Proceedings of Machine Learning Research vol 167:1-25, 2022 33rd International Conference on Algorithmic Learning Theory

The Mirror Langevin Algorithm Converges with Vanishing Bias

Ruilin Li LIRUILIN1993 @ GMAIL.COM
Georgia Institute of Technology & Hudson River Trading

Molei Tao MTAO @ GATECH.EDU
Georgia Institute of Technology, School of Mathematics

Santosh S. Vempala VEMPALA @ GATECH.EDU
Georgia Institute of Technology, College of Computing

Andre Wibisono ANDRE.WIBISONO @ YALE.EDU

Yale University, Department of Computer Science
Editors: Sanjoy Dasgupta and Nika Haghtalab

Abstract

The technique of modifying the geometry of a problem from Euclidean to Hessian metric has
proved to be quite effective in optimization, and has been the subject of study for sampling. The
Mirror Langevin Diffusion (MLD) is a sampling analogue of mirror flow in continuous time, and
it has nice convergence properties under log-Sobolev or Poincare inequalities relative to the Hes-
sian metric, as shown by Chewi et al. (2020). In discrete time, a simple discretization of MLD
is the Mirror Langevin Algorithm (MLA) studied by Zhang et al. (2020), who showed a biased
convergence bound with a non-vanishing bias term (does not go to zero as step size goes to zero).
This raised the question of whether we need a better analysis or a better discretization to achieve a
vanishing bias. Here we study the Mirror Langevin Algorithm and show it indeed has a vanishing
bias. We apply mean-square analysis based on Li et al. (2019) and Li et al. (2022) to show the
mixing time bound for MLA under the modified self-concordance condition introduced by Zhang
et al. (2020).

Keywords: Sampling, mirror descent, Langevin dynamics, Wasserstein distance, discretization,
mean-square analysis

1. Introduction

Suppose we wish to sample from a probability distribution v/(z) o e~f (=) supported on a convex
set X C R? where f: X — R is differentiable. A popular algorithm is the Unadjusted Langevin
Algorithm (ULA), which is a basic discretization of the Langevin Dynamics in continuous time:

dXy = =V f(X;)dt + V2 dW,.

Langevin Dynamics has an optimization interpretation as the gradient flow for minimizing relative
entropy (KL divergence) with respect to v using the Wasserstein metric W5 in the space of proba-
bility distributions on R?, starting from the seminal work of Jordan et al. (1998); see also Wibisono
(2018). In continuous time, Langevin Dynamics has convergence guarantees in various distances,
including W distance, KL divergence, or x2-divergence, under various conditions, such as strong
log-concavity, or functional inequalities such as the Log-Sobolev Inequality (LSI) or Poincaré in-
equality. In discrete time, ULA is a biased discretization of the Langevin Dynamics, and it has an
asymptotic bias which scales with the step size. In particular, by setting a small enough step size,
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we can obtain a mixing time bound of ULA which has inverse polynomial dependence on the er-
ror threshold; see for example Dalalyan (2017); Durmus and Moulines (2017, 2019); Dalalyan and
Karagulyan (2019); Vempala and Wibisono (2019); Li et al. (2019); Li et al. (2022).

In many settings, the problem of interest is non-smooth or constrained (e.g., the L; ball or a
general polytope), and the basic Langevin algorithm does not apply. In optimization, this is handled
effectively (and elegantly) by interior-point methods, which use a convex “barrier” function to define
a non-Euclidean metric. The resulting metric is given locally by the Hessian of the barrier function.
This method results is a convergence bound that scales as v/d for linear and convex optimization.

It is natural to wonder whether such a modification of the geometry could be useful for sampling.
Early evidence of this is the Dikin walk, which replaces the ball walk (a discrete-time implementa-
tion of constrained Brownian motion) by using an ellipsoid at each step, defined by the Hessian of
the logarithmic barrier function. This walk was shown to converge in O(md) steps for uniformly
sampling a polytope with m facets in d dimension (Kannan and Narayanan, 2012). It was recently
refined using a weighted barrier function to improve the convergence time to O(dz) (Laddha et al.,
2020).

A related approach that also originated in optimization is mirror descent, which uses a mirror
map (the gradient of the barrier function) to change the geometry favorably, and in the context
of sampling, can be seen as a generalization of the Langevin algorithm by changing the metric.
For constrained sampling, the Mirror Langevin Dynamics was introduced by Zhang et al. (2020)
using a mirror map to constrain the domain; see also Hsieh et al. (2018) for a related approach.
Mirror Langevin Dynamics is the Langevin dynamics for sampling from v using the Hessian metric
generated by the mirror map. In continuous time, Mirror Langevin Dynamics has nice convergence
guarantees under an analogous notion of mirror Poincare inequality relative to the Hessian metric,
as shown by Chewi et al. (2020); see also Appendix A for a review.

In discrete time, the Mirror Langevin Algorithm (MLA) is a simple discretization of MLD
proposed by Zhang et al. (2020), who showed a biased convergence analysis under relative strong
convexity and smoothness, but with a non-vanishing bias (does not go to 0 with step size, but
remains a constant). Ahn and Chewi (2020) proposed an alternative discretization method which
achieves a vanishing bias, but requires an exact simulation of the Brownian motion with changing
covariance. Jiang (2021) further showed a convergence analysis of MLA under mirror version of
isoperimetry, but still with a non-vanishing bias. These results raised the question of whether we
need a better analysis of MLA, or a better discretization of MLD to achieve a vanishing bias.

In this paper, we study the Mirror Langevin Algorithm and show that it indeed has a vanishing
bias. The tool we will use is the mean-square analysis framework, proposed by Li et al. (2019) and
then refined by Li et al. (2022); the latter version will be used. It will help establish a biased conver-
gence analysis of MLA under relative smoothness, strong convexity and modified self-concordance;
these are a subset of the conditions assumed by Zhang et al. (2020). We show that the bias of MLA
with step size h scales as v/h; this leads to a O(d/€?) mixing time bound for MLA (see Theorem 1
and Corollary 2).
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2. Algorithm and Problem Set-Up
2.1. Problem set-up

Suppose we want to sample from a probability distribution v supported on a convex set X C R
We assume v is absolutely continuous with respect to the Lebesgue measure on R? and has density
v(x) o< e~ /@) for some differentiable f: X — R.

Let ¢: X — R be a twice-differentiable strictly convex function which is of Legendre type (Rock-
afellar, 1970). This implies V$(X) = R?, and in particular the gradient map V¢: X — R? is
bijective. We also have V2¢(z) = 0 for all z € X. Moreover, we require that ||[V¢(z)|| — oo
and V2¢(x) — oo as = approaches the boundary of X. Using the Hessian metric V2¢ on X
will prevent the iterates from leaving the domain X'. We call Vp: X — R? the mirror map and
YV = Vo¢(X) = R? the dual space.

Let ¢*: R — R be the dual function of ¢, defined by ¢*(y) = sup,cr (7, y) — ¢(x). Recall
Vo*(y) = argmaxzex(z,y) — ¢(x), and we have Vo* = (V¢)™L, so Vo (Ve*(y)) = y for all
y € RZ Furthermore, V2¢(z) = V2¢*(Vo(z))~! forall z € X.

