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ABSTRACT. We investigate identifying the boundary of a domain from sample points in the domain. We
introduce new estimators for the normal vector to the boundary, distance of a point to the boundary, and a
test for whether a point lies within a boundary strip. The estimators can be efficiently computed and are
more accurate than the ones present in the literature. We provide rigorous error estimates for the estimators.
Furthermore we use the detected boundary points to solve boundary-value problems for PDE on point clouds.
We prove error estimates for the Laplace and eikonal equations on point clouds. Finally we provide a range of
numerical experiments illustrating the performance of our boundary estimators, applications to PDE on point
clouds, and tests on image data sets.
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Notation.
Ω: bounded domain in Rd. We denote the volume of Ω by |Ω|.
R: lower bound for the reach of ∂Ω.
dΩ: the distance function dΩ = dist(x, ∂Ω) : Ω→ R+ .

∂aΩ: boundary region ∂aΩ := {x ∈ Ω : dist(x, ∂Ω) ≤ a} for a > 0.
ωd: volume of the unit ball in Rd.
ρ: probability density function ρ : Ω→ [ρmin, ρmax] where 0 < ρmin ≤ ρmax <∞.
L: Upper bound for the Lipschitz constant of ρ.
X : = {x1, · · · , xn}: set of i.i.d. sample points drawn from density ρ.
n: total number of sample points considered.
r : neighborhood radius.
ε: thickness of the boundary region we seek to identify.
ν: inward unit normal vector to ∂Ω, extended to ∂RΩ by (1.1).

v̄r , ν̄r : population-based estimator of the normal vector, and its unit normalization, (1.3).
v̂r , ν̂r : first-order empirical estimator of the normal vector, and its unit normalization, (1.2).
v̂2r , ν̂

2
r : second-order empirical estimator of the normal vector, and its unit normalization, (1.5).

d̂
1

r (x
0), d̂

2

r (x
0) first and second-order estimators of the distance to boundary of Ω, (1.12) and (1.17).

Cx, Cy, Cr: dimensionless constants explicitly stated in Appendix D.
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S. PARK, D. SLEPČEV: DEPARTMENT OF MATHEMATICAL SCIENCES, CARNEGIE MELLON UNIVERSITY, 5000 FORBES

AVE., PITTSBURGH, PA 15213
E-mail addresses: jwcalder@umn.edu, sangminp@andrew.cmu.edu, slepcev@math.cmu.edu.
Date: June 28, 2022.
Acknowledgments. JC was supported by NSF grant DMS 1944925, the Alfred P. Sloan Foundation, and a McKnight Presi-

dential Fellowship. SP and DS were supported by NSF grant DMS 1814991. The authors would like to thank Eddie Aamari for
valuable comments. The authors are grateful to CNA of CMU, IMA of Univ. of Minnesota, and Simons Institute at UC Berkeley
for hospitality.

1



2 BOUNDARY ESTIMATION FROM POINT CLOUDS: ALGORITHMS, GUARANTEES AND APPLICATIONS

1. INTRODUCTION

We focus on determining the boundary of a domain given sample points in the domain. By determining
the boundary we mean identifying the points which lie within an ε > 0 neighborhood of the boundary;
see Figure 1 for illustration. Our aim is develop an algorithm that is efficient to compute, accurate (so that
the boundary strip can be identified even for ε > 0 which is smaller than the typical distance between
neighboring sample points), and guarantees that we identify a high percentage of points that are within
distance ε, while misidentifying as few points as possible that are at distance greater than 2ε as boundary
points. Having such a set is sufficient for imposing boundary values for computing solutions of PDE on
point clouds.

FIGURE 1. Boundary points identified using the proposed test (1.20).

Estimating the boundary of the support of an unknown distribution and the normal vector to the boundary
are important and basic tasks with many applications. Identification of boundary points are crucial to solving
partial differential equations (PDEs) on data clouds [24, 57, 69, 77], and have applications such as detecting
anomalies in a point cloud [38] or assigning a notion of depth to each point (Section 6.3). Estimation of the
distance of each point to the boundary is also used to improve the accuracy of kernel distance estimators near
the boundary [11]. When the distribution is supported on a lower dimensional manifold, identifying points
close to the boundary is important for estimation of the manifold itself. See [1] and references therein. While
identifying the boundary of a point cloud is a basic problem, there are relatively few works that investigate
the question in depth, see Section 1.5, and none satisfied the desired criteria above. In this work we introduce
an approach that is simple, efficient, accurate and has the desired guarantees.

Our approach is to first estimate the approximate normal vector to the boundary using a kernel average. In
fact, in Section 1.2 we develop two such estimators: a first-order estimator, given in (1.2), which estimates
the normal vector to first-order with respect to the kernel bandwidth, and a second-order estimator, given
in (1.5). We use these normal vector estimators in Section 1.3 to define estimators for the distance to the
boundary, (1.12) and (1.17), which are, respectively, first and second-order accurate for points near the
boundary. This allows us to define in Section 1.4 the statistical test for the boundary strip in (1.20). We
implement our boundary test using MATLAB and Python, and make our code available on Github 1.

In this work we provide rigorous non-asymptotic error bounds of the first-order estimators and only
asymptotic estimates for the second-order estimators. We focus on the first-order estimators in this paper,
since nonasymptotic bounds for the second-order versions would be highly complicated, involving nontrivial

1https://github.com/sangmin-park0/BoundaryTest

https://github.com/sangmin-park0/BoundaryTest
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dependence on a large number of parameters, including higher order derivatives of the density ρ and the
boundary of Ω, which the first-order estimators do not require.

In Sections 1.2 and 1.3 we motivate and define the normal vector and distance-to-boundary estima-
tors. The estimates on the normal vector estimators are provided in Section 2. Section 3 then establishes
nonasymptotic estimates for the first-order test. In particular, the nonasymptotic error bounds on the dis-
tance estimator are provided in Theorem 3.3, and Corollary 3.5 establishes the nonasymptotic estimates for
the first-order test. Asymptotic error estimates for the second-order distance test are given in Section 6.2.

In Section 5 we state our boundary tests in the form of a practical procedure, see Algorithm 1 and Al-
gorithm 3. We conduct a number of experiments that illustrate the qualitative and quantitative performance
of the algorithms. We also discuss the optimal selection of parameters, in particular the bandwidth of the
kernel.

In Section 6 we turn to applications of the boundary test towards solving PDE boundary value problems
using graph-based approximations, which is one of the problems that motivated our work. Since we estimate
both the boundary points and the normal vector to the boundary, we are able to assign Dirichlet, Neumann,
and Robin boundary conditions. In particular, we study the eikonal equation with Dirichlet boundary con-
ditions and Poisson equations with Robin conditions on point clouds, and prove quantitative convergence
rates to the solutions of the continuum PDEs. It is important to point out that not all methods for detecting
boundary points will lead to convergent numerical approximations of PDEs. If too few points are identified,
the boundary conditions may not be attained continuously as the mesh is refined [24]. Similar problems can
occur if points far inside the interior of the domain are falsely identified as boundary points. The purpose of
this section is to illustrate that our boundary detection method is compatible with setting boundary condi-
tions for PDEs on point clouds. Our results cover only some preliminary examples, with much investigation
left to future work.

Finally, in Sections 6.1.1 and 6.2.1 we implement numerical schemes for solving the eikonal and Robin
equations on point clouds and conducted a number of experiments to both illustrate the solutions and numer-
ically investigate the rate of convergence. Solving the eikonal equation enables us to estimate the distance
to the boundary of any point in the dataset, which gives a notion of data depth on a point cloud. While our
boundary test is not designed for working with manifolds in high dimensional spaces, Section 6.3 include
experiments with notions of data depth based on the eikonal equation and Dirichlet eigenfunctions of the
graph Laplacian on MNIST and FashionMNIST, using our boundary detection method to set the Dirichlet
boundary conditions. The results are intriguing and agree with intuition; the boundary images are clearly
outliers while the deepest images are good representatives of their class.

1.1. Setting. Consider a domain Ω ⊂ Rd such that both Ω and Rd\Ω has reach at least R > 0 , where reach
is the maximal distance such that for all x with dist(x,Ω) ≤ R there exists a unique point y ∈ Ω such that
|x− y| = dist(x,Ω). Denote by ρ : Rd → [0,∞) a probability density function, which we assume satisfies
ρmin ≤ ρ ≤ ρmax on Ω for some positive numbers ρmin ≤ ρmax and ρ = 0 outside of Ω. We assume that on
Ω, the function ρ is Lipschitz continuous with Lipschitz constant L. Given a set of i.i.d. points X distributed
according to ρ, our goal is to identify the points that are close to the boundary ∂Ω with high probability;
namely, we aim to approximate the set

∂εΩ ∩ X = {x ∈ X : dΩ(x) ≤ ε}
of ε-boundary points, where dΩ : Ω→ R+ is the distance function

dΩ(x) := dist(x, ∂Ω).

Our approach is as follows: we approximate inward normal vectors, use these to estimate the distance of
each point to the boundary, and threshold the distance to obtain a boundary test. For x ∈ ∂Ω we denote
by ν(x) the unit inward normal to ∂Ω at x. We extend the unit normal to a vector field on the set ∂RΩ by
setting

(1.1) ν(x) = ν(x∗),
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where x∗ ∈ ∂Ω is the closest point to x on ∂Ω. Note that x∗ is uniquely defined on ∂RΩ. We can also
equivalently set ν(x) = ∇dΩ(x).

x0

ν̂r
ν

R

dΩ(x
0)

r

∂Ω

FIGURE 2. Illustration of the test setup: x0 is the point tested.

1.2. Estimation of the inward normal vector. We now introduce the first and second-order estimator of
ν(x0). These estimators are accurate when x0 is near the boundary. This is sufficient as our test does not
require any accuracy of the estimated normal vectors in the interior. In fact, even in the continuum case the
normal vectors are not necessarily well-defined for points outside of ∂RΩ.

First-order normal vector estimator. Let r > 0 and X = {x1, x2, · · · , xn} be the set of i.i.d. points
distributed according to ρ. For each x0 ∈ X we define the first-order normal vector estimator

(1.2) v̂r (x
0) =

1

n

n∑︂
i=1

1B(x0,r)(x
i)(xi − x0), ν̂r (x

0) =
v̂r (x

0)

|v̂r (x0)|
.

If v̂r(x0) = 0 then we set ν̂r(x0) = 0. In this case, our test will identify x0 as a boundary point. Note that
this can happen with nonzero probability only when x0 is an isolated point. We also define the corresponding
population level estimator

(1.3) v̄r (x
0) =

∫︂
Ω∩B(x0,r)

(x− x0)ρ(x) dx, ν̄r (x
0) =

v̄r (x
0)

|v̄r (x0)|
.

Theorem 2.6 establishes precise error bounds on the normal estimator, which in particular imply that

(1.4) P

⎛⎝|ν̂r (x0)− ν(x0)| > C

(︃
log n

n

)︃ 1
d+2

⎞⎠ ≤ 2d

n3

for r ∼ (log n/n)1/(d+2), where C > 0 is a constant independent of n, with scaling C ∼ d2.

Second-order normal vector estimator. In addition to the assumptions for the first-order test, we now
assume that ρ is a C2 function and that the boundary of Ω is a C3 manifold. To reduce the bias that arises
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from the fact that ρ is not constant near x0 we weight the points by the inverse of a kernel density estimate
of ρ. For each x0 ∈ X we define the second-order normal vector estimator

(1.5) v̂2r(x
0) =

1

n

n∑︂
i=1

1B(x0,r)(x
i)

θ̂(xi)
(xi − x0), ν̂2r(x

0) =
v̂2r(x

0)

|v̂2r(x0)|
,

where

(1.6) θ̂(x) =
1

ωdn

(︃
2

r

)︃d n∑︂
j=1

1B(x,r/2)(x
j).

Similarly, we set ν̂2r(x
0) = 0 if v̂2r (x

0) = 0. We note that the radius for estimating θ, namely r
2 is somewhat

arbitrary. Using r instead of r
2 results in the error of the same order, however in practice using r/2 resulted

in smaller error than using r.
At the population level our estimator takes the form

(1.7) v̄2r(x
0) =

∫︂
B(x0,r)∩Ω

ρ(x)

θ(x)
(x− x0)dx, ν̄2r(x

0) =
v̄2r(x

0)

|v̄2r(x0)|
,

where

(1.8) θ(x) =
2d

ωdrd

∫︂
B(x,r/2)∩Ω

ρ(z)dz.

In Section 2.1 we provide a proof that the error is indeed of size r2 when r ≳ (log n/n)1/(d+4), for n
large enough. In contrast to our results for the first-order test (Theorem 2.6) we did not carry out a careful
analysis of the second-order estimator to determine the exact constants appearing in the error bounds, and
only determined the asymptotic scaling law. A more careful analysis of the second-order estimator is a
nontrivial undertaking that we leave to future work.

We note that in addition to its use for distance estimation and the boundary test, the estimation of normal
vectors is itself important to PDEs on graphs. It allows for the solution of PDEs on point cloud with not
only Dirichlet boundary conditions but also Neumann, oblique, and Robin boundary conditions, which we
study in Section 6.

1.3. Estimation of the distance to the boundary. The distance to ∂Ω, dΩ : Ω → R, is differentiable in
∂RΩ; see for example Lemma 2.21 in [12]. Furthermore, the gradient of the distance function conicides
with the extension of the inward normal vector, that is, for x ∈ ∂RΩ we have

(1.9) ∇dΩ(x) = ν(x).

We exploit this relationship to approximate the distance function using the normal vectors near the boundary.
First, we observe that dΩ satisfies

(1.10) dΩ(x) = max
y∈B(x,r)∩Ω

{︁
dΩ(x)− dΩ(y)

}︁
provided B(x, r)∩∂Ω is not empty. Indeed, the maximum is attained at y ∈ ∂Ω where dΩ(y) = 0. Suppose
dΩ ∈ C2 near the boundary. Then we can use the Taylor expansion

dΩ(y) = dΩ(x) +∇dΩ(x) · (y − x) +O(r2)

in (1.10), along with (1.9), to obtain

(1.11) dΩ(x) = max
y∈B(x,r)∩Ω

{︁
ν(x) · (x− y)

}︁
+O(r2).

Replacing the true normal ν(x) in (1.11) with our first-order normal estimator ν̂r (x0), and restricting the
maximum to the point cloud, leads to our first-order estimator of the distance to the boundary.
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First-order estimator for the distance to the boundary of Ω. Let r > 0 and X = {x1, x2, · · · , xn} ⊂
Ω. We define the first-order distance function estimator d̂

1

r : X → R by

(1.12) d̂
1

r (x
0) = max

xi∈B(x0,r)∩X
(x0 − xi) · ν̂r (x0).

In Sections 2 and 3, we show that the assumption that ∂Ω has positive reach guarantees the error rate O(r2)
of the first-order distance estimator near the boundary.

The associated population based estimator d̄1r defined by

(1.13) d̄
1
r (x

0) = max
x∈B(x0,r)∩Ω

(x0 − x) · ν̄r (x0).

Note that the population based estimator has a positive bias, meaning dΩ(x
0) ≤ d̄r (x

0). In Lemma 2.4
we obtain explicit bounds on the bias which establish that d̄r (x0) − dΩ(x

0) = O(r2) as r → 0. We
combine this with variance bounds on ν̄r − ν̂r established in Lemma 2.5 to show, in Theorem 3.3 that when
r ≳ (log n/n)1/(d+2) we have |d̂1r (x0) − dΩ(x

0)| = O(r2), with high probability, for x0 sufficiently close
to the boundary. The dependence of the error bounds on the parameters is explicitly stated.

Second-order estimator for the distance to the boundary of Ω. If the boundary of Ω is C3, and thus
dΩ is C3 within the a sufficiently small tubular neighborhood of the boundary [46], then we can use the
second-order estimator ν̂nr of the unit normal vector to obtain a second-order accurate estimator for the
distance.

To derive a second-order distance function estimation near the boundary, we proceed from (1.10), as
before, except now we use the higher order Taylor expansion

(1.14) dΩ(y) = dΩ(x) +∇dΩ(x) · (y − x) +
1

2
(y − x) · ∇2dΩ(x)(y − x) +O(r3).

To handle the second-order terms, which cannot be easily estimated from the point cloud, we use the Taylor
expansion

∇dΩ(y) = ∇dΩ(x) +∇2dΩ(x)(y − x) +O(r2).

Taking dot products of both sides with y − x yields

(y − x) · ∇2dΩ(x)(y − x) = (∇dΩ(y)−∇dΩ(x)) · (y − x) +O(r3).

Combining this with the first expansion (1.14) yields

dΩ(y) = dΩ(x) +
1

2
(∇dΩ(x) +∇dΩ(y)) · (y − x) +O(r3).

Inserting this into (1.10) and using that∇dΩ(x) = ν(x) we obtain

(1.15) dΩ(x) = max
y∈B(x,r)∩Ω

{︃
(x− y) · 1

2
(ν(x) + ν(y))

}︃
+O(r3).

Hence, the second-order distance estimator simply involves averaging the normals at x and y. When dis-
cretizing to the point cloud, this yields the distance function estimation

(1.16) max
xi∈B(x0,r)∩Xn

(x0 − xi) · 1
2
(ν̂r (x

0) + ν̂r (x
i))

The above test is second-order accurate when applied to points that are closer to boundary than r
2 , however

at far away points, in particular those further than r, ν̂2r (x
0) and ν̂2r (x

i) are to large extent random and can
be almost opposite to each other. This can lead to the distance being severely underestimated by the test
above.
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To avoid this problem, we define the second-order estimator with cutoff

(1.17) d̂
2

r (x
0) = max

xi∈B(x0,r)∩X
(x0 − xi) ·

[︄
ν̂2r (x

0) +
ν̂2r (x

i)− ν̂2r (x
0)

2
1R+(ν̂

2
r (x

i) · ν̂2r (x0))
]︄
.

The rationale for the particular cutoff function is as follows. We need a highly accurate estimate of the
distance, for example, to determine the points in a boundary strip, only when dΩ(x

0) < 1
2r ≪ R. The

point where the right-hand side of (1.16) is maximized is on the boundary. Thus the point where (1.17) is
maximized, provided the normals are accurate, are close to the boundary. Points far away from the boundary
can only maximize the right hand side if there is cancellation between the normal vector estimates. So we
just need to discard the points where the normal is very poorly estimated, or rather, where the normal
estimation is irrelevant as B(x0, r) ∩ ∂Ω = ∅. Selecting the points where ν̂r (x

i) · ν̂r (x0) > 0 provides
a convenient way to do so. We note that instead of discarding such points, we simply resort back to the
first-order test, which provides another layer of robustness, in the case that the assumptions under which the
second-order test was derived do not hold.

