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Abstract
Few-shot classification (FSC) requires training
models using a few (typically one to five) data
points per class. Meta-learning has proven to
be able to learn a parametrized model for FSC
by training on various other classification tasks.
In this work, we propose PLATINUM (semi-
suPervised modeL Agnostic meTa learnIng
usiNg sUbmodular Mutual information ), a novel
semi-supervised model agnostic meta learning
framework that uses the submodular mutual in-
formation (SMI) functions to boost the perfor-
mance of FSC. PLATINUM leverages unlabeled
data in the inner and outer loop using SMI func-
tions during meta-training and obtains richer meta-
learned parameterizations. We study the per-
formance of PLATINUM in two scenarios - 1)
where the unlabeled data points belong to the
same set of classes as the labeled set of a cer-
tain episode, and 2) where there exist out-of-
distribution classes that do not belong to the la-
beled set. We evaluate our method on various
settings on the miniImageNet, tieredImageNet
and CIFAR-FS datasets. Our experiments show
that PLATINUM outperforms MAML and semi-
supervised approaches like pseduo-labeling for
semi-supervised FSC, especially for small ratio
of labeled to unlabeled samples.

1. Introduction
Deep neural networks (DNNs) have proven to be success-
ful in a variety of domains. However, they require large
amounts of data, which might not be available for all desired
tasks. In such low data regimes, they struggle to perform
well. A well known approach to mitigate this problem is
meta-learning, which aims to learn from multiple smaller
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Figure 1: Semi-supervised few-shot learning setup. During meta-
training, the goal is to iterate overs tasks T1 · · · TN and meta-learn
a parametrization using the support set S, query set Q, and the
unlabeled set U . During meta-testing, the learned parametrization
is used as an initialization and a model is trained using the S and
U to perform well on Q. In any task, U may contain data points
that are out-of-distribution, i.e.not pertinent to the classes of data
points in S.

tasks that are related to the target task. The most promis-
ing meta-learning techniques that improve the performance
of DNNs are gradient based meta-learning methods (Finn
et al., 2017; Rusu et al., 2018; Sun et al., 2019). Typi-
cally, these methods are designed to operate for few-shot
learning. A natural way to improve the performance of meta-
learning techniques is by using additional unlabeled data.
Semi-supervised techniques are known to use unlabeled data
to improve the performance on tasks with relatively small
number of labeled data (Oliver et al., 2018; Chapelle et al.,
2009).

In this paper, we focus on few-shot classification using
Model Agnostic Meta-Learning (MAML) and improve it via
semi-supervised learning (see Fig. 1). In many realistic clas-
sification tasks, although the labeled data is scarce, there is
plenty of unlabeled data available for training a classifier. To-
wards this goal, we propose PLATINUM, a novel framework
that embeds semi-supervision in the MAML framework by
using submodular mutual information (SMI) (Iyer et al.,
2021) functions as per-class acquisition functions. We ob-
serve that embedding semi-supervision in the MAML frame-
work is non-trivial, since simply using a pseudo-labeling ap-
proach in the inner loop does not improve the performance.
This lack of improvement occurs due to either noisy pseudo-
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labels or class imbalance caused due to pseudo-labels being
confident only for certain classes. To overcome these issues,
PLATINUM uses a class-wise unique instantiations of SMI
functions to provide per-class semi-supervision. Further-
more, these per-class acquired subsets are diverse, leading
to a richer meta-learned parameterization (see Fig. 2).

1.1. Related Work

Few Shot Learning. There has been an extensive amount
of work in few-shot learning, which has mainly revolved
around supervised learning. Although our framework is
embedding semi-supervision into MAML which belongs
to the gradient descent family of methods, the few-shot
learning literature can be broadly divided into the following
categories: 1) Metric learning methods (Vinyals et al.,
2016; Snell et al., 2017; Sun et al., 2019) which deal with
learning a similarity space where the task can be efficiently
done with a few labeled data points. 2) Memory networks
(Munkhdalai & Yu, 2017; Santoro et al., 2016; Oreshkin
et al., 2018; Mishra et al., 2017), which focus on learning
to store “experience” from previously observed tasks in
the interest of generalizing to newer tasks. 3) Gradient
based meta-learning methods (Finn et al., 2017; 2018;
Antoniou et al., 2018; Ravi & Larochelle, 2017; Grant
et al., 2018; Zhang et al., 2018; Sun et al., 2019) which
aim to meta-learn a model in the outer loop that is used as
a starting point in the inner loop for a new few-shot task.
The PLATINUM framework embeds semi-supervision for
gradient descent based methods that use an outer-inner
bi-level optimization.

Semi-supervised learning (SSL). The goal of SSL meth-
ods is to leverage unlabeled data alongside the labeled data
to obtain a better representation of the dataset than super-
vised learning (Oliver et al., 2018). The most basic SSL
method, Pseudo-labeling (Lee et al., 2013) uses model pre-
dictions as target labels as a regularizer, and a standard
supervised loss function for the unlabeled dataset. Some
SSL methods like Π-Model (Laine & Aila, 2016; Sajjadi
et al., 2016) and Mean Teacher (Tarvainen & Valpola, 2017)
use consistency regularization, by using data augmentation
and dropout techniques. Mean Teacher obtains a more sta-
ble target output by using an exponential moving average
of parameters across previous epochs. Virtual Adversar-
ial Training (VAT) (Miyato et al., 2018) uses an effective
regularization technique that uses slight perturbations such
that the prediction of the unlabeled samples is affected the
most. More recent techniques like FixMatch (Sohn et al.,
2020), MixMatch (Berthelot et al., 2019) and UDA (Xie
et al., 2019) use data augmentations like flip, rotation, and
crops to predict pseudo-labels. In this paper, we propose
a new SSL technique that uses class-wise instantiations of
SMI functions that mitigates the issue of class-imbalance in

selected subsets and is comparatively robust to OOD classes
in the unlabeled set.