For a vector v € R%, let |[v]| = /{(v,v) be the £3-norm. For a matrix A € R?*?, let || A||ys =
/ Tr(AAT) be the Hilbert-Schmidt norm.

2.2. Mirror Langevin Algorithm

In this paper we study the Mirror Langevin Algorithm:
wri1 = V6" (Vo(ar) = hVf(zr) + V2hy/V26(wy) ) (1)

where h > 0 is step size and z, ~ A(0,1) is an independent Gaussian random variable in R?,
Here \/V2¢(x) is a square-root of V2¢(z), i.e. any matrix C(z) € R%*9 satisfying C(z)C(z)" =
V2¢(x). This algorithm can be seen as a sampling version of the mirror descent algorithm from
optimization, since we can write the update of MLA in the following form which resembles mirror
descent:

Tpr1 = arg Héln {(th xr) \ﬁ\/V%ﬁ (zk) 2k, @ )+ Dy (x, :rk)}

where Dy(x,z") = ¢(z) — ¢(a') — (Vp(z'), z — 2’} is the Bregman divergence of ¢. In particular,
in the Euclidean case, i.e. when X = R? and ¢(z) = %||z||%, MLA recovers the usual Unadjusted
Langevin Algorithm (ULA).

MLA can be seen as a coordinate-transformed Euler-Maruyama discretization of the Mirror
Langevin Dynamics in continuous time, given by

Y: =Vo(Xy)
dY; = -Vf(Xp)dt +v2/V2p(X;)dW;

See Section 2.3 for a reformulation purely in the dual space, and Appendix A for more details
on the continuous-time dynamics. Zhang et al. (2020) studied MLA as a simple discretization of
the Mirror Langevin Dynamics, and showed that under certain assumptions, the iterates of MLA
converge to a Wasserstein ball around the target with some radius which depends on the modified
self-concordance parameter of ¢ (see Section 3.1 for more detail). In the Euclidean case (when ¢
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is quadratic) this radius is 0, so MLA converges to v with sufficiently small step size, recovering
the typical bound for ULA. However, for general ¢, the radius is positive. Therefore, the result
of Zhang et al. (2020) only guarantees MLA enters a ball around the target, but it may not converge
to the target even when the step size goes to 0. They further conjectured the bias is unavoidable.
This raises an interesting question of whether the non-vanishing bias of MLA is indeed unavoidable
because we are discretizing a diffusion process with changing covariance, or whether there is a
better analysis of MLA with vanishing bias. Here we show that indeed MLA has a vanishing bias,
by applying the mean-square analysis framework of Li et al. (2019) and Li et al. (2022).

2.3. Mirror Langevin Algorithm in the Dual Space
Let us work in the dual space ) = V¢ (X') = R? via the mirror map V¢: X — R%. Given z € X,
we define the dual variable

y = Vo(x) € R

and its inverse is given by x = V¢*(y). The target distribution & on the dual space is the pushfor-
ward of the original target v o< e~/ under the mirror map: 7 = (V¢)4v. If we write the density

as U(y) o< e 7 then we have f(y) = f(Vé*(y)) — logdet V2¢*(y). Moreover, the Hessian
metric V2¢(z) on X’ corresponds to the Hessian metric V2¢* () on R generated by the dual func-
tion ¢*; that is, V2¢* on R? is the pullback metric of V2¢ on X under the inverse mirror map
Vo¢*: RY — X. Therefore, the metric space (X, V2¢) is isometric to (R?, V2¢*).

If x5, € X follows the Mirror Langevin Algorithm (1), then y;, = Vo(x) € R? follows the
Mirror Langevin Algorithm in the dual space:

Ykt1 = i — BV F(V O (yk)) + V2h/V20% (yy) 1 2. (2)

MLA in the dual space (2) can be seen as a discretization of the mirror Langevin dynamics to sample

from 7 < e~/ with the Hessian metric V2¢* on R?.
Let us define g: R — R? and A: R¢ — R4*4 by

g(y) = VF(Ve*(y)) 3)
Aly) = vV V2¢*(y)~L. “4)

Note here A(y) is any square-root of V2¢*(y)~!. Then we can write MLA in the dual space as
Yr+1 = Yk — hg(yx) + V2hA(yy) 2. S

As h — 0, MLA converges to the Mirror Langevin Dynamics, which is a continuous-time stochas-
tic process Y; € R? following the stochastic differential equation:

dY; = —g(Yy)dt + V2A(Y;)dW,

where W, is the standard Brownian motion in R?; see Section 4.2.1 for more properties.
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2.4. Wasserstein distance in dual space

Along MLA in the dual space (2), let pi, denote the distribution of the random variable y; € R?. We
will show a convergence analysis of MLA in the dual space in terms of the Euclidean Wasserstein
distance W5 between py. and 7 on R

Wa(p,2)? = inf E[lly—y*|*].
Y~py*

Note that this distance does not use the Hessian metric V2¢* on R?. In the original space X', this
gives a modified W5 distance under the mirror map:

Wag(p,v)? = inf E[|Vé(z) — Vo(a')|].

zrp,x v

Thatis, if p = (V@)xp and 0 = (V) uv, then Wy 4(p,v) = Wa(p, 7). This is the same modified
Wasserstein distance that is used in Zhang et al. (2020). This corresponds to using the squared
Hessian metric (V2¢(z))2 on &, which is isometric to the Euclidean metric I on RY (rather than
the Hessian metric V2¢(z) on X', which is isometric to the Hessian metric V2¢*(y) on R?, and
which is used in the continuous-time analysis in Chewi et al. (2020)).

3. Main Result: Mixing Time Bound for MLA

We present our main result on the mixing time bound of MLA. We need the following assumptions.
(A1) ¢ satisfies the modified self-concordance property with parameter o > 0, which means:
IV V26(2') — /V26(2)|ns < Va|Vo(2') = V()| Va',z € X.
Equivalently, A(y) = 1/V2¢*(y)~! is \/a-Lipschitz in the Hilbert-Schmidt norm:
IAGY) — Ay)llns < Vally' =yl Vy'.y € RY

(A2) fis M-smooth with respect to ¢ for some 0 < M < oo, which means:
IVf(2) = Vi(@)lla < M|Ve(2') = V()2 Va',z € X.
Equivalently, g(y) = Vf(V¢*(y)) is M-Lipschitz:
lo@) =gl < My =yl Vy/,y €.
(A3) f is m-strongly convex with respect to ¢ for some 0 < m < M, which means:
(Vf(a) = V[(x),V(z') = Vo(x)) > m||[Ve(z') = V()5 Vo' z € X.
Equivalently, g(y) = Vf(V¢*(y)) is m-monotone:
(W) =9y —y) =mly —yll5 vy yeR?