Henceforth, by the second-order estimator we refer to the estimator with cutoff (1.17), unless stated
otherwise. In practice, we recommend the use of the second-order estimator. The estimates of Section
2.1 imply that for r ≳ (log n/n)1/(d+4), the test (1.17) provides a second-order estimator of the normal
vector. We note that unlike for the first-order test, our analysis for the second-order test is in the asymptotic
regime, without precise estimates in the non-asymptotic regime. Developing the full error analysis of the
second-order estimators remains a future task.

1.3.1. Extension to manifolds. We can generalize both the first and the second-order distance estimators
to the case where ρ is supported on an m-dimensional manifold M with m < d. We simply replace the
normal vectors by their projection onto the relevant tangent spaces approximated using PCA locally. Using
such projections in boundary estimation for manifolds has been exploited in [1]. Let us denote by T̂

j
the

m-dimensional subspace spanned by the largest m eigenvectors of the sample covariance matrix from the
observations xi − xj for xi ∈ B(xj , r), and Πj the projection onto such a subspace. Thus we may define
the first-order distance estimator in the manifold case as

(1.18) d̂
1

r (x
0) = max

xi∈B(x0,r)∩X
Π0((x0 − xi)) · ν̂r (x0),

and the corresponding second-order estimator as
(1.19)

d̂
2

r ,M(x0) = max
xi∈B(x0,r)∩X

(︂
Π0(x0 − xi)

)︂
·
[︄
ν̂2r (x

0) +
ν̂2r (x

i)− ν̂2r (x
0)

2
1R+(Π

0(ν̂2r (x
i)) ·Π0(ν̂2r (x

0)))

]︄
.

Note we have the equivalent distance estimators when we replace every vector w that appear in the above
definitions with Π0w, which we avoid to keep notation simple. When M itself has positive reach, Πj

approximates the projection onto the true tangent plane at xj with an error of O(r) in the operator norm
with high probability; whenM is a C3 manifold, the error is of order O(r2) (see Theorem 2 of [2]). In fact,
this is also true in the presence of small additive noise. Further, Aamri and Levrard [2] suggest the same
order of accuracy in the presence of small additive, possibly non-random noise of order O(r2). This means
that the error rates for the estimated normal vector carry over, hence we can expect similar bounds on the
distance estimators. Figure 9 shows experiments for 2 dimensional surfaces. However, the analysis required
in this case is more intricate. One would need to bound the additional errors due to curvature and empirical
estimation of the tangent plane. Thus we do not include the analysis in the current paper, and instead leave
it to future work.
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1.4. The new boundary test. Now we are ready to present our boundary test. Our aim is to create a test
such that given ε > 0 small the test would recognize as boundary points all of the points within the distance
ε from the true boundary of Ω and none of the points which are further than 2ε from ∂Ω.

The boundary test we introduce depends on the empirical estimator of the distance to the boundary.

Boundary region test. Let X = {x1, x2, · · · , xn} ⊂ Ω be an i.i.d. random sample of the density ρ. Let
ε, r > 0 and x0 ∈ X . Given an empirical estimator of the distance to the boundary d̂r we define the testˆ︁Tε,r : X → {0, 1} by

(1.20) ˆ︁Tε,r (x
0) =

{︄
1 if d̂r (x0) < 3ε

2

0 otherwise.

We denote by ˆ︁T 1
ε,r the estimator that uses the first-order estimator for the distance d̂

1

r (x
0) defined in (1.12)

and by ˆ︁T 2
ε,r the estimator that uses the second-order estimator for the distance d̂

2

r (x
0) defined in (1.17).

Our theoretical guarantees focus on ˆ︁T 1
ε,r . In particular we show that ˆ︁T 1

ε,r identifies the ε-boundary points
with high probability, even when ε is much smaller than the typical distance between nearby points. In
particular Theorem 3.3 shows that, for ε ≳ (log n/n)2/(d+2), under appropriate assumptions,

(1.21) P( ˆ︁T 1
ε,r (x

0) = 0 | dΩ(x0) ≤ ε) + P( ˆ︁T 1
ε,r (x

0) = 1 | dΩ(x0) ≥ 2ε) ≤ (2d+ 1)n−3.

The assumptions we make on the geometric parameters are as follows.

Assumption 1.1. ε
r ≤ 1

3
√
d

.

Assumption 1.2. r2 ≤ Rε.

Assumption 1.1 assures that r is sufficiently large so that distances to boundary of size ε can be detected.
In particular it ensures that there are points x ∈ B(x0, r) for which

(︁
x− x0

)︁
· ν̂r (x0) < −3ε

2 . Assumptions
1.1 and 1.2 together imply

(1.22)
(︃
ε

r
− r

R

)︃2

≤ 1

d+ 1
,

which bounds the rate of growth of constant C in Lemma 2.2 in d. Assumption 1.2 is needed in Lemma 3.1
to ensure that d̂

1

r (x
0) does not underestimate the distance for positively curved domains. Assumptions 1.1

and 1.2 imply

(1.23) r ≤ R
ε

r
≤ R

3
√
d
.

This guarantees that at least one third of B(x0, r) is in Ω, which is crucial for establishing the lower bound
in Lemma 2.1. Finally, r ≤ R

2 follows easily from the assumptions. This implies the estimate

R−
√︁

R2 − x2 ≤ x2

R
for |x| ≤ r ,

which is used in the proof of Lemmas 2.1 and 2.2.
Now we summarize our result on the accuracy of the boundary test. Corollary 3.8 states that under

suitable conditions ∂ε,rX = {x ∈ X : ˆ︁T 1
ε,r (x) = 1} satisfies

∂εΩ ⊂ ∂ε,rX ⊂ ∂2εΩ

with probability at least 1− 2dn−3, if

(1.24) ε ≥ C

(︃
log n

n

)︃ 2
d+2
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for some constant C = C (d,R, L, ρmin, ρmax). For our second-order boundary test, our analysis in the
asymptotic regime suggest that we can identify ε-boundary points with ε ≳ (log n/n)3/(d+4) with high
probability. Please see Sections 2.1 and 4 for precise statements.

We can compare the above result with that from Cuevas and Rodrı́guez-Casal [36], which gives the best
available theroetical guarantee the authors are aware of. Theorem 4 of [36] states that with probability one,
the estimated set of boundary points ∂Ωn based on the Devroye-Wise estimator [38] satisfies

(1.25) dH (∂Ωn, ∂Ω) ≤ (2s−1ω−1
d )

1
d

(︃
log n

n

)︃1
d

eventually.

Here, s denotes the standardness constant, which in our case is at least 1
3 . Further, Theorem 5 of [36] states

that the rate in n in (1.25) is optimal for the Devroye-Wise estimator. Let us temporarily denote the right
hand side of (1.25) by εn. Note that this allows identifying all points within εn of the boundary and none
farther than 2ε via taking the points within εn of ∂Ωn.

Note that our test satisfies, under suitable choices of ε, r ,

dH(∂ε,rX , ∂Ω) ≤ 2ε = O

(︃
log n

n

)︃ 2
d+2

with probability at least 1− 2dn−3,

provided we choose ε at the lower bound in (1.24). Thus for d ≥ 3 our rate in n compares favorably to the
optimal rate of the Devroye-Wise estimator (1.25). However, the constant in (1.24) is of order C ∼ O(d5/2),
while the constant (2s−1ω−1

d )1/d in (1.25) is of order O(d1/2). Details on the dependence of the constants
on d can be found in Remark 3.4.

Another notable difference is that identifying the boundary points through [36] does not seem computa-
tionally tractable in higher dimensions. The points corresponding xi whose balls B(xi, r) contribute to the
boundary correspond exactly to points on the boundary of the α-shape [41] of X . However, computing this
involves Delaunay triangulation and may be difficult in dimensions higher than 3. See Section 1.5 for more
details.

In contrast, our proposed boundary test is easy to implement and computationally efficient, as can be
seen in Algorithms 1 and 3. The range search task of identifying B(x0, r) ∩ X for each x0 ∈ X is the
computational bottleneck of our test. This is computationally equivalent to performing a k-nearest neighbor
search for each point in X (all-kNN) for suitable k. Empirically, k-nearest neighbor search (kNN) can
be done in almost linear time with high accuracy [10, 39]. For further details, we refer the reader to the
discussions in Section 5.

Finally, our test does not require the knowledge of the intrinsic dimension of supp ρ. For instance, if Ω
is an m-dimensional disc, the proposed boundary test will perform exactly the same when Ω is embedded
in Rd for any d ≥ m, besides the slightly higher computational cost of performing range search or kNN in
higher dimensions. This is because our test is based on estimation of the distance dΩ, which is intrinsic.

1.5. Related works. One of most studied approaches to boundary and support estimation is via the Devroye-
Wise estimator, which approximates the support of ρ by a union of balls:

(1.26) Ωn :=
n⋃︂

i=1

B
(︂
xi, rn

)︂
.

Devroye and Wise [38] establish the convergence of Ωn to Ω := supp ρ as n→∞ and rn → 0, at a suitable
rate, in the following sense: ρ(Ω∆Ωn)→ 0 in probability if rn ≫ n−1/d, while rn ≫ (log n/n)1/d implies
almost sure convergence.

Cuevas and Rodriguez-Casal, [36], established that, under certain smoothness assumptions, the Haus-
dorff distances dH (Ωn,Ω) , dH (∂Ωn, ∂Ω) ∼ (log n/n)1/d, and that the rate is optimal. Furthermore, it
is possible to compute the points xi contributing to the boundary ∂Ωn using α-shapes, introduced in [41].
However, α-shapes are a union of a certain subset of simplicies of the Delaunay triangulation. This poses
challenges as the Delaunay triangulation in d > 3 dimensions is itself not an easy computational problem,
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as the number of simplices can be large, up to O(n⌈d/2⌉) [59]. Thus, while efficient O(n2) algorithms are
established for d ≤ 3 [42], less is known for higher dimensions.

We also note that the Devroye-Wise boundary estimators have been used to estimate the Minkowski
content of the boundary of S, which for sufficiently regular sets approximates the surface area ((d− 1)-
dimensional Hausdorff measure). This is shown to be L2-consistent for general dimensions in [34] and
convergent at O(n−1/(2d)) for d = 2, 3 in [35].

Casal [67] defines an estimator called r-convex hull, based on the Minkowski sum and differences of sets
and closely related to α-shapes, to approximate the support Ω with improved rate of (log n/n)2/(d+1) in the
Hausdorff distance with high probability.

We note that the while the works of Devroye-Wise and Casal propose different estimators for the boundary
of the set, the data points xi which are identified as being near the boundary are the same for both estimators,
see Section 5.1 for explanation and Figure 8 for illustration.

Another family of approaches are associated with the kernel density estimators (KDE). Estimating the
density level set via the kernel density estimator is well-studied [29] [65]. Cuevas and Fraiman [33] ap-
proximate the support by the super-level sets {f̂ > αn} of the KDE f̂ , where tuning parameter αn → 0 as
n→∞, and establish dH almost at the aforementioned optimal rate.

On the other hand, Berry and Sauer [11] approximates the distance dΩ of points to the boundary of the
manifold to improve accuracy of KDE near the boundary. To do so, they use the graph Laplacian to estimate
the normal vectors, and compute dΩ by solving an expression it satisfies in relation to the expectation of the
said graph Laplacian.

For self-similar but possibly non-smooth ∂Ω, such as the von Koch snowflake, Lachièze-Rey and Vega
[52] use Voronoi cells to define an estimator that converges to Ω at the optimal rate in dH when ρ is uniform.

Several further works, [1, 3, 30, 66, 74], have focused on identifying the boundary when ρ is supported
on a lower dimensional manifold M. Aamari, Aaron, and Levrard [1] generalize the result of Casal [67]
to the manifold setting. They project the relevant geometric quantities onto the approximate tangent space
estimated using principal component analysis (PCA) to identify the set Y ⊂ X of points such that with high
probability, for all yi ∈ Y we have dH(yi, ∂M) ≲ (log n/n)2/(d+1). Based on Y , they use the weighted
Tangential Delaunay Complex to provide an estimator approximating ∂M with rate (log n/n)2/(d+1) in the
Hausdorff distance with high probability. Further, they establish that this rate is minimax over the class of
convex submanifolds (i.e. those diffeomorphic to a convex subset of Rd), thus showing not only that their
upper bound is tight, but also that estimation of boundary under the assumption of positive reach is not more
difficult than that in the convex case.

Our first-order test identifies the set of boundary points such that with high probability each point is at
most (log n/n)2/(d+2). While our theoretical results are established for flat domains, we believe the same
rate would apply to the generalized first-order estimator (1.18) in the manifold case. Through the same
boundary reconstruction process as stated in [1], we may construct boundary estimators with the same rate,
which is slightly slower than the minimax rate proven by [1]. However, we note that our test identifies
w.h.p. all points within such tubular neighborhood of the boundary, which is stronger than obtaining the
same bound in the Hausdorff distance, and is important for application to PDEs on graphs.

It is also interesting to note that the asymptotic error rate for our second-order test (1.20) based on distance
estimator (1.17) in the Euclidean case is (log n/n)3/(d+4), see Sections 2.1 and 4. This estimator however
requires that manifolds are of class C3 and that ρ is C2, while the rates in [1] hold for manifolds which
are merely C2 and bounded densities. Determining minimax rates for estimators for C3, and more regular
manifolds and densities, remains an open problem.

Aaron and Cholaquidis [3] devise a statistical test to determine whether a random sample supported on a
manifold has a boundary, along with heuristics to identify some of the points closer to the boundary. While
their test uses k-nearest neighbor search instead of range search, the suggested test statistic for each point
x0 is similar to the size of the projection of v̂r (x0) onto the approximate tangent space at x0. Thus, loosely
speaking, this statistic exploits that the normal vector is of order O(r) near the boundary, while O(r2) in the
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interior. We note that this approaches only use the size of the estimated normal, while we utilize the normal
vector itself.

Wu and Wu [74] use the behavior of the locally-linear embedding (LLE) near the boundary to identify
boundary points. Interestingly, their test statistic is a quadratic function of a kNN-analogue of our normal
vector v̂r , where the coefficients take into account the curvature of ∂Ω and density fluctuations. Further,
they provide theoretical guarantees for their test statistic (see Proposition 5.1 of [74]).

A couple other methods try to use the normal vectors, but approximated in a different way. BORDER
algorithm [30] uses that, given a fixed k ∈ N and sufficiently many points, the number of points of which
x0 is a k-neighbor of will be roughly half when x0 is near the boundary, compared to that when x0 is in
the interior. BRIM algorithm introduced in [66], exploits the fact that given a suitable approximation of the
inward normal at x0, say ν(x0), the number of points xi such that (xi − x0) · ν(x0) is positive is greater
than the number of points for which the inner product is negative, when x0 is near the boundary. BRIM
approximates the inward normal by identifying the point y ∈ B(x0, r) ∩ X such that |B(y, r) ∩ X | is
largest, then using y − x0 as the estimator. However, for both approaches, such difference is of the same
order as the statistic, which is weaker than the dichotomy used in [74]. Moreover, none of the approaches
above use the normal vector to measure the distance to the boundary, which is one of the key elements for
the improved accuracy.

Our convergence proofs for the solutions of PDEs on point clouds in Section 6 utilize the maximum
principle, building upon previous related works in the field [15, 17, 44, 50, 80]. We also expect that recent
advances in the studies of PDEs on point clouds [22, 23, 49] can also be applied in this setting, to obtain,
for example, spectral convergence for the Dirichlet graph Laplacian. There are many methods in the nu-
merical analysis literature for solving PDEs on unstructured meshes or point clouds. Methods with rigorous
convergence results include the wide stencil schemes for Hamilton-Jacobi equations and elliptic PDEs [62],
which were originally defined on regular grids and have subsequently been extended to unstructured point
clouds [43, 47], and the point integral method [55]. Other works without convergence guarantees include
upwind schemes for Hamilton-Jacobi equations on unstructured meshes [68], mesh-free generalized finite
difference methods [71, 72], least squares manifold approximation methods [56, 75, 78], the local mesh
method [53], radial basis function methods [45, 48, 63, 64], and a recent approach using graph Laplacians
and deep learning [57]. A general survey of meshfree methods in PDEs is given in [28].

Regarding data depth, the ordering of multivariate data is an old problem in statistics [6, 58]. The goal
is generally to extend robust statistical notions, like quantiles and the median, to multivariate data. For
point clouds, there are notions of depth like the Tukey halfspace depth [76], which has been extended to
graphs [70] and metric spaces [27], and the Monge-Kantorovich depth [31]. There are also notions of depth
for curves [37] It was recently shown in [61] that the Tukey depth satisfies a non-standard eikonal equation
in the viscosity sense, at the population level. To the best of our knowledge, the eikonal equation on a graph
has not been used for data depth previously. Two forthcoming papers will study the graph eikonal depth
in more detail [21, 60]. Other examples of connections between data depth and PDEs include convex hull
peeling [25], non-dominated sorting [20], and Pareto envelope peeling [13].

Outline. The remainder of this paper is organized as follows. In Section 2 we establish preliminary
estimates and error estimates on normal vectors estimators that will be useful in proving the main results,
which are presented in Sections 3 and 4. Section 3 rigorously establishes nonasymptotic error bounds for
the first-order test, which is the theoretical basis for applications to PDEs on graphs presented later in the
paper. Section 4, under some additional regularity assumptions, establishes asymptotic error bounds for the
second-order test, which we recommend for practical use. Then we present the algorithm and discuss the
computational aspects of the boundary test in Section 5. Turning to applications, in Section 6 we will apply
the boundary test to solving PDEs on graphs with various boundary conditions. Particular attention is paid
to computing data-depth using PDEs in two ways: by solving the graph eikonal equation, and considering
the first eigenfunction of the graph Laplacian. We also demonstrate these to MNIST and FashionMNIST
data sets; see Section 6.3.
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2. PRELIMINARY RESULTS AND ERROR BOUNDS FOR NORMAL VECTOR ESTIMATORS

In this section we establish several results on the geometry of the empirical estimates we use, most
importantly the error bounds for the normal vector estimators. Nonasymptotic O(r) error bound for the
first-order normal vector estimator is given in Theorem 2.6, and Section 2.1 establishes asymptotic O(r2)
error bound for the second-order normal vector estimator . All the constants introduced in this and the
following sections can also be found in Appendix D, and are non-dimensional. That is, they are invariant
under the change of length-scale.

First we derive useful bounds on
∫︁
B(x0,r) ρ(x) dx from the assumptions. We note that the following

lemma is closely related to the ‘standardness constant’ in [36], which denotes the constant s > 0 in such
that for all x0 ∈ Ω

(2.1)
|B(x0, r) ∩ Ω|
|B
(︁
x0, r

)︁
| ≥ s.