Semi-supervised few-shot learning. There are two cate-
gories for semi-supervised few-shot learning: meta-learning
based and transfer learning based. For meta-learning based
approaches, (Ren et al., 2018) propose new extensions of
Prototypical networks (Snell et al., 2017) by viewing each
prototype as a cluster center and tuning the cluster locations
using soft K-means such that the data points in support and
unlabeled sets fit better. More recently, (Li et al., 2019) pro-
poses learning to self-train (LST) which aims to meta-learn
how to cherry-pick and label data points from the unlabeled
set and optimizes weights of these pseudo-labels. However,
their method uses meta-transfer learning (MTL) (Sun et al.,
2019) which requires a pre-trained model. Furthermore,
MTL requires the classes across all training tasks to be
known beforehand for scaling and shifting the parameters
of the pre-trained network. Unfortunately, such meta-data
about the dataset may not be available in most realistic
scenarios. On the other hand, our PLATINUM framework
does not require a pre-trained network or any meta-data
for embedding semi-supervision in gradient descent based
methods. For transfer learning based approaches (Yu et al.,
2020; Wang et al., 2020; Huang et al., 2021), they assume all
examples of all training classes are labeled so that a feature
extractor could be pretrained based on them. In contrast, we
assume there are few examples per class are labeled during
both meta-training and meta-test, which is different from
transfer learning based approaches. In addition, transfer
learning based approaches do not leverage episodes training
strategy, which is different from ours.

Data subset selection (DSS). DSS using submodular func-
tions has been studied in the context of various applications
like video summarization (Kaushal et al., 2020; 2019b),
image-collection summarization (Tschiatschek et al., 2014;
Kothawade et al., 2020), efficient learning (Kaushal et al.,
2019a; Killamsetty et al., 2021b;a; Liu et al., 2017), tar-
geted learning (Kothawade et al., 2021c;b), etc. Recently,
(Kothawade et al., 2021c) used the SMI functions for im-
proving the performance of rare classes in the context of
image classification, and (Kothawade et al., 2021b) used
them for mining rare objects and slices for improving object
detectors. (Kothawade et al., 2021a) used the submodular
information measures as acquisition functions for active
learning in scenarios with class imbalance, redundancy and
OOD data. (Killamsetty et al., 2021b;a) studied the role
of submodular functions and coresets for compute-efficient
training of deep models.

1.2. Our Contributions

The following are our main contributions: 1) Given the
limitations of existing approaches, we propose PLATINUM
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(see Sec. 3) that uses per-class semi-supervision using SMI
functions, thereby preventing class-imbalance in the se-
lected subset for semi-supervision. 2) Our framework learns
richer parameterizations by embedding semi-supervision
in the inner and outer loop of MAML. 3) We conduct
extensive experiments on miniImageNet (Vinyals et al.,
2016), tieredImageNet (Ren et al., 2018), and CIFAR-FS
(Bertinetto et al., 2018) datasets where the unlabeled set has
in-distribution and out-of-distribution (OOD) classes. 4) We
conduct various ablation experiments where we study the
effect of varying the: i) ratio of labeled and unlabeled data
points, ii) number of OOD classes, and iii) inner and outer
loop selection for semi-supervision.

2. Preliminaries
2.1. Model Agnostic Meta Learning (MAML)

MAML (Finn et al., 2017) is a representative of gradient-
based meta-learning approach, its goal is to obtain optimal
initial model parameters for unseen tasks. Suppose there are
a set of meta-training tasks sampled from a task distribution
p(T ). Each task Ti is split into support (training) set and
query (validation) set {Si,Qi}. As a bi-level optimization
problem, in the inner loop, MAML adapts the task-specific
model parameters φi from initialization parameters θ for
task Ti based on its support set: φi = argminθ [L(θ;Si)]
(L is the loss of model parameterized by θ on data Si). The
loss of adapted model φi on the corresponding query set
L(φi;Qi) is used to evaluate the performance. In the outer
loop, the averaged query set loss is minimized to obtain the
optimal initial parameters. Therefore, the objective function
could be formulated as follows:

θ∗ = argmin
θ∈Θ

ETi∼p(T ) [L(Alg(θ;Si);Qi)] (1)

where Alg(θ;Si) corresponds to single or multiple gradi-
ent descent steps in the inner-level task-specific adaptation.
In case of single-step gradient update, Alg(θ;Si) can be
specified as following:

φi = Alg(θ;Si) ≈ θ − α∇θL(θ;Si) (2)

where α is a learning rate. The learned meta-parameters θ∗

from outer-level will be leveraged as model initialization for
the unseen tasks during meta-test stage. A table of notations
with corresponding explanations is given in Appendix A.

2.2. Submodular Mutual Information

Submodular functions. Submodular functions (Tohidi
et al., 2020; Bach, 2011; 2019) have been widely used for
data subset selection as they naturally model properties
like coverage, representation, diversity, etc.. Given a
ground-set of n data points V = {1, 2, 3, · · · , n}, and

a set function f : 2V −→ R. The set function f is
known to be submodular (Fujishige, 2005) if for x ∈ V ,
f(A ∪ x)− f(A) ≥ f(B ∪ x)− f(B), ∀A ⊆ B ⊆ V and
x /∈ B. We use two well known submodular functions
in this work, facility location (FL) and graph-cut (GC)
(see Tab. 1(a)) that can be instantiated using a similarity
kernel containing pairwise similarities between all data
points. In general, submodular functions admit a 1 − 1

e
constant factor approximation (Nemhauser et al., 1978) for
cardinality constraint maximization. Furthermore, they can
be optimized in near-linear time using greedy algorithms
(Mirzasoleiman et al., 2015).

