2, the learning rate plays a crucial role in the prediction for the output
factor “dimensional accuracy.” Increasing the number of neurons from 3 to 5 or 8 or increasing the number of epochs
beyond 5000 does not improve the RMSE although the runtime stands at 1.9 s for those combinations. From the
learning status, the multilayer perceptron does not learn at a learning rate of 0.001 and below irrespective of other
hyperparameters. For porosity and strength predictions, learning rate is key as their best RMSE values were at 0.0001
while, LR = 0.00001 increased the runtime beyond 3.19 s and 5.37 s, respectively, at other chosen hyperparameters.

For the model with two hidden layers (Table 3), considering dimension accuracy, a good combination of
hyperparameters setting were obtained at learning rate of 0.0001, number of epochs at 5000, second hidden layer at
3. The first hidden layer with 3 neurons had RMSE value of 1.89 with a runtime of 2.19 s but with 5 neurons, a better
RMSE value (1.44) was obtained at an increased runtime to 2.36 s. With increased number of neurons to 8 in each
hidden layer, no learning was recorded. Porosity prediction tends to improve with an increase in the number of neurons
in the first hidden layer having second hidden layer with 3 neurons, learning rate at 0.0001, and number of epochs at
5000. RMSE values as 3.59, 2.21, and 1.94 with runtime of 2.16, 2.41, and 2.40 s, respectively. For the strength
prediction, learning rate is key as there was no learning at other learning rates except at 0.00001. The best RMSE
value was obtained as 6.4 at most hyperparameter combinations.

For three hidden layers (Table 4), although there were much RMSE improvements but resulted in extreme high
runtime. For instance, for dimension accuracy prediction, a RMSE of value of 1.26 was obtained at a learning rate of
0.00001 and at 25000 epochs with all hidden layers having 3 neurons. This took about 42 seconds. All superior results
occurred with both learning rate of 0.00001 and 25000 epoch. Though, an improved RMSE value of 1.73 was
obtained compared to one and two hidden layers was obtained with all hidden layer having 3 neurons, 0.0001
learning rate and 5000 epochs but at 3.36 seconds which is relatively higher.

As seen from the above discussed results, a balance is to be achieved while selecting settings for learning rate, number
of hidden layers, number of neurons per layer, and number of epochs. Higher prediction accuracies need to be balanced
with computational time for the predictive models. This is critical when applying the multilayer perceptron and related
deep learning models for real-time implementations in manufacturing processes such as fused deposition based
additive manufacturing. It was also revealed that higher number of hidden layers, or number of neurons and epochs
may not always lead to “effective learning” and higher prediction accuracies. This can occur due to overfitting of
model parameters to datasets. Thus, a judicious selection of hyperparameters is warranted and sensitivity analysis
needs to be conducted for deep learning machine learning models based on the configuration of the process under
consideration.
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Table 2: RMSE and runtime values with 1 hidden layer and varying number of neurons, learning rate, and epoch

Hidden Learning Dimension Accuracy
Layer Rate Output Porosity Output Strength Output
H1 LR Epoch RMSE Runtime Status RMSE Runtime Status RMSE Runtime Status
0 3 0.001 5000 6.37 0.553 NL 10.13 0.531 NL 33 0.636 NL
1 3 0.0001 5000 1.96 1.327 L 3.19 1.301 L 5.37 1.479 L
2 3 0.00001 5000 1.9 2.070 L 3.24 2.076 L 5.39 2.258 L
3 3 0.001 15000 6.37 3.863 NL 10.13 3941 NL 33 4.076  NL
4 3 0.0001 15000 1.97 5.661 L 3.19 5.848 L 5.37 5.897 L
5 3 0.00001 15000 1.92 7.462 L 3.21 7.741 L 5.38 7.714 L
6 3 0.001 25000 6.37 10.335 NL 10.13 10.825 NL 33 10.532 NL
7 3 0.0001 25000 1.97 13.223 L 3.19 13.826 L 5.37 13.488 L
8 3 0.00001 25000 1.92 16.170 L 3.19 16.703 L 5.37 16.289 L
9 5 0.001 5000 6.37 0.609 NL 10.13 0.608 NL 33 0.593 NL
10 5 0.0001 5000 1.96 1.410 L 3.19 1.426 L 5.37 1.368 L
11 5 0.00001 5000 1.9 2.239 L 3.24 2.219 L 5.39 2.146 L
12 5 0.001 15000 6.37 4.111 NL 10.13 4.162 NL 33 4.135 NL
13 5 0.0001 15000 1.97 5.985 L 3.19 6.089 L 5.37 5.986 L
14 5 0.00001 15000 1.92 7.893 L 3.21 8.015 L 5.37 7.895 L
15 5 0.001 25000 6.37 10.882 NL 10.13 11.009 NL 33 10.946 NL
16 5 0.0001 25000 1.97 13.992 L 2.15 14.163 L 5.37 13.932 L
17 5 0.00001 25000 1.92 17.027 L 3.19 17.158 L 5.37 16.990 L
18 8 0.001 5000 6.37 0.646 NL 10.13 0.610 NL 33 0.621 NL
19 8 0.0001 5000 1.97 1.478 L 3.19 1.500 L 5.37 1.436 L
20 8 0.00001 5000 1.9 2.387 L 3.25 2.333 L 5.39 2.258 L
21 8 0.001 15000 6.37 4398 NL 10.13 4309 NL 33 4269 NL
22 8 0.0001 15000 1.97 6.392 L 3.19 6.329 L 5.37 6.247 L
23 8 0.00001 15000 1.92 8.435 L 3.21 8.312 L 5.38 8.265 L
24 8 0.001 25000 6.37 11.546 NL 10.13 11.508 NL 33 11.388 NL
25 8 0.0001 25000 1.97 14.680 L 3.19 14.714 L 5.37 14.549 L
26 8 0.00001 25000 1.92 17.841 L 3.2 17.904 L 5.37 17.671 L
Table 3: RMSE and runtime values with 2 hidden layers and varying number of neurons, learning rate, and epoch
Hidden  Learning Dimension Accuracy
Layer Rate Output Porosity Output Strength Output
Hl H2 LR Epoch RMSE Runtime Status RMSE Runtime Status RMSE Runtime Status
0 3 3 0.001 5000 6.51 0991 NL 10.99 0979 NL 3291 1.035 NL
1 3 3 0.0001 5000 1.89 2.192 L 3.59 2.165 L 7 2213 NL
2 3 3 0.00001 5000 1.94 3.360 L 3.51 3.358 L 6.41 3.418 L
3 3 3 0.001 15000 2.08 6.417 NL 10.99 6.498 NL 32.91 6.459 NL
4 3 3 0.0001 15000 1.89 9.625 L 2.52 9.612 L 7 9.568 NL