These are a subset of the assumptions in Zhang et al. (2020). In particular, we do not assume a
bound on the commutator of V2 f and V2¢. Our main result is the following.
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Theorem 1 Assume (A1), (A2), (A3), and assume o« < m. There is a maximum step size hpax =

@) <M(2”(Ll;&);2> and constant Cyip,a = O <M(l%4z)\/a), such that if we run MLA (1) with 0 <

h < hmax from any xg ~ po, then the iterates xy, ~ py, satisfy:
Was(p,v) < e, 4 (po, v) + CraraVh.

Equivalently, if we run MLA in the dual space (2) with 0 < h < hy from any yg ~ po, then the
iterates yy, ~ py, satisfy:

Walpr, ) < e~ "Ry (5o, ) + Cupa v,

See Section 4.3 for the proof of Theorem 1 and explicit forms of the constant C'yir,o and maxi-
mum step size hyax. This result shows MLA has a bias that is vanishing with step size, and thus we
can reach an arbitrary accuracy by using a small enough step size. In particular, this improves on
the analysis in Zhang et al. (2020), which has a non-vanishing bias and under stronger assumptions.
By choosing a small step size, we obtain the following mixing time bound for MLA.

Corollary 2 For any (small) error threshold € > 0, to reach Wo(pi, V) < €, it suffices to run MLA
in the dual space (2) with step size h = ﬁ for k = 1y, (€) iterations where

o oWapd) (Gl ) g (MLt da)d
wale) < G agR 8 T e O((m—a)62> O( (m —a)ie? )

3.1. Discussion of result

Theorem 1 shows that MLLA has a biased convergence guarantee where the bias scales as O(v/dh)
where d is dimension and h is step size (assuming m, M, « are independent of d for now). This
leads to a mixing time bound of O(d/e?) for MLA.

Let us compare MLA with ULA (i.e., MLA in the Euclidean case with ¢(z) = %||z[|%). Recall
for ULA, the mean-square analysis by Li et al. (2022) yields a biased convergence guarantee where
the bias scales as O(v/dh) under an additional 3rd-order regularity condition on f. This leads
to a mixing time bound of O(v/d/e) for ULA. We see the bias of MLA has a worse dependence
on h than the bias of ULA. This is because the continuous-time Mirror Langevin Dynamics (7)
of MLA has a changing covariance, while the usual continuous-time Langevin Dynamics of ULA
has a constant covariance; therefore, MLA incurs an additional stochastic error from the Brownian
motion part, which is not incurred by ULA. Formally, this is reflected in the orders of error of the
two algorithms: We show below that MLA has local weak and strong errors of orders p; = g at
least and p» = 1 (note the local weak order of MLA is actually p; = 2, because it is the Euler-
Maruyama discretization of an SDE; the multiplicative noise causes the strong error to lose half an
order, but not the weak error (see e.g., (Milstein and Tretyakov, 2013, page 14)); however, we will
see that as long as p; > ps + % the order of the final sampling error is determined by p2 but not
p1, and even though our p; = % bound is not tight in order, its constants can be made very explicit
and hence helpful to later analysis). On the other hand, it is well known that ULA has local weak
and strong error of orders p; = 2 and py = % because it is the Euler-Maruyama discretization of
an SDE with additive noise (see Milstein and Tretyakov (2013) for the general theory and Li et al.
(2022) for details of worked out constants). It would be interesting to understand whether we can
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improve the local errors and the bias of MLA, perhaps using more sophisticated discretization of
MLD to improve the stochastic error.

Our result improves on the analysis of Zhang et al. (2020), who assume stronger assumptions
(our assumptions (A1), (A2), (A3), along with two assumptions on the moment of V2¢ and a bound
on the commutator of V2 f and V2¢), and prove a biased convergence analysis where the bias scales
as O(Vdh + rg), where rg = O(v/ad) does not depend on h. Note in the Euclidean case (when
¢(x) = L||z||?), the modified self-concordance parameter is o = 0, and thus o = 0; but for general
¢, the asymptotic radius is positive: rg > 0, so the result of Zhang et al. (2020) does not guarantee
convergence to the target. With our mean-square analysis, we have shown that in fact there is no
dependence on this radius rg, and the bias indeed scales as O(\/%)

We note our result uses the modified self-concordance property, as also used in Zhang et al.
(2020). In one-dimension (d = 1), modified self-concordance is equivalent to the classical self-
concordance property: Both are equivalent to the condition that x — 1/4/¢"(x) is a Lipschitz
function. However, in higher dimension, they are different. In particular, modified self-concordance
is not an affine-invariant property (in contrast to the classical self-concordance), and the parameter
« can be arbitrarily large; see example in Appendix D. This is problematic since our convergence
bound only holds when « is less than m (the strong convexity parameter). It would be desirable to
have an analysis of MLA with the more natural self-concordance property.

Our result in Theorem 1 shows that to obtain a consistent algorithm (with a vanishing bias) from
MLD, it suffices to apply a simple discretization such as MLA. This shows we do not need to use an
exact simulator of the Brownian motion with changing covariance, as proposed by Ahn and Chewi
(2020), which allows a nice analysis under self-concordance property. It would be interesting to
bridge the analysis technique to MLA.

The relative smoothness (A2) and relative strong convexity (A3) conditions imply that the Hes-
sian of f are bounded by the Hessian of ¢:

mV2p(z) < V2if(z) < MV3¢(z) VaelX.

See (Zhang et al., 2020, Appendix B) for more details. Since we assume ¢ is a Legendre function,
V2¢(x) — oo as & — OX; then for our result to hold, we need V2f — oo as & — OX. This
restricts the applicability of the result; for example, it does not apply when v is a uniform (f = 0) or
Gaussian distribution (f is quadratic) restricted on a polytope with ¢ being the log-barrier function.
It is desirable to have a more general convergence analysis of MLA under weaker conditions on f
and ¢.

4. Proof of main result

The proof of Theorem 1 uses the mean-square analysis framework described in Li et al. (2022). We
review the mean-square analysis framework in Section 4.1. We verify the conditions hold for MLA
in Section 4.2, and apply the mean-square analysis to prove Theorem 1 in Section 4.3.

4.1. A review of the mean-square analysis framework

Mean-square analysis was a classical tool for analyzing the integration error of SDEs (e.g., Mil-
stein and Tretyakov (2013)). Li et al. (2019) extended it to obtain non-asymptotic sampling error
bound of an algorithm which is a discretization of a decaying stochastic differential equation (SDE).
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While Li et al. (2019) required the local errors to satisfy uniform bounds, Li et al. (2022) relaxes
this requirement and only needs non-uniform bounds. We will establish non-uniform local error
bounds for MLLA, and thus use the version of mean-square analysis in Li et al. (2022). The results
will be reviewed in a simplified setting; see (Li et al., 2022, Section 3) for details.

Contractive SDE. Consider a continuous-time process Y; € R which evolves following the
SDE:

dY; = —g(Y3) dt + V2A(Y;) dW; (6)

for some vector field g: R? — R? and matrix A: R? — R%*¢ We assume g and A are Lipschitz
continuous. Here W is the standard Brownian motion in R?.