Submodular Mutual Information (SMI). In this work, we
use the SMI instantiations of the above submodular func-
tions to provide semi-supervision. Particularly, we use FLMI
and GCMI where the underlying submodular function is FL
and GC respectively (see Tab. 1(b)). The SMI functions
can be used to select data points that are semantically sim-
ilar to the data points in a given query set (Kothawade
et al., 2021a;c;b). To obtain pseudo-labels, we use ex-
emplars from a particular class in the query set used to
instantiate an SMI function. The subset obtained by op-
timizing this SMI function is then assigned labels of the
class of the data points used in the query set. Formally,
the submodular mutual information (SMI) is defined as
If (A;R) = f(A)+f(R)−f(A∪R), whereR is a query
set. Note that (Iyer et al., 2021; Kothawade et al., 2021c)
propose a few other SMI functions. However, we use only
the FLMI and GCMI variants in the interest of scalability
(see Sec. 3.2).

Table 1: Instantiations of different submodular functions.

(a) Instantiations of sub-
modular functions.

SF f(A)
FL

∑
i∈U

max
j∈A

Sij

GC
∑

i∈A,j∈U
Sij−∑

i,j∈A
Sij

(b) Instantiations of SMI
functions.

SMI If (A;R)
FLMI

∑
i∈R

max
j∈A

Sij+
∑
i∈A

max
j∈R

Sij

GCMI 2
∑
i∈A

∑
j∈R

Sij

3. PLATINUM: Our Semi-Supervised
Meta-Learning Framework

In this section, we define the semi-supervised few-shot clas-
sification setting considered in this work (see Fig. 1). We
start with N meta-training tasks T1 · · · TN . For each task Ti,
we have, {(Si,Qi,Ui)}Ni=1, where S is the labeled support
set, Q is the query set with unseen data points for test, and
U is the unlabeled set. In our experiments (Sec. 4), similar
to (Ren et al., 2018), we consider both settings, where U
does or does not consist of OOD classes.
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Figure 2: Overview of our PLATINUM framework that solves a semi-supervised few-shot learning problem. For a specific task Ti, in
each inner loop and outer loop gradient update step, we select a subset from the unlabeled set by maximizing the per-class SMI function
(see Algorithm 1). In each inner loop step, the selected subset Asi and support set Si will be used to update model parameters φi using
Equ. (4). In the outer-loop of the meta-training stage, another subset Aqi will be selected after inner loop selection according to the
updated model parameters φi. Meta-parameters θ would be updated based on Aqi and the query setQi using Equ. (3). It should be noted
that, as temperature annealing coefficients, τin is a function of inner step tin, and τout is a function of the global iteration index.

The goal of our method is to obtain the optimal initial pa-
rameters that result into faster adaptation of the classifier
to a new task. To do so, we minimize the following meta-
training objective:

θ∗ = argmin
θ∈Θ

ETi∼p(T )J (θ)

where J (θ) = L(Alg(θ;Si ∪ Asi );Qi ∪ A
q
i )

(3)

Here, Asi ⊆ Ui and Aqi ⊆ Ui are selected subsets with
hypothesized labels in the inner loop and outer loop, respec-
tively (see Sec. 3.1). Alg(θ;Si ∪ Asi ) corresponds to single
or multiple updates on support set Si, and hypothesized
labeled subset Asi for task Ti in the inner loop. We consider
multiple steps in the inner loop in practice.

φi = Alg(θ;Si ∪ Asi )
= argminθ L (θ;Si ∪ Asi )
= φi −∇φL (θ;Si ∪ Asi )

(4)

In addition to the inner loop selection, PLATINUM embeds
semi-supervision for the outer-loop selection. We do so
since the outer-level also corresponds to the meta-training
objective of generalizing well, especially when data is scarce
to update meta-parameters. The model parameters updated
from inner loop φi would be used to do outer loop selection.

We perform the outer-loop update as follows:

J (θ) = L(φi; (Qi ∪ Aqi )) (5)

For meta-testing, we sample a new unseen task T new. The
unseen task for meta-testing is made of disjoint set of
data points and classes from the tasks seen during meta-
training. Next, we use the parameters from obtained from
the meta-training stage and initialize a model and train it
on {Snew,Unew}. Finally, we evaluate the model onQnew,
and report the average accuracy across all unseen tasks.

3.1. Leveraging Full Potential of SSL during
Meta-Training

In this section, we discuss the meta-training pipeline of
PLATINUM. Particularly, we emphasis on inner loop and
outer loop semi-supervision embeded using class-wise SMI
instantiations. We detail our meta-training pipeline in Algo-
rithm 1.

For any task Ti ∼ p(T ), we first initialize the model pa-
rameters φi ← θ, where θ is meta-learned by optimizing
the outer loop on the previous tasks. Using parameters
φi, we compute an embedding containing class probabili-
ties for each data point belonging to the unlabeled set Ui.
Emprically, we found out that using the class probabilities
based on the classes belonging to Ti was as effective as
using a larger and computationally expensive embedding
like last layer features or gradients. Since the support and
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Algorithm 1 PLATINUM (Meta-Training)

Require: task distribution: p(T ), Base model with parameters
θ, Batch size of tasks: b, Budge of selected samples from
unlabeled set: Bin, Bout

1: Randomly initialize θ
2: while not converge do
3: Sample a batch of tasks {Ti}bi=1 ∼ p(T )
4: for each task Ti = {Si,Qi,Ui}, i ∈ [b] do
5: Initialize model parameters φi ← θ
6: for each inner step t do
7: PUi ← φi(Ui)
8: X ← COSINE SIMILARITY(PUi , {PSi ∪ PQi})
9: Instantiate a submodular function f based on X .