This constant is of importance as it gives a lower bound on the number of points in B(x0, r) ∩ Ω with high
probability. Our first lemma asserts that the Assumptions 1.1, 1.2 imply that s ≥ 1

3 .

Lemma 2.1. Let r > 0. Then

(2.2)
ρminωdr

d

3
≤
∫︂
B(x0,r)

ρ(x) dx ≤ ρmaxωdr
d

Proof. As the upper bound is obvious, we focus on the lower bound, which easily follows from s ≥ 1/3.
We claim that (2.1) holds for s = 1

2

(︂
1−

√
dr
R

)︂
. Note that B(x0, r) ∩ Ω at least consists of the hemisphere

minus the area between the tangent hyperplane at x0. As the assumption r ≤ R
3 implies that the height of

the region between the tangent hyperplane and Ω with reach R is bounded above by r2

R . Therefore, we may
upper bound the area of the region by considering the cylinder with base (d− 1)-dimensional hypersphere
of radius r and height r2

R . Thus its area is ωd−1r
d−1 r2

R =
ωd−1r

d+1

R . Therefore

(2.3) s ≥ 1

2
− ωd−1r

d+1R−1

ωdrd
=

ωd−1

ωd

r

R

We introduce the notation

(2.4) κd =
ωd−1

ωd

and claim that κd ≤
√
d. Note that since Γ is a logarithmically convex function

Γ

(︃
d

2
+ 1

)︃2

≤ Γ

(︃
d− 1

2
+ 1

)︃
Γ

(︃
d+ 1

2
+ 1

)︃
.

Therefore, ω2
d ≥ ωd−1ωd+1, and κd+1 ≥ κd. On the other hand,

κdκd+1 =
ωd−1

ωd+1
=

Γ
(︂
d+1
2 + 1

)︂
πΓ
(︂
d−1
2 + 1

)︂ =
d+ 3

2π
.

Combining with κd+1 ≥ κd, we get κd ≤
√
d+3
2π ≤

√
d as d + 3 ≤ 4πd. Similarly, we have a lower bound

κd+1 ≥
√︂

d+3
2π ≥ 1

3

√
d+ 1, which will be of use later. Hence

(2.5)

√
d

3
≤ ωd−1

ωd
≤
√
d.

Combining the upper bound of (2.5) with (2.3), we have s ≥ 1
2

(︂
1−

√
dr
R

)︂
. This, along with (1.23), implies

that s ≥ 1
3 . □
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In the following two lemmas we examine the bias of the population-based estimators.

Lemma 2.2 (Bias of the estimated normal). For every x0 ∈ Ω with dΩ(x
0) ≤ r/2 we have

(2.6)
⃓⃓⃓
v̄r (x

0)− Cy(x
0)ρ(x0)rd+1ν(x0)

⃓⃓⃓
≤ Cxρ(x

0)

R
rd+2,

provided |αr − r
R | ≤ 1, where

Cx = 2ωd−1 +
LRωd

ρmin

Cy(x
0) =

ωd−1

(︃
1−

(︂
dΩ(x

0)
r − r

R

)︂2)︃ d+1
2

(d+ 1)
.

(2.7)

In particular, whenever dΩ(x0) ≤ 2/(3
√
d), we have Cy(x

0) ≥ ωd−1

2(d+1) .

Remark 2.3 (Lower bound on Cy). Suppose dΩ(x
0) ≤ 2r/(3

√
d). Then

(︂
dΩ(x

0)
r − r

R

)︂2
≤ dΩ(x

0)2

r2
≤

4
9d ≤ 1

d+1

(2.8)
(︃
1−

(︂
dΩ(x

0)
r − r

R

)︂2)︃ d+1
2

≥ 1− d+ 1

2

(︂
dΩ(x

0)
r − r

R

)︂2
≥ 1

2

and so

(2.9) Cy(x
0) ≥ ωd−1

2(d+ 1)
.

This lower bound will be important for results to follow. Observe that dΩ(x0) ≲ r/
√
d allows a similar

bound Cy(x
0) ≳ ωd−1/d.

Note also by Assumption 1.1, dΩ(x0) ≤ 2ε is a sufficient condition. As this is more intuitive and
sufficient for theoretical results on the boundary test, we henceforth state the condition as dΩ(x0) ≤ 2ε, but
note here that all such conditions can be replaced by dΩ(x

0) ≤ 2r/(3
√
d). △

Proof of Lemma 2.2. We write

(2.10) v̄r (x
0) = E1 + ρ(x0)E2,

where

(2.11) E1 =

∫︂
Ω∩B(x0,r)

(x− x0)(ρ(x)− ρ(x0)) dx,

and

(2.12) E2 =

∫︂
Ω∩B(x0,r)

(x− x0) dx.

Since ρ is Lipschitz with constant L, the term E1 is bounded by

(2.13) |E1 | ≤ L

∫︂
B(x0,r)

|x− x0|2 dx = L

∫︂ r

0

∫︂
∂B(x0,t)

t2 dS dt dx = L

∫︂ r

0
dωdt

d+1 dt =
Ldωd

d+ 2
rd+2.

We now estimate E2. Without loss of generality, we may assume x0 = (0, 0, . . . , 0, α) for α =
dist(x0, ∂Ω). By the assumption that the reach of ∂Ω is greater than R > 0, we have

∂Ω ∩B(x0, r) ⊂
{︄
x ∈ B(x0, r) : |xd| ≤

r2

R

}︄
,
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provided r ≤ R/2. Therefore

(2.14)

⃓⃓⃓⃓
⃓E2 −

∫︂
B(x0,r)∩{xd≥ r2

R
}
(x− x0) dx

⃓⃓⃓⃓
⃓ ≤

∫︂
B(x0,r)∩{|xd|≤ r2

R
}
|x0 − x| dx ≤ 2ωd−1r

d+2

R
.

We now change variables z = (x− x0)/r and write∫︂
B(x0,r)∩{xd≥ r2

R
}
(xd − x0d) dx = rd+1

∫︂
B(0,1)∩{zd≥ r

R
−α

r
}
zd dz

= rd+1

∫︂
B(0,1)∩{zd≥|αr − r

R |}
zd dz,

where the last inequality comes from symmetry of the integrand. We now compute for any 0 ≤ t ≤ 1∫︂
B(0,1)∩{zd≥t}

zd dz = ωd−1

∫︂ 1

t
zd(1− z2d)

d−1
2 dz

=
ωd−1

2

∫︂ 1

t2
(1− s)

d−1
2 ds

=
ωd−1

d+ 1
(1− t2)

d+1
2 .

Due to symmetry of the integrand, we have∫︂
B(x0,r)∩{xd≥ r2

R
}
(xj − x0j ) dx = 0

for all j = 1, . . . , d− 1. Combining this with (2.14) we find that

(2.15)

⃓⃓⃓⃓
⃓E2 −

ωd−1

d+ 1

(︂
1−

(︁
α
r − r

R

)︁2)︂ d+1
2

rd+1ν(x0)

⃓⃓⃓⃓
⃓ ≤ 2ωd−1r

d+2

R
,

provided |αr − r
R | ≤ 1, since ν(x0) = ed. Thus⃓⃓⃓⃓

⃓ν̄r (x0)− ωd−1

d+ 1

(︂
1−

(︁
α
r − r

R

)︁2)︂ d+1
2

rd+1ν(x0)

⃓⃓⃓⃓
⃓ ≤

(︃
2ωd−1

R
ρ(x0) + Lωd

)︃
rd+2.

We complete the proof by noting

2ωd−1

R
ρ(x0) + Lωd =

ρ(x0)

R

(︃
2ωd−1 +

LR

ρ(x0)

)︃
≤ ρ(x0)

R

(︃
2ωd−1 +

LR

ρmin

)︃
=:

Cxρ(x
0)

R
.

□

Based on the bias of the estimated normal, we can approximate the bias of the distance estimator.

Lemma 2.4 (Bias of the distance estimator). Let x0 ∈ Ω with dΩ(x
0) ≤ 2ε. If

(2.16) r ≤ RCy

2Cx

then

(2.17) dΩ(x
0) ≤ d̄

1
r (x

0) ≤ dΩ(x
0) +

(︄
7Cx

RCy
+

1

R

)︄
r2.

Proof. (1) Recall

v̂r (x
0) =

1

n

n∑︂
i=1

1B(x0,r)(x
i)(xi − x0)
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and

Ev̂r (x0) =
∫︂
B(x0,r)

(x− x0)ρ(x) dx = v̄r (x
0).

We consider the population based statistic

d̄
1
Ω(x

0) = max
x∈Ω∩B(x0,r)

{(x0 − x) · v̄r},

where ν̄ε(x
0) := v̄r (x0)

∥v̄r (x0)∥ .
(2) By Lemma 2.2 we have

v̄r (x
0) = Cyρ(x

0)rd+1ν(x0) +
1

R
O
(︂
Cxρ(x

0)rd+2
)︂
.

Here, we can use the big-Oh notation very precisely, to mean that f ∈ O(g) if |f | ≤ g (without any
implicit constant). Therefore

|v̄r (x0)| = Cyρ(x
0)rd+1 +

1

R
O
(︂
Cxρ(x

0)rd+2
)︂
.

We also have

(2.18) (x0 − x) · v̄r (x0) = Cyρ(x
0)rd+1(x0 − x) · ν(x0) + 1

R
O(Cxρ(x

0)rd+3).

We now write

1

|v̄r (x0)|
=

1

Cyρ(x0)rd+1 + 1
RO(Cxρ(x0)rd+2)

=
1

Cyρ(x0)rd+1

(︃
1 + 1

RO
(︂
Cxr
Cy

)︂)︃ .

We now use that
1

1 + t
= 1 +O(4|t|) for |x| ≤ 1

2
.

Hence, if

(2.19) r ≤ RCy

2Cx
,

which implies that Cxr
RCy
≤ 1

2 , then we have

(2.20)
1

|v̄r (x0)|
=

1

Cyρ(x0)rd+1

⎛⎝1 +O
(︄
4Cxr

RCy

)︄⎞⎠ .

Recall from (2.9) that Cy >
ωd−1

2(d+1) . Thus

Cx

Cy
≤ 2(d+ 1)

(︃
2 +

LRκd
ρmin

)︃
.
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(3) Inserting (2.20) into (2.18) we have

(x0 − x) · ν̄r (x0) =
(x0 − x) · v̄r (x0)
|v̄r (x0)|

=

⎛⎝(x0 − x) · ν(x0) +O
(︄
Cxr

2

RCy

)︄⎞⎠⎛⎝1 +O
(︄
4Cxr

RCy

)︄⎞⎠
= (x0 − x) · ν(x0) +O

(︄
Cxr

2

RCy
+

4Cxr
2

RCy
+

4C2
xr

3

R2C2
y

)︄

= (x0 − x) · ν(x0) +O
(︄
5Cxr

2

RCy
+

4C2
xr

3

R2C2
y

)︄
,(2.21)

where x ∈ Ω ∩B(x0, r).
(4) To obtain the lower bound we simply observe that max|xi−x0|≤r (x

0 − xi) · v is smallest when
v = ν(x0), in which case max|xi−x0|≤r (x

0 − xi) · ν(x0) = dΩ(x
0). Thus

(2.22) dΩ(x
0) ≤ d̄

1
Ω(x

0)

(5) For the other direction, by the assumption that the reach of ∂Ω is greater than R, we have

(2.23) Ω ∩B(x0, r) ⊂
{︄
x ∈ B(x0, r) : (x0 − x) · ν(x0) ≤ dΩ(x

0) +
r2

R

}︄
,

provided r ≤ R/2. It follows that

(2.24) d̄
1
Ω(x

0) ≤ dΩ(x
0) +

(︄
5Cx

RCy
+

1

R

)︄
r2 +

4C2
xr

3

R2C2
y

.

(6) Now combining (2.22) and (2.24)
we have

dΩ(x
0) ≤ d̄

1
Ω(x

0) ≤
(︄

5Cx

RCy
+

1

R

)︄
r2 +

4C2
x

R2C2
y

r3 ≤
(︄

7Cx

RCy
+

1

R

)︄
r2

as desired, where the last inequality follows from the condition r ≤ RCy

2Cx
. Finally, as κd ∼

√
d by (2.5),

Cx
Cy
∼ d

3
2 . □

Next, we bound the variance of ν̂r , the empirical estimator of the normal vector.

Lemma 2.5 (Bound on the variance). Let γ > 0 and c ≤ 6d3Cxρmaxωd
RCy

. If dΩ(x0) ≤ 2ε and r satisfies

(2.25)

(︄
3γρmaxd

2ωd

c2
log n

n

)︄ 1
d+2

≤ r ≤ RCy

2Cx

then

(2.26) P

(︄
|ν̂r (x0)− ν̄r (x

0)| > 6cr

Cyρ(x0)

)︄
≤ 2dn−γ

Proof. Let us first fix x0 ∈ X . For each j = 1, 2, · · · , d let

Sj
n =

n∑︂
i=1

1B(x0,r)(x
i)(xij − x0j ).
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Note

σ2 = Var
(︂
1B(x0,r)(x

i)(xij − x0j )
)︂
≤
∫︂
B(x0,r)

|xi − x0|2ρ(x) dx ≤ ρmaxωdr
d+2.

By Bernstein’s Inequality (C.3), we have

P
(︃⃓⃓⃓⃓

1

n
Sn − v̄r (x

0)

⃓⃓⃓⃓
> crd+2

)︃
≤

d∑︂
j=1

P

(︄⃓⃓⃓⃓
1

n
Sj
n − v̄r (x

0)j

⃓⃓⃓⃓
>

crd+2

d

)︄

≤
d∑︂

j=1

2 exp

[︄
− −nc2r2d+4

2d2ρmaxωdrd+2 + c
3dr

d+3

]︄

≤ 2
d∑︂

j=1

exp

⎡⎣− nc2rd+2

2d2ρmaxωd +
cRCy

6dCx

⎤⎦ ≤ 2d exp

[︄
− nc2rd+2

3d2ρmaxωd

]︄
where the second last inequality follows from (2.16), and the last inequality from the condition

c ≤ 6d3Cxρmaxωd

RCy
.

The exponent is smaller than −γ log n when

r ≥
(︄
3γρmaxd

2ωd

c2
log n

n

)︄ 1
d+2

which is (2.25). Thus

(2.27) P
(︂
|v̂r (x0)− v̄r (x

0)| > crd+2
)︂
≤ 2dn−γ

Now, note that

|ν̂r (x0)− ν̄r (x
0)| =

⃓⃓⃓⃓
⃓ v̂r (x0)|v̂r (x0)|

− v̄r (x
0)

|v̄r (x0)|

⃓⃓⃓⃓
⃓ ≤

⃓⃓⃓⃓
⃓v̂r (x0)

(︃
1

|v̂r (x0)|
− 1

|v̄r (x0)|

)︃⃓⃓⃓⃓
⃓+ |v̂r (x0)− v̄r (x

0)|
|v̄r (x0)|

.

Then (2.27) implies⃓⃓⃓⃓
⃓v̂r (x0)

(︃
1

|v̂r (x0)|
− 1

|v̄r (x0)|

)︃⃓⃓⃓⃓
⃓ = 1

|v̄r (x0)|
|ν̂r (x0)(|v̄r (x0)| − |v̂r (x0)|)|

≤ 1

|v̄r (x0)|
|v̄r (x0)− v̂r (x

0)| ≤ crd+2

|v̄r (x0)|
and

1

|v̄r (x0)|
|v̂r (x0)− v̄r (x

0)| ≤ crd+2

|v̄r (x0)|
.

Therefore, we have

(2.28) P

(︄
|ν̂r (x0)− ν̄r (x

0)| > 2crd+2

|v̄r (x0)|

)︄
≤ 2dn−γ .

Finally, from (2.20) and the condition r ≤ RCy

2Cx
we can deduce (2.26) as

2crd+2

|v̄r (x0)|
≤ 2crd+2

Cyρ(x0)rd+1

⎛⎝1 +O
(︄
4Cxr

RCy

)︄⎞⎠ ≤ 6cr

Cyρ(x0)
.

□
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Theorem 2.6. (Error estimates for the estimated normal vector)
Let x0 ∈ X with dΩ(x

0) ≤ 2ε. Let γ > 2 and ε, r > 0 satisfy Assumption 1.2. Let r and n satisfy

(2.29)

(︄
3γρmaxd

2ωdR
2

C2
xρ

2
min

log n

n

)︄ 1
d+2

≤ r ≤ RCy

2Cx
.

Then

(2.30) P

(︄
|ν̂r (x0)− ν(x0)| ≥ 13Cx

RCy
r

)︄
≤ 2dn−γ

Remark 2.7. Observe that if r satisfies (2.29), then we may choose r =

(︃
3γρmaxd2ωdR

2

C2
xρ

2
min

logn
n

)︃ 1
d+2

, which
means

P

⎛⎝|ν̂r (x0)− ν(x0)| ≥ C

(︃
log n

n

)︃ 1
d+2

⎞⎠ ≤ 2dn−γ

with

C :=
Cx

Cy

(︄
3γρmaxd

2ωdR
2

C2
xρ

2
min

)︄
∼ d2,

where the asymptotics in d can be derived using Stirling’s formula. For a more detailed analysis of the how
the constants scale with dimension, please see Remarks 3.4 and 3.6.

Further, we note that the above result holds for x0 ∈ Ω2ε – i.e. the reference point need not be one of the
samples. The same applies to following results on the distance estimator. △

Proof. The upper bound of (3.4) allows us to apply Lemma 2.4, which we will combine with Lemma 2.5.
The lower bound in (2.5) implies that

6d3ωd

Cy
≥ 12d3(d+ 1)

κd
≥ 12

from which easily follows Cxρ(x0)
R ≤ 6d3ρmaxωdCx

RCy
. Thus we may set c = Cxρ(x0)

R . Then Lemma 2.5 implies
that if

r ≥
(︄
3γρmaxd

2ωdR
2

C2
xρ

2
min

log n

n

)︄ 1
d+2

then, by (2.20),

(2.31) |ν̂r (x0)− ν̄r (x
0)| ≤ 2Cx

RCy

⎛⎝1 +O
(︄
4Cxr

RCy

)︄⎞⎠ r ≤ 6Cx

RCy
r

with probability at least 1− 2dn−γ , where the last inequality follows from the condition r ≤ RCy

2Cx
.