We say the SDE (6) is contractive with rate 5 > 0 if there exists tg > 0 such that any two
solutions Y}, Y/ with synchronous coupling (i.e. driven by the same Brownian motion) satisfy:

E[|Y; - Y/IP] < e E[|[Yo - YI?] ¥t € (0,t0).
If the SDE (6) is contractive, then it has a stationary distribution 7.

Short-time deviation. Since g and A are Lipschitz continuous, one can show (Milstein and
Tretyakov, 2013, Lemma 1.3) that there exist a maximum time ¢y > 0 and a constant Cy > 0
such that for any solutions Y;, Y/ with synchronous coupling:

E[I(Y/ - Y3) - (Y - Yo)|3] < GoE[|Yg - Yollt VO <t<to.

Algorithm and local error. Suppose we have an algorithm Alg;, depending on a step size h > 0
that simulates the solution Y; of the SDE (6) at time ¢ = h.

For any Y, € R?, let ¥}, denote the solution of the SDE (6) at time ¢ = h, and let Y1 = Alg), (Yp)
denote the output of the algorithm from Y. We say that the algorithm has (non-uniform) local weak
error of order p; if there exist a maximum step size h; > 0 and constants C'1, D1 > 0 such that

IE[Y, — V]| < (01 + Dy IE[HYOH?) WP Y0 < h < hy.

We say the algorithm has (non-uniform) local strong error of order ps if there exist a maximum
step size ho > 0 and constants Cy, Dy > 0 such that

E[|[Y - Vil”) < (C3 + D3E[|Yo]?) 1 V0 < h < hy.

Here Y}, and Y are coupled by sharing the same filtration (i.e. the algorithm Alg,, has access to the
realization of the Wiener process that generates Y7,).
When D = Dy = 0, the bounds are termed as uniform bounds in Li et al. (2019).

Bound on global error. With the set-up above, the mean-square analysis framework produces the
following bound on the global (long-term) error.

Theorem 3 ((Li et al., 2022, Theorem 3.3, 3.4)) Assume the SDE (6) is contractive with rate 3 >
0. Assume the algorithm Alg;, has local weak error of order py and local strong error of order pa
with % <p2 <pp— % Let us define a maximum step size hpyax > 0 by

, UNND R 1( \/B )leé ( B )PQI%
max 0,71, 274&7 4\/§D2 ’ 8\/§(D1+COD2)
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and constants U = /AE[||Yo||2] + 6E5[||[Y]|2] and C > 0 by
2 <C1 + CoCs + V2U (D1 + CyDs)

=B NG

Starting from any Yo = Yy ~ po, suppose we run the algorithm Alg;, with step size 0 < h < hmax
to produce ite;:ates Y = Alg,(Yi—1) ~ px. Let Yy denote the solution to the SDE (6) at time
t = hk. Then Yy, is close to Yy, at all time:

+Cy + \@DQU> .

E[[|Yig — Yill2] < ChP "2 Yk > 0.
Furthermore, the distribution of Y}, ~ py, has the following biased convergence guarantee:

Wa(pe, ) < e PMWy (o, ) + ChP2™2 V& > 0.

4.2. Application to MLA

For our sampling problem, we wish to apply the mean-square analysis framework to the Mirror
Langevin Algorithm in the dual space (2). The continuous-time SDE (6) of MLA is the Mirror
Langevin Dynamics, which we review in the next section. We establish the local error orders of
MLA in the following section.

4.2.1. MIRROR LANGEVIN DYNAMICS

Consider the Mirror Langevin Dynamics (MLD), which is a stochastic process Y; € R following
the SDE:

dY; = —g(Yy)dt + V2A(Y;)dW; (7
where as defined in (3) and (4), g(y) = Vf(V¢*(y)) and A(y) = /V2¢*(y)~!. The stationary
distribution of MLD (7) is the target distribution in the dual space: 7 = (V@) 4.

By assumptions (A1) and (A2), g and A are Lipschitz continuous. Let us establish the contrac-
tivity and deviation bound on MLD. The proofs are provided in Appendix B.

Lemma 4 Assume (A1) and (A2) with o < m. Then MLD (7) is contractive with rate = m — a.

Lemma 5 Assume (A1), (A2), and (A3) with « < m. Then any two solutions Y3, Y, of MLD (7)
with synchronous coupling satisfy

E[|(Y{ = Yg) = (Y: = Yo)II’) <4ME[|Yy - Yot V¢ >0.
We also need the following bound on MLD. Let 2* = arg min,cy f(z) and y* = Vo(a*) €
R4,
1
Lemma 6 Assume (A1), (A2), and (A3). Along MLD (7), for 0 <t < i
E[|Y; — Yo|*) < v 8)
where = 8(1 + 4a)E[[|Yo|[*] + 8(1 + 4a)[ly*||* + 16[|A(y") Ifis + 579y

Remark 7 In Lemma 4 we show MLD is contracting if o < m. In general, a bound on « (the
Lipschitz constant of the covariance) is necessary for an SDE with multiplicative noise to contract;
see the example of the geometric Brownian motion in Appendix C.
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4.2.2. LocAL ERRORS OF THE MIRROR LANGEVIN ALGORITHM

Let us now consider the algorithm Alg;, to be the Mirror Langevin Algorithm in the dual space (2).
We can show MLA has the following local errors. The proofs are provided in Appendix B.

Lemma 8 Assume (A1), (A2), and (A3). Then MLA (2) has local weak error at least of order
p1 = %, with maximum step size hy = m and constants

* * 1 *
0 =3MVIFa (Il1+ 14 ls + 79
Dy =2M+v1+ 4a.

Lemma9 Assume (Al), (A2), and (A3). Then MLA (2) has local strong error at least of order

_ . . . _ 1
p2 = 1, with maximum step size hy = 2 ia and constants

Co =101+ 40) (111 + 146l + 519061

Dy = 5(1 + 4a).

4.3. Proof of Theorem 1: Convergence Rate of MLA

Proof [Proof of Theorem 1] Assume (A1), (A2), and (A3) with « < m. We have verified that
MLA satisfies the conditions in the mean-square analysis framework: In Lemma 4 we show MLD
is contractive with rate 5 = m — «. We derive the deviation bound in Lemma 5 with Cy = 4M.
In Lemmas 8 and 9 we show MLA has local weak error of order p; = % and local strong error of
order ps = 1, and indeed po < p1 — %

Then by Theorem 3, we can compute the maximum step size:

o = min {1 1(¢B)p£%( 5 >p£—%
e M? + 40’ 437 \ 4y/2Dy " \8V2(D1 + CyDs)

, 1 1 m—« (m — a)?
Y M2 a7 4(m — @) 800(1 + 40)2 2
128 (2M\/(1 + o) + 20M (1 + 8a))

Recall 7 = (V¢)yv is the target distribution of MLD (7). We can compute the constant

U = \J4E[[Yo]3] + 6E5 (Y [l = O(Va).