/∗ inner loop selection ∗/
10: Asit ← argmaxAs

it⊆Ui,|A
s
it|≤Bin

If (Asit;Si ∪ Qi)
{Acquire subset with hypothesized labels using per-
class greedy maximization, Equ. (6)}

11: φi ← φi −∇φL (θ;Si ∪ Asi ) Update φi by gradient
descent, Equ. (4)

12: Asi ← Asi ∪ Asit
13: end for
14: PUi\As

i
← φi(Ui\Asi )

15: X ← COSINE SIMILARITY(PUi\As
i
, {PSi ∪ PQi})

/∗outer loop selection∗/
16: Aqi ← argmaxAq

i⊆Ui\A
s
i ,|A

q
i |≤Bout

If (Aqi ;Si ∪ Qi)
{Acquire subset with hypothesized labels using per-class
greedy maximization, Equ. (6)}

17: end for
/∗meta update (outer loop) ∗/

18: Obtain θ(t+1) by Equ. (3) using {Qi ∪ Aqi }
b
i=1

19: end while
20: Return the meta-learned parameters θ.

query set have labels during meta-training, we use a one-hot
vector to represent the data points in Si and Ui, where the
probabilty of the class corresponding to the label is set to
one. Next, we compute a pairwise similarities Xpq, where
p ∈ {Si ∪ Qi}, q ∈ Ui. For each class c, we instantiate an
SMI function Icf (Tab. 1) by using a sub-matrix X c with
pairwise similarities X cpq such that p belongs to class c,
∀p ∈ {Si ∪ Qi}. We then maximize Icf with a budget of
B/C as follows:

Ac ← argmax
Ac⊆Ui,|Ac|≤B/C

Icf (Ac;Si ∪Qi) (6)

where, C is the number of classes in the current task
T . Since Ac is obtained by optimizing the SMI function
Icf (Ac;R), where R contains data points only from class
c, we assigned the hypothesized label c to all data points in
Ac. We obtain As = {A1 ∪A2 · · · ∪ AC} by repeating the
selection for each class. Finally, we update φi in the inner
loop by using gradient descent on Si andAsi . Note that φi is
updated for Tin steps in the inner loop. Similarly, we obtain
Aqi by using the SMI functions to embed semi-supervision
in the outer loop and update θ by gradient descent on Qi
and Aqi . We summarize the inner loop and outer loop op-

timization problems in Equ. (7) and Equ. (8) respectively,
and discuss them in more detail:

Asi ← argmax
As

i⊆Ui,|As
i |≤Bin

If (Asi ;Si ∪Qi) (7)

Aqi ← argmax
Aq

i⊆Ui\As
i ,|A

q
i |≤Bout

If (Aqi ;Si ∪Qi) (8)

where Bin and Bout are selection budget per class.

Inner loop. Although MAML could achieve single step
gradient update in the inner loop, it is not common to have
good adaptation in practice especially considering the in-
volving of additional unlabeled set. To illustrate this clearly,
we assume there are Tin steps during the model adaptation
in the inner loop. Inspired from (Lee et al., 2013), we add
some unlabeled examples to update a task-specific model
φi. Different from (Lee et al., 2013), we do not use all
examples in the unlabeled set because efficiency matters
in meta-learning training procedure. Therefore, the loss
function in the inner loop is formulated as below:

L (θ;Si ∪ Asi ) = Ll (θ;Si) + τinLu (θ;Asi ) (9)

where Asi is the selected examples with pseudo labels.We
define Ll as the loss based on examples with true labels,
and Lu as the loss function based on hypothesized labeled
examples. Similar formulations have been used in conven-
tional semi-supervised learning approaches, such as Pseudo-
Label (Lee et al., 2013) and VAT (Miyato et al., 2018).τin is
a temperature annealing coefficient:

τin(t) =

{
0 t < 2

exp (−5(1− t
Tin

)2) 2 < t ≤ Tin
(10)

Note that we consider multi inner step updates, and SMI
subset selection happens in each step (line 6-13 in Algo-
rithm 1).

Outer loop. Considering the meta-parameters are updated
in the outer loop based on the labeled query set, and there are
few labeled examples per class, it is beneficial to augment
the query set aiming to generalize well for novel class in the
meta-test stage. Considering the unlabeled examples, the
loss function in the outer loop could be:

J (θ) = L(φi;Qi ∪ Aqi )
= Ll (φi;Qi) + τoutLu (φi;Aqi )

(11)

where Aqi is the selected examples with pseudo labels, and
τout is a temperature annealing coefficient:

τout(j) =

{
exp (−5(1− t

Twarm
)2) 0 < j ≤ Twarm

1 Twarm < j ≤ Tout
(12)

Tout is the total number of epochs during meta-training pro-
cedure. Twarm is a warm starting epoch index. More detailed
selection process explanation is given in Appendix B.
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Table 2: Few-shot classification accuracies (%) on miniImageNet. (†: only supervised setting is considered.)

1-shot 5-shot
Methods w/o OOD w/ OOD w/o OOD w/ OOD

Soft k-Means (Ren et al., 2018) 24.61±0.64 23.57±0.63 38.20±1.64 38.07±1.53

Soft k-Means+Cluster (Ren et al., 2018) 15.76±0.59 9.77±0.51 33.65±1.53 30.47±1.42

Masked Soft k-Means (Ren et al., 2018) 25.48±0.67 25.03±0.68 39.33±1.55 38.48±1.74

TPN-semi (Liu et al., 2019) 40.25±0.92 26.70±0.98 46.27±1.67 36.81±0.87

MAML† (Finn et al., 2017) 35.26±0.85 35.26±0.85 60.22±0.83 60.20±0.83

VAT (Miyato et al., 2018) 36.55±0.86 34.03±0.84 61.60±0.83 61.24±0.88

PL (Lee et al., 2013) 37.71±0.94 35.16±0.85 60.64±0.92 60.31±0.87

GCMI (ours) 41.94±0.96 42.57±0.93 63.62±0.95 63.54±0.94

FLMI (ours) 42.27±0.95 41.53±0.97 63.80±0.92 63.44±0.99

Table 3: Few-shot classification accuracies (%) on tieredImageNet. (†: only supervised setting is considered.)