Next we bound |ν̄r (x0)− ν(x0)|. Again by (2.20)

|ν̄r (x0)− ν(x0)| =
⃓⃓⃓⃓
⃓ v̄r (x0)|v̄r (x0)|

− ν(x0)

⃓⃓⃓⃓
⃓

=
1

Cyρ(x0)rd+1

⃓⃓⃓⃓
⃓⃓⃓v̄r (x0)

⎛⎝1 +O
(︄
4Cxr

RCy

)︄⎞⎠− Cyρ(x
0)rd+1ν(x0)

⃓⃓⃓⃓
⃓⃓⃓ .
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By Lemma 2.2⃓⃓⃓⃓
⃓⃓⃓v̄r (x0)

⎛⎝1 +O
(︄
4Cxr

RCy

)︄⎞⎠− Cyρ(x
0)rd+1ν(x0)

⃓⃓⃓⃓
⃓⃓⃓ ≤ |v̄r (x0)− Cyρ(x

0)rd+1ν(x0)|+ 4Cx|v̄r (x0)|r
RCy

.

Thus

(2.32) |ν̄r (x0)− ν(x0)| ≤ Cx

RCy
r +

4Cxr

RCy
+

4C2
xr

2

R2C2
y

≤ 7Cx

RCy
r

where the last inequality follows from (2.19). Combining (2.31) and (2.32) we have

|ν̂r (x0)− ν(x0)| ≤ 13Cx

RCy
r

with probability at least 1− 2dn−γ . □

2.1. Second-order estimators: asymptotic error scaling. Here we analyze the asymptotic error of the
“second-order” estimator of the normal vector, ν̂2r(x

0), defined in (1.5), and show that the error is indeed
second-order in r, for points x0 sufficiently close to the boundary, namely dΩ(x

0) ≲ r/
√
d, which allows

us to use (2.6) with a reasonable lower bound on Cy(x
0) (see Remark 2.3). We note that in this section, in

order to simplify expressions we use radius r for estimating θ, instead of the radius r/2 as in (1.6) and (1.8).
However, a similar argument works when we set the radius to be r/2.

For simplicity, we first assume the boundary is the graph of a quadratic function near x0. That is that near
x0 = |x0|ed and the boundary is given by

xd = H(x)TAH(x)

where A is a (d− 1)× (d− 1) symmetric matrix and

H(x) = (x1, . . . , xd−1)
T

We also introduce the symbols for projection of a vector to the ed direction and for central symmetry with
respect to the first d− 1 variables

N(x) = x · ed ed and S(x) = (−H(x), xd).

Furthermore let U(x) = B(x, r) ∩ Ω.
Since v̄2r(x

0) · ed > Crd+1 by estimate (2.6) it suffices to show that |H(v̄2r(x
0))| ≤ Crd+3. We start by

noting that due to symmetry of the quadratic function near x0

H(v̄2r(x
0)) =

1

2

∫︂
U(x0)

H

(︃
ρ(x)

θ(x)
(x− x0) +

ρ(S(x))

θ(S(x))
(S(x)− x0)

)︃
dx

≤ 1

2

∫︂
U(x0)

|ρ(x)θ(S(x))− ρ(S(x))θ(x)|
θ(S(x))θ(x)

|H(x)|dx

≤ 8

ρ2min

rd+1 sup
x∈U(x0)

|ρ(x)θ(S(x))− ρ(S(x))θ(x)|.
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For x ∈ U(x0) we now estimate, assuming 4r < R and using that S is isometry between U(x) and U(S(x))

|ρ(x)θ(S(x))− ρ(S(x))θ(x)| = 1

ωdrd

⃓⃓⃓⃓
⃓ρ(x)

∫︂
U(S(x))

ρ(z)− ρ(S(x))dz − ρ(S(x))

∫︂
U(x)

ρ(z)− ρ(x)dz

⃓⃓⃓⃓
⃓

≤ 1

ωdrd

⃓⃓⃓⃓
⃓ρ(x)

∫︂
U(S(x))

∇ρ(N(0)) · (z − S(x))dz − ρ(S(x))

∫︂
U(x)
∇ρ(N(0))(z − x)dz

⃓⃓⃓⃓
⃓

+ 4∥ρ∥L∞∥D2ρ∥L∞r2

=
1

ωdrd

⃓⃓⃓⃓
⃓(ρ(S(x))− ρ(x))

∫︂
U(x)
∇ρ(N(0))(z − x)dz

⃓⃓⃓⃓
⃓+ 4∥ρ∥L∞∥D2ρ∥L∞r2

≤ 4
(︂
∥∇ρ∥2L∞ + ∥ρ∥L∞∥D2ρ∥L∞

)︂
r2

Combining with the estimate above we obtain

|H(v̄2r(x
0))| ≤ Crd+3

where C depends on ρ alone.
We now relax the assumption that the boundary of Ω is a graph of a quadratic function. Namely note that

since the boundary of Ω is C3 there exists Cr > 0 such that near x0 the boundary of Ω is between the graphs
of xd = H(x)TAH(x)− Cr|H(x)|3 and xd = H(x)TAH(x) + Cr|H(x)|3. Note that neglecting the part
of Ω between the graphs produces an error of size rd+3 and that all of the estimates above carry over to the
part of Ω where xd > H(x)TAH(x) + Cr|H(x)|3. Thus it still holds that |T (v̄nr (x0))| ≤ Crd+3, only that
C depends both of ρ and Ω.

We now outline the argument at the level of the sample. One can use standard concentration inequalities
to control the variance and obtain the regime in which the empirical estimator v̂nr is within Cr3 of the
population based estimate v̄nr .

Applying Bernstein’s inequality to the random variables Y j = 1
ωdrd

1|xj−x|≤r/2 one obtains

(2.33) |θ̂(xi)− θ(xi)| ≲ r2

with high probability provided that r ≳ (log n/n)1/(d+4). Using the union bound the estimate holds uni-
formly for all i. Thus ⃓⃓⃓⃓

⃓⃓v̂2r(x0)− 1

n

n∑︂
i=1

1B(x0,r)(x
i)

θ(xi)
(xi − x0)

⃓⃓⃓⃓
⃓⃓ ≲ rd+3

Using the Bernstein inequality once more one obtains that⃓⃓⃓⃓
⃓⃓ 1n

n∑︂
i=1

1B(x0,r)(x
i)

θ(xi)
(xi − x0)− v̄2r(x

0)

⃓⃓⃓⃓
⃓⃓ ≲ rd+3

with high probability if r ≳ (log n/n)1/(d+4)

Combining with v̄2r(x
0) · ed ≳ rd+1 and |H(v̄2r(x

0))| ≲ rd+3 we conclude that |ν̂2r(x0) − ν(x0)| ≲ r2,
as desired.

3. NONASYMPTOTIC ERROR BOUNDS FOR FIRST-ORDER DISTANCE AND BOUNDARY ESTIMATORS

In this section we establish the main results. Namely in Theorem 3.3 we show that the estimator d̂
1

r (x
0)

has O(r2) error, provided that r ≳ (log n/n)1/(d+2). We then use this estimate to show that when r2

R ≲ ε ≲
r then we can accurately identify the ε-boundary points.

We start with establishing a lower bound on error of the distance estimator d̂
1

r .
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x0

α− t

t

ν

Kt,r∂Ω

x0

α− t

t

ν

Kt,r

∂Ω

FIGURE 3. Geometry relevant to the lower bound on d̂
1

r (x
0). α = dΩ(x

0)∧ r
2 . (Left) Case

where dΩ(x
0) < r

2 ; (Right) case where dΩ(x
0) > r

2 .

Lemma 3.1 (Lower bound on the distance estimator). Let γ > 2, 0 < t ≤ dΩ(x
0), and suppose Assumption

1.1 holds. If n and λ > 0 satisfy
n ≥ d ∨ (1 + 4λ−1)

and t, r satisfy

(3.1) trd−1 ≥ γd22(d−1)/2

ρminωd−1

(︃
log n

n

)︃
,

then

(3.2) d̂
1

r(x
0) ≥ (1− λ)(dΩ(x

0) ∧ r

2
)− t

with probability at least 1− n−γ .

Remark 3.2. In fact, the lemma holds for any unit vector û that may depend on X . Recall that the second-
order distance estimator d̂

2

r defined in (1.17) is of the form

d̂
2

r (x
0) = max

x∈B(x0,r)∩X
(x0 − xi) · û,

where |û| can be as small as 1√
2

in the interior, when û is an average of orthogonal unit vectors. Thus a

slight modification allows us to obtain a similar result to the second-order distance estimator d̂
2

r . △
Sketch of Proof. As the proof involves lengthy elementary calculations, we delay the full proof to Appendix
A, and only present the main ideas here. The idea is to ensure that for any unit vector u ∈ Sd−1, possibly
depending on the samples X , there is a point in the spherical segment Su ∩ Ω that contains points at least
(1 − λ)(dΩ(x

0) ∧ r
2 ) − t away in the opposite direction of u. See Figure 3 for the illustration in the case

u = ν. As there are infinitely many choices of u, we shrink the spherical segment slightly so that we have a
finite family {S̃1

, · · · , S̃N} such that for any u ∈ Sd−1 we can find S̃
i ⊂ Su. This means it suffices to show

that each S̃
i

is nonempty for i = 1, · · · , N , and

P(d̂1r (x0) ≤ (1− λ)(dΩ(x
0) ∧ r

2
− t) ≤ P(Su ∩ Ω is nonempty for all u ∈ Sd−1)

≤
N∑︂
i=1

P(S̃i ∩ Ω is nonempty for all i = 1, · · · , N).
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For suitably chosen spherical segments, we may observe that S̃
i ∩ Ω contains a cone K with the same base

and height as the spherical segment. Thus the proof comes down to obtaining a lower bound for the volume
of this cone, and an upper bound on the number N . △

We now state the nonasymptotic error bounds on the first-order distance estimator.

Theorem 3.3 (Error bounds for the distance estimator). Let ε, r > 0 satisfy Assumptions 1.1 and 1.2. Let
constants Cx and Cy be as in (2.7), and

Cr =
1

R
max

⎡⎢⎣(︄3γρmaxd
2ωdR

2

Cx
2ρ2min

)︄ 1
d+2

,

(︄
4γCyd

22(d−1)/2

13ρminωd−1Cx

)︄ 1
d+1

⎤⎥⎦

Suppose γ > 2, and n, r satisfy

(3.3) n ≥ d ∨
(︃
1 +

RCy

13Cx
r−1

)︃
and

RCr

(︃
log n

n

)︃ 1
d+2

≤ r ≤ RCy

2Cx

(3.4)

Then, for x0 ∈ X we have

(3.5) dΩ(x
0) ∧ r

2
− 13Cx

RCy
r2 ≤ d̂

1

r (x
0)

with probability at least 1− nγ . Moreover, if dΩ(x0) ≤ 2ε ≤ r ,

(3.6) d̂
1

r (x
0) ≤ dΩ(x

0) +

(︄
13Cx

RCy
+

1

R

)︄
r2

with probability at least 1− 2dn−γ .

Remark 3.4. We make two brief remarks. Firstly, (3.3) is a much weaker condition than the lower bound

of (3.4), as r ≥ RCr

(︂
logn
n

)︂ 1
d+2 implies

RCy

13Cx
r−1 ≤ RCy

13Cx
(RCr)

− 1
d+2

(︃
n

log n

)︃ 1
d+2

,

which is much smaller than n for reasonably large n.
Secondly, we note that Cr ∼ ω

−1/d
d . Using Stirling’s formula d! ∼

√
2πd(d/e)d one obtains ωd ∼

(1/
√
πd)(2πe/d)d/2. Therefore Cr ∼ ω

−1/d
d = O(

√
d) △

Proof. We first prove the upper bound (3.6). Suppose dΩ(x
0) ≤ 2ε ≤ r . Condition (3.4) allows us to apply

Theorem 2.6 to obtain (2.31) –i.e.

|ν̂r(x0)− ν(x0)| ≤ 13Cx

RCy
r
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with probability at least 1− 2dn−γ . Thus

d̂
1

r (x
0) = max

xi∈B(x0,r)∩X

{︂
(x0 − xi) · (ν̂r (x0)− ν(x0) + ν(x0))

}︂
≤ max

xi∈B(x0,r)∩X
(x0 − xi) · (ν̂r (x0)− ν(x0)) + max

xi∈B(x0,r)∩X
(x0 − xi) · ν(x0)

≤ 13Cx

RCy
r2 + dΩ(x

0) +
1

R
r2

with the same probability. The last inequality uses the bound on |ν̂r(x0) − ν(x0)| and that positive reach
condition implies (2.23). Thus we have the upper bound (3.6).

Next, suppose x0 ∈ X , not necessarily close to the boundary. Letting t = 13Cx
2Cy

r2 in Lemma 3.1, if r
satisfies

rd+1 ≥ 4γCyd
22(d−1)/2

13ρminωd−1Cx

log n

n

then Lemma 3.1 implies that

(3.7) d̂
1

r (x
0) ≥ (1− λ)(dΩ(x

0) ∧ r

2
)− 13Cx

2Cy
r2

with probability at least 1 − n−γ , given n ≥ d ∨ (1 + 4λ−1). Further, choose λ = 13Cx
RCy

r , so that by
Assumption 1.1

λ(dΩ(x
0) ∧ r

2
) ≤ λr

2
=

13Cx

2RCy
r2.

Then (3.3) implies

d̂
1

r (x
0) ≥ dΩ(x

0) ∧ 2ε− λ(dΩ(x
0) ∧ r

2
)− t ≥ dΩ(x

0)− 13Cx

RCy
r2,

hence we obtain (3.5). □

Corollary 3.5 (Accuracy of the boundary test). Let x0 ∈ X , γ > 2 and ε, r > 0 satisfy Assumptions 1.1
and 1.2. Let Cr be as in (3.3). If n ≥ d ∨ 33 and r , n satisfy

(3.8) RCr

(︃
log n

n

)︃ 1
d+2

≤ r ≤ RCy

2Cx

and ε satisfies

(3.9)
1

R

(︄
26Cx

Cy
+ 2

)︄
r2 < ε

then

(3.10) P( ˆ︁T 1
ε,r (x

0) = 1 | dΩ(x0) ≥ 2ε) + P( ˆ︁T 1
ε,r (x

0) = 0 | dΩ(x0) ≤ ε) ≤ (2d+ 1)n−γ .

In particular, choosing the optimal r , ε

(3.11) ε =
1

R

(︄
26Cx

Cy
+ 2

)︄
r2 = RC2

r

(︄
26Cx

Cy
+ 2

)︄(︃
log n

n

)︃ 2
d+2

,

the test identifies the ε-boundary with probability at least 1− (2d+ 1)n−γ .
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Remark 3.6. Recall that (1.22) implies

Cx

Cy
≤ 2(d+ 1)

(︃
1 +

RL

ρmin
κd

)︃
= O(d

3
2 )

as κd ∼
√
d by (2.5). Also, recall from Remark (3.4) that Cr = O(

√
d). Therefore the constant for the

optimal choice ε = C(log n/n)2/(d+2) in (3.11) satisfies C ∼ C2
rCx/Cy ∼ d5/2. △

Proof. Suppose n ≥ d ∨ (1 + 4 · 8) = d ∨ 33 and dΩ(x
0) ≥ 2ε. Then we may choose λ = 1

8 in (3.7) and
apply Lemma 3.1 to deduce

d̂
1

r (x
0) ≥ 7

8
(dΩ(x

0) ∧ r

2
)− 13Cx

2RCy
r2 ≥ 7

8
(dΩ(x

0) ∧ 2ε)− 13Cx

2RCy
r2 ≥ 7ε

4
− 13Cx

2RCy
r2 >

3ε

2

with probability at least 1− n−γ , where last inequality follows from the condition (3.9). Note that we have
used that Assumption 1.1 implies 2ε ≤ 3

√
dε
2 ≤ r

2 .Thus we deduce

P( ˆ︁T 1
ε,r (x

0) = 1 | dΩ(x0) ≥ 2ε) ≤ n−γ .

On the other hand, if dΩ(x0) ≤ ε, then the upper bound in (3.6) applies. Thus, again using (3.9)

d̂
1

r (x
0) ≤ dΩ(x

0) +

(︄
13Cx

RCy
+

1

R

)︄
r2 ≤ 3ε

2
,

with probability at least 1− 2dn−γ . Hence

P( ˆ︁T 1
ε,r (x

0) = 0 | dΩ(x0) ≤ ε) ≤ n−γ .

Combining this with the bound for the probability of false positive occurring, we obtain (3.10). □

For application to solving boundary value problems on graphs [24], it is crucial to limit the number of
false positives, while the false negatives are not as detrimental. If we are only interested in bounding the

probability of false positives, we may obtain the improved rate ε ≥ C
(︂
logn
n

)︂ 1
d+1 with C ∼ d.

Theorem 3.7 (One-sided accuracy of the boundary test). Let γ > 2, and x0 ∈ X . Suppose ε, r > 0 satisfy
Assumptions 1.1 and 1.2. If n ≥ d ∨ 33 and ε, r satisfy(︄

γd22(d−1)/2

ρminωd−1

log n

n

)︄ 1
d+1

≤ r2 <
ε

4

then
P( ˆ︁T 1

ε,r (x
0) = 1 | dΩ(x0) > 2ε) ≤ n−γ .

Proof. Again, recall that Assumption 1.1 implies 2ε ≤ r
2 . Applying Lemma 3.1 with t = r2 and λ = 1

8 ,we

have d̂
1

r (x
0) ≥ 7

8(dΩ(x
0) ∧ r/2)− r2 with probability at least n−γ . Thus if

4r2 ≤ ε

then, with probability at least 1− n−γ

d̂
1

r (x
0) ≥ 7

8
(dΩ(x

0) ∧ r

2
)− r2 ≥ 7

8
(dΩ(x

0) ∧ 2ε)− r2 >
7ε

4
− ε

4
≥ 3ε

2
.

This implies that ˆ︁T 1
ε,r (x

0) = 0 by (1.20). □
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Corollary 3.8. Let x0 ∈ X , γ > 2. Let n ≥ d ∨ 33 and be sufficiently large such that

(3.12) ε = RCε

(︃
log n

n

)︃ 2
d+2

, r = Cr

(︃
log n

n

)︃ 1
d+2

satisfy Assumptions 1.1 and 1.2. Recall the definitions

∂aΩ = {x0 ∈ X : dΩ(x
0) ≤ a}

∂ε,rX = {x0 ∈ X : ˆ︁T 1
ε,r

(︂
x0
)︂
= 1}.

Then, with probability at least 1− (2d+ 1)n1−γ .

(3.13) ∂εΩ ⊂ ∂ε,rX ⊂ ∂2εΩ.

In particular, by the Borel-Cantelli lemma, the test identifies a set between ∂εΩ and ∂2εΩ eventually with
probability 1.