10
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Note that [ A(y") s = v/ TH(AG)AG)T) = (VI ()] = /I(V20(a)) = O(Vd).
Let us define V := [|y*|| + [ A(y*)|us + ;1l9(y*)|| = O(v/d). Then the resulting constant is

Criva = Z (€1 + CoCa + V2U(Dy + CoDs)) + \/25 (C2+v2D50)

-2 (SM\/(l T da)V + 28M(1 + 4a)V + V2U <2M\/(1 +da) + 20M (1 + 4a)) )

m—«

2
to— (7(1 )V +5v2(1 + 4a)U)
o (W) |

m—«

The conclusion of Theorem 1 follows from Theorem 3. [ |

5. Discussion

In this paper, we prove a convergence guarantee for MLA with vanishing bias under modified self-
concordance. Our result leaves open many questions, including the following. It would be inter-
esting to consider a more sophisticated discretization of MLD such that the mean-square analysis
framework will show improved local errors and smaller bias.

It would be interesting to have a better analysis of MLA under more natural conditions on ¢,
such as self-concordance (rather than modified self-concordance), and under relaxed requirements
on f and ¢ (e.g. that allows us to sample from a uniform or Gaussian distribution on a polytope).
It would be desirable to have a convergence analysis of MLA in the Wasserstein distance generated
by the Hessian metric V2¢ rather than the Euclidean metric, or in other measures such as KL or
x2-divergence.

It would be interesting to understand whether we can discretize the Newton Langevin Dynamics
(which is the case when ¢ = f as described in Appendix A.4 and which is affine-invariant in
continuous time) and obtain a discrete-time algorithm with a convergence guarantee which is also
affine-invariant.

It would also be interesting to understand whether we can derive a more general discrete-time
analysis framework that works under a relaxed condition, e.g. without requiring contraction in con-
tinuous time, but only exponential convergence in function value (which is known for ULA under
the log-Sobolev inequality, see for example Vempala and Wibisono (2019)).
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Appendix A. Riemannian and Mirror Langevin Dynamics in Continuous Time

Consider the problem of sampling from v o< e~/ on X C R% as described in Section 2.

Suppose we endow X with a Riemannian metric g, which we write as a positive definite matrix:
g(z) > 0 for all z € X'. This means at each point z € X we measure local norm using the metric
g(z):

(u,v)z = u' g(z)v
for all u, v in the tangent space. We assume x > g(z) is differentiable. Let M (z) = g(z)~! be the
inverse matrix, and let /M () be a square-root of M (). Let V - M (z) € R? be the divergence of
M, which is a vector-valued function whose entries are the divergences of the columns of M. We
assume g(x) — oo (equivalently, M (x) — 0) as - approaches the boundary of X

A.1. Review for optimization

Recall in optimization, the Riemannian gradient flow (RGF) (or natural gradient flow) for mini-
mizing f using the metric g is the solution X; to the differential equation:

. d .
Xi = %Xt = —g(z) ' V(X0).
Here we use the inverse metric M (x) = g(x) ™! to turn the fo-gradient V f (x) = (agégf) ey agg) )

into a gradient tangent vector grad f(z) = M (x)V f(x) under the Riemannian metric g(x). RGF
has nice properties when the objective function f satisfies some properties. For example, if f is
geodesically strongly convex (which means f is strongly convex along geodesics generated by the
Riemannian metric g), then RGF is exponentially contracting. Moreover, if f is gradient dominated
with respect to g, then the function value f(X;) converges exponentially fast along RGF.

Consider when the metric g(x) is given by the Hessian of a convex Legendre function ¢: g(z) =
V2¢(z) = 0. Then the RGF becomes:

Xy = —V2p(X) L VI(Xy).
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In terms of the dual variable Y; = V¢ (X}), this becomes the mirror flow:
Yi = —V/f(Xy) = =V[(V¢* (V).

Recall by the mirror map V¢, the metric V2¢ on X becomes the Hessian metric V2¢* on ) =
V¢(X) = R The mirror flow is also the Riemannian gradient flow for minimizing the push-
forward function f(y) = f(Vé*(y)) under the Hessian metric V2¢*(y) (because grad f(y) =
V2¢*(y) "'V f(y) = Vf(V¢*(y))). Discretizing the mirror flow gives the mirror descent algo-
rithm in optimization.

A.2. Riemannian Langevin Dynamics

The Riemannian Langevin Dynamics (RLD) for sampling from v o e~/ on X using the metric
g(z) is the solution X to the stochastic differential equation:

dXy = (V- M(X;) — M(Xy) Vf(Xy)) dt + V2/M(X) dW, ©

where M (z) = g(x)~!. Here W; is the standard Brownian motion in R¢. Since M (z) — 0 as
x — OX, the process does not leave X: If Xy € X, then X; € X forall ¢ > 0.

The additional drift term V- M (X}) accounts for the covariance M (X;) in the Brownian motion.
The stationary distribution for RLD is v(z) o< e~/ (=) (the density is with respect to the Lebesgue
measure dz on RY). This can be seen, for example, from the following Fokker-Planck equation. If
X € X follows RLD (9), then its density p;: X — R evolves following the partial differential
equation (PDE):

Ipt

Tl V. (,otMV log %) . 10)

Clearly if p; = v then the dynamics is stationary. Furthermore, the PDE above can be interpreted
as the gradient flow for minimizing relative entropy with respect to the Wasserstein metric on the
metric space (X, g).

From the Fokker-Planck equation (10), we can derive how fast the dynamics RLD approaches
the target distribution v in various measures.

For example, recall the x2-divergence of a probability distribution p with respect to v is

2 2
2 p p(x) p(x)
:VV(>:/ @) d:/ ot
Xy (p) = Var, ( . v(z) () =
Then a standard calculation reveals that the y2-divergence is decreasing along RLD (10):
d o

%XV(pt) = _QGV(:Ot)

oa0-8 [ (] - o (5 (85 0 (2)

Therefore, if v satisfies a Poincaré inequality with respect to g, which means for any differentiable
function A: X — R we have

where

Var, (h) < Cp E,[|Vh|3,],
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2t
then we can conclude RLD converges exponentially fast in y2-divergence: x2(p;) < e P x2(po).
Similarly, recall the relative entropy (or KL divergence) of p with respect to v is

Ho(p) =, [L10g2] = [ plo)1og ”Eg dr.

Then along RLD (10), KL divergence is decreasing:

d

%HV(Pt) = —Ju(pt)

where J,,(p) is the relative Fisher information of p with respect to v under the metric g:

o112
= [o?]
Therefore, if v satisfies a log-Sobolev inequality with respect to g, which means for any p we have
Hy(p) < Crst Ju(p),
then we can conclude RLD converges exponentially fast in KL divergence: H, (p;) < e_ﬁ H,(po).

A.3. Mirror Langevin Dynamics

Suppose now the metric g(x) is given by the Hessian of a convex Legendre function ¢: g(x) =
V2¢(x) = 0. The Riemannian Langevin dynamics (9) becomes the following SDE, which is also
studied by Zhang et al. (2020) and Chewi et al. (2020):

dX; = (V- (V2o(Xy) ™) — V2o(Xy) L V(X)) dt + /2V20(Xy)"LdW;. (1)

If v satisfies log-Sobolev or Poincaré inequality (which is called mirror Poincaré inequality in Chewi
etal. (2020)), then we can conclude exponential convergence rate in KL or x? divergence along (11).