1-shot 5-shot
Methods w/o OOD w/ OOD w/o OOD w/ OOD

Soft k-Means (Ren et al., 2018) 27.53±0.74 27.04±0.76 44.63±1.19 44.78±1.05

Soft k-Means+Cluster (Ren et al., 2018) 30.48±0.84 31.30±0.86 46.93±1.18 49.33±1.17

Masked Soft k-Means (Ren et al., 2018) 33.85±0.84 32.99±0.87 47.63±1.12 47.35±1.08

TPN-semi (Liu et al., 2019) 44.13±1.04 31.83±1.09 58.53±1.57 56.92±1.67

MAML† (Finn et al., 2017) 41.96±0.84 41.96±0.84 61.30±0.85 61.30±0.85

VAT (Miyato et al., 2018) 41.52±0.82 41.51±0.79 59.98±0.83 60.01±0.87

PL (Lee et al., 2013) 41.22±0.89 40.87±0.83 61.70±0.77 60.57±0.87

GCMI (ours) 45.49±0.91 45.55±0.90 63.67±0.83 62.59±0.85

FLMI (ours) 45.63±0.86 46.19±0.94 63.75±0.87 62.19±0.91

Table 4: Few-shot classification accuracies (%) on CIFAR-FS. (†: only supervised setting is considered.)

1-shot 5-shot
Methods w/o OOD w/ OOD w/o OOD w/ OOD

MAML† (Finn et al., 2017) 37.90±0.91 37.90±0.91 52.60±0.89 52.60±0.89

VAT (Miyato et al., 2018) 39.48±0.83 38.91±0.88 53.20±0.80 52.44±0.83

PL (Lee et al., 2013) 38.11±0.87 37.29±0.92 52.83±0.82 52.42±0.91

GCMI (ours) 40.47±0.88 40.10±0.89 55.01±0.84 54.42±0.92

FLMI (ours) 40.96±0.86 40.48±0.87 54.94±0.80 54.16±0.91

3.2. Scalability of SMI Optimization

We chose to embed semi-supervision using FLMI and
GCMI in our framework due to their scalability benefits
(Kothawade et al., 2021a;b). Asymptotically, the time and
space complexity of computing a similarity matrix X for
FLMI and GCMI is only |R| × |U|. Since in the few-shot
learning setting, we setR ← S ∪Q which is comparatively
much smaller than U , the complexity of these SMI func-
tions is only |U|. Moreover, the SMI functions that we use
are monotone and submodular which allows a 1 − 1

e con-
stant factor approximation (Nemhauser et al., 1978). Hence,
for optimizing the SMI functions, we use a greedy algo-
rithm (Nemhauser et al., 1978) using memoization (Iyer &
Bilmes, 2019). This leads to an amortized cost of |U| log |U|
which can be further reduced to |U| using the lazier than
lazy greedy algorithm (Mirzasoleiman et al., 2015). Hence,
FLMI and GCMI can be optimized in linear time, making it
applicable to few-shot learning datasets with a large number
of tasks and large unlabeled sets.

Time complexity of PLATINUM. Since FLMI and GCMI
can be optimized in linear time, asymptotically it does not

Table 5: Running time (training time of 100 tasks) comparison
on miniImageNet domains for 1-shot (5-shot) 5-way experiments
without OOD classes in unlabeled set.

METHODS 1-SHOT (S) 5-SHOT (S)

MAML 23.92 49.83
GCMI 27.33 58.91
FLMI 28.94 56.04

change in terms of the worst case in MAML. Therefore, the
iteration complexity is still O(1/ε2) (Fallah et al., 2020).
Tab. 5 shows the empirical running time per epoch (100
iterations, one task per iteration) for MAML and our pro-
posed GCMI and FLMI. Therefore, it is safe to say that our
proposed framework PLATINUM would not slow down the
original meta-learning framework (such as MAML).

4. Experiments
In this section, we evaluate PLATINUM for semi-supervised
few-shot image classification by comparing the accuracy
attained at meta-testing. In Sec. 4.2, we compare our
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Table 6: Few-shot classification accuracies (%) of different labeled ratios on miniImageNet. (Due to the space limitation, we show results
with 95% confidence interval in Appendix C.)

1-shot 5-shot
Methods 1% 5% 10% 20% 30% 1% 10% 20% 30%

Soft k-Means (Ren et al., 2018) 24.61 38.45 40.65 42.55 44.09 38.20 56.27 60.13 62.47
Soft k-Means+Cluster (Ren et al., 2018) 15.76 38.34 41.15 45.17 47.05 33.65 56.87 60.33 62.43
Masked Soft k-Means (Ren et al., 2018) 25.48 39.03 42.91 45.31 47.17 39.33 57.20 62.50 63.00
TPN-semi (Liu et al., 2019) 40.25 42.40 45.78 48.02 47.52 46.27 60.55 62.43 63.10
MAML (Finn et al., 2017) 35.26 42.51 44.29 45.10 45.26 60.22 61.06 63.18 65.60
PL (Lee et al., 2013) 37.71 44.04 46.58 45.13 44.37 60.64 61.17 63.06 65.14
GCMI (ours) 41.94 44.98 46.85 47.72 48.93 63.62 62.72 64.78 65.96
FLMI (ours) 42.27 45.01 47.84 47.82 48.98 63.80 62.60 65.16 66.10

method with the state-of-the-art techniques on a diverse
set of datasets and settings. In Sec. 4.3, we discuss multi-
ple ablation studies by varying the number OOD classes in
the unlabeled set and studying the effect of the proposed
semi-supervision in the inner and outer loop.

In order to demonstrate the effectiveness of PLATINUM, we
aim to study two questions:

Q1: Can PLATINUM be successfully applied to semi-
supervised few shot classification scenario with very few
labeled examples on the top of MAML and boost the perfor-
mance of MAML with the additional unlabeled set?
Q2: In realistic scenarios, the unlabeled set is bound to have
OOD data. Can PLATINUM provide robust semi-supervision
by ignoring the OOD data in the unlabeled set?