Proof. By Corollary 3.5, applying the test to all n points we have (3.13) hold with probability at least
1− (2d+ 1)n−γ · n = 1− (2d+ 1)n1−γ . □

Remark 3.9 (Reconstruction of boundary from boundary points). Based on the set ∂εrX of boundary points
we can reconstruct the boundary strip that approximates ∂Ω in the Hausdorff distance. See for instance
Theorem 3.11 of [1] and the comment preceding it on the reconstruction process using Delaunay Complex,
and [2] for further details. △

4. ASYMPTOTIC ERROR BOUNDS FOR SECOND-ORDER DISTANCE AND BOUNDARY ESTIMATORS

In this section, we use the O(r2) bound on the second-order normal estimator ν̂2r from Section 2.1 to
obtain O(r3) error bound on the second-order distance estimator d̂

2

r in the asymptotic regime, additionally
assuming ∂Ω is of class C3 and ρ ∈ C2

b (Ω). Namely, we show that we can find some constant C > 0
independent of r such that

d̂
2

r (x
0) ≥ dΩ(x

0) ∧ r

2
− Cr3, and

d̂
2

r (x
0) ≤ dΩ(x

0) + Cr3 if dΩ(x0) ≤ 2ε
(4.1)

with high probability under the scaling r ≳ (log n/n)1/(d+4). Note that the lower bound holds for general
x0 ∈ X , not just those close to the boundary. Given the estimates above, we may set ε = Cr3/2 ∼
(log n/n)3/(d+4) to see that our test (1.20) will identify the ε-boundary points with high probability. For a
detailed argument deducing accuracy of the boundary estimator from that of the distance estimator, please
see the the proof of Corollary 3.5; while the corollary applies to the first-order estimator, the same argument
carries over to the second-order estimator.

For simplicity, we will show (4.1) for a slight modification of the estimator (1.17). Namely, instead of
the cutoff 1R+(ν̂2r (x

i) · ν̂2r (x0)), we use 1{x:x≤cr}(|ν̂2r (xi) − ν̂2r (x
0)|) for suitably large c, say, twice the

Lipschitz constant of dΩ(·). Note that this is a reasonable cutoff, as

|ν̂2r (xi)− ν̂2r (x
0)| ≤ |ν̂2r (xi)− ν(xi)|+ |ν(xi)− ν(x0)|+ |ν(x0)− ν̂2r (x

0)|.
From Section 2.1 we know that the first and third terms are small are of order O(r2) when r ≳ (log n/n)1/(d+4);
the second term is of order O(r) as ν(x) = ∇dΩ(x) near the boundary, which is a C2 function as we as-
sumed ∂Ω to be of class C3. Thus, for sufficiently small r we have

|ν̂2r (xi)− ν̂2r (x
0)| ≤ c

2
|xi − x0|+O(r2) ≤ cr .
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Upper bound. For the upper bound, suppose dΩ(x
0) ≤ 2ε. Fix c′, C ′ > 0 and r > 0, and denote by E0

the event

E0 := {|ν̂2r(xi)− ν(xi)| ≤ C ′r2 for all xi ∈ B(x0, r) ∩ X such that dΩ(xi) ≤ r/
√
d}.

Recall from Section 2.1 that E0 occurs with high probability when r ≳ (log n/n)1/(d+4) and C ′ > 0 is
chosen suitably large.

For simplified notation, let us temporarily define ûi(x0) for each i = 1, · · · , n by

(4.2) ûi(x0) :=

[︄
ν̂2r (x

0) +
ν̂2r (x

i)− ν̂2r (x
0)

2
1{x:x≤cr}(|ν̂2r (xi)− ν̂2r (x

0)|)
]︄
,

so that d̂
2

r (x
0) = maxxi∈B(x0,r)∩X (x

0 − xi) · ûi(x0). Define the set X̂ by

X̂ := {xi ∈ X : (x0 − xi) · ûi(x0) ≥ 0}.
Then we may write

d̂
2

r (x
0) = max

xi∈B(x0,r)∩X
(x0 − xi) · ûi(x0) = max

xi∈B(x0,r)∩X̂
(x0 − xi) · ûi(x0).

Indeed the right-hand side is the nonnegative part of d̂
2

r (x
0), while d̂

2

r (x
0) ≥ 0 due to that x0 ∈ B(x0, r)∩X̂ .

Thus the above equality holds.
Due to the cutoff, note⃓⃓⃓⃓

⃓ ûi(x0)|ûi(x0)|
− ν(x0)

⃓⃓⃓⃓
⃓ ≤

⃓⃓⃓⃓
⃓ ûi(x0)|ûi(x0)|

− ν̂2r (x
0)

⃓⃓⃓⃓
⃓+ |ν̂2r (x0)− ν(x0)| ≤ cr +O(r2) ≤ 2cr

for sufficiently small r . Thus, if xi ∈ X̂ , it is in the half plane opposite of ûi(x0), which is closely
approximated by the half plane opposite of ν(x0). As dΩ(x0) ≤ 2ε, collecting the errors due to curvature
of the boundary and the difference between ûi(x0)/|ûi(x0)| and ν(x0), we see

dΩ(x
i) ≤ 2ε+

r2

R
+ 2cr2 ≤ r√

d

when ε≪ r and r is sufficiently small. Thus, by E0 we have |ν̂2r (xi)− ν(xi)| ≤ C ′r2 for all xi ∈ X̂ , and

d̂
2

r (x
0) = max

xi∈B(x0,r)∩X̂
(x0 − xi) · ν̂

2
r (x

i) + ν̂2r (x
0)

2
.

Now, when ∂Ω is of class C3, recall (1.15) holds. Thus, we have

dΩ(x
0) ≥ max

xj∈B(x0,r)

{︃
1

2
(ν(x0) + ν(xj)) · (x0 − xj)

}︃
+O(r3).

Then we have the upper bound on d̂
2

r

d̂
2

r (x
0)−dΩ(x

0) ≤ max
xi∈B(x0,r)∩X̂

{︃
1

2

(︂
ν̂2r (x

i) + ν̂r (x
0)− ν(x0)− ν(xi)

)︂
· (x0 − xi)

}︃
+O(r3) = O(r3),

as |x0 − xi| ≤ r and |ν̂2r (xi)− ν(xi)|+ |ν̂2r (x0)− ν(x0)| ≲ r2.

Lower bound. Recall the elementary equality |u+w|2
4 = 1− |u−w|2

4 that holds when |u| = |w| = 1. This
implies the following lower bound on the magnitude of ûi(x0) defined in (4.2)

(4.3) |ûi(x0)| ≥ (1− c′r2)1/2.
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Writing α = dΩ(x
0) ∧ r

2 , under the assumptions of Lemma 3.1, we have

P(d̂2r (x0) ≤ (1− λ)α− t) = P

(︄
max

xi∈B(x0,r)∩X
(x0 − xi) · ûi ≤ (1− λ)α− t

)︄

= P

(︄
max

xi∈B(x0,r)∩X
(x0 − xi) · ûi

|ûi|
≤ 1

|ûi|
((1− λ)α− t)

)︄
.

By (4.3), we can fix C > 0 such that 1
|ûi| ≤

1√
1−c′r2

≤ 1 + Cr2 when r is sufficiently small. As
t < α ≤ r , we have

P(d̂2r (x0) ≤ (1− λ)α− t) ≤ P

(︄
max

xi∈B(x0,r)∩X
(x0 − xi) · ûi

|ûi|
≤ (1− λ)α− t+ Cr2((1− λ)α− t)

)︄

≤ P

(︄
max

xi∈B(x0,r)∩X
(x0 − xi) · ûi

|ûi|
≤ (1− λ)α− t+ Cr3

)︄
≤ n−γ .

The last inequality follows when t > Cr3 by Lemma 3.1, as its proof only uses that |ν̂r (x0)| = 1. Choosing
t = 2Cr3 and λ ≤ Cr2 for instance, we obtain that d̂

2

r (x
0) ≥ dΩ(x

0) − 3Cr3 with high probability,
and the condition (3.1) becomes r ≳ (log n/n)1/(d+2). Note that this is less restrictive than the scaling
r ≳ (log n/n)1/(d+4), required for the upper bound. While Lemma 3.1 also requires n ≥ d ∧ 4λ−1, but
this is a much milder condition when λ ∼ r2. Thus we deduce that (4.1) holds with high probability, when
r ≳ (log n/n)1/(d+4).

5. ALGORITHMS AND EXPERIMENTS

We now turn to the algorithms for our boundary tests and related numerical experiments. After presenting
the pseudocode for the boundary tests and briefly commenting on the computational complexity, we demon-
strate the efficiency and accuracy of our results, focusing on domains with constant positive or negative
curvatures. Again we stress that, while the rigorous theoretical results in Section 3 are established for the
first-order test, we recommend the second-order test for practical purposes. As we will see, the second-order
test takes into account the curvature, hence performs much better than the first-order test.

To begin, we present the pseudocodes for the first- and second-order boundary tests, and the generaliza-
tion of the second-order test to point clouds supported on manifolds.

Algorithm 1 First-order boundary test

Input: The set of points X = {x1, · · · , xn}, and parameters r , ε > 0
Output: T (xk) = 1 if xk is a ε-boundary point, 0 if an ε-interior point

1: for i = 1 · · ·n do
2: T (i)← 1
3: v̂r (x

i)←∑︁
y∈B(xi,r)∩X

(︁
y − xi

)︁
4: ν̂r (x

i)← v̂r (x
i)/|v̂r (xi)|

5: if maxxj∈B(xi,r)∩X (xi − xj) · ν̂r > 3ε
2 then T (i) = 0

6: end if
7: end for

We add that the algorithms can take a percentile p% as an input instead of ε, so that it outputs the top p% of
points with smallest estimated distance. This may be easier to implement in practice than choosing ε, as the
lower bound for ε depends not only on n but also on R, ρ and d. Theoretically, p% and ε are interchangeable;
we may set the largest estimated distance within the p% percentile to equal to the threshold, 3ε

2 .
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Algorithm 2 Second-order boundary test

Input: The set of points X = {x1, · · · , xn}, and parameters r , ε > 0
Output: T (xk) = 1 if xk is a ε-boundary point, 0 if an ε-interior point

1: for i = 1 · · ·n do
2: θ̂(xi)←∑︁n

j=1 1B(xi,r/2)(x
j)

3: v̂2r (x
i)←∑︁

xj∈B(xi,r)∩X
(xj−xi)
θ̂(xj)

4: ν̂2r (x
i)← v̂2r (x

i)/|v̂2r (xi)|
5: end for
6: for i = 1 · · ·n do
7: for j = 1 · · ·n do

8: ν̂ijr ,test = ν̂2r (x
i) +

ν̂2r (x
j)− ν̂2r (x

i)

2
1R+(ν̂

2
r (x

i) · ν̂2r (xi))
9: end for

10: if maxxj∈B(xi,r)∩X (xi − xj) · ν̂ijr ,test > 3ε
2 then T (i) = 0

11: end if
12: end for

Algorithm 3 Second-order boundary test for point clouds supported on manifolds

Input: The set of points X = {x1, · · · , xn}, parameters r , ε > 0, and the dimension of the manifold m
Output: T (xk) = 1 if xk is a ε-boundary point, 0 if an ε-interior point

1: for i = 1 · · ·n do
2: θ̂(xi)←∑︁n

j=1 1B(xi,r/2)(x
j)

3: v̂2r (x
i)←∑︁

xj∈B(xi,r)∩X
(xj−xi)
θ̂(xj)

4: ν̂2r (x
i)← v̂2r (x

i)/|v̂2r (xi)|
5: Y i ← rangesearch(xi, r)
6: Yi ← Yi − Yi
7: {v1, · · · , vm} ← eigenvectors associated to m largest eigenvalues of (Y i − xi)T (Y i − xi)

8: T i ← Span{v1, · · · , vm}
9: end for

10: for i = 1 · · ·n do
11: for j = 1 · · ·n do

12: ν̂ijr ,test = ν̂2r (x
i) +

ν̂2r (x
j)− ν̂2r (x

i)

2
1R+(Π

i(ν̂2r (x
i)) ·Πi(ν̂2r (x

i)))

13: end for
14: if maxxj∈B(xi,r)∩X Πi[(xi − xj)] · ν̂ijr ,test > 3ε

2 then T (i) = 0
15: end if
16: end for

Remark 5.1 (Computational complexity). Noting that range search task is essentially equivalent to k-nearest
neighbor search for suitable k, we briefly remark on the computational expense. The best rigorous upper
bounds for computing all-kNN for n points in Rd known to us, without number of parallel processors grow-
ing with n, are O(n(log n)d−1) [8] and O(kddn log n) [9]. Note that the the suitable choice of k for us is k ∼
ωdr

dn, which, under the optimal choice of the test radius r = RCr(log n/n)
1

d+2 ≤ Cω
−1/d
d (log n/n)

1
d+2
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for our first-order test, has the following scaling in n and d

k ≲ (log n)
d

d+2n
2

d+2 .

Please see Remark 3.4 for further details.
While the computational cost of exact all-kNN is not cheap, approximate all-kNN can be performed at

nearly linear time in n. For instance, the algorithm suggested in [39] reports that empirical cost scales like
n1.14 on average with above 90 percent accuracy. Python GraphLearning [19] package the Approximate
Nearest Neighbors algorithm (ANNOY) [10], which also provides close to linear scaling in n. △

Remark 5.2 (Intrinsic dimension of M). In practice the intrinsic dimension m of M often unknown.
However there are many ways to recover this from the eigenvalues λ1 ≤ · · · ≤ λd of the sample covariance
matrix (Y i − xi)(Y i − xi)T . There are two big drops in the eigenvalue distribution. Near the boundary,
eigenvectors sufficiently parallel to the normal direction have smaller eigenvalues due to the absence of
points one one side of ∂M. However, this gap should not reduce the eigenvalues much more than halving.
On the other hand, λm+1, · · · , λd are due to curvature, and thus are much smaller compared to the first m
when curvature is bounded. Thus we may recover the dimension m by for instance, counting the number of
eigenvalues before the steepest drop in ratio λi+1

λi
. △

We now describe the setting of our numerical experiments. In Figures 5, 6, and 7 we consider two types
of domains: a ball, and an annulus, both with reach R = 0.5. Recall that this means the ball has radius R
and the annulus has inner and outer radii R1 = R, R2 = 1.6R. By the boundary of the ball mean the sphere,
and by that of the annulus we refer only to the inner boundary {x : |x| = R1}, so we can observe how the
test performs when the curvature is negative. Thus we test only the points satisfying |x| ∈ [R1, R2 − r ].

We consider the density function ρ parametrized by the Lipschitz constant L. The sinusoidal density has
the form

(5.1) ρ(x) =
1

|Ω|

(︃
1 +

1

2
sin(L|Ω|x1)

)︃
,

so that supx∈Ω |∂1ρ(x)| = L. Note that our theory in Section 3 applies to Lipschitz functions that are not
necessarily of class C1. Indeed, we note that results obtained using the triangular wave density were similar.

The boundary tests are as described in (1.20), where the first-order test (‘1st’) uses the distance estimator
(1.12), and the second-order test (‘2nd’) uses the estimator (1.17).

Measuring the test error. Let ε, r > 0 be the boundary width and the test radius. Given a test we are
considering, let the set of tested boundary points be the set of points in X where the test ˆ︁Tε,r defined in
(1.20). The tested interior points is the complement of the tested ε-boundary points in X . Let P be the
number of tested boundary points and N the number of tested interior points:

P = ♯{xi ∈ X : ˆ︁Tε,r (x
i) = 1} and N = ♯{xi ∈ X : ˆ︁Tε,r (x

i) = 0}.

We measure the error rate in a different way than is standard in hypothesis testing. We do it in a way
that measures better whether we succeeded in our stated goal to create a test that would identify a large
percentage of points near the boundary and would not misidentify as boundary points almost any points
deep in the interior. This is important to be able to accurately set boundary conditions for PDE.

Thus we refer to ∂εΩ = {x ∈ X : dist (x,Ω) ≤ ε} and Ω◦
2ε = {x ∈ X : dist (x,Ω) > 2ε} as

true boundary and true interior points, respectively. We refer to tested boundary points which lie in Ω◦
2ε as

false positives and tested interior points which lie in ∂εΩ as false negatives. We denote the number of false
positives and false negatives by

FP = ♯{x ∈ X ∩ Ω◦
2ε : ˆ︁Tε,r (x

i) = 1} and FN = ♯{x ∈ X ∩ ∂εΩ : ˆ︁Tε,r (x
i) = 0}.
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FIGURE 4. Boundary test on an annulus with inner and outer radii 0.5 and 0.8, respectively.
n = 2000 points are drawn from uniform density on the left and sinusoidal density with
L = 2 on the right. The point cloud is represented by black dots, while blue and green dots
are the points whose true distance to the boundary are in [0, ε) and [ε, 2ε) respectively, for
ε = 0.03. The red circles show the points identified by the 2nd order test, with r = 0.18,
as boundary points. Observe that most blue dots are indeed correctly identified, and almost
all points identified by the test are either blue or green dots.

We denote by BP the number of true boundary points BP = ♯(X ∩ ∂εΩ). We define false negative rate
(FNR) and false positive rate (FPR) by

FNR =
FN

BP
and FPR =

FP

BP
.

By the test failure rate (TFR) we mean the sum of FNR and FPR. Note the unusual definition of FPR. From
the point of view hypothesis testing FPR would be the ratio of FP and true interior points. Given the large
number of true interior points such measure of error would be small even if there is a significant number of
points that were misidentified as boundary points. For our purposes it is important that the impact of false
positives is small to the impact of the true positives. Thus we measure the error much more stringently and
compare the number of the false positives to the number of true boundary points.

Remark 5.3 (Smoothing the estimated normals). We observed that it is possible to further improve the
accuracy of the estimated normals, thus of the test, if we smooth the normals in a small neighborhood using
a suitable kernel. This reduces the variance, and tends to work well in combination with the second-order
normal vector estimator (1.7), which limits the bias even in the presence of fluctuations in the density.
However, when the second derivatives of the density ρ are large there can be a large bias in the estimated
normal. In such cases we found that smoothing may worsen accuracy as errors accumulate. △

In Figure 7 we see that the first-order test for the ball shows n ∼ ε−2.5, corresponding almost exactly
to the optimal theoretical scaling ε ∼ r2, ε ∼ (log n/n)2/(d+2) established in Corollary (3.5). We see
similar trends with the second-order test for the ball. However, the first-order test shows extremely poor
performance for the annulus, due to the negative curvature. For it to work, we need n large and ε, r small
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(A) 3D ball with R = 0.5, and n = 4000. Left panel L = 0 and right panel L = 2.
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(B) 3D annulus with R1 = 0.5, R2 = 0.8, and n = 12000. Left panel L = 0 and right panel L = 2.