The SDE (11) requires V - (V2¢(x) 1), which may be complicated. Consider the dual variable
Y; = Vé(Xy). By 1td’s lemma, Y; evolves following the Mirror Langevin Dynamics:

dYy = =V (V' (V1)) dt + /2V2¢* (V) ~1 dWs.

For an explicit calculation, see for example (Jiang, 2021, Appendix A). In particular, the drift term
simplifies and there is no third derivative involved. The mirror Langevin dynamics is also the
Riemannian Langevin dynamics (9) for sampling from the pushforward distribution 7 = (V¢)4v
using the Hessian metric V2¢*. Furthermore, the y2-divergence and KL divergence are invariant
under the mirror map. Therefore, v satisfies LSI or Poincaré inequality with respect to V2¢ if and
only if 7 also satisfies LSI or Poincaré inequality with respect to V2¢*. Therefore, we get the same
convergence guarantee in both primal and dual spaces.
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A.4. Newton Langevin Dynamics

A particularly nice choice of ¢ is when ¢ = f. This gives the Newton Langevin Dynamics, which
in the primal space takes the form:

dX; = (V- (V2F(Xe)™h) = V(X)) T V(X)) dt + V2 V2 (X)) LWy (12)

A remarkable property of NLD, as pointed out by Chewi et al. (2020), is that the Poincaré inequality
of v oc e~ with respect to its Hessian metric V2 f is always true with a uniform constant Cp = 1
for any strictly log-concave distribution v, by the virtue of the Brascamp-Lieb inequality (Brascamp
and Lieb, 1976). This gives a uniform exponential convergence rate along NLD in y2-divergence
as well as the Wasserstein distance with respect to the metric V2 f; see detailed exposition and
additional consequences in Chewi et al. (2020).

In the dual space, Newton Langevin Dynamics has a simple drift:

dY; = =Y dt + /2V2f*(Yy)~ L dW, (13)

since Vf(Vf*(y)) = y. The target distribution of NLD in the dual space is the pushforward
distribution 7 = (V f) v where v e~/. The SDE (13) for sampling from i was also pointed out
by Fathi (2019) from the study of Stein’s kernel.

Appendix B. Proofs of Lemmas

B.1. Proof of Lemma 4: Contraction of MLD

Proof [Proof of Lemma 4] Assume (A1) and (A2). We will show MLD (7) is contractive if v < 3.
Suppose we have two solutions Y/, Y; of MLD (7) with the same Brownian motion:

aY/ = —g(¥{)dt + VZA(Y!)dW,
dY; = —g(Yi)dt + V2A(Y;)dW;.
Then the difference satisfies the SDE
d(Y! = Yy) = —(9(¥}) — g(Yo))dt + V2(A(YY) — A(Y:))dW,. (14)
Recall in general that if V; € R¢ follows a general SDE dV; = b(V;)dt + G(V;)dWy, then

%E[HV}HQ] =ER2(b(V3), Vi) + | G(Va)llfis]-

Then for the SDE (14) of the difference V; = Y/ — Y, and by applying assumptions (A1) and (A3),
we have

%E[IIYZ = Y| = —2E[{g(Y}) — 9(¥2), Y — Y3)] + 2E[|| A(Y{) — A(Y)lfis]
< —2mE[[|Y/ - Y|[3] + 20E[||Y, - Y3 3]
= —2(m — Q)E[||Y{ — Y [3].
We see that we have an exponential contraction if a < m:
E[Y — Yi][2] < exp (=2(m — a)t) E[|Y; — Yol)] V¢ > 0. (15)

This shows that MLD (7) is contractive with rate 5 = m — «. |
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B.2. Proof of Lemma 5: Deviation bound of MLD

Proof [Proof of Lemma 5] Assume (A1), (A2), and (A3) with o < m.
Suppose we have two solutions Y}, ¥; of MLD (7) with the same Brownian motion:

Ay} = —g(Y})dt + V2A(Y))dw,
dY; = —g(Yy)dt + V2A(Y;)dW,.

Consider the shifted variables f’t’ =Y/ - Y and Y; = Y; — Y, which satisfy:

dY} = —g(Y} + Y)dt + V2A(Y] + Y3)dW,
dY; = —g(Y; + Yo)dt + V2A(Y; + Yo)dW,.

Then the difference Y/ — Y; = (Y — YJ) — (Y; — Y}) satisfies:
d(Y/ = Vi) = —(9(Y} + Yg) — g(Yi + Yo))dt + V2(A(Y] +Yg) — A(Y; + Yp))dW,.

By Lemma 4, we have the contraction result (15), which implies E[|| Y, —Y;||3] < E[|| Yy —Yo)/3]
for all ¢ > 0. Then by applying (A1) and (A2) and using a« < m < M, we get

SR - ¥8) — (%~ Y3
= CE[I¥/ - Vil}

= —2E[(g(V{ +Y}) — m +YO> Y — Yl + 2E[| A(Y +Y]) — A(Y; + Yo)|3g]
= —2E[(g(Y{) - g(Y2), Y] — Y; — (Y§ — Yo))] + 2E[| A(Y}) — A(Y2)|IAs]

< 2E[(g(Y{) — g<Yt>,Yo - Yo>] + 2aE[[|Y — Yi[3]

< 2E[|lg(Yy) — 9(V2)|31/2E[||Yg — Yol3]2 + 20E[| Yy — Yo|3

< 2ME[|[Y! — YiI3]2E[||Yy — Yoll3)2 + 20E[]|Y; — Yol3]

< (2M +20) E[| Y — Yo|l3]

< AME[||Yy — Yoll3].

Integrating, we conclude that for all £ > 0,

E[I(Y, = Yy) — (Ve — Yo)|13] < AM E[||Yy — Yoll3] ¢.

B.3. Proof of Lemma 6: Growth bound of MLD

Proof [Proof of Lemma 6] Assume (A1~), (A2), and (A3). Consider the solution Y; of MLD (7)
starting from Yy. The centered variable Y; = Y; — Yj follows the SDE

dY; = —g(Y, + Yp)dt + V2A(Y; + Yo )dW,.
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Then

SEIY: - Yoll3l = SEITiIE] = ~2E[(g(¥: + Vo), T] + 2E[ACT; + o) i

— —2E[(g(¥3), Vi — Vo)) + 2E[| A(VD)IfAs]
=71 =11

Let us bound the two terms above. Let * = arg min,cx f(z) and y* = Vo (z*).
First term: By (A2) and (A3),

—2E[(g(Y2),Y: — Yo)]
= —QEK () — g(Yb) Y; — Yo)] = 2E[(g(Y0), Y; — Y0)]

< ~2E[(g(¥0), ¥i - Yo)]
< B[l 1%~ ¥ol
< raEllg¥o) ] + ME[Y; ~ Yol

* 2 *
< 2E[||Yo — y"|[*) + ME[||Y: — Yol*] + 5z llo ().

In the laSQt step we have used [g(v)[13 < 2[lg(y) — g(y*)|I*> + 2|lg(y*)||* < 2M?|ly — y*||> +
2/[g(y*)|I>.