4.1. Datasets and Implementation details

Datasets. We conduct experiments on three datasets:
miniImageNet (Vinyals et al., 2016), tieredImageNet (Ren
et al., 2018), and CIFAR-FS (Bertinetto et al., 2018). Both
miniImageNet and tieredImageNet are modified subsets
of the ILSVRC-12 dataset (Russakovsky et al., 2015).
miniImageNet consists of 100 classes and each class has
600 images. Following the disjoint class split from (Ravi &
Larochelle, 2017), we split it into 64 classes for training, 16
for validation, and 20 for test. Similarly, tieredImageNet is
a larger dataset, consisting of 608 classes and each class has
768∼1300 images. Classes are split into 351 for training,
97 for validation, and 160 for test (Ren et al., 2018). All
images in these two datasets are of resolution 84×84×3.
CIFAR-FS contains 60,000 images of size 32×32×3 from
100 classes. We use the same class split as miniImageNet.

Implementation details. We follow the “K-shot, M -way”
episode training setting in (Finn et al., 2017) to do few-
shot classification experiments to evaluate PLATINUM. We
implement image classification experiments in 5-way, 1-shot
(5-shot) settings. Concretely, we sample each task to contain
1 (5) data points in the support set S , and 15 (15) data points
in the query set Q. For the unlabeled set U , we sample 50
(50) data points for each classes. To select a subset for semi-
supervision using SMI functions, we use a budget Bin =

25 (25) for the inner loop, and a budget Bout = 50 (50) for
the outer loop. Note that we perform a per-class selection to
assign pseduo-labels using the SMI functions, which leads
to a budget of 5 and 10 data points for the inner and outer
loop respectively. For our experiments in Tab. 2, Tab. 3 and
Tab. 4, we use a labeled set ratio ρ = 0.01, where ρ is the
ratio of the number of data points in the labeled set to the
number of data points in the unlabeled set. However, we
also compare with a number of other ρ values (see Tab. 6).
For our experiments with OOD classes in the unlabeled set
(Tab. 3), we use 5 distractor classes with 50 data points for
each class. To make a fair comparison, we apply the same 4-
layer CONV backbone architecture given in (Vinyals et al.,
2016; Finn et al., 2017) for our model and all baselines. We
provide detailed hyperparameters for our experiments in
Appendix C. We use an NVIDIA RTX A6000 GPU for our
experiments. The PyTorch implementation is available at
https://tinyurl.com/2p9y3ejm.

Baselines. We consider meta-learning based semi-
supervised few shot classification approaches, and com-
pare with two methods, namely the extended prototypical
network (Ren et al., 2018) (including Soft k-Means, Soft k-
Means+Cluster, Masked Soft k-Means) and TPN-semi (Liu
et al., 2019). We also compare with MAML which serves as
the supervised classification baseline without the additional
unlabeled set. In addition, we compare with two well known
approaches from the semi-supervised learning literature and
implement them in the inner and outer loop on the top of
MAML. The first one is Pseudo-labeling (PL) (Lee et al.,
2013) and the second one is a consistency regularization
method, VAT(Miyato et al., 2018).

4.2. Results

In this section, we present extensive experiments that com-
pare the performance of PLATINUM with other methods.
We provide the results for 1-shot (5-shot), 5-way experi-
ments for miniImageNet in Tab. 2, tieredImageNet in Tab. 3,
and CIFAR-FS in Tab. 4. On all datasets, we conduct exper-
iments with (w/ ) and without (w/o) OOD classes in the unla-
beled set. Since these experiments use ρ = 0.01, we conduct
experiments for ρ =0.1, 0.2 and 0.3 on miniImageNet, and

https://tinyurl.com/2p9y3ejm
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present the results in Tab. 6.

Analysis across multiple datasets. We observe that FLMI
outperforms other methods for the 1-shot setting on all
datasets. The performance of FLMI is slightly better than
GCMI due to the additional diversity that the FLMI function
models (see Tab. 1). When compared to other methods, the
SMI functions (FLMI and GCMI) improve the accuracy by
≈ 2 − 4% over existing methods. Interestingly, in Tab. 4,
we observe that GCMI outperforms FLMI and other base-
lines in the presence of OOD classes in the unlabeled set.
This is expected since GCMI only models query-relevance
(Kothawade et al., 2021c) as opposed to FLMI which also
models diversity.

Varying the labeled set ratio ρ. In Tab. 6, we analyze dif-
ferent values of ρ for 1-shot and 5-shot on the miniImageNet
dataset. We observe that the gain using PLATINUM is higher
when the number of labeled data points is lower than the
number of unlabeled data points, i.e., ρ is small. This further
reinforces the need for a framework like PLATINUM which
performs well in the low labeled data regime.

4.3. Ablation Study

Varying the number of distractor classes. To explore the
effect of the number of OOD classes in the unlabeled set,
we increased the number of OOD classes, while keeping the
number of in-distribution classes to be 5. We keep using
the same number of unlabeled images per class as previous
experiment. In Fig. 3, we present the result for this ablation
study on the 5-way 5-shot setting for the miniImageNet
dataset. As expected, we observe that the accuracy during
meta-testing decreases as the complexity of in-distribution
subset selection increases due to larger number of OOD
classes. We observe that the semi-supervision provided
by the SMI based methods (FLMI and GCMI) consistently
aids MAML and outperform other methods as the number
of OOD classes increase, while PL suffers and eventually
performs slightly worse than MAML.