FIGURE 5. Plot of distance to boundary with ε = 0.03, r = 0.18. x- and y-axes each
represents the true and the estimated distances respectively. 1st and 2nd refer to the order of
the algorithm used. The boxes in the upper left and lower right corners specify the region
for false negatives and false positives respectively. Only 1000 relevant points are plotted for
improved visibility. Clear trend of 1st underestimating (resp. overestimating) the distance
in a domain of positive (resp. negative) curvature is observed.

enough so that the curvature is negligible. On the other hand, the normalized second-order test shows
exponential relationship between n and ε, although the exponent is worse than its counterpart for the ball.

Remark 5.4 (Choice of parameters ε, r ). We have established in Theorem 3.3 that the optimal scaling for
the first-order test is r ∼ (log n/n)1/(d+2) and ε ∼ r2 as n→∞. However, in practical situations, often n
is not sufficiently large to guarantee that such scaling is realistic. Then how should we choose ε and r?

We observe from Figure 6 that the 2nd order test with the true normal vectors (t2nd) gives close to perfect
results for both domains. This suggests that the 2nd order test for the most part resolves the challenge posed
by curvature, which 1nd order test suffers from, and accurate estimation of normal vectors is key to boosting
performance of the boundary test.

There are trade-offs in choosing r : clearly, when r is too small, the estimated normal is inaccurate due
to high variance. On the other hand, large r leads to larger bias caused by curvature or fluctuations in the
density. However, in Section 2.1 we have showed that the normalization by degree in the 2nd order estimator
for the normal vector limits the bias to O(r2) even when ρ is non-uniform. Indeed, we see in Figure 6 (b)
that FNR of 2nd is close to that of t2nd even in the presence of nontrivial fluctuation with L = 2 and
relatively large r .
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(B) Summary for the annulus with sinusoidal density. ε = 0.03.

FIGURE 6. Test failure rates depending on the test radius, number of points, sign of cur-
vature, and the type of tests. ε = 0.03, R = 0.5. 1st, and 2nd are as in the previous
experiments, while t1st and t2nd denote the first and second-order tests using the true nor-
mal vectors. Results have been averaged over 10 independent runs.
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FIGURE 7. The plot shows the smallest number of points n for which TFR≤ threshold, for
given boundary width ε. (Left) Ball, threshold= 0.5%, (Right) Annulus, threshold= 10%.
Maximal n considered was 20000 for the ball and 25000 for the annulus. We considered
density with L = 2, and r =

√
ε. Number in the legend indicate the slope until n becomes

stable. 1st order test applied to negatively curved domains have high false negatives, hence
the TFR never went below the threshold. Hence the results from the 1st order test is not
included for the annulus. Results have been averaged over 10 independent runs.

Thus, using the 2nd order test, it suffices to choose r in a reasonable range, so that B(x0, r) contains
sufficiently many points, and r is not too close to the reach R, when a rough estimate of R is known. When
the reach is completely unknown, then we recommend that r is taken to be the smallest so that each ball of
radius r contains sufficient number of points.

Given r , ε should be chosen so that the ratio |B(xi, 3
√
2ε

2
)|

|B(xi,r)| of the volume of the balls is no larger than,

say, 1
2 , to limit the number of false positives. The particular coefficient 3

2

√
2 is is chosen as the threshold of

our test is at 3ε
2 , and the ν̂(xi)+ν̂(xj)

2 can have magnitude as small as 1√
2

when the sharp cutoff function is
used. Note that for fixed r , ε, the ratio of the volumes decreases in dimension, as volume concentrates near
the boundary of the ball in high dimensions. On the other hand, ε should be large enough so that the strips
of height ε

2 and width around r contain enough points; this limits the possibility that points y with dΩ(y)
around 2ε are falsely tested positive. See Figure 3 and Lemma 3.1 for details. △

5.1. Comparison with other approaches. We limit our comparisons with other border detection algo-
rithms to a couple of visual illustrations and remarks. The reason for this is that other algorithms were not
designed to identify a boundary layer of desired width, ε, that our algorithm is designed for. Furthermore in
most cases there is no straightforward way to adapt other algorithms to do detect a boundary layer of fixed
width.

We compare our 2nd order boundary test with, tests based on the Devroye-Wise estimator (1.26) (DW),
BRIM [66], and the statistic of Wu and Wu (WuWu) [74]. Recall that the Devroye-Wise estimator Ωn

approximates supp ρ, and by boundary points we mean the points which contribute to the boundary ∂Ωn –
i.e. xi ∈ X such that B(xi, ε) ∩ ∂Ωn ̸= ∅. We note that these are also exactly the data points that lie on
the boundary estimator of Casal [67]. As discussed in Section 1.5, such points are precisely the boundary
points of the α-shape [40, 41], a generalization of convex hull, with α = 1/ε. In dimensions d = 2, 3,
efficient algorithms for α-shapes exist, and we used the built-in function in MATLAB [73] to compute
the contributing boundary points. For BRIM and WuWu, we implemented in MATLAB the algorithms
described in [66] and [74] respectively.
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FIGURE 8. Comparison of tests for n = 2000 points drawn out of density ρ defined in
(5.1), with (top, and bottom right) L = 3, and (bottom left) L = 1. The second-order test
with ε = 0.03, r = 0.18 is compared with (top left) the Devroye-Wise estimator with radius
α−1, (top right) BRIM, and (bottom) WuWu. For BRIM and WuWu, the colored points are
in the indicated top percentile according to the test statistic.

In Figure 8 we see that the Devroye-Wise estimator via α-shape effectively finds a thin boundary when a
suitable α is used. The choice of appropriate α depends heavily on the density of the set of points considered.
Smaller α−1 identifies more points, and in particular allows recognizing those where boundary has negative
curvature. On the other hand, choosing α−1 too small increases the risk of falsely identifying interior
points, lying in an area of low density, as boundary points. Indeed, the top plot of Figure 8 exhibits such
a trade-off: the test with α−1 = 0.1 misses boundary points around the concave indents, while choosing
α−1 = 0.05 results in false positives deep inside the interior. In the context of solving PDEs on graphs, such
false positives can be catastrophic. As pointed out in Section 1.5, computing α-shapes becomes expensive
when d > 3. We tested a commonly used alpha shapes package in Python [7] on a high performance
computer with a 4.5GHz CPU, and found that the computational complexity in dimension for n = 1000
points independently and uniformly distributed on the unit ball in dimensions d = 2 up to d = 9 followed
very closely to the exponential complexity O(n0.23d). In terms of raw computational times, the alpha shape
for n = 1000 points in dimension d = 9 took 110 minutes, and d = 10 and d = 11 would have taken
roughly 12 and 77 hours, respectively. The memory requirements seem to grow very quickly as well, with
d = 8 taking 13 GB and d = 9 requiring roughly 45 GB.

In contrast, BRIM easily generalizes to dimensions higher than 3. BRIM uses a similar basic idea as our
approach: it approximate the inward normal direction. It does so by identifying the point xi ∈ B(x0, r)
maximizing |B(xi, r)∩X |. To detect the boundary it compares the number of points in the normal direction
and those opposite of it. The test is sensitive to variations in the density. Indeed the bottom plot of Figure
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8 shows that BRIM identifies significantly more points on the left boundary, near which the density is high,
than it does on the sparsely populated right.

WuWu also generalizes well to arbitrary dimension. Furthermore, it takes into account the curvature of
the boundary by using spectral information of the ‘sample covariance matrix’ (see Section 1.5). We can see
in Figure 8 that WuWu consistently detects points near negatively curved parts of the boundary. However,
it is not as robust under fluctuations in density. Observe WuWu classifies considerably more points on the
left side of the boundary, where points are densely distributed, compared to the right. Further, some interior
points are in the top 15% according to the test statistic; this can be resolved by increasing k for kNN, but at
the cost of successfully identifying fewer points close to the boundary.

We also ran experiments using the test statistic suggested by Aaron and Cholaquidis [3], but it did not
perform well, as their statistic is designed to decide whether the manifold has a boundary or not, rather than
to identify boundary points.

We stress again that all the other algorithms we compared were not designed for the task considered. We
note that our method is as fast as any of the other methods and provides the best quality boundary for the
task considered. Furthermore there is no error analysis that would suggest that any of the other methods are
second-order accurate.

FIGURE 9. Boundary points of point clouds supported on 2-dimensional surfaces, iden-
tified using Algorithm 2. n = 2000, r = 0.21, ε = 0.05. Point clouds are marked in
black, and the boundary points are circled in red. (Left) No additive noise. (Right) Additive
Gaussian noise with standard deviation set as 1% of the diameter of the surface. Surfaces
appear irregular as they are reconstructed from noisy samples.
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6. SOLVING PDES ON DATA CLOUDS

One immediate application of boundary detection is the ability to solve PDEs on point clouds with flex-
ibility in the choice of boundary condition. All of the present approaches to solving PDEs on data clouds,
where the boundary is not known in advance, rely on a variational description of the problem and thus re-
sult in natural variational boundary conditions. For the graph Laplacian this always yields homogeneous
Neumann boundary conditions (see [24] for discussion of the graph Laplacian near the boundary). In this
section, we show how we can use our boundary detection method, which includes an estimation of the
normal vector to the boundary, to solve PDEs on point clouds with various boundary conditions, including
Dirichlet, Neumann, oblique, and Robin problems. We then give applications to computing data-depth and
medians on real datasets, and present intriguing numerical experiments on MNIST and FashionMNIST.

Throughout this section, we fix some additional notation. For ε > 0 we define

∂εΩ = {x ∈ Ω : dist(x, ∂Ω) ≤ ε}
and set Ωε = Ω \ ∂εΩ. We recall that X = {x1, . . . , xn} is our point cloud, which is assumed to consist
of independent and identically distributed random variables with density ρ : Ω→ R. We will place various
assumptions on ρ throughout the section. We also assume we have an accurate estimation of the points from
X that fall in the boundary tube ∂εΩ. This is provided by our main results on boundary detection in Theorem
3.3 and Corollary 3.5. In order to make the results in this section as general as possible, we simply assume
that we have computed a boundary set ∂εX ⊂ X that satisfies

(6.1) Xε ⊂ Ωε and ∂εX ⊂ ∂2εΩ,

where Xε = X \ ∂εX .

6.1. The eikonal equation. First, we consider extending Theorem 3.3 to estimate the distance function

(6.2) dΩ(x) := dist(x, ∂Ω)

on the whole point cloud X . We can do this by solving the graph eikonal equation

(6.3)
min

y∈B0(xi,ε)∩X

{︂
uε(y)− uε(x

i) + |y − xi|
}︂
= 0, if xi ∈ Xε

uε(x
i) = 0, if xi ∈ ∂εX ,

⎫⎪⎬⎪⎭
where we write B0(x, ε) := B(x, ε) \ {x} for the punctured ball. The solution uε of the graph eikonal
equation (6.3) is exactly the distance function on the graph with verticesX and edge weights wij = |xi−xj |
if |xi − xj | ≤ ε, and wij = ∞ otherwise. When this graph is connected, the solution of (6.3) is unique.
The solution of (6.3) can be computed with Dijkstra’s algorithm in O(nk log(n)) time, where k is an upper
bound for the number of points in B(xi, ε)∩X over all i. We expect the solution uε converges to the distance
function dΩ as ε → 0. Indeed this section is focused on proving this convergence with a quantitative O(ε)
error rate.

For (6.3) to be well-defined, we require the set B0(x
i, ε) ∩ X to be nonempty for all xi ∈ Xε.

Proposition 6.1. Let n ≥ 2. The event that B0(x
i, ε) ∩ X is nonempty for all xi ∈ Xε has probability at

least 1− n exp
(︂
−1

2ωdρminnε
d
)︂

.

Proof. By the i.i.d. law, the probability that B0(x
i, ε) ∩ X is empty conditioned on xi ∈ Xε is(︄

1−
∫︂
B(xi,ε)

ρ(x) dx

)︄n−1

≤
(︂
1− ρminωdε

d
)︂n−1

≤ exp
(︂
−ρminωd(n− 1)εd

)︂
.

The proof is completed by union bounding over X , and using that n− 1 ≥ 1
2n for n ≥ 2. □
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We briefly review some basic properties of the distance function. We recall a function u : Ω → R
is semiconcave with constant C if u − C|x|2 is concave. The distance function dΩ is 1-Lipschitz and
semiconcave with constant 1/R (see, e.g., [26]). By the Alexandrov theorem, a semiconcave function is
twice differentiable almost everywhere in Ω. The distance function also satisfies the dynamic programming
principle

dΩ(x) = min
y∈B(x,ε)

{︁
dΩ(y) + |y − x|

}︁
for all balls B(x, ε) ⊂ Ω. This can be rearranged into the form

(6.4) min
y∈B(x,ε)

{︁
dΩ(y)− dΩ(x) + |y − x|

}︁
= 0.

Thus, the graph eikonal equation (6.3) is merely a discretization of the dynamic programming principle
(6.4) to the point cloud X . At any point x ∈ Ω where dΩ is differentiable, we can Taylor expand dΩ in (6.4)
and compute the minimum explicitly to find that |∇dΩ(x)| = 1. If Ω is bounded, the distance function dΩ
always has points of nondifferentiability (for example at its maximum).

The equation |∇u| = 1 is referred to as the eikonal equation (more generally |∇u| = f ). The distance
function dΩ can be interpreted as the unique viscosity solution of the eikonal equation. The viscosity solution
is a type of weak solution to a partial differential equation (PDE) that allows non-differentiable functions to
be solutions of first and second-order PDEs. In the case of the eikonal equation, and other first-order convex
Hamilton-Jacobi equations, the viscosity solution coincides with the unique Lipschitz and semiconcave
function that satisfies the PDE almost everywhere. We use the semiconcave interpretation here and do not
discuss viscosity solutions directly. We refer the reader to [5, 16] for more details on viscosity solutions.

We now turn to convergence of the solution of the graph eikonal equation (6.3) to the distance function
dΩ. For this, we require a notion of asymptotic consistency.

Lemma 6.2. Let 0 < t ≤ 1
d . The event that

(6.5) min
x∈B0(xi,ε)∩X

{︂
λdΩ(x)− λdΩ(x

i) + |x− xi|
}︂
≤ tλε+

4λε2

R
− (λ− 1)ε

holds for all λ ≥ 1 and xi ∈ X ∩ Ωε has probability at least 1− n exp
(︂
− ωd−1

4(d+1)ρminnε
d(2t)

d+1
2

)︂
.

The proof of Lemma 6.2 requires some well-known properties of the distance function, which we sum-
marize in the following Proposition, whose proof is postponed to the appendix.

Proposition 6.3. Let ε > 0 and x0 ∈ Ωε. Let x∗ ∈ B(x0, ε) such that

(6.6) dΩ(x∗) = min
B(x0,ε)

dΩ.

Then x∗ ∈ ∂B(x0, ε), dΩ(x∗) = dΩ(x
0)− ε, and for all x ∈ Ω we have

(6.7) dΩ(x)− dΩ(x∗) ≤ p · (x− x∗) +
1

R
|x− x∗|2, where p =

x0 − x∗
ε

.

Proof of Lemma 6.2. Let λ ≥ 1 and let xi∗ ∈ B(xi, ε) such that dΩ(xi∗) = minB(xi,ε) dΩ. For xi ∈ X ∩ Ωε

we can apply Proposition 6.3 to obtain

λdΩ(x)− λdΩ(x
i) + |x− xi| = λdΩ(x)− λdΩ(x

i
∗)− λε+ |x− xi|

≤ λ p · (x− xi∗) +
λ

R
|x− xi∗|2 − λε+ |x− xi|

for any x ∈ B(xi, ε), where p = (xi − xi∗)/ε. Since |x− xi∗| ≤ 2ε and |x− xi| ≤ ε we obtain

(6.8) λdΩ(x)− λdΩ(x
i) + |x− xi| ≤ λ p · (x− xi∗) +

4λε2

R
− (λ− 1)ε.
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For 0 ≤ t ≤ 1 define the set

Ai
t =

{︂
x ∈ B(xi, ε) : p · (x− xi∗) ≤ t ε

}︂
.

If (6.5) fails to hold, then it follows from (6.8) that the set X ∩ Ai
t is empty. The remainder of the proof is

focused on estimating the volume |Ai
t| in order to control the probability that X ∩Ai

t is empty.
The measure of Ai

t is unchanged by taking xi = 0, xi∗ = εed, and p = −ed, which gives

|Ai
t| =

⃓⃓
B(0, ε) ∩ {xd ≥ (1− t)ε}

⃓⃓
= εd

⃓⃓
B(0, 1) ∩ {xd ≥ 1− t}

⃓⃓
.

We lower bound the volume of the spherical cap by integrating⃓⃓
B(0, 1) ∩ {xd ≥ 1− t}

⃓⃓
=

∫︂ 1

1−t
ωd−1(1− x2d)

d−1
2 dxd

≥
∫︂ 1

1−t
ωd−1(1− x2d)

d−1
2 xd dxd

=
ωd−1(2t)

d+1
2

d+ 1

(︁
1− t

2

)︁ d+1
2 .

Now, since t ↦→
(︁
1− t

2

)︁ d+1
2 is convex we have(︁

1− t
2

)︁ d+1
2 ≥ 1−

(︂
d+1
4

)︂
t ≥ 1

2
,

provided t ≤ 2
d+1 , which is satisfied when t ≤ 1

d . This yields

|Ai
t| ≥

ωd−1ε
d(2t)

d+1
2

2(d+ 1)
=: Λ.

Hence, the event that X ∩Ai
t is empty has probability bounded by

(1− ρminΛ)
n−1 ≤ exp

(︁
−ρmin(n− 1)Λ

)︁
≤ exp

(︃
−1

2
ρminnΛ

)︃
,

since n ≥ 2 so n− 1 ≥ 1
2n. The proof is completed by union bounding over X . □

We now prove convergence of uε to the distance function dΩ as ε→ 0 and n→∞.

Theorem 6.4. Assume ε ≤ R
8 and (6.1) holds. Let uε solve (6.3) and let 0 < t ≤ min{1d , 12 − 4ε

R }. Then

(6.9) − 2ε ≤ uε − dΩ ≤ 2dΩ

(︃
t+

4ε

R

)︃
on X

holds with probability at least 1− 2n exp
(︂
− ωd−1

4(d+1)ρminnε
d(2t)

d+1
2

)︂
.