76 8 8 0.0001 15000 6.51 11.277 NL 10.99 11.308 NL 32.91 11.011 NL
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77 8 8 0.00001 15000 6.51 14.848 NL 10.99 15.029 NL 6.4 14.651 L
78 8 8 0.001 25000 6.51 20.511 NL 10.99 20.822 NL 32.91 20.453 NL
79 8 8 0.0001 25000 6.51 26.181 NL 10.99 26.536  NL 32.91 26.332 NL
80 8 8 0.00001 25000 6.51 31.902 NL 10.99 32.283 NL 6.4 32.039 L
Table 4: RMSE and runtime values with 3 hidden layers and varying number of neurons, learning rate, and epoch
Hidden Learning Dimension Accuracy
Layers Rate Output Porosity Output Strength Output
H1 H2 H3 LR Epoch RMSE Runtime Status RMSE Runtime Status RMSE Runtime Status
0 3 3 3 0.001 5000 6.17 1.539  NL 11.35 1491 NL 3241 1.496 NL
1 3 3 3 0.0001 5000 1.73 3359 L 3.46 3.191 NL 3241 3.151 NL
2 3 3 3 0.00001 5000 1.7 5.050 L 3.52 5.030 L 591 4.905 L
33 3 3 0.001 15000 6.17 9.701 NL 11.35 9.639 NL 3241 9.560 NL
4 3 3 3 0.0001 15000 1.28 14.337 L 3.46 14214 NL 32.41 14.138 NL
238 8 8 8 0.0001 15000 6.17 17.561 NL 11.35 17.687 NL 32.41 17.417 NL
239 8 8 8 0.00001 15000 6.17 23.289 NL 11.35 23361 NL 32.41 23.064 NL
240 8 8 8 0.001 25000 6.17 32234 NL 1135 32445 NL 3241 32059 NL
241 8 8 8 0.0001 25000 6.17 41221 NL 11.35 41401 NL 32.41 41.273 NL
242 8 8 8 0.00001 25000 6.17  50.195 NL 11.35 50477 NL 3241 50337 NL

6. Conclusions

Hyperparameter tuning of additive manufacturing process was researched using fused deposition modeling as an
illustrative case. Five critical FDM input process parameters were used to obtain three output parameter values via
fractional factorial experiments. The dataset obtained were used to train the chosen multilayer perceptron deep
learning algorithm. For each hyperparameter tuning, a predictive model was obtained. Also, both RMSE and runtime
values were used to evaluate optimal set of hyperparameters for the chosen FDM output parameters (e.g., dimension
accuracy, porosity, and strength). From our findings, no learning occurs at a learning rate of 0.001 irrespective of other
chosen hyperparameters. Dimension accuracy improved from a RMSE of 1.90 to 1.73 with an increase in the number
of hidden layers from 1 to 3 although the runtime increased marginally. Porosity improved from a RMSE value of
3.19 to 1.28 with an increase in the number of hidden layers from 1 to 3 but not with learning rate beyond 0.0001.
Thus, a balance is to be attained between choice of hyperparameter settings between model prediction accuracy and
computational time for it to be useful for real-time implementation. This research serves as a foundation for our future
work in building an effective digital twin of FDM based additive manufacturing processes.
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