Inner and outer loop selection. One of the key compo-
nents of PLATINUM is embedding semi-supervision in the
outer-loop. We conduct an ablation study using the 5-way
1-shot and 5-shot setting on the miniImageNet dataset to an-
alyze the effect of outer-loop semi-supervision and present
the results in Fig. 4. Particularly, we evaluate the meta-test
accuracy of few-shot classification with (w/ ) and without
(w/o) the outer-loop selection for three methods: PL, GCMI
and FLMI. MAML is also included for comparison. We ob-
serve that providing semi-supervision in the outer loop con-
sistently improves the performance across all experiments.
Especially for 1-shot of PL, we observe an improvement
of ≈ 4%. Interestingly, PL performs worse than MAML
without the outer-loop semi-supervision, and outperforms
MAML with it.
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Figure 3: Comparison under different number of OOD classes in
the Unlabeled Set for 5-shot case on miniImageNet. TPN-semi is
much worse than MAML by 20%, so we do not put it in this figure.
(1-shot case is shown in Appendix C.)

PL GCMI FLMI20

30

40

50

60

Ac
cu

ra
cy

 (%
)

33.96

40.2 40.34
37.71

41.25 42.27

35.26 35.26 35.26

w/o Outer Selection
w/ Outer Selection
MAML

PL GCMI FLMI45

50

55

60

65

60.34

63.14 62.86

60.64

63.62 63.8

60.2 60.2 60.2

Figure 4: w/ outer selection vs. w/o outer selection. Left: 1-shot,
Right: 5-shot. Both of them are on miniImageNet.

5. Conclusion
In this paper, we propose a novel semi-supervised model-
agnostic meta-learning framework PLATINUM. It leverages
submodular mutual information functions as per-class ac-
quisition functions to select more balanced and diverse data
from unlabeled data in the inner and outer loop of meta-
learning. Meta-learning based semi-supervised few-shot
learning experiments validates the effectiveness of embed-
ding semi-supervision in the MAML by PLATINUM, espe-
cially for small ratio of labeled to unlabeled samples. We
also notice that it might be useful to involve some diver-
sity measurements for the selected subset to do quantitative
analysis, we leave this as future work.
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A. Notation
For clear interpretation, we list the notations used in this paper and their corresponding explanation, as shown in Table 7.

Table 7: Important Notations and Descriptions

Notation Description

p(T ) Probability distribution of meta-training tasks
N The number of meta-training tasks
M -way, K-shot The number of classes in one task M , and each class contains K examples in the support set
Ti The i-th meta-training task
{Si,Qi, Ui} Support set, query set, and unlabeled set of meta-training task Ti
{Snew,Qnew, Unew} Support set, query set, and unlabeled set for task T ′i in meta-test
Asi Selected unlabeled examples from Unlabeled set for task Ti in the inner loop in meta-training
Aqi Selected unlabeled examples from Unlabeled set for task Ti in the outer loop in meta-training
θ Initial parameters of base learner
φi Task-specific parameters for task Ti
L(φ;D) Loss function on dataset D characterized by model parameter φ
Ll, Lu Cross entropy loss on labeled data ( or hypothesized labeled data)
Alg(θ;D) One or multiple steps of gradient descent initialized at θ on dataset D
α, β Learning rate in the inner loop and outer loop
τin, τout Temperature annealing coefficient in the inner (or outer) loop
Bin, Bout Budget in the inner (or outer) loop selection among all classes in the task
Tin, Tout, Twarm Total number of steps in the inner loop; The number of epochs in the outer loop; Warm start epoch in the outer loop
f A submodular function
Sij similarity between sample i and j
If A submodular mutual information function instantiated using a submodular function f
X Pairwise similarity matrix used to instantiate a submodular function f

B. Details of Inner and Outer SMI Subset Selection
B.1. Inner loop

Task specific model parameters for task Ti:

φi = argminθ Ll (θ;Si) + τinLu (θ;Asi )
=θ − α∇θLl (θ;Si)− ατin∇θLu (θ;Asi ) (one step gradient update example)

(13)

In which, α is learning rate. τ is the coefficient from the pseudo labeling approach. Since it is an increasing temperature
variable, let τ (t) denote the τ in step t.

Since there are several gradient update steps in inner loop.

φ
(t+1)
i = φ

(t)
i −∇L (θ;Si ∪ Asi ) (14)

Let φ(t)
i denote the model parameters for t-th step for task Ti.

• initialization: φ(0)
i = θ, Asi = ∅

• inner step 1:
φ

(1)
i = θ − α∇θLl(θ;Si)− ατ (1)

in ∇θLu (θ;Asi )

Select subset for this step: Asi1 ← argmaxAs
i1⊆Ui,|As

i1|≤Bin
If (Asi1;Si ∪Qi)
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Set of selected examples: Asi = Asi ∪ Asi1
In this step, the CNN model used to calculate the class probabilities for SMI is parameterized by θ.

• inner step 2:

φ
(2)
i = θ − α∇φ(1)Ll(φ

(1);Si)− ατ (2)
in ∇φ(1)Lu

(
φ(1);Asi

)
Select subset for this step: Asi2 ← argmaxAs

i2⊆Ui,|As
i2|≤Bin

If (Asi2;Si ∪Qi)
Set of selected examples: Asi = Asi ∪ Asi2
In this step, the CNN model used to calculate the class probabilities for SMI is parameterized by φ(1).

• inner step 3:

φ
(3)
i = θ − α∇φ(2)Ll(φ

(2);Si)− ατ (3)
in ∇φ(2)Lu

(
φ(2);Asi

)
Select subset for this step: Asi3 ← argmaxAs

i3⊆Ui,|As
i3|≤Bin

If (Asi3;Si ∪Qi)
Set of selected examples: Asi = Asi ∪ Asi3
In this step,the CNN model used to calculate the class probabilities for SMI is parameterized by φ(2).

• continue repeat until the end of inner loop: step Tin − 1.

Model parameters for task Ti udpate process:

φ(0)(:= θ)→ φ(1) → φ(2) → φ(3)...→ φ(Tin−1)

B.2. Outer Loop

Meta-parameter update according to:
θ = argmin

θ
J (θ) (15)

The final loss function is:

J (θ) =
1

M

M∑
i=1

Ll (φi;Qi) + τoutLu (φi;Aqi )

=
1

M

M∑
i=1

Ll (argminθ Ll (θ;Si) + τinLu (θ;Asi ) ;Qi) + τoutLu (argminθ Ll (θ;Si) + τinLu (θ;Asi ) ;Aqi )

(16)

in which, T is the set of meta-training tasks. τout is still a coefficient borrowed from the pseudo label formulation.