Second term: By triangle inequality and (A1),
IAY) s < 201A(Y:) — A(Yo)llfis + 2/ A(Yo) s

< 2[|A(Y,) — A(Yo)lIEs + 4 A(Yo) — Aly")IIs + 4l Ay s
< 2a|Y; — Yo[3 + 4o Yo — v 1> + 4 A(y*) [ s

Therefore,

IT = 2E[[| A(Yy)|fs]
< 4aE[||Y; — Yo|[3] + 8aE[||Yo — y*[1%] + 8] A(y") I fis-
Combining the two terms above, we get that along MLD (7):

d
—E[||Y; — Yol3] < (M? + 4a)E[||Y; — Yol3] + D (16)

where
* * 2 *
D = (2 +8a)E[||Yo — y*[I°] + 8] A(y*) lIfis + 2219 )|I?
* * 2 *
< A(1+ 40)E[||Yo[]*] + 4(1 + 40) ly* 1> + 8l A(y*) s + a2 19 )17

Recall in general if V; > 0 satisfies dtVt < CV; + D for some C, D > 0, then V; < etV +
C( e“t — 1). Furthermore, if Vj = 0and 0 < t < 1 o> then V; < gQC’t = 2Dt. Applying this to

Vi = E[||Y; — Yp]|?] which satisfies (16) and Vi = 0, we conclude that if 0 < ¢ < m, then
E[||Y; — Yoll3] < vt
where ¥ = 2D < 8(1 + 4a)E[||Yo|1*] + 8(1 + o) y* |1 + 16]| A(y") Ifys + 57z llo(y*)II*. =
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B.4. Proof of Lemma 8: Local weak error of MLA

Proof [Proof of Lemma 8] Assume (A1), (A2), and (A3). Starting from Yy € R?, let Y; be the
solution to the MLD (7), and let Y be the solution to the modified SDE with constant drift, driven
by the same Brownian motion:

dY; = —g(Ya)dt + V2A(Y;)dW;
dY; = —g(Yo)dt + V2A(Yy)dW;.

The value Y; at time ¢ = h is the output Y7 of MLA (2) from Y;. We wish to bound ||E[Y;, — Y}]]|.
Since Y%, Y/ are coupled using the same Brownian motion, the difference Y; — Y satisfies

d(Y; = Y/) = —(9(Y2) — 9(Y0))dt + V2(A(V) — A(Y0))dW,.

Integrating, and since Yy = Y, this means

h h
Vi~ ¥i == [ (00) — a0t + V2 [ (YD) = AG) W

Taking expectation gives
h
BIY; - ¥j] = - [ Blg(¥) - g(¥)ld. (7)
0

By (A2) and Lemma 6, for 0 < ¢t < m we have

Efllg(¥1) — 9(Yo)ll] < ME[[[Y; - Yo|l] < MV/E[|[Y: — Yo[?] < M/AL.

Therefore, by triangle inequality on (17), for 0 < h < we have

s
h
IEY;, — Vi)l < /O E[llg(¥;) — g(¥o)|ldt

gMﬁ/oh\/Edt

2
= gM\f’Yh%

1
2

2 * * 4 * 3
— 51 (801+ 4BIIGIP] + 801+ 4a)lly” P+ 16140 s + 37alotu)I?) 0

Njw

IN

3 (VAT 30) VEITVGT] + VBT 4y’ + 4Gl + o7llatr)] ) &

= (1 + Dy VBTV ) A2
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This shows the local weak error order is at least p; = % with maximum step size h; = d

constants

_ 1
MZ48a 4l

01 = 3¢ (VBT Tl + 4146 s + 5 latw") )
< any/TFaa) (I0°1+ 146 s + 3 1ot

2

< 2M+V/1 + 4a.

B.5. Proof of Lemma 9: Local strong error of MLA

Proof [Proof of Lemma 9]
Assume (A1), (A2), and (A3). As in the proof of Lemma 8, consider two dynamics Y}, Y;
starting from Y] = Y}, following the SDEs coupled with the same Brownian motion:

dY; = —g(Yy)dt + V2A(Y;)dW;
Ay} = —g(Yo)dt + V2A(Yy)dW;.
We wish to bound E[||Y;, — Y/||?]. The difference Y; — Y/ satisfies
d(Y, = Y/) = =(9(%1) — g(Y0))dt + V2(A(Y1) = A(Yo))dW;.

By (A1), (A2), and Lemma 6, for 0 < ¢t < m we have

d
Bl — Y/ |3 = —2E[{g(Yy) — g(Y0), Y — V)] + 2E[|| A(Y;) — A(Y0)|Ifrs]
1 1
< 2E[|lg(Y2) — g(Yo)I*]2 E[||Y: — Y{|I*)2 + 20E[||Y; — Yo|*]
211 214 2
< 2ME[|Y; — Yol*]2 E[[|Y; — Y/ [I*]2 + 2aE[[|Y; — Yol
< MPE[||Y: — Y/[I”] + (1 + 20)E[||Y; — Yo|*)
< M2E[|Y; - ¥/ %] + (1 + 20)t.

+ o+

Equivalently, %(e_MQtE[HYt —Y/|I3]) < e M1 + 20)t < (1 + 2a)7t, s0

2, (1 + 2«
By - ¥13) < 02

. 2
Furthermore, since ¢ < < # we have et < e < 3, 50

1
M?2+4a
3
E[|¥; - ¥/ < 21+ 20)72
* * 4 *
= 3(1+ 20) (01 + 4EIIYoI?] + 801+ 40)ly” I+ 161407 s + 573 lots)1?)
— (G} + DE[ ) .
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This shows the local strong error order is at least po = 1 with maximum step size hy = m and
constants

=

Co = (24004 20) 1+ 40) P+ 4501+ 20) A s + 2272

. . WIF2ae,
< 5L+ o)yl + VI + 20l A(y") s + —— 9y

121+ 20) Hg(y*)H2> 2

< 701+ 40) ('] 414G ) s + 310001 )

Dy = /24(1 + 2a)(1 + 4a)
< 5(1 + 4a).

Appendix C. An Analogy: Geometric Brownian Motion

We wondered if our requirement on the modified self-concordance parameter « being upper-bounded
is an artifact of our proof technique. Thus we did some simple calculations on Geometric Brownian
Motion (GBM) which is an SDE with multiplicative noise and yet admitting close-form solution. It
is not an exact example of MLD but only an analogy; nevertheless, GBM does need o to be bounded
in order to converge.

More precisely, consider GBM on R = (0, c0) which follows the stochastic differential equa-
tion:

dY; = =Y dt + V2a Y; dW, (18)
where dW; is the standard Brownian motion on R. This has exact solution
Y: = Ypexp (—(1 + a)t + V2« Wt> .

By a standard calculation, we see there is a threshold v < 1 for the convergence of Y; ast — oo.
Recall since W; ~ N (0,t), Elexp(cW;)] = €°¥/2 for all o > 0. Then

E[Y?] = B[V e 204 Bloxp(2v/2alVy)] = BIYF] e 2070

Therefore,
0 fa<l1
. 2 _ 2 . _
tlggoE[Y;]— EYy] ifa=1
00 ifa > 1.