Proof. The proof is split into three steps.
1. Let 0 < t ≤ 1

d and assume the results of Lemma 6.2 hold. Let λ ≥ 1 and let xi ∈ X such that uε−λdΩ
attains its maximum over X at xi. Then we have that

uε(x
j)− uε(x

i) ≤ λdΩ(x
j)− λdΩ(x

i)

for all j. If xi ∈ Xε, then since uε satisfies (6.3) we have

0 = min
y∈B0(xi,ε)∩X

{︂
uε(y)− uε(x

i) + |y − xi|
}︂
≤ min

y∈B0(xi,ε)∩X

{︂
λdΩ(y)− λdΩ(x

i) + |y − xi|
}︂
.

By (6.1) we have xi ∈ Ωε, which allows us to apply Lemma 6.2 to obtain that

0 ≤ tλε+
4λε2

R
− (λ− 1)ε.
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This cannot hold when when λ >
(︂
1− t− 4ε

R

)︂−1
and t+ 4ε

R < 1. For any such λ we must have xi ∈ ∂εX
and so

max
X

(uε − λdΩ) = max
∂εX

(uε − λdΩ) ≤ 0.

It follows that uε − dΩ ≤ (λ− 1)dΩ on X . Sending λ→
(︂
1− t− 4ε

R

)︂−1
we obtain

uε − dΩ ≤ dΩ

[︄(︃
1− t− 4ε

R

)︃−1

− 1

]︄
on X .

The proof of this direction is completed by using the inequality

(1− x)−1 − 1 ≤ 2x for 0 ≤ x ≤ 1
2

and imposing the additional restriction that t+ 4ε
R ≤ 1

2 to simplify the right hand side.
2. For the other direction, let 0 < λ < 1. Since dΩ is 1-Lipschitz we have

(6.10) min
y∈B0(xi,ε)∩X

{︂
λdΩ(y)− λdΩ(x

i) + |y − xi|
}︂
≥ (1− λ) min

y∈B0(xi,ε)∩X

{︂
|y − xi|

}︂
> 0,

provided B0(x
i, ε) ∩ X is not empty. Thus, by (6.1) and Proposition 6.1, (6.10) holds for all xi ∈ Xε with

probability at least 1−n exp
(︂
−1

2ωdρminnε
d
)︂

. Let xi ∈ X such that uε−λdΩ attains its minimum over X
at xi. By an argument similar to the first part of the proof, (6.3) and (6.10) imply that xi ∈ ∂εX . Therefore
uε(x

i) = 0 and by (6.1) we have xi ∈ ∂2εΩ. It follows that

min
x∈X

(uε(x)− λdΩ(x)) = −λdΩ(xi) ≥ −2λε.

Sending λ→ 1− completes the proof.
3. Union bounding over the events in steps 1 and 2 above, the results of the theorem hold with probability

at least

1− n exp

(︃
− ωd−1

4(d+ 1)
ρminnε

d(2t)
d+1
2

)︃
− n exp

(︃
−1

2
ωdρminnε

d

)︃
.

The first exponential is larger, provided
ωd−1

2(d+ 1)
(2t)

d+1
2 ≤ ωd.

Recalling ωd−1/ωd ≤
√
d, this is true when 2t ≤ 1, which is implied by the assumption that t ≤ 1

d and

d ≥ 2. Therefore, (6.9) holds with probability at least 1− 2n exp
(︂
− ωd−1

4(d+1)ρminnε
d(2t)

d+1
2

)︂
. □

Remark 6.5. We now provide an interpretation of the result of Theorem 6.4. To obtain the conditions under
which the error rate is linear in ε we take t = ε and obtain

−2ε ≤ uε − dΩ ≤ 2dΩ

(︃
1 +

4

R

)︃
ε

holds with probability at least 1− 2n−2 provided that the length scale ε satisfies:

(6.11) ε ≥
(︄

6(d+ 1) log(n)

2
d+1
2 ωd−1ρminn

)︄ 2
3d+1

.

Taking the smallest allowable ε above, we obtain that uε converges to the distance function dΩ at a con-
vergence rate of O(n−2/(3d+1)), up to logarithmic factors. We mention that we have numerically seen
convergence rates closer to O(ε2) for ε much larger than the lower bound in (6.11). This may indicate that,
in practice, a sharper convergence rate, as a function of n, could be obtained by choosing larger value for ε.
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FIGURE 10. Plots of the solution to the graph eikonal equation (6.3) for n = 104 for both
the box and ball domains, and error plots for varying ε averaged over 100 trials. The red
points indicate the detected boundary points used in solving (6.3). We see convergence rates
better than the linear O(ε) rate guaranteed by Theorem 6.4.

To obtain a sufficient condition for uniform convergence alone we need conditions under which we can
take tn → 0 as n → ∞ and εn → 0 for the estimate in Theorem 6.4 to hold with high probability. We see
that this is possible whenever

(6.12) lim
n→∞

nεdn
log(n)

=∞.

Then by the Borel-Cantelli lemma we have that uεn → dΩ uniformly on X as n→∞ with probability one.
△

6.1.1. Numerical results. We tested the O(ε) convergence rate from Theorem 6.4 on a box Ω = [0, 1]2 and
ball Ω = B(0, 1) domain. We used n = 210 up to n = 217 = 131, 072 i.i.d. random variables uniformly
distributed on the domain, and chose ε adaptively based on the distance to the kth nearest neighbor, where
k = 10n

1
5 . This is equivalent to the scaling ε ∼ n− 2

5 , since k ∼ nε2. We detected the boundary by
thresholding d̂r(x) at 3ε

2 , where r is the distance from x to its kth nearest neighbor, and ε satisfies 36πρnε2 =
k. In Figure 10 we show the solution of (6.3) for n = 104 as both a colored point cloud, and visualized
as a surface, computed by constructing a triangulated mesh over the point cloud. In the plot in Figure 10
we show the L∞ error |uε − dΩ| versus ε averaged over 100 trials. Both domains track very closely to the
theoretical O(ε) convergence rates.

6.2. Second-order equations. We now turn to second-order equations on point clouds with general bound-
ary conditions. In particular, we show how our estimation ν̂ε of the inward unit normal vector ν can be used
to set general boundary conditions involving normal derivatives. We recall that Theorem 2.6 shows that ν̂ε
is an O(ε) approximation of ν with high probability. In order to state the results in the most general setting,
we simply assume there exists a constant Cν such that

(6.13) |ν̂ε(xi)− ν(xi)| ≤ Cνε

for all xi ∈ X ∩ ∂2εΩ. We recall that Theorem 2.6 shows that the bound (6.13) holds with high probability
as long as ε ≥ C(log n/n)1/(d+2). This lower bound on ε is also required for all the results in this section
to hold with high probability. Indeed, Theorems 6.8 and 6.9 both require nεd+2 ≥ C log n for a sufficently
large constant C, which amounts to the same lower bound on ε up to constants.
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The graph PDEs we solve will involve the graph Laplacian Lε, which is defined by

(6.14) Lεu(xi) =
2

σηnεd+2

n∑︂
j=1

η

(︄
|xi − xj |

ε

)︄
(u(xj)− u(xi)),

where ση =
∫︁
Rd η(|z|)z21 dz, and η is smooth, compactly supported on [0, 1], and satisfies

∫︁
Rd η(|z|) dz = 1.

We define the normal derivative∇νu(x) = ∇u(x) · ν and the approximate normal derivative ˆ︁∇ν by

(6.15) ˆ︁∇νu(x
i) =

u(pn(x
i + εν̂ε(x

i)))− u(xi)

ε
,

where pn : Ω → X is the closest point map. We consider the following graph Poisson equation with
Robin-type boundary conditions

(6.16)
Lεu(xi) = f(xi), if xi ∈ Xε

γu(xi)− (1− γ)ˆ︁∇νu(x
i) = g(xi), if xi ∈ ∂εX .

⎫⎬⎭
Here, γ ∈ (0, 1] and f and g are given smooth functions. In this section, we show that the solution of (6.16)
converges as n→∞ and ε→ 0 to the solution of the Robin problem

(6.17)

{︄
−ρ−1div(ρ2∇u) = f, in Ω

γu− (1− γ)∇νu = g, on ∂Ω.

Remark 6.6. We note that in order to solve the graph PDE (6.16) given a nonconstant boundary condition
g : ∂Ω → R, we need a way to define an extension gε : ∂2εΩ → R that is uniformly close to g within
the boundary tube ∂2εΩ. One way to do this is to define the closest point extension gε(x) = g(x∗) where
x∗ = argminy∈∂Ω|x − y|. The closest point x∗ is unique for x ∈ ∂2εΩ when 2ε < R and if g is Lipschitz
then |gε(x) − g(x∗)| ≤ Cε for x ∈ ∂2εΩ. It is important to note, however, that the closest point extension
requires knowledge of the boundary ∂Ω. In applications where the boundary ∂Ω is not known a priori, and
is instead estimated from the point cloud, such as in data depth in machine learning, we can only handle
constant boundary conditions (i.e., g = 0 on ∂Ω for data depth). △

Throughout this section we assume ∂Ω and ρ are smooth. By elliptic regularity, the solution u of
(6.17) is smooth. The constants in this section will be denoted by C,C1, C2, · · · > 0, and may depend
on γ, u, d, f, g, ρ,Ω and ∂Ω, and can change from line to line.

The proof of convergence is based on a maximum principle for (6.16).

Lemma 6.7. If u satisfies

(6.18)
−Lεu(xi) < 0, if xi ∈ Xε

γu(xi)− (1− γ)ˆ︁∇νu(x
i) ≤ 0, if xi ∈ ∂εX

⎫⎬⎭
then u ≤ 0 on X .

Proof. Let us write wij = η
(︂
|xi−xj |

ε

)︂
and di =

∑︁n
j=1wij . Then by (6.18) we have

diu(x
i)−

n∑︂
j=1

wiju(x
j) =

n∑︂
j=1

wij(u(x
i)− u(xj)) < 0

for all xi ∈ Xε. It follows that di > 0, and so u(xi) < 1
di

∑︁n
j=1wiju(x

j). Therefore, u attains its maximum
over X at some xi ∈ ∂εX , and so

γu(xi) ≤ (1− γ)
u(pn(x

i + εν̂ε(x
i)))− u(xi)

ε
≤ 0.

Since γ > 0 we have u(xi) ≤ 0. □
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The convergence proof also requires pointwise consistency for the graph Laplacian. We refer to [18,
Remark 5.26] for the following result.

Theorem 6.8. Let u ∈ C4(Ω), ε > 0 and 0 < λ ≤ ε−1. Then

(6.19) max
xi∈Ωε∩X

⃓⃓⃓
Lεu(xi)− ρ(xi)−1div(ρ2∇u)|xi

⃓⃓⃓
≤ C1∥u∥C4(Ω)(ε

2 + λ)

holds with probability at least 1− 2n exp
(︂
−C2nε

d+2λ2
)︂

.

We now establish our main convergence result in this section.

Theorem 6.9. Assume (6.1) and (6.13). Let ε > 0 and assume Cνε ≤ 1. Let u be the solution of (6.17)
with γ > 0, and let uε satisfy (6.16). Then for any 0 < λ ≤ ε−1 and t > 0, the event that

(6.20) |u(xi)− uε(x
i)| ≤ C

(︂
∥γu− (1− γ)∇νu− g∥L∞(∂2εΩ) + (1− γ)(t+ Cνε+ ε) + ε2 + λ

)︂
holds for all xi ∈ X has probability at least 1− n exp

(︂
−1

6ωdρminnε
dtd
)︂
− 2n exp

(︂
−Cnεd+2λ2

)︂
.

Proof. The proof is split into three steps.
1. Note that xi + εν ∈ Ωε. By (6.13) we have

|xi + εν̂ε(x
i)− (xi + εν)| = ε|ν̂ε − ν| ≤ Cνε

2.

Since Cνε ≤ 1 we have xi + εν̂ε(x
i) ∈ Ω. Therefore, we can compute

ˆ︁∇νu(x
i) =

u(pn(x
i + εν̂ε(x

i)))− u(xi)

ε

=
u(xi + εν(xi))− u(xi)

ε
+O

(︂
ε−1|pn(xi + εν̂ε(x

i))− (xi + εν̂ε(x
i))|+ Cνε

)︂
= ∇νu(x

i) +O
(︂
ε−1|pn(xi + εν̂ε(x

i))− (xi + εν̂ε(x
i))|+ Cνε+ ε

)︂
.

Let t ≥ 0. If |pn(xi + εν̂ε(x
i)) − (xi + εν̂ε(x

i))| ≥ tε then the set B(xi + εν̂ε(x
i), tε) ∩ X is empty,

which by Lemma 2.1 has probability less than 1− exp
(︂
−1

3ωdρmin(n− 1)εdtd
)︂

. Union bounding over xi

and using that n− 1 ≥ 1
2n for n ≥ 2, we find thatˆ︁∇νu(x

i) = ∇νu(x
i) +O (t+ Cνε+ ε)

holds for all xi ∈ ∂εX ⊂ ∂2εΩ with probability at least 1− n exp
(︂
−1

6ωdρminnε
dtd
)︂

. A similar computa-
tion can be made for φ, and so we find that

(6.21) |ˆ︁∇νφ(x
i)−∇νφ(x

i)|, |ˆ︁∇νu(x
i)−∇νu(x

i)| ≤ C(t+ Cνε+ ε)

for all xi ∈ ∂εX .
2. Let 0 < λ ≤ ε−1. Let φ be the solution of

(6.22)
−ρ−1div(ρ2∇φ) = 1 in Ω

γφ− (1− γ)∇νφ = 1 on ∂Ω.

}︄

By assumption, u, φ ∈ C4(Ω̄), and so by Theorem 6.8, with probability at least 1− 2n exp
(︂
−Cnεd+2λ2

)︂
we have

(6.23) |Lεφ(xi)− 1 | , |Lεu(xi)− f(xi)| ≤ C(ε2 + λ)

whenever dist(xi, ∂Ω) ≥ ε.
3. Let us now define

w(xi) = u(xi)− uε(x
i)−Kφ(xi),
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FIGURE 11. First 7 Laplacian Dirichlet eigenfunctions on the disk computed via approxi-
mation with graph Laplacian eigenvectors with n = 105 points.

for K to be determined. Then by (6.23) and (6.21) we have

Lεw(xi) ≤ −K + C(ε2 + λ)

for xi ∈ Xε and

γw(xi)− (1− γ)ˆ︁∇νw(x
i) ≤ −K + ∥γu− (1− γ)∇νu− g∥L∞(∂2εΩ) + C(1− γ)(t+ Cνε+ ε)

for xi ∈ ∂εX . For any choice of K satisfying

K > C
(︂
∥γu− (1− γ)∇νu− g∥L∞(∂2εΩ) + (1− γ)(t+ Cνε+ ε) + ε2 + λ

)︂
we can apply Lemma 6.7 to find that w ≤ 0, and so u − uε ≤ CK∥φ∥L∞(Ω). The other direction of the
proof is similar. □

Remark 6.10. The proof of Theorem 6.9 relies on the maximum principle (Lemma 6.7), which requires
γ > 0. Thus, the result does not apply to the pure Neumann case γ = 0. This case would require special
attention to ensure the compatibility condition∫︂

Ω
f dx =

∫︂
∂Ω

g dS

holds at both the continuum and discrete level. △
Remark 6.11. Consider the Dirichlet problem in Theorem 6.9 by setting γ = 1. If we set λ = ε2, then we
obtain the rate

|u− uε| ≤ C(∥u− g∥L∞(∂εΩ) + ε2)

with probability at least 1−2n exp
(︂
−Cnεd+6

)︂
. If we are able to extend the boundary conditions g to Ω so

that ∥u− g∥L∞(∂εΩ) ≤ Cε2, then we obtain a second-order O(ε2) convergence rate in Theorem 6.9. △

Remark 6.12. Finally, we remark that our boundary detection method allows us to consider Dirichlet eigen-
functions of the Laplacian on the point cloud X by solving the eigenfunction problem

(6.24)
Lεu(xi) = λu(xi), if xi ∈ Xε

u(xi) = 0, if xi ∈ ∂εX

}︄
The Dirichlet eigenfunctions of Lε would naturally converge to continuum Dirichlet eigenfunction for the
weighted Laplacian −ρ−1div(ρ2∇u). The proof of this is expected to be more involved than Theorem 6.9,
since we cannot use the maximum principle to obtain strong discrete stability results. We expect discrete
to continuum convergence results to hold for the eigenvector problem (6.24) using the combined variational
and PDE methods from [22, 23, 49]. We show in Figure 11 the first 7 Dirichlet eigenfunctions on the disk
computed by solving (6.24) over a graph constructed with n = 105 random variables independent and
uniformly distributed on the disk. △
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FIGURE 12. On the left, plots of the solution to the Robin problem and principal Dirichlet
eigenvector for n = 105 points on the disk, compared to the exact solutions of each problem.
On the right we show an error plot for varying ε averaged over 100 trials.

Remark 6.13. In the case that f = 0 and we consider Dirichlet boundary conditions ( γ = 1), we can
extend Theorem 6.9 to hold even when ∂εX is replaced with a thinner boundary ∂Xδ for any ε2 ≪ δ ≤ ε.
That is when only the points in a very thin region near the true boundary are identified. In this case we can
prove the error rate of O(ε2/δ). The proof is a minor adaptation of [24, Theorem 2.4]. We expect the proof
would extend to the case of nonzero f as well, though the incorporation of γ < 1 seems more difficult. △
6.2.1. Numerical results. We ran several numerical experiments to test the rate of convergence in Theorem
6.9 on the disk Ω = B(0, 1) ⊂ R2. In this case, ρ = 1/π. In the first experiment, we set the solution of the
Robin problem (6.17) with γ = 1/2 to be

u(x) = sin(2x21)− cos(2x21)

and then set f = − 1
π∆u and g = 1

2(u−∇νu), and tested how well the solution of the graph Laplace equation
(6.16) can reconstruct u. In the second problem, we solved (6.24) for the principal Dirichlet eigenfunction,
and compared against the true solution u(x) = J0(λ|x|), where J0 is the zeroth order Bessel function of the
first kind, and λ is the first positive root of J0. In each case we varied the number n of random variables in
the point cloud from n = 210 up to n = 217 = 131, 072 by powers of 2, and set

ε =
1

4

(︃
log n

n

)︃ 1
d+4

,

where here, d = 2. We approximated the ε boundary using k = 2πnε2 nearest neighbors. Figure 12 shows
plots of the solutions to each graph-based problem, compared to the true solutions of their corresponding
PDEs, and a plot of maximum absolute error versus ε, averaged over 100 trials. In both cases we see better
convergence rates than the O(ε) guaranteed by Theorem 6.9. Taking the last three data points on each plot,
the empirical convergence rates are ε1.86 for the Robin problem and ε1.13 for the Dirichlet eigenfunction.