The second equal in the above equation is according to the inner loop update:

φi = argminθ Ll (θ;Si) + τLu (θ;Asi )

Since there is only one step in the outer loop, subset selection only happens one time.

Aqi ← argmax
A⊆Ui\As

i ,|A|≤Bout

If (A;Si ∪Qi) (17)

The CNN model used here should be the final model parameter after the inner loop: φ(Tin−1)
i .

The motivation here to use φ(Tin−1)
i instead of meta-parameter θ is that SMI needs a CNN model which has powerful

representation. For task Ti, φ(Tin−1)
i is more powerful than θ.
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C. Additional Experimental Detail
As aforementioned, our backbone follows the same architecture as the embedding function used by (Finn et al., 2017).
Concretely, the backbone structure is made of 4 modules, each of which contains a 3×3 convolutions and 64 filters, followed
by batch normalization, a ReLU, and a 2×2 max-pooling with stride 2. To reduce overfitting, 32 filters per layer are
considered. Cross entropy loss function is used for all experiment including the loss of selected unlabeled set between the
predicted labels and the hypothesized labels.

C.1. Hyparameters tuning

All baseline approaches including three extended prototypical networks (Ren et al., 2018) and TPN-semi (Liu et al., 2019) are
reimplemented via their official code following the original implementation including hyper-parameters. For our PLATINUM
algorithm, all step sizes (α, β) are chosen from {0.0001, 0.001, 0.01, 0.1}. The Batch size (number of tasks per iteration) is
chosen from {1, 2, 4}. The number of iterations are chosen from {10,000, 20,000, 30,000, 40,000, 60,000}. The selected
best ones are: learning rate in the inner loop α = 0.01, meta parameters step size (outer learning rate) β = 0.0001; the
number of iterations for all experiments is set to be 60, 000 (600 epochs, each epoch has 100 iterations). We monitor the
accuracy and loss from meta-validation stage and save the model which has the best validation accuracy and use that to
evaluate the performance on unseen novel tasks in meta-test stage.

C.2. Additional Results

Table 8: Few-shot classification accuracies (%) of different labeled ratios on miniImageNet.

1-shot
Methods 1% 5% 10% 20% 30%

Soft k-Means (Ren et al., 2018) 24.61±0.64 38.45±0.81 40.65±0.92 42.55±0.99 44.09±1.08

Soft k-Means+Cluster (Ren et al., 2018) 15.76±0.59 38.34±0.82 41.15±0.99 45.17±0.95 47.05±1.08

Masked Soft k-Means (Ren et al., 2018) 25.48±0.67 39.03±0.89 42.91±0.93 45.31±1.01 47.17±1.07

TPN-semi (Liu et al., 2019) 40.25±0.92 42.40±0.77 45.78±0.80 48.02±0.82 47.52±0.83

MAML (Finn et al., 2017) 35.26±0.85 42.51±0.78 44.29±0.78 45.10±0.75 45.26±0.78

PL 37.71±0.94 44.04±0.82 46.58±0.72 45.13±0.78 44.37±0.81

GCMI (ours) 41.94±0.96 44.98±0.80 46.85±0.74 47.72±0.76 48.93±0.70

FLMI (ours) 42.27±0.95 45.01±0.83 47.84±0.86 47.82±0.78 48.98±0.72

Table 9: Few-shot classification accuracies (%) of different labeled ratios on miniImageNet.

5-shot
Methods 1% 10% 20% 30%

Soft k-Means (Ren et al., 2018) 38.20±1.64 56.27±1.75 60.13±1.79 62.47±1.65

Soft k-Means+Cluster (Ren et al., 2018) 33.65±1.53 56.87±1.77 60.33±1.81 62.43±1.79

Masked Soft k-Means (Ren et al., 2018) 39.33±1.55 57.20±1.64 62.50±1.78 63.00±1.77

TPN-semi (Liu et al., 2019) 46.27±1.67 60.55±0.72 62.43±0.69 63.10±0.69

MAML (Finn et al., 2017) 60.22±0.83 61.06±0.81 63.18±0.76 65.60±0.82

PL (Lee et al., 2013) 60.64±0.92 61.17±0.85 63.06±0.79 65.14±0.74

GCMI (ours) 63.62±0.95 62.72±0.88 64.78±0.76 65.96±0.74

FLMI (ours) 63.80±0.92 62.60±0.86 65.16±0.74 66.10±0.79

Selection accuracy. Fig. 6, Fig. 7, and Fig. 8 show the selection accuracy of three SSL algorithms: PL, GCMI and FLMI in
the inner loop during meta-test. Although GCMI and FLMI has slightly low accuracy than PL, this verifies that our proposed
PLATINUM is able to select more balanced and diverse data which are more important for model training.
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Figure 5: Comparison under different number of OOD classes in the unlabeled set for 1-shot case on miniImageNet.

10 60 110 160 210 260 310 360 410 460 510 560
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Se
le

ct
io

n 
Ac

cu
ra

cy
 (%

)

inner step=1

inner step=2inner step=3inner step=4inner step=5inner step=6inner step=7inner step=8inner step=9inner step=10

inner step=1
inner step=2
inner step=3
inner step=4
inner step=5
inner step=6
inner step=7
inner step=8
inner step=9
inner step=10

Figure 6: Selection accuracy in the unlabeled set for 1-shot case on miniImageNet during meta-test for PL.
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Figure 7: Selection accuracy in the unlabeled set for 1-shot case on miniImageNet during meta-test for GCMI.
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Figure 8: Selection accuracy in the unlabeled set for 1-shot case on miniImageNet during meta-test for FLMI.