Now consider a synchronous coupling Y3, Y, following GBM (18) with the same Brownian
motion:

Y, = Yoexp (—(1 + o)t +v2a Wt>

Y; = Yyexp (—(1 + a)t + V2a Wt> .
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Then
E[(Y; — }7%)2] =E[(Yo — }70)2] e—2(1+a)t E[exp(Q\/ﬁWt)] =E[(Y — }70)2] o 2(1-a)t

Thus, we see that GBM is a contraction if and only if o < 1. In particular, we also have

0 fa<l1
Jlim E[(Y; - ¥))’] = {E[(Yo - Yp)?] ifa=1
00 ifa>1.

GBM (18) is an instance of MLD (7) (and in fact NLD (12)) with ¢ = f where

v
(¢*)"(y)

which is y/a-Lipschitz, so it satisfies modified self-concordance (A1) with parameter «. Since
¢ = f, it satisfes relative smoothness (A2) and relative strong convexity (A3) with M = m = 1.
Note our assumption in Theorem 1 is « < m = 1, which c is tight for GBM to contract, as well as
to determine if there is a ¢ — oo limit.

=Vay 19)

Appendix D. Example: Log-Barrier on a Polytope
Let X be the polytope (not necessarily bounded)

X={zecRbajz>b Vi=1,...,m}

for some ai,...,a, € R< and bi,...,by € R. Consider the log-barrier function defined in the
interior of X:

¢(x) = =) log(a)w —by).
i=1

Recall that ¢ satisfies the classical self-concordance condition with a constant parameter 2. Let « be
the modified self-concordance parameter of ¢. For some polytopes, such as the positive orthant,
is also a constant (because the Hessian is diagonal and the dimensions are independent). For general
polytopes, however, « can be arbitrarily large. Here we show « can be as large as the square inverse
of the smallest singular value of the constraint matrix; we also construct an explicit example in two
dimension.

Without loss of generality we may assume ||a;|| = 1fori =1,...,m. Let A = (a1, -+ ,am) €
R¥*™ be the constraint matrix, so the polytope is described by ATz > b. Let the singular values
of Abe oy > --- > g4 > 0 (assuming d < m). Then Y% 02 = Tr(AAT) = Tr(ATA) =
> llail|> = m; but 04 = min; o; can be small or 0. For z € X, let S, € R™ ™ be the diagonal
matrix with entries a; z — b;.

The gradient of ¢ is
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Then for z, 2’ € X, we have

Vo(a') = Vo(z)

I

I
—

1 1
— a:
alz—b; ala —b ’

i (@

a; (' —x)
(aj x —b;)(a] 2" — b;)

a;

|

=1

azaT

(af x —b;)(a] 2’ — b;)

/

I
Ms

(2" — )

=1

:Ales';/lAT(x — ).
Therefore,
IVo(2") = Vo(a)|* = | AS; 1S AT (@ — o)
= (2 —x)TAS 'S, ATAS TS T AT (o) — )
=v(z,2)TAT Av(z, )
where

v(z,2') = S; 'S AT (2 — x) € R™.

The Hessian is

As a square-root, we can choose:
aq (0799
/\72 — -1 _ [ - ...
Vig(z) = AS;" = (alTw — b alhx — bm)

since indeed \/V2¢(x)\/V2¢(x) = AS;1S;TAT = V2p(2).
For x, 2" € X, we have that

VV2(2') =/ V() = A(Sw — Si)

. ( arai (z' — ) ama, (z' — )
= @7 @zt e = bm)age — bw)
Therefore,

m 2

IV V2e(a") — VV2o() s = Z

araf (z' — )

(af 2’ —b1)(a] z — by)
T, T

L
Z a1a1 a1a1 (1’/ _ x)

(af 2’ —b1)2(a] z — by)?

/ - ala—r /
=@ -2 (Z T —baTe = b1)2> & =)

i=1
= (z' - x)TASQQSQQAT(J:’ — )
= [z, ).
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Modified self-concordance. The modified self-concordance parameter is

_ IV () — /V20() s

T IVe(@) - Vo)l

@)l

carex (@, ') TAT Av(z, o)
< qup P

veRd U AT Av

1

T tdo?
1
-

This shows the modified self-concordance parameter can be as large as % by choosing appropriate
d

x,2’. For some polyhedra o4 ~ 0,s0 a ~ 1/ 0(21 can be arbitrarily large.

Example in two dimension. Let d = 2, and consider

o) ()

€

for some small € > 0, and by = by = 0. This defines the intersection of two halfspaces:
X ={z = (z1,22): 1 >0, \/Qxl + exg > 0}.

V1 2 N
é 16 E).WehaveA—rA:<\/11_762 11 €>whichhas
eigenvalues 07 = 1+v/1 — e2and 03 = 1—+/1 — €2. Note that if ¢ is small, 07 ~ 2 and 05 ~ €2 /2.

The constraint matrix is 4 = <

—1

()

for some constant a,b € R. For simplicity let s = v/1 — €2. We require 2’ € X, so a > 0 and

b > —2a. We have
Alg = 1 ATy = @
s)’ sa + eb
T /_ _ a — 1
A (@ —2) = (5(a—1)+6b>'

10 a 0
Sw:(O s)’ Sx:(O sa—i-eb)'

24

The corresponding eigenvectors are v| = <1> and vy = < 1 >

Let us choose

and

‘We also have
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Then

v(z,2') = S;lS;,lAT(x' — )

(5 ) ("0 0)
0 m s(a—1)+eb
a—=1
= (s(a—%)—i—gb)
s(sa+eb)

. . 1
We want this to be proportional to vy, = <_ 1) , SO we want

a—1  sla—1)+e
a s(sa+eb) 0 (20)

We can solve for b in terms of a:

ala—1)s(s+1)

b= @ Dsta)

We can see that for all a > 0, this choice of b satisfies the constraint b > —fa, sox’ € X.
Explicitly, we can choose

a=2
C2s(s+1)
e(s+2)

which satisfies the condition b > — 2?5 We can verify directly that the condition (20) holds:

2s(s+1) 52
a—1 s(a—1)+e 1 5~ 12 1 —%73 1 1
a s(sa + €b) :§+w:§+m:§_§:0,
s(2s — =) ) G2

Then with this choice

= (5) = (akan)
= 5 = 2s(s+1

0 T e(s+2)
1

we have that v(z,2’) = 5vs, i.e. proportional to the eigenvector of AT A with small eigenvalue
03. Then AT Av(x,2") = o3v(x,2'), and this gives the bound for the modified self-concordance
parameter:

v, 2")||? I (CIC2E 201 R T 1
T o(z, ) TAT Av(z,2') — o3|lv(z,2)||2 o5 1—+/1— e
Thus, by setting e — 0 we can make « arbitrarily large. However, note that the case ¢ = 0 is nice

and we have o = 1, because the domain is a half-space and the problem reduces to one dimension.
This example shows the definition of modified self-concordance is not stable.

2
€2’
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