6.3. Experiments with real data. We now turn to experiments with real data. We use the MNIST [54] and
FashionMNIST [79] datasets. MNIST is a standard dataset for handwritten digit recognition, consisting of
70,000 images of handwritten digits 0–9. Each image is a 28 × 28 grayscale image, which we interpret as
a vector in R784. The FashionMNIST dataset is a drop-in replacement for MNIST, with the same number
of datapoints and image resolution, except that the 10 classes in FashionMNIST correspond to different
items of clothing, with pictures taken from a fashion catalog. In all experiments, we use Euclidean distance
between the raw pixel values in R784 to compare images.
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(A) Random digits (B) Boundary digits

(C) Eigen Median digits (D) Eikonal Median digits

FIGURE 13. MNIST experiments.

We focus our experiments on detecting the boundary images for each class, and then using the discovered
boundary to compute a notion of data depth by solving PDEs over the data with Dirichlet boundary condi-
tions. In this way, we also compute a notion of data median, by taking the deepest images in the dataset.
To compute the boundary points, we use k = 10 Euclidean nearest neighbors and compute d̂ε(x

i) for each
image xi by taking ε as the Euclidean distance to the kth nearest neighbor. We then set the images with
scores d̂ε(x

i) in the lower 10% of all images to be boundary points. This is an implicit way to select the
desired width of the boundary by instead specifying how many boundary points are desired. Figures 13 and
14 show that top 10 boundary images in each class compared to randomly selected images.

Once the boundary points are detected, we construct a k nearest neighbor graph over the data points in
each class. We use Gaussian weights given by

wij = exp

(︄
−4|xi − xj |2

εk(xi)2

)︄
,

where εk(xi) is the distance between xi and its kth nearest neighbor. We used k = 10 in all experiments, and
the weight matrix was symmetrized by replacing W with W +W T . For a notion of data depth, we compute
the principal Dirichlet eigenfunction of the graph Laplacian, i.e., the solution of (6.24) with smallest λ. We
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(A) Random images (B) Boundary images

(C) Eigen Median images (D) Eikonal Median images

FIGURE 14. FashionMNIST experiments.

found the symmetric normalization

Lu(x) =
n∑︂

j=1

wij

(︄
u(xi)√

di
− u(xj)√︁

dj

)︄
, di =

n∑︂
j=1

wij

gives slightly more consistent results, and so we report the results with this normalization. The principal
Dirichlet eigenfunction has one sign on all of X , and we choose the version that is positive on X . We
use u(xi) as a notion of data depth, and the xi where u(xi) is largest can be interpreted as median images
for each class. The median images computed this way are shown in Figures 13 (c) and 14 (c). We also
computed the median by solving the eikonal equation (6.3), again using our detected boundary images as
Dirichlet boundary conditions. The eikonal median images are shown in Figures 13 (d) and 14 (d).

We observe that the eigen-median images are all very similar to each other, compared with the eikonal
median images, which have much more variation. There is some work showing that the maximum or
minimum points of graph Laplacian eigenvectors correspond to nodes in the graph that are unusually well-
connected, in the sense that a random walker will take a long time to escape the region (see, e.g., [4]). These
regions then contain groups of highly similar images. In contrast, the eikonal median images are simply
those that are furthest from the boundary in the graph geodesic distance, and these images may be scattered
around the graph and have far more variability.
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We remark that we can also construct a similar notion of data depth by solving the Dirichlet problem
(6.16) with f ≡ 1, γ = 1, and g ≡ 0. The solution of this Poisson equation has the interpretation that u(xi)
is the mean exit time for random walkers starting at xi, and exiting at ∂εX . We almost always obtained the
same set of median images, up to some minor differences, using the two graph PDEs, so we only show the
results using the Dirichlet eigenfunction.

Remark 6.14. It is important to point out that our boundary detection method is designed for data sampled
from a distribution with a Lebesgue density on a domain Ω ⊂ Rd. That is, our results do not apply to the
manifold assumption, which is a commonly used modeling assumption in machine learning that assumes
the data is sampled from a low dimensional smooth submanifold, possibly with boundary, embedded in
Rd. The dimension m of the smooth submanifold is called the intrinsic dimension of the data. While the
MNIST dataset has extrinsic dimension d = 784 (i.e., the number of pixels in each image), it has been
estimated that intrinsic dimension of each class of MNIST digits is between m = 12 and m = 14 [32, 51].
In the manifold setting, it is possible that our approximation of the unit normal vector ν̂ε will point in the
direction normal to the data submanifold in regions of higher curvature. This would cause interior points
to be incorrectly identified as boundary points. This could be addressed by projecting ν̂ε onto the tangent
space to the submanifold, but we leave this for future work. Since we see good results for our method on
MNIST and FashionMNIST in Figures 13 (b) and 14 (b), this may indicate that curvature is low for both
datasets and does not play a large role in boundary detection. △
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[24] J. CALDER, D. SLEPČEV, AND M. THORPE, Rates of convergence for Laplacian semi-supervised learning with low labeling
rates, arXiv:2006.02765, (2020).

[25] J. CALDER AND C. K. SMART, The limit shape of convex hull peeling, Duke Mathematical Journal, 169 (2020), pp. 2079–
2124.

[26] P. CANNARSA AND C. SINESTRARI, Semiconcave functions, Hamilton-Jacobi equations, and optimal control, vol. 58,
Springer Science & Business Media, 2004.

[27] E. CARRIZOSA, A characterization of halfspace depth, Journal of multivariate analysis, 58 (1996), pp. 21–26.
[28] J.-S. CHEN, M. HILLMAN, AND S.-W. CHI, Meshfree methods: progress made after 20 years, Journal of Engineering

Mechanics, 143 (2017), p. 04017001.
[29] Y.-C. CHEN, C. R. GENOVESE, AND L. WASSERMAN, Density level sets: asymptotics, inference, and visualization, J. Amer.

Statist. Assoc., 112 (2017), pp. 1684–1696.
[30] CHENYI XIA, W. HSU, M. L. LEE, AND B. C. OOI, Border: efficient computation of boundary points, IEEE Transactions

on Knowledge and Data Engineering, 18 (2006), pp. 289–303.
[31] V. CHERNOZHUKOV, A. GALICHON, M. HALLIN, AND M. HENRY, Monge–kantorovich depth, quantiles, ranks and signs,

The Annals of Statistics, 45 (2017), pp. 223–256.
[32] J. A. COSTA AND A. O. HERO, Determining intrinsic dimension and entropy of high-dimensional shape spaces, in Statistics

and Analysis of Shapes, Springer, 2006, pp. 231–252.
[33] A. CUEVAS, R. FRAIMAN, ET AL., A plug-in approach to support estimation, The Annals of Statistics, 25 (1997), pp. 2300–

2312.
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APPENDIX A. PROOF OF LEMMA 3.1

The following lemma will be useful in proving Lemma 3.1.

Lemma A.1 (Covering with spherical segments). Let r ≤ 1 and 0 < a < b ≤ r . For u ∈ Sd−1 and
0 < a < b ≤ r define the spherical sector by

Su
a,b = {x ∈ B(0, r) : a ≤ x · u ≤ b}.

Suppose Σ ⊂ Sd−1 is a finite set satisfying the following property:

(A.1) for all u ∈ Sd−1 there exists v ∈ Σ such that |u− v| ≤ δ.

Then, for any u ∈ Sd−1 we can find v ∈ Σ such that

Sv
a+δb,b−δb ⊂ Su

a,b.

Proof. Let u ∈ Sd−1 and fix a v ∈ Σ satisfying (A.1). Suppose that x ∈ Sv
a+δb,b−δb. Then we have

a+ δb ≤ x · v ≤ b− δb.

We have
|x · v − x · u| = |x · (v − u)| ≤ |x||u− v| ≤ δ|x| ≤ δb,

since |x| ≤ b− δ ≤ b. Therefore

x · u ≤ b− δb+ δb = b and x · u ≥ a+ δb− δb = a.

Therefore x ∈ Su
a,b, which shows that for each u ∈ Sd−1 there exists v ∈ Σ such that

Su
a,b ⊃ Sv

a+δb,b−δb.

Hence, the event that Su
a,b is empty for some u ∈ Sd−1 is contained in the event that Sv

a+δb,b−δb is empty for
some v ∈ Σ—a finite collection of events.

□

Remark A.2 (ε-nets and upper bound on |Σ|). Recall that an ε-net of Sd−1 is the set of points in Sd−1 such
that the pairwise distance is at least ε. Then we define a maximal ε-net of the sphere to be an ε-net such that
no point on Sd−1 can be added while preserving the lower bound for the pairwise distance.

Then, observe that any maximal ε-net of the unit sphere satisfies the condition of Lemma A.1. If Σε =
{x1, · · · , xNε} is a maximal ε-net of Sd−1, then for each x ∈ Sd−1 there exists xi ∈ Σε such that |x−xi| ≤
ε. To see this, suppose |x∗ − xi| > ε for all i = 1, · · · , Nε. Then

B(x∗, ε/2) ∩B(xi, ε/2) = ∅ for all xi ∈ Σε.

Thus Σε ∩ {x∗} should also be an ε-net, which contradicts the maximality of Σε.
Now, let Σδ be any δ-net – i.e. ε-net with ε = δ. Then {B(vi, δ/2) : vi ∈ Σδ} is a collection of disjoint

balls, all contained in B(0, 1 + δ/2) \B(0, 1− δ/2). Thus, base on a simple volumetric argument, we can
deduce

(A.2) |Σδ| ≤ 2d

(︃
1 +

2

δ

)︃d−1

,

△
Proof of Lemma 3.1.

(1) Let {vi}Mi=1 = Σ ⊂ Sd−1 be a maximal δ-net. By Lemma A.1 and Remark A.2, for any u ∈ Sd−1

we can find vk ∈ Σ such that
Svk
a+bδ,b−bδ ⊂ Su

a,b.

This means that if all of Svi
a+bδ,b−bδ are nonempty, all of Su

a,b is nonempty for u ∈ Sd−1 hence

d̂
1

r(x
0) ≥ a.
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Without loss of generality, assume x0 ∈ Rd is the origin, and let α = dΩ(x
0) ∧ r

2 . Denote by
Ku

a,b ⊂ Su
a,b the cone of maximal height sharing the base with Su

a,b. Note that b ≤ α implies
Ku

a,b ⊂ B(x0, r) ∩ Ω. On the other hand, we need a ≥ (1 − λ)α − t to deduce the desired lower

bound on d̂
1

r . Thus choose
a = (1− λ)α− t, b = α.

Further, we need the height of Svi
a+bδ,b−bδ to scale like t, in order to lower bound the volume. Thus

we need

b− bδ − (a+ bδ) = (1− 2δ)b− α = (1− 2δ)α− (1− λ)α− t = (λ− 2δ)α+ t.

As we are interested in t ≲ r2 ≪ α ∼ ε, we need λ− 2δ ≥ 0, hence

δ ≤ λ

2
.

(2) Following the discussion in the previous step, let Σ = {v1, · · · , vNλ} be a maximal λ
2 -net of Sd−1,

and write
Si = Svi

a+bλ/2,b−bλ/2 where a = (1− λ)α, b = α, and .

Thus, to show (3.2) holds with probability at least 1− n−γ , it suffices to show

P( No point in Si) ≤ (1− ρmin|Si ∩ Ω|)n ≤ N−1
λ n−γ for all i = 1, · · · , Nλ.

(3) We first compute the lower bound for |Si ∩ Ω|. Temporarily write a′ = a + bλ/2, b′ = b − bλ/2.
Let Ki

a′,b′ be the cone of height b′− a′ = t sharing the base of Si. Note that Ki
a′,b′ ⊂ Si ∩Ω and its

base has radius
√︁
r2 − (a′)2 = r

√︁
1− (a′/r)2. As the |Ki

a′,b′ | is independent of i, we may drop
the superscript and deduce

|Si ∩ Ω| ≥ |Ka′,b′ | =
∫︂ t

0
ωd−1

(︃
r
√︁
1− (a′/r)2

s

t

)︃d−1

ds =
1

d
ωd−1tr

d−1(1− (a′/r)2)
d−1
2 .

As a′ ≤ b ≤ α ≤ r/2, we have (1− (a′/r)2)(d−1)/2 ≥ 2−(d−1)/2. Hence, for each i = 1, · · · , Nλ

P( No point in Si) ≤ (1− ρmin|Ka′,b′ |)n ≤
(︃
1− ρmin

d2(d−1)/2
trd−1

)︃n

.

The expression on the right is less than N−1
λ n−γ if

n log

(︃
1− ρmin

d2(d−1)/2
trd−1

)︃
≤ −γ log n− logNλ,

or equivalently

trd−1 ≥ d2(d−1)/2(1− e−
γ logn+logNλ

n )

ρminωd−1
.

As 1− e−x ≤ x, it suffices for t, r to satisfy

trd−1 ≥ d2(d−1)/2

ρminωd−1

(︃
γ log n+ logNλ

n

)︃
.

(4) We claim that logNλ ≤ γ(d− 1) log n. By setting δ = λ
2 in (A.2), we know

N ≤ 2d

(︃
1 +

4

λ

)︃d−1

= 2d

(︃
λ+ 4

λ

)︃d−1

.

By hypothesis n ≥ d ∨ λ+4
λ and γ > 2, we see

nγ(d−1) ≥ nd−1nd−1 ≥ 2d

(︃
λ+ 4

λ

)︃d−1

≥ Nλ.
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Thus γ log n+ logN ≤ dγ log n, and it suffices for t, r to satisfy

trd−1 ≥ d22(d−1)/2γ

ρminωd−1

(︃
log n

n

)︃
.

This completes the proof

□

APPENDIX B. PROOF OF PROPOSITION 6.3

Proof. The proof is split into several steps.
1. Let y ∈ ∂Ω satisfy dΩ(x∗) = |x∗ − y|. Let z ∈ ∂B(x0, ε) be along the line from x∗ to y. Then we

have

dΩ(z) ≤ dΩ(x∗)− |x∗ − z|
and so by the property defining x∗ we have x∗ = z; that is x∗ ∈ ∂B(x0, ε). Since dΩ is 1-Lipschitz, we
have dΩ(x∗) ≥ dΩ(x

0)− ε. By a similar argument as above, we have dΩ(x∗) ≤ dΩ(x
0)− ε, and so

dΩ(x∗) = dΩ(x
0)− ε.

Now, note that the function

g(r) = dΩ(x∗ + rp)

is 1-Lipschitz and satisfies g(ε) = dΩ(x
0) = g(0)+ ε. It follows that g(l) = g(0)+ r for 0 ≤ r ≤ ε, and so

(B.1) dΩ(x∗ + rp) = dΩ(x∗) + r for 0 ≤ r ≤ ε.

2. Since dΩ − 1
R |x− x∗|2 is a concave function, there exists q ∈ Rn such that

dΩ(x)− dΩ(x∗) ≤ q · (x− x∗) +
1

R
|x− x∗|2.

for all x ∈ Ω. By (B.1) we have

r = dΩ(x∗ + rp)− dΩ(x∗) ≤ rq · p+ r2

R

for 0 ≤ r ≤ ε. Therefore

q · p ≥ 1− r

R
.

Sending r → 0+ we find that p · q ≥ 1.
3. We now claim that |q| ≤ 1, which combined with p · q ≥ 1 from part 2 implies that p = q and

completes the proof. To see this, since B(x0, ε) ⊂ Ω, we have B(x∗, r) ⊂ Ω for r > 0 sufficiently small.
Now, the dynamic programming principle gives

0 = min
x∈B(x∗,r)

{︁
dΩ(x)− dΩ(x∗) + |x− x∗|

}︁
≤ min

x∈B(x∗,r)

{︁
q · (x− x∗) + |x− x∗|

}︁
+

r2

R
.

Setting x− x∗ = −|x− x∗|q/|q| we have

0 ≤ min
x∈B(x∗,r)

{︁
|x− x∗|(1− |q|)

}︁
+

r2

R
= −r(|q| − 1)+ +

r2

R
.

Sending r → 0+ we obtain |q| ≤ 1, which completes the proof. □
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APPENDIX C. CONCENTRATION INEQUALITIES

For reference, we state the Chernoff bounds, Hoeffding inequality, and the Bernstein inequality, which are
concentration of measure inequalities used to control the variance of our normal and distance estimators. We
refer the reader to [14] for a general reference on concentration inequalties. Proofs of the exact inequalities
below can also be found in [18, Chapter 5].

Theorem C.1 (Chernoff bounds). Let X1, X2 . . . , Xn be a sequence of i.i.d. Bernoulli random variables
with parameter p ∈ [0, 1] (i.e., P(Xi = 1) = p and P(Xi = 0) = 1− p). Then for any ε > 0 we have

(C.1) P

⎛⎝ n∑︂
i=1

Xi ≥ (1 + ε)np

⎞⎠ ≤ exp

(︄
− np ε2

2(1 + 1
3ε)

)︄
,

and for any 0 ≤ ε < 1 we have

(C.2) P

⎛⎝ n∑︂
i=1

Xi ≤ (1− ε)np

⎞⎠ ≤ exp

(︃
−1

2
np ε2

)︃
,

Theorem C.2 (Hoeffding inequality). Let X1, X2 . . . , Xn be a sequence of i.i.d. real-valued random vari-
ables with finite expectation µ = E[Xi], and write Sn = 1

n

∑︁n
i=1Xi. Assume there exists b > 0 such that

|X − µ| ≤ b almost surely. Then for any t > 0 we have

(C.3) P(Sn − µ ≥ t) ≤ exp

(︄
−nt2

2b2

)︄
.

Theorem C.3 (Bernstein Inequality). Let X1, X2 . . . , Xn be a sequence of i.i.d. real-valued random vari-
ables with finite expectation µ = E[Xi] and variance σ2 = Var(Xi), and write Sn = 1

n

∑︁n
i=1Xi. Assume

there exists b > 0 such that |X − µ| ≤ b almost surely. Then for any t > 0 we have

(C.4) P(Sn − µ ≥ t) ≤ exp

(︄
− nt2

2(σ2 + 1
3bt)

)︄
.

APPENDIX D. LIST OF CONSTANTS

We list the explicit constants that appear in Sections 2 and 3 . Below ωd is the volume of unit ball
in d dimensions, and γ > 2 is a parameter of choice related to the error rate in the following way:
P( Boundary test fails ) = O(n−γ).

Cx = 2ωd−1 +
LRωd

ρmin
,

Cy =
ωd−1

2(d+ 1)
,

Cr =
1

R
max

⎡⎢⎣(︄3γρmaxd
2ωdR

2

Cx
2ρ2min

)︄ 1
d+2

,

(︄
4γCyd

22(d−1)/2

13ρminωd−1Cx

)︄ 1
d+1

⎤⎥⎦ ,